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Abstract—The high cost required by traditional measurement
campaigns often limits the amount of data that can be obtained,
to the detriment of data-intensive modeling techniques such
as machine learning. This work addresses the limitations from
the measurement system and environment by changing the
traditional channel modeling approach. Simulation was used
as an auxiliary means to obtain data, showing the broader
applicability of a site-specific model. More specifically, we ex-
plore the possibility of augmenting channel measurements with
simulation predictions to acquire comprehensive sets of mm-wave
channel information for improved modeling. Path loss measure-
ments from a 28-GHz campaign in a coniferous forest were
utilized in conjunction with semi-empirical statistical ray tracing
simulations to evaluate the performance of measurement-based
channel models beyond the specific measurement region from
which they were developed. The root-mean-square deviations
between model predictions and simulation results are 11.3 dB for
an ITU woodland model and 6.8 dB for a site-specific model we
published in a previous manuscript. Furthermore, the site-specific
model was demonstrated to agree with simulation predictions at
distances and locations we were unable to measure. These results
show a broad applicability of our site-specific model as well as
a mechanism to derive accurate models from a combination of
measurement and simulation data.

Index Terms—Millimeter wave, ray tracing, simulation-aided
channel modeling, site-specific models.

I. INTRODUCTION

With the rapid development of next-generation wireless
communication systems, millimeter-wave (mm-wave) channel
measurement and modeling have attracted extensive attention
worldwide from academia and industry [1]. Because tradi-
tional channel modeling depends primarily on measurement
results, many intensive mm-wave measurement campaigns
have been carried out for a variety of environments during
the past decade [2]–[6], boosting our knowledge on mm-wave
propagation characteristics. However, the high cost required
by measurement campaigns, both in money and time, often
prevents researchers from obtaining as many measurement
results as desired. This problem is exacerbated when data-
hungry techniques, such as machine learning, are applied to
propagation modeling or spectrum management [7]. As a
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result, these scenarios have heavily utilized simulation for mm-
wave channel information acquisition [8]–[10]. Moreover, the
simulated channel characteristics attached to the locations [11],
[12] where those techniques are expected to be implemented
are often left unverified. The confidence in applying simulation
to channel modeling and spectrum management in real-world
scenarios would be dramatically increased if these simulation
results are tested and verified using measured data.

In this paper, we explore the possibility of augmenting
measurement-based propagation models with extensive simu-
lation datasets. Results from a 28-GHz measurement campaign
following ten tracks in a coniferous forest were utilized to con-
struct site-specific path loss models in [12]. The measurement
locations were then input to a radio frequency (RF) simulation
engine developed by CSLabs [13]. Simulation results were
compared with measurements point-by-point, which yielded
a typical root-mean-square error (RMSE) of approximately
10 dB. Next, the area of interest was expanded to contain
locations not covered by the measurements, including those
inaccessible during the campaign, to generate a much larger
set of propagation information from the simulation engine.
This simulation dataset was used to evaluate our site-specific
model C [12] and the ITU-R obstruction by woodland model
(referred to as the ITU model for short in this paper) [14],
both of which were designed for propagation through forest
environments. The root-mean-square deviations (RMSDs) be-
tween model predictions and simulation results are 6.8 dB for
our site-specific model and 11.3 dB for the ITU model, which
supports the applicability of the site-specific model beyond the
measurement region covered in the campaign.

The paper is organized as follows. In Section II, we present
the setups for the measurement and the simulation. The
corresponding results are compared in Section III. Then, the
extended simulation dataset and its example application in
channel modeling are described in Section IV. Finally, in
Section V, we conclude the paper.

II. MEASUREMENT AND SIMULATION SETUPS

A. Measurement Setup

A custom-designed broadband sliding correlator sounder
was utilized to record channel measurements along ten differ-
ent tracks covering a coniferous forest in Boulder, Colorado.
The system used horn antennas with a nominal 15° half-
power beamwidth on both the transmitter (TX) and the receiver
(RX) sides. The TX was located just outside of a lightly
forested region, as shown in Fig. 1(a). Table I summarizes the
key specifications for the sounder. More information on the
measurement campaign and its results can be found in [12].



(a) In the measurement campaign (b) In simulation

Fig. 1. The measurement environment from the TX’s view for both (a) the
measurement campaign and (b) the reconstructed scene in the RF simulator.

B. Simulation Setup

The simulation engine [13], designed for RF propagation
in high foliage environments, was utilized to reconstruct the
measurement scene and obtain path loss predictions. This
engine uses a semi-empirical statistical (SES) approach that
has been demonstrated to produce accurate modeling with
general scene details once it has been calibrated with a small
set of measured data. Fig. 2 illustrates the structure of the
engine with a block diagram. Records from the measurement
campaign and public geographic datasets were aggregated for
the scene generation module to reconstruct the measurement
environment. Then, the ray tracing and sampling module per-
formed the multipath calculations and recorded rays incident
on a RX location. Finally, an empirical calibration [15] was
carried out for the simulation output with the measurement
results. These operations will be briefly described below.

1) Environment Reconstruction: To reconstruct the mea-
surement environment in line with the simulation engine, we
aggregated data from different sources. The ground profile was
obtained by linearly interpolating the 1/3rd arc-second digital
elevation models from the United States Geological Survey
(USGS) over the area of interest. Manually labeled tree trunk
locations from the measurement campaign records were used
to add coniferous tree models. LiDAR data was also fetched
from USGS and each tree’s height was set according to the
difference between the LiDAR data z value and the USGS
ground elevation for that tree’s trunk location. During the
measurement campaign, the shortest plants we observed were
bushes with a height of roughly one meter, so a minimum
allowable tree height of one meter was also enforced. The
locations for the TX and the RX were fetched from the GPS
records of the measurement campaign. The scene generation
module then generated a three-dimensional (3D) environment
model accordingly. Fig. 1(b) demonstrates the reconstructed

TABLE I
SLIDING CORRELATOR CHANNEL SOUNDER SPECIFICATIONS

Carrier Frequency 28 GHz

Chip Sequence Length 2047

RF Bandwidth (First Null) 800 MHz

TX Chip Rate 400 Mcps

RX Chip Rate 399.95 Mcps

TX Power 23 dBm

TX/RX Antenna Gain 22 dBi
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Fig. 2. Block diagram for the simulation engine.

Fig. 3. A bird’s-eye view for the reconstructed measurement environment.

environment seen by the TX. A bird’s-eye view for the whole
scene with all measured RX locations can be found in Fig. 3.

2) SES Approach and Empirical Calibration: The key for
the simulation engine to enable high-accuracy ray tracing
with low computational complexity is the SES approach. It
applies statistical ray sampling with an empirical calibration to
generate simulation results that closely match the measurement
data. More specifically, the SES model applies path tracing
to determine propagation quantities such as path loss and
delay spread through statistics of the ray interaction with
the environment. This is achieved by the ray tracing and
sampling module, which models and propagates the RF signal
as rays between TXs, foliage clusters, RXs, and other scene
elements such as terrain features. Other features, such as
atmospheric refractivity or additional wave phenomenology,
can be included as necessary. For simplicity, our simulations
considered free-space path loss and ground reflection besides
foliage effects. As rays (discrete beams in our setup) are
traced through the scene, they maintain state information due
to scattering caused by scene elements. When rays exit the
computational volume, they are terminated. Rays that arrive
at the RX are recorded. The number of rays that propagate
through a given environment from TX to RX, which we define
as “ray sampling counts”, is proportional to the power incident
on the RX. The ray sampling counts provide a statistical
metric for the corresponding RF pathway and are fed into the
empirical calibration module for the final simulation output.

Empirical calibration for RX power is performed to match
the simulator output with measured data via a “zero-span”
technique for obtaining a linear relationship between ray
sampling counts and the total received power. The “zero” point
is set by the measurement system noise floor, which could



be determined by averaging recordings taken when the TX is
turned off or extracted from a measured dataset by the use of
median filters. The “span” is then set by defining a constant
of proportionality between the measured received power at a
measurement location and the ray sampling counts at that same
location. Calibration procedures for our scenario (path loss
instead of RX power) are derived accordingly in Section III-A.

III. SIMULATOR PERFORMANCE EVALUATION

In this section, we obtain simulation path loss values for
the measured locations using isotropic antenna settings and
evaluate the simulation engine’s performance accordingly.
Calibration was conducted for each individual track; RMSE
was evaluated both track-by-track and for track groups.

A. Empirical Calibration for Path Loss

With the specific foliage laydown of the reconstructed
measurement environment, quantities such as power, time
delay, delay spread, and arrival angles, can be calculated by
the simulation engine. In this paper, we are interested in the
RX power PRX so that path loss can be computed for mm-
wave channel modeling. The RX path loss calculations follow
the relationships:

P
(Sim, dBW )
RX ∝ 10 log10 (S

α) = 10α log10 S

S ∝ N(f, E)
, (1)

where P
(Sim, dBW )
RX is the simulation RX power in dBW with-

out noise, S is the simulation signal strength in W, N is the
ray sampling counts on RX, f is the signal frequency, E is the
simulation environment (including all objects in the scene with
their geometries and material properties), and α is a constant
determined empirically, similar to forms used in traditional
propagation models. For example, ITU-R 833.9 [14] defines
the maximum attenuation Am as Am = A1f

α, where A1

and α are determined empirically. It is also worth noting that
N is a function (of f and E) evaluated by the ray tracing
and sampling module. Intuitively, Equation (1) assumes (i) the
RX power in dB is proportional to the simulation signal
power with an adjustment term α, and (ii) the simulation
signal strength is proportional to the ray sampling counts. By
assigning multiplication factors a and b to these proportional
relationships, we can simplify the RX power calculation to:

P
(Sim, dBW )
RX = a · 10α log10 [bN(f, E)]

= (aα) · 10 log10 [N(f, E)] + 10aα log10 b

= âN (dB) + b̂ , (2)

where we have constants â = aα and b̂ = 10aα log10 b, along
with the ray sampling counts in dB:

N (dB) = 10 log10 [N(f, E)] . (3)

Next, we apply the noise floor compensation discussed in
Section II-B2 in order to get the final simulated RX power
in dBW, denoted by P

(dBW )
RX , which provides a value that can

be directly compared against measurement results:

P
(dBW )
RX = P

(Sim, dBW )
RX + P

(dBW )
noise , (4)

where P
(dBW )
noise is the effective noise floor of the measurement

system in dBW. Finally, the simulated path loss in dB PL
(dB)
RX

can be obtained by comparing P
(dBW )
RX with the RX power in

dBW for a reference location, denoted here by P
(dBW )
ref :

PL
(dB)
RX = P

(dBW )
ref − P

(dBW )
RX + PL

(dB)
ref , (5)

where PL
(dB)
ref is the path loss in dB experienced at the refer-

ence location, since P
(dBW )
RX + PL

(dB)
RX = P

(dBW )
ref + PL

(dB)
ref

is the TX power. Assuming a homogeneous environment—
so that â, b̂ and P

(dBW )
noise are the same for both the reference

location and the RX—we can apply Equations (2) and (4) in
Equation (5) for both the reference and RX locations:

PL
(dB)
RX =


âN

(dB)
ref + b̂+ P

(dBW )
noise


−

âN

(dB)
RX + b̂+ P

(dBW )
noise


+ PL

(dB)
ref

= â ·

N

(dB)
ref −N

(dB)
RX


+ PL

(dB)
ref , (6)

where N
(dB)
ref and N

(dB)
RX are the ray sampling counts from

the simulation engine in dB for the reference location and
the RX, respectively. Because the ray sampling counts are
self-consistent in each run of simulation, we can arbitrarily
choose one RX location as the reference point and get the
ray sampling count difference in dB for the remaining RX
locations. Then, we can empirically determine the constants â
and PL

(dB)
ref with the measurement data by minimizing RMSE.

B. Track-Wise Comparison of the Measurement Locations

During the campaign, we conducted ten separate measure-
ment runs, each following one continuous track in the forest.
The first five tracks are parallel to the TX main beam (moving
away/toward the TX) and the other five are transverse to
the TX main beam (perpendicular to the parallel tracks). A
dedicated simulation was carried out for each track. According
to Equation (6), there is a linear relationship between the
simulated path loss and the ray sampling count difference.
Thus, we can test whether the simulation is valid before the
empirical calibration by plotting the measured path loss values
along with the corresponding ray sampling count difference
values (in replacement of the simulated path loss) in dB
over the same metric, for instance, RX-to-TX distance in
Fig. 4. Then, if the simulation is valid, the trends of the
resulting curves should agree with each other. In our work,
the RX-to-TX distance is evaluated in 3D space considering
terrain elevation and antenna heights. The two tracks shown
in Fig. 4 span the longest over the RX-to-TX distance among
the parallel and transverse tracks, respectively. To aid the
trend comparison, two vertical axes are used here, the left y
axis for the simulated ray sampling count difference while
the right y axis for the measured path loss values. Visual
comparison suggests that the simulation matches the measured
data, especially for some peak and valley locations.

To quantify the performance of the simulation engine,
we carried out empirical calibration with the first location
on each track as the reference point. After â and PL

(dB)
ref



(corresponding to a vertical stretching and a vertical shift
of the simulation results in Fig. 4) are determined by the
calibration, the resultant simulated path loss should match the
measurements in value. Corresponding RMSEs are summa-
rized in the track-wise comparison row of Table II. Most of
the RMSEs are around 10 dB, with the overall RMSE being
17.8 dB. For comparison, all traditional channel models in
[12] have a RMSE over 20 dB relative to the measured data.

It is worth noting that the simulator works better for parallel
tracks, with an impressive overall RMSE of 11.2 dB. For
transverse tracks, the RMSE is higher at 25.8 dB. This is
caused by the limited accuracy of the measurement records.
GPS data obtained from USRP B200 typically has a meter-
level error, as do the manually labeled trunk locations (which
can be observed in Fig. 1). Given that mm-waves are extremely
sensitive to blockage [11], an error of one meter, either from
the RX location or the tree locations, could change a line-of-
sight (LoS) path to a blocked one and vice versa. For parallel
tracks, this disagreement over small-scale fading is less of
an issue because these tracks span a long RX-to-TX distance
range and large-scale effects dominate in the change of path
loss. However, for the transverse tracks, small-scale fading
plays a key role in the path loss changes, requiring higher-
accuracy location information for a good match. This also
contributes to the more noticeable trend difference in Fig. 4(b)
compared with Fig. 4(a).

IV. CHANNEL MODELING

WITH MEASUREMENT-BASED SIMULATION DATA

Using the calibrated simulator, we expanded the area of
interest to acquire a comprehensive dataset of simulated path
loss values for performance evaluation of the ITU and our
site-specific channel models beyond the measured locations.

A. Extended RX Location Grid

An extended RX location grid was generated to cover the
new area of interest, as illustrated in Fig. 5. There were
sharp drop-offs to the northwest and southeast sides of the
measurement site, so the extended area was constrained to the
region that was reasonably flat. It has a maximum range of
over 510 m, significantly larger than that for our measurement
data (around 305 m). The grid contains 5742 points covering
89 229 m2 with a spatial resolution of 3.9 m between adjacent
points. After we obtained the ray sampling counts for the
grid from the simulation engine, the path loss empirical
calibration was carried out with all the measurement results
used as the ground truth path loss values at their nearest-
neighbor grid points. The corresponding RMSE values are
summarized in the extended grid row of Table II. As we can
see, calibration over the whole measurement dataset behaves
worse than that carried out separately for each track, because
the environment for each track varies slightly (for example,
in RX gain, antenna pointing direction, vegetation type, and
foliage density). Still, the RMSE for half of the tracks are
below 15 dB and the overall RMSE of 23.9 dB is competitive
with traditional channel models. For the parallel tracks, the
RMSE is significantly lower at 16.3 dB, again because large-
scale effects dominate the path loss change.
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Fig. 4. Comparison between the simulation and measurement results before
the empirical calibration. (a) Track 1 is the longest track among the ten tracks
followed in the measurement campaign. (b) Track 8 is the transverse track
which spans the most along the RX-to-TX distance axis.

Fig. 5. Overview for the extended area of interest and the corresponding
simulation RX grid. The TX and the measured tracks are shown as reference.

B. Channel Model Comparisons

The simulation path loss values for the grid are illustrated in
Fig. 6(a). We also obtained corresponding predictions from the
ITU model and our site-specific model, as shown in Fig. 6(b)
and Fig. 6(c), respectively. We can now use the simulation
results as ground truth and test the performance of these two
models. By comparing these figures, we can easily identify
the most significant limitation of the ITU model: it does not
incorporate the site-specific features of the scenario. The ITU
model only uses the total path length within the woodland,
which increases gradually as the RX moves deeper into the
forest, regardless of tree locations and the foliage density. At
lower frequencies, this is less of an issue, as trees in a lightly
forested area may still be less than a wavelength apart. For
mm-wave frequencies, however, even small gaps between trees
comprise hundreds of wavelengths, where the influence of site-
specific features becomes prominent. Our site-specific model,
on the other hand, is based on the total foliage area within the
first Fresnel zone, which is computed for each TX-to-RX link



TABLE II
OVERALL PERFORMANCE OF THE SIMULATION RESULTS RELATIVE TO MEASUREMENT DATA

RMSE (dB)
Track # Parallel Transverse

All
1 2 3 4 5 6 7 8 9 10 (Tracks 1–5) (Tracks 6–10)

Track-Wise Comparison 12.4 10.9 9.2 10.2 11.9 35.3 22.7 9.8 10.9 24.2 11.2 25.8 17.8

Extended Grid 20.7 13.3 13.9 11.3 14.2 39.1 42.8 11.3 15.2 26.1 16.3 33.5 23.9

(a) Simulation results (b) ITU model predictions (c) Site-specific model C predictions

Fig. 6. Path loss results for the extend RX location grid from the scenario-tuned ray tracing simulation engine, the ITU-R obstruction by woodland model,
and our vegetation-area-based site-specific model, respectively.

(a) ITU (b) Site-specific model C

Fig. 7. Difference between model predictions and simulation results over the
extended grid. (a) The ITU model outputs higher path loss than the simulation
near the forest edge (indicated by the dotted line). (b) Site-specific model C
outputs higher path loss than the simulation in deep forest. The region with
zero foliage area is illustrated by the dotted-line polygon.

according to high-accuracy LiDAR data. Its prediction pattern
reflects link-specific blockage conditions and results in a better
agreement with the simulation dataset.

The difference between the model predictions and the
simulation results are plotted in Fig. 7. Note that neither of the
models is designed for the grassland area near the TX. For the
ITU model, that region corresponds to the manually plotted
polygon for the forest edge. For our site-specific model, it
consists of the RX locations with no obstacles according to the
LiDAR data. Their results are shown for a visually consistent
comparison region. Relative to the simulation results, the
ITU model outputs higher path loss near the forest edge and
lower path loss in the LoS region as well as far deep in the
forest, while the site-specific model outputs higher path loss
in the forest and lower path loss in the LoS region. It is also
worth noting that our site-specific model C is very accurate
in detecting blockages (including those caused by buildings
ignored in the simulation) because it enforces a sudden jump of
path loss when the first Fresnel zone is obstructed by the first
object in the link. The result is step changes in path loss near
the TX, where only a few trees are present. This behavior was
also observed in the limited number of close-in measurements.

Fig. 8 compares the model performance for the grid. To
eliminate biased results from propagation over the grassland,
we omitted locations which are out of the forest or have no
foliage obstruction in the first Fresnel zone (illustrated by the
dotted-line polygons in Fig. 7). As can be seen in Fig. 8(a), the
site-specific model has a better agreement with the simulation
results in forested areas. This is also shown in Fig. 8(b), where
the regional RMSD values evaluated with a 10-m-wide sliding
window are plotted against the RX-to-TX distance. The site-
specific model outperforms the ITU model by over 10 dB at
both the near and far ends. The overall RMSD between model
predictions and the in-forest simulation results are 11.3 dB
for the ITU model and 6.8 dB for the site-specific model.
We can further reduce the RMSD to 5.6 dB if we refit the
site-specific model to the in-forest simulation results, which
(L0 ≈ 22.26 dB, L1 ≈ 0.41 dB/m2, L2 ≈ 0.16 dB/m2, and
Af ≈ 35.92 m2) improves the model performance at the far
end as can be observed in Fig. 8(b). As a comparison, the
RMSEs relative to the measurement dataset are 20.1 dB for
the ITU model and 19.2 dB for the site-specific model [12].

Traditional channel models, like the ITU model, emphasize
the universal applicability. That is, models are expected to
work for all locations with the same environment class,
regardless of their varying geographic features. However, for
mm-wave, site-specific information becomes so prominent that
it needs to be better embedded in the models, which is the key
for the performance improvement we saw.

C. Discussion

We have used measurement-calibrated simulation results to
evaluate the performance of the ITU model and our site-
specific model. The use of measured data together with our
measurement-based calibration methodology ensured the reli-
ability of the resulting simulation datasets. The extended sim-
ulation output provided supplemental data points that were at
distances and locations we were unable to measure. According



0 50 100 150 200 250 300 350
RX to TX Distance (m)

100

120

140

160

180

P
at

h
 L

o
ss

 (
d

B
)

Simulation
ITU
Site-Specific Model C

(a) Path loss over RX-to-TX distance

0 50 100 150 200 250 300 350
RX to TX distance (m)

0

5

10

15

20

25

R
eg

io
n

al
 R

M
S

D
 (

d
B

)

ITU
Site-Specific Model C
Site-Specific Model C Refitted

(b) Regional RMSD with respect to the simulation results

Fig. 8. In-forest performance comparisons for the ITU and site-specific
models over the extended grid. (a) Both models have a good agreement with
simulation results. (b) The regional RMSD was evaluated with a window size
of 10 m. The site-specific model clearly works better than the ITU model.

to the simulation, our site-specific model is applicable beyond
the region covered by the measurement data and thus provides
a very promising approach for mm-wave channel modeling.

The simulation-aided aspect of our work suggests that
moderate-fidelity simulation can be used to develop reliable
low-complexity mm-wave channel models. We have demon-
strated one application of simulation in evaluating and enhanc-
ing measurement-based models for mm-wave propagation.
With the extremely high sensitivity of mm-wave to envi-
ronmental features, traditional channel models ignoring site-
and link-specific geometry are insufficient. Improved models
that are able to automatically identify environment features
in geographic datasets and learn key channel parameter val-
ues from measurements are the future of mm-wave channel
modeling. Given the extremely high cost in both money and
time for mm-wave channel measurements, the tremendous
amount of channel information that could be provided by
simulation is critical in applying state-of-art machine learning
techniques into this area. Using a calibrated simulation, we
can comprehensively characterize an environment geospatially.
In particular, we can generate reliable simulation results for
links that we are unable to measure—such as those with path
losses in excess of the measurement system’s dynamic range
or for locations physically impossible to access. In our work,
using even a limited measurement dataset to calibrate the
simulation engine ensures that the resulting output is valid for
use in channel modeling. These measurement-based simulation
data can be generated as needed, and utilized, for example,
in training a deep learning neural network to save all or a
majority of the measurement results as the ground truth testing
set. This way of extending usable datasets via measurement-
based simulation dramatically relieves the dilemma between
data accuracy and cost efficiency.

Another advantage of simulation-aided channel modeling is
that simulations can be carried out in advance of or during a
measurement campaign to establish areas of interest to focus

on and facilitate campaign planning. Locations, environments,
and interesting phenomena, such as urban canyons, construc-
tive multipath, or deep fading, can be predicted by simulation
beforehand. Those can then be characterized as part of a
measurement campaign. By more thoroughly using simulation,
we can be sure to have a more comprehensive characterization
of an environment with the resultant measurements.

V. CONCLUSION

In this paper, we examined a simulation engine for mm-
wave propagation through foliage with measurement data
collected in a coniferous forest. After confirming the engine’s
validity, simulation results for an extended RX location grid
were generated and used for testing the ITU-R obstruction
by woodland model and a site-specific model we intro-
duced in our previous work. By shifting from the traditional
measurement-only channel modeling approach to including
simulation as an aid for obtaining data, we were able to resolve
the limits from the measurement system and the environment
to show the broader applicability of the site-specific model.
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