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Better sensitivity to linear and nonlinear trends with position

than with color
Jessica K. Witt
Amelia C. Warden

Useful data visualizations have the potential to leverage
the visual system’s natural abilities to process and
summarize simple and complex information. Here, we
tested whether the design recommendations made for
pairwise comparisons generalize to the detection of
trends. We created two different types of graphs: line
graphs and stripplots. These graphs were created from
identical datasets that simulated temperature changes
across time. These datasets varied in the type of trend
(linear and exponential). Human observers performed a
trend detection task for which they judged whether the
trend in temperature over time was increasing or
decreasing. Participants were more sensitive to trend
direction with line graphs compared to stripplots.
Participants also demonstrated a systematic bias to
respond that the trend was increasing for line graphs.
However, this bias decreased with increasing sensitivity.
Despite the better sensitivity to line graphs, more than
half of the participants found the stripplots more
appealing and liked them more than the line graphs. In
conclusion, our results indicate that, for trend detection,
depicting data with position (line graphs) leads to better
performance compared to depicting graphs with color
(stripplots). Yet, graphs with color (stripplots) were
preferred over the line graphs, suggesting that there may
be a tradeoff between the aesthetic design of the graphs
and the precision in communicating the information.

Starting in mid-June of 2019, a trend on Twitter
was to #Show YourStripes (see Figure 1). The
stripes correspond to warming stripes or stripplots
that depicted differences in temperature across
nearly two centuries. Red corresponds to a higher
relative temperature within the time frame, and blue
corresponds to a lower relative temperature. The plots
depict trends at the global, continent, country, or state
level. The plots have been downloaded nearly one
million times, have graced the cover of the Economist,
and have been applied to personal items from neckties
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and shirts to car paint (source: Wikipedia). The plots
are aesthetically pleasing, but are they good at depicting
trends in climate data?

According to classic work on graph design, plotting
data in terms of relative position along a common
scale leads to the best precision, and using color leads
to the worst precision (Cleveland & McGill, 1985). In
these experiments, participants were asked to specify
the ratio between two data points. Ratio judgments
were most accurate for graphs that specified the value
of data with relative position on a common scale. These
kinds of graphs include dot, bar, and line graphs. Ratio
judgments were least accurate for graphs specifying the
value of data with color.

If these recommendations with pairwise comparisons
generalize to different kinds of graphs such as those
that require visual averaging or those that show
trends, line graphs, rather than stripplots, should be
best for depicting data. The research showing this
generalization is mixed. Some studies show better
performance with scatterplots than stripplots. For
example, participants were more accurate at selecting
which of two distributions of dots in a scatterplot had
the higher mean than selecting which of two stripplots
had the higher mean (Legge, Gu, & Luebker , 1989).
They were also more accurate at selecting which were
sampled from a distribution with a higher variance.
Similarly, other research showed better accuracy at
finding the graph with the highest decrease among
many small multiples for line graphs than for stripplots
(Fuchs, Fischer, Mansmann, Bertini, & Isenberg ,
2013). Together, these results showed that relative
position leads to better accuracy than brightness or
color.

In contrast, other research demonstrated that
Cleveland and McGill’s (1985) recommendations do
not generalize. Several studies have shown that visual
averaging is more accurate with stripplots than with
line graphs (Albers, Correll, & Gleicher, 2014; Correll
et al., 2012). In one study, the visual averaging task was
to estimate the mean value of a stock based on a graph
depicting the value of the stock across one year (Albers
et al., 2014). In another study, the visual averaging
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Figure 1. Tweet by Ed Hawkins showing global temperature change using a stripplot (Hawkins, June 17, 2019). Screenshot of tweet

taken on September 3, 2020.

task was to determine which month had the highest
average sales, which required averaging data within
each month and comparing across months (Correll,
Albers, Franconeri, & Gleicher, 2012). Both studies
showed superior performance in terms of the number
of correct answers (accuracy) with stripplots than with
line graphs. These results inspired the recommendation
that color rather than position should be used when
presenting data for summary tasks (Szafir, Haroz,
Gleicher, & Franconeri, 2016).

The seminal work by Cleveland and McGill (1985)
clearly shows better pairwise precision for relative
position than for color. So why would stripplots, which
depict data using the less precise visual feature of
color, lead to superior performance compared to line
graphs, which use the more precise visual feature of
relative position? Szafir and Colleagues (2016) raised
the possibility that less precision for individual data
points could actually promote performance at the level
of the ensemble or group of data points. Specifically,
they speculated that less precise representations would
lead to less individuation of specific data points, which
would enable more precise representations at the group
level.

The visual system can extract information at the level
of an individual object, but it can also extract summary
information about a group of objects. This ability,
termed ensemble perception, has been most frequently
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researched with respect to the mean of a group. For
example, observers might see an array of circles and
estimate their color, size, or position (Whitney &
Yamanashi Leib, 2018). Ensemble perception has
focused on whether observers can detect the mean
across a variety of stimuli from low-level visual features
such as color and orientation to high-level features such
as facial expressions.

Despite the growing literature on ensemble
perception, the field has not focused on the direct
comparison of performance across features and
is therefore silent with respect to whether color
versus position leads to the best performance in a
visualization. This is not surprising given that it is
hard to equate a range of stimuli in one dimension
(such as vertical position) to a range of stimuli in
another dimension (such as color). However, research
on ensemble perception suggests that better visual
precision for individual objects is related to better
visual precision for ensembles. Individual differences
have shown a positive correlation between precision
for individuals and for ensembles (Haberman,
Brady, & Whitney, 2015). If this correlation is
driven by a causal link, this suggests that summary
tasks should be better when data are represented
by position instead of color because precision for
individual data points is better for position than
color.
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In contrast to this speculated causal link,
developmental research has shown that children who
have poor precision at the level of the individual item
can still perform summary tasks (Sweeny, Wurnitsch,
Gopnik, & Whitney, 2015). Similarly, poor precision
at the individual level due to visual crowding does
not prevent ensemble perception (Fischer & Whitney,
2011; Parkes, Lund, Angelucci, Solomon, & Morgan,
2001). In addition, there can be changes in items at the
individual level that go undetected, but ensemble coding
is still correctly perceived (Haberman & Whitney, 2011).

The mixed literature gives rise to several questions.
From the perspective of visualizations, one question is
whether trend detection is better served by representing
the data using color or vertical position. From the
perspective of ensemble perception, the question is
whether the visual feature that gives rise to the best
precision for comparing individual objects also gives rise
to the best precision for extracting summary statistics.
As discussed by Rensink (2017), trend detection likely
recruits ensemble perception processes. The summary
statistic would be a probability distribution of how one
feature (vertical position or color) varies with another
feature (horizontal position). Thus research on trend
detection has implications for understanding ensemble
processes as well. Our research explored these questions
as well as whether the patterns that hold for linear
relationships generalize to non-linear relationships.

Furthermore, we will expand on previous literature
using a signal detection theory framework to separate
the effects of sensitivity versus bias (Macmillan &
Creelman, 2008; Tanner & Swets, 1954; Wickens, 2002).
When applying this framework to an experiment on
detecting whether a trend depicts an increase or a
decrease over time, sensitivity refers to the observers’
abilities to discriminate between increasing and
decreasing trends, and bias refers to the observers’
tendencies to respond that a trend is increasing versus
decreasing. By separating the effects of sensitivity
and bias, a signal detection approach provides a more
nuanced understanding of observers’ performance than
using the proportion of correct responses.

A signal detection approach could explain
discrepancies in the literature about visualizations.

For example, performance on detecting linear trends
was better for line graphs than stripplots when the
trends were decreasing (Fuchs et al., 2013). However,
the performance was similar or possibly even better
for stripplots than scatterplots when the trends

were increasing (Rensink, 2015). These seemingly
inconsistent patterns could easily be explained by bias.
A bias to estimate trends as increasing when data are
presented with color compared to position would lead
to better performance with stripplots for increasing
trends but not for decreasing trends.

We hypothesized that sensitivity for detecting trends
in time series data would be higher with line graphs that
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represent data via position than with stripplots that
represent data via color. This hypothesis is consistent
with the idea that ensemble perception builds from the
perception of individual elements. If the data instead
show better sensitivity with stripplots, this would
suggest that color, rather than position, is better for
summary tasks including detecting averages and trends
(Szafir et al., 2016). This result would also suggest that
worse resolution at the pairwise level (cf., Cleveland

& McGill, 1985) leads to better precision at detecting
information in ensembles. Such a result would have
important implications for the mechanisms driving
ensemble perception. We also hypothesize differences in
bias such that observers will be more biased to respond
that the trends are increasing for stripplots versus line
graphs. Such biases have not yet been explored. The
current approach investigates what kinds of biases exist
for the different kinds of plots and ensemble tasks.

Participants

Fifty-seven participants were recruited from
Amazon’s Mechanical Turk (n = 22) and the
Psychology Research Participant Pool at Colorado
State University (n = 35).

Stimuli and apparatus

Stimuli were constructed in R (R Core Team, 2017).
Data were simulated to create 189 datasets. Each
dataset simulated temperature across 100 time points.
Each dataset was constructed by simulating a trend
with an intercept, slope, and exponent. Random noise
was added to each dataset, and cyclical noise was
added to some datasets. The equation for constructing
the datasets is shown in Equation 1. Time was a
vector ranging from 1 to 100. All other values were
systematically manipulated parameters.

Temperature = 50 + slope * timeSrponent

+ randomN oise + cyclical Noise (1)

There were three trend exponents: 1, 2, and 4.
Each was constructed to be positive and negative by
manipulating the sign of the slope. For the linear trend,
the slope was —0.2 or 0.2 and the exponent was 1. For
the exponential-2 trend, the slope was —0.002 or 0.002,
and the exponent was 2. For the exponential-4 trend,
the slope was —0.00002 or 0.00002, and the exponent
was 4. There were 3 levels of random noise. The random
noise was generated using the rnorm function in R with
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Figure 2. lllustration of the various components of each dataset. In this example, the trend is positive, exponential-2 with the medium
level of random noise and the short cyclical noise. The combined plot shows how the data look after the three components are
combined, and the stripplot shows how the data were depicted for the stripplot. The alt cyclical noise panel shows an alternative

option that was the long cyclical noise.

a mean of 0 and a standard deviation (SD) of 8§, 12,
or 16. There were also three levels of cyclical noise.
One level was to have no cyclical noise, meaning all the
noise was random. The other two levels were a short
and a long sine wave. This noise was calculated as five
times the sine of the product of time (the vector from
1 to 100) multiplied by 0.4 or 0.08 for the short and
long waves, respectively. An example of the different
components that were combined to create the final
dataset are shown in Figure 2. Examples of different
combinations are shown in Figure 3. There was an
additional trend type for which the slope was 0, and the
exponent was 0. Any trends apparent in the data were
due to spurious, unintended patterns in the noise. In
hindsight, these stimuli should not have been included
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in the experiment, and data from these trials were
excluded from the analyses. The seven trend types x 3
levels of random noise x 3 levels of cyclical noise x 3
repetitions of each produced 189 unique datasets.
Each dataset was used to create one line graph and
one stripplot (see Figure 2). The range of the y-axis
was left to the default values in R, which are + 4%
of the data range. For the stripplots, the data were
presented as vertical lines colored as a function of
relative temperature within each dataset. Numeric
labels and axes were not presented in the stripplots.
We used a diverging red-blue color ramp created
from ColorBrewer. Many designer color tools, such
as ColorBrewer, generate color ramps that transverse
nonlinear paths through the perceptual color space
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Figure 3. Examples of stripplots and line graphs for each trend exponent for each level of cyclical noise (levels 0, 0.08, and 0.4).
Cyclical noise of 0 means the simulated data contained only random noise.

(Smart et al., 2020). The diverging red-blue color
palette used here is symmetrical, meaning that there

is an equal number of colors on either side of the
midpoint. The color ramp has an orderly lightness, with
more lightness change at the ends of the color ramp.
The color ramp has more hue changes in the middle
range and varied saturation throughout the ramp
(Brewer, 1999a).

The stimuli were presented in Qualtrics. The trials
consisted of two blocks (one stripplots block and one
lines block) followed by three questions about the
types of graphs used. The stripplot and line blocks
were counterbalanced and consisted of 189 trials that
were randomly presented to the participant. Once
both blocks were completed, participants were asked
questions about the visual appearance and likability of
the line graph and the stripplot.
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Procedure

The stimuli were presented through a Qualtrics
survey. Instructions at the beginning indicated that the
participants would see graphs depicting average annual
temperature across time. Their task was to determine
whether the overall trend in average temperature was
increasing or decreasing. For clarity, participants were
informed not to look at the last item or compare
the first and last items when making their decisions.
Instead, they were told to assess the entire time course
of the graph to decide whether the average temperature
was increasing or decreasing over time.

Before each test trial block, participants were
given a description of the type of graph they would
see for that block. The stripplots were described as
presenting how global temperatures change over time
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by using color. Dark red stripes indicated the highest
temperatures occurring in a given year, and dark blue
stripes indicated the lowest temperature occurring in a
given year. The line graphs were described as presenting
how global temperatures change over time using lines to
represent trends. The height of the lines corresponded
to the temperature occurring in a given year, with the
highest values on the y-axis representing the higher
temperature for that year, and the lowest values on the
y-axis representing the lowest temperature for that year.

On each trial, a single graph was presented. The
dimensions were set to be 400 pixels wide x 300
pixels tall. Participants responded by clicking either
the box that said “Decreasing” or the box that said
“Increasing.” For one block of trials, all the graphs
were the line graphs, and for the other block, all the
graphs were stripplots. The starting order of graph
type was counterbalanced across participants. Image
presentation within a block was randomized.

Participants were asked three questions after
completing both blocks: (1) “Which graph do you find
more visually appealing?”’; (2) “Which graph would you
be more likely to share (e.g., via social media, email,
text)?”; and (3) “Which graph do you like more?” Each
question required a response of selecting either the
“Line Graph” or the “Stripes Color Plot.”

Trend direction was determined by whether the
correlation between temperature and time was positive
or negative. Trend direction coincided with the intended
trend direction based on the sign of the slope used to
simulate the data. However, one of the linear graphs

Witt & Warden

had a very low correlation (r < .20) because of noise
and random sampling and was removed from the
analysis.

Accuracy

Participants’ responses were coded as accurate (1)
if their response matched the direction of the trend
and incorrect (0) otherwise. These data were analyzed
with a general linear mixed model. The dependent
measure was accuracy. The independent measures were
trend direction (positive, negative), graph type (line
graph, stripplot), trend type (linear, exponential-2,
exponential-4), and all interactions. The random effects
for participant were included for the intercepts and
slopes for each main effect. Trend direction and graph
type were both coded as 0.5 and —0.5; trend type was
coded as 0, 1, 2.

The main effect of graph type was significant, z =
3.30, p < .001, estimate = 0.73, SE = 0.22. Participants
were more accurate with the line graphs than the
stripplots. However, this accuracy varied depending
on the other aspects of the graphs, as revealed by
significant interactions. All two-way interactions were
significant, ps < .03. The three-way interaction was
also significant, z = —4.03, p < .001. For stripplots,
the difference in accuracy between increasing and
decreasing trends varied as a function of the exponent,
z = —-5.00, p < .001, estimate = —0.37, SE = 0.07
(see Figure 4). In contrast, for the line graphs,
the difference in accuracy between increasing and
decreasing trends did not vary significantly as the
exponent increased, z = 1.15, p =.25, estimate = 0.11,
SE =0.09.
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Figure 4. Proportion of correct responses is plotted as a function of trend exponent, trend direction, and graph type. Error bars are

asymptotic 95% confidence intervals calculated from the model.
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Response
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Trend direction “Increasing” “Decreasing”

Increasing Hit Miss
Decreasing False alarm Correct rejection

Table 1. Classification of responses for signal detection analysis

Signal detection measures

Although accuracy may differ for line graphs
and stripplots as a function of trend type and trend
direction, a more parsimonious explanation is that the
differences across trend directions reflect attenuated
sensitivity coupled with specific biases. To explore
this possibility, we analyzed the data using the signal
detection measures of d and ¢, which measure
sensitivity and bias, respectively.

The hit rate was calculated as the proportion of trials
for which the trend was increasing, and participants
responded that it was increasing. The false alarm rate
was calculated as the proportion of trials for which
the trend was decreasing, but participants responded
that it was increasing (see Table 1). Sensitivity was
measured using ¢, which was calculated as the z-score
of the hit rate minus the z-score of the false alarm rate.
Bias was measured using ¢, which was calculated as
—1 times the sum of the z-scores of the hit and false
alarm rates divided by 2. Negative ¢ scores indicate
a bias to respond that the trend is increasing, and
positive ¢ scores indicate a bias to respond that the
trend is decreasing. Both measures were calculated for
each participant for each graph type and each trend
type. With signal detection analysis, trend direction is
collapsed within each category to be able to calculate
both hits and false alarms.

Sensitivity

To assess sensitivity, we conducted a linear mixed
model with d” as the dependent factor. The fixed effects
were trend type (linear, exponential-2, exponential-4,
coded as 0, 1, and 2, respectively), graph type (coded as
—.5 and .5 for stripplots and lines graphs, respectively),
and their interaction as the within-subjects factors.
Random effects were included for each participant,
including intercepts and slopes for graph type because
the model was singular with random effect slopes for
trend type.

Graph type significantly affected sensitivity, ¢t = 3.53,
p < .001, estimate = 0.75, SE = 0.21. Participants were
more sensitive to the direction of the trend (higher &
values) when viewing line graphs compared to stripplots
(see Figure 5). This advantage for the line graphs over
the stripplots increased as the exponent of the trend
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Figure 5. Sensitivity (measured as d') is plotted as a function of
trend exponent and graph type. Higher d’ values indicate better
sensitivity. Error bars are 95% confidence intervals calculated
from the model.

increased, t = 2.71, p = .007, estimate = 0.17, SE

= 0.06. A multiverse analysis (Steegen, Tuerlinckx,
Gelman, & Vanpaemel, 2016) revealed a similar pattern
regardless of outlier exclusion (see Supplementary
materials at https://osf.i0/x372y/).

Why is sensitivity better with the line graphs than the
stripplots? One possibility is that observers allocated
their attention to different parts of the displays for
the two graph types. To evaluate this possibility, we
constructed four predictor variables on the basis of
the simulated data used to create the stimuli. All four
predictors were the difference scores between the means
of two subsets of the simulated data. One predictor
was the difference in means for the second half minus
the first half. We calculated the mean temperature
for the second half of the simulated data and the
mean temperature for the first half of the simulated
data, then calculated the difference between them
(halves 1 and 2 or halves1-2). We also calculated the
difference in means between the first and last quarter
(quartersi—4) and the first and last tenths (tenthsi—10).
In addition, we calculated the difference in means
between the third and fourth quarter (quarters3—4). If
participants only attended to the first and last items, the
tenths1-10 should best predict participants’ responses.
If participants only attended to the right half of the
graphs, the quarters3—4 should best predict their
responses.

We conducted a general linear mixed model for each
predictor variable for each graph type. The dependent
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lower score is a better model. The dotted line is at two. Note
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variable was the participants’ response, coded as 1

for increasing and 0 for decreasing. The fixed effect
was the predictor. The random effect was participant
including intercepts and slopes for the predictor. We
compared Bayesian information criterion (BICs) for
each model. Lower BIC indicate better model fit.

For both line graphs and stripplots, the model with
the lowest (best) BIC was the model that included
quarter1—4 (see Figure 6). The next best models were
tenths1-10, halves1-2, then quarters3—4, respectively
(note that BIC can only be compared within graph
type and not across graph types). Quarter1—4 better
predicted participants’ responses than tenths1-10,
which shows that participants did not just focus on
the first and last items. Critically, the fact that the
same models emerged as the best predictors for both
graph types suggests similar allocation of attention for
the two graph types. This suggests that the ensemble
processes for summarizing trends is more precise for
information depicted using vertical position than using
color. In other words, the reason the line graphs led to
better sensitivity is not because participants knew how
to better allocate their attention but rather because they
were able to process the information more precisely or
more completely (e.g., taking more of the information
into account). Of course, we did not test all possible
predictor variables, so it is possible that people allocated
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Figure 7. Sensitivity (measured as d’) as a function of the
random noise in the stimulus and graph type. Points
correspond to mean d’ scores, and lines correspond to linear
regressions estimated from the linear mixed model.

their attention in different ways across the two graph
types and our measures did not capture this difference.

If trend detection relies on ensemble processes,
we would expect sensitivity to get worse as the noise
increased. Just as perceiving the mean is impaired by
increasing the variability (Ariely, 2001), we would expect
perceiving the trend to also be impaired by increasing
the variability due to random noise. We calculated
scores for each participant for each graph type for each
level of random noise. We analyzed the d scores with
a linear mixed model. The fixed effects were level of
random noise (coded as 0, 1, and 2 for low, medium,
and high), graph type, and their interaction. The main
effect for random noise was significant, t = —4.75,

p < .001, estimate = —0.43, SE = 0.09. As random
noise increased, d’ decreased. The main effect for graph
type was significant, t = —6.10, p < .001, estimate =
—1.01, SE = 0.17. Participants were more sensitive to
trend direction with line graphs than stripplots. The
interaction between random noise and graph type was
not significant, r = 0.69, p = .49, estimate = 0.09, SE
= (0.13. Thus the impact of random noise on sensitivity
was similar for both the line graphs and the stripplots
(see Figure 7). That sensitivity to the information was
similarly impacted by random noise in both conditions
is consistent with the idea of a common mechanism
underling the processing of both graph types.

To more directly test the possibility of a common
mechanism for trend detection from both line graphs
and stripplots, we calculated the mean d' scores for
each participant for each graph type and conducted a
correlation across the two graph types (see Figure 8).
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d' for Stripplots

d' for Line Graphs

Figure 8. Mean d’ scores for the stripplots as a function of

d’ scores for the line graphs. Each point corresponds to one
participant. The triangles correspond to participants with a
difference score greater than 3. The solid line represents the
linear regression for participants with difference scores less
than 3 (circles). The dotted line represents unity.

With all participants, the correlation was significant,
r=.54, df =55, p < .001. Excluding participants
with a difference score greater than 3 (see triangles

in Figure 8), the correlation was even greater, r =

.83, df = 48, p < .001. These values are consistent
with previous work on individual differences in the
precision of ensemble perception (Haberman et al.,
2015). This previous work showed moderate-to-high
correlations between precision of perceiving the means
of ensembles with elements varying across low-level
features including orientation and color, but no
correlation between low-level and high-level features
such as perceiving mean facial expression. This was
taken as evidence for common mechanisms underlying
ensemble processes for low-level features. The current
data replicate and extend this finding to a different kind
of ensemble process, namely extracting the trend in the
data.

Bias

Signal detection theory provides measures of
sensitivity and of bias. We analyzed the measure of
bias, ¢ scores, with a linear mixed model. The fixed
effects were graph type, exponent, and their interaction.
We included random effects for participant including
the intercepts and slopes for graph type. The main
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Figure 9. Bias (measured as c) is plotted as a function of trend
exponent and graph type. Zero, shown with a horizontal dotted
line, indicates no bias. Positive values indicate a bias to respond
“decreasing,” and negative values indicate a bias to respond
“increasing.” Error bars are 95% confidence intervals calculated
from the model.

effect of graph type was significant, t = —5.40, p <
.001, estimate = —0.33, SE = 0.06. However, this
effect was modulated by trend exponent, ¢ = 4.77,

p < .001, estimate = 0.14, SE = 0.03 (see Figure 9).
When the trend was linear (exponent = 1), participants
were biased when viewing line graphs to respond that
the trend was increasing, as revealed by negative ¢
values, t = —4.57, p < .001, estimate = —0.20, SE

= .04. When viewing stripplots, they were biased to
respond that the trend was decreasing, as revealed by
positive ¢ values, t = 2.71, p = .008, estimate = 0.13,
SE = 0.05. This difference was significant, p < .001.
For the exponential-2 graphs, there was a similar bias
to respond increasing for the line graphs, p < .001,
but no bias for the stripplot, p = .53. This difference
in bias between the two conditions was significant,

p = .009. For the exponential-4 graphs, the difference
between the two graph types was not significant, p =
.40. When viewing the line graphs, the bias to respond
that the trend was increasing was approximately half
that found with the other trend types, t = —2.26, p =
.026, estimate = —0.10, SE = 0.05.

For both graph types, it is clear that the bias reduces
as the exponent increases. It is unclear to us why the bias
for the stripplots was a bias to respond decreasing for
the linear trend. Because red is associated with warming
(Or & Wang, 2014; Tham, Sowden, Grandison,
Franklin, Lee, Ng, Park, Pang, & Zhao, 2019) and
threat (Elliot & Maier, 2007; Moller, Elliot, & Maier,
2009), we had expected a bias for the stripplots to
respond that the temperature was increasing. However,
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the stripplots also contained blue, which is associated
with cooling (Tham et al., 2019), so perhaps the
combination of having both colors in the plot resulted
in interactive effects.

To further understand the bias, we compared these
bias scores to the stimuli for which a flat trend was
simulated, and thus any signal was spurious. We
divided the flat trends into those for which random
chance meant the simulated data exhibited a positive
correlation and those that exhibited a negative
correlation. We used these classifications to calculate
d and c scores. As expected, d' scores were low (M =
0.86, SD = 0.65). We expected low d' scores because the
correlations were low (rs < 0.20), and prior research
showed poor detection of low correlations (Rensink,
2017). For both the line graphs and the stripplots, there
was a significant bias to respond that the trend was
increasing, ps < .001 (line graph mean = —0.37, SE
= 0.06; stripplots mean = —0.25, SE = 0.06). Thus
it seems that there is a general bias for responding
that the graphs show that temperature is increasing
over time. For line graphs, the bias lessened as the
exponent increased. For stripplots, the bias reversed
for the linear graphs then lessened as the exponent
increased.

Preferences

In the experiment, we also asked people to rate
their preference for line graphs versus stripplots. The
majority (60%) indicated they found the stripplots more
visually appealing, though there was no difference in
their ratings of which they liked more or which they
were more likely to share (49%). These preferences
are contaminated by the fact that they had already
completed the rest of the experiment. If they found it
easier to detect the trends depicted in the line graphs,
that could have swayed their preference judgments.
Somewhat consistent with this idea, participants who
showed greater sensitivity with the line graphs than
the stripplots only showed a 44% preference for the
stripplots, whereas those who showed similar sensitivity
for the two plots had a 62% preference for the stripplots.
Participants were divided based on a median split of
the mean difference in sensitivity, and the preference
score was the mean of the three preference judgments.
The difference in preference judgments between the
two groups was not significant, r = 1.59, p = .119,
df = 54.86, 95% CI [-0.05, 0.39], although, results
show a slight pattern. Nevertheless, the fact that the
preference was not overwhelmingly in favor of the line
graphs shows a dissociation between visual sensitivity
(for which the line graph was the clear winner) and
preference (for which the line graph was not the clear
winner).

Downloaded from jov.arvojournals.org on 05/17/2021

Witt & Warden 10

Data visualizations can leverage the visual system’s
vast capacity to process and summarize information.
In some cases, data visualizations require a simple
visual comparison of two data points. In other cases,
data visualizations require visual summarizing of
multiple data points. The question for the current
research was whether the kinds of visualizations that
best serve pairwise comparisons are also the kinds
of visualizations that best serve tasks requiring trend
detection. In other words, we can question the extent to
which visualization design recommendations generalize
across various tasks.

For pairwise comparisons, research clearly points
to graphs like dot, line, and bar graphs as being
superior because visual precision is highest when data
are represented as position along a common scale
(Cleveland & McGill, 1985). Pairwise comparisons
require visually evaluating two data points to determine
the extent to which one is greater than the other. When
the task is to determine how much higher in the plot
one data point is relative to another, performance is
better compared with when the task is to determine the
relative color between two data points. In other words,
relative position leads to greater visual precision than
color.

For summarizing tasks, observers must evaluate
multiple data points to extract a summary statistic.
Examples of summary statistics include the mean
value across the entire timeline, multiple mean values
across subsets of the data, or trends in the data such
as whether the probability distribution along one
dimension varies across another dimension. It is known
that the visual system can perform the summary
statistics tasks in general (Whitney & Yamanashi Leib,
2018) and summary statistics related to trend detection
(Rensink, 2012). Extracting trends from scatterplots
and stripplots both likely require a probability
distribution of how one visual feature (vertical position
or color) varies as a function of another visual feature
(horizontal position). Correlation perception for color
stripplots has shown to be somewhat more accurate
than correlation perception for scatterplots, suggesting
that basic visual features (e.g., color) can effectively
convey correlation information (Rensink, 2015).

What is unknown is whether better precision at
the level of pairwise comparisons coincides with
better precision at the level of the ensemble of data
points. Correlational research points to a relationship
between visual precision at the level of the individual
and at the level of the ensemble, but cannot assert
a causal link (Haberman et al., 2015). In contrast,
research on visualizations have documented several
instances for which performance on summary tasks
are better when the data are represented with color
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rather than with position (Albers et al., 2014; Correll et
al., 2012; Rensink, 2012, but see Fuchs et al., 2013). If
performance were better with color than with vertical
position, this would suggest that there is not a causal
link between precision for individual elements and
precision for ensembles.

Our data showed that graphs depicting trends with
vertical position are superior to graphs depicting trends
with color. Sensitivity to whether a trend increased or
decreased was greater with the line graphs than with
the stripplots. With respect to mechanisms underlying
ensemble perception, the data are consistent with the
idea that better visual precision for individual objects
leads to better visual precision for ensembles of objects.
This claim rests on the assumption that the results
from Cleveland and McGill (1985) would generalize
to the specific features tested here because we did
not test precision for pairwise comparisons in our
stimuli. The results do not prove a causal relationship
between precision at the level of individual objects
and precision at the level of ensembles. However,
had the results showed the opposite pattern with
better sensitivity for the stripplots than the line
graphs, the data would have had different implications
for mechanisms underlying ensemble perception.
Specifically, the precision for pairwise comparisons
would not generalize to the precision for ensemble
perceptions. Note that perception of the individual
objects need not be conscious, as demonstrated by work
on visual crowding and change detection (Fischer &
Whitney, 2011; Haberman & Whitney, 2011; Parkes et
al., 2001).

In addition, the research speaks to common
mechanisms underlying trend extraction for both kinds
of graphs. Participants’ sensitivity to the direction of
the trend in line graphs was highly correlated with their
sensitivity to the direction of the trend in stripplots.
This correlation is indicative of a common underlying
process involved in perceiving both types of graphs.
That a correlation was found across the displays is
consistent with prior research on extracting the mean
from a group of objects. In those studies, participants
estimated the mean orientation of triangles and the
mean color of triangles (Haberman et al., 2015). Those
who were more precise at estimating mean orientation
were also more precise at estimating mean color. The
authors proposed a low-level ensemble processor.

Our data replicate this finding and extend it to trend
detection. However, future research is needed to
determine whether the low-level ensemble processor is
involved in all ensemble judgments, including mean and
trends, rather than separate low-level processes for each
type of ensemble judgment.

There are several limitations to our data. One is
that we used line graphs rather than point graphs (or
scatterplots). The research on pairwise comparisons
compared two points, rather than points implied within
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line graphs (Cleveland & McGill, 1985). While we can
make claims about sensitivity due to relative vertical
position, we are limited in making any claims about
precision at the level of individual elements (which we
did not measure) and how they relate to precision for
ensembles. A causal link between precision at the level
of the individual and of the ensemble was not assessed.
Another limitation is that we only used one color
palette for the stripplots. Perhaps a different choice in
color palettes would have led to better sensitivity and
perhaps even sensitivity similar to that found with the
line graphs. In particular, ensemble perception is more
precise when averaging across fewer colors than more
colors (Maule & Franklin, 2015). If this result extends
to trend detection, using a single-hue palette could
shrink or eliminate the differences in sensitivity between
line graphs and stripplots.

An additional limitation is that our task concerned
a major global issue, namely global warming. Because
we did not compare performance across different types
of contexts, it is unclear the extent to which the biases
revealed in the current data are due to the visualizations
themselves or to the topic depicted in the graphs. In
other words, it is unclear whether line graphs lead to a
general bias to report that trends are increasing or if the
bias is specific to the context of global warming.

Concerning data visualization, the results raise the
issue of a one-size-fits-all design recommendation.
Our data on trend detection revealed different design
recommendations compared with prior results on
other kinds of summary tasks, such as detecting the
mean value for which the stripplots were superior
(Albers et al., 2014). Even within our results, we found
that bias differed depending on the magnitude of the
trend’s exponent. These conflicting results highlight the
need for a systematic evaluation of different kinds of
summary tasks. Understanding ensemble mechanisms
involved in various types of tasks and how mapping
data values to visual features and spatial positions
contribute to ensemble processes could better inform
design guidelines of visualizations and maximize the
viewer’s ability to process patterns in the underlying
data. The various kinds of ensemble perception tasks
may differ in the kind of visualization that would best
promote sensitivity to the information. A systematic
evaluation would benefit from using the signal detection
measures used here to separate the effects of design
features on sensitivity from those on bias. Making this
distinction can help build an overarching framework of
design recommendations for visualizing time series and
trend data.

The current data expand on prior research on
visualizations by exploring nonlinear time series trends.
For line graphs, we found that higher exponents lead to
better sensitivity to whether the trend was increasing or
decreasing. This is sensible given that an observer can
focus on just the last part of the display as the exponent
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increased. However, this clustering of the most relevant
information as the exponent increased did not improve
performance for the stripplots. For stripplots, sensitivity
was similar regardless of whether the trend was linear
or nonlinear.

Concerning visualization design, the data showed
that line graphs were superior to stripplots for detecting
linear and nonlinear trends. Of course, the stripplots
were rated as more visually appealing than the line
graphs, so for design purposes, there was a tradeoff
between better precision in communicating the
information and design preference. Although a stripplot
became a Twitter trend called #Show YourStripes,
graced the cover of the Economist, and was used
to decorate various items from ties to cars, the line
graphs are unlikely to be as sensationalized. The
current data show tradeoffs: the cost of using the
more aesthetically pleasing stripplots means an 18%
reduction in sensitivity.
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