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Abstract

Across most pedestrian detection datasets, it is typically
assumed that pedestrians will be standing upright with re-
spect to the image coordinate system. This assumption
is not always valid for many vision-equipped mobile plat-
forms, such as mobile phones, UAVs, or construction vehi-
cles on rugged terrain. In these situations, the motion of
the camera can cause images of pedestrians to be captured
at extreme angles. This can lead to inferior pedestrian de-
tection performance when using standard pedestrian detec-
tors. To address this issue, we propose a Rotational Recti-
fication Network (R2N) that can be inserted into any CNN-
based pedestrian (or object) detector to adapt it to signif-
icant changes in camera rotation. The rotational rectifi-
cation network uses a 2D rotation estimation module that
passes rotational information to a spatial transformer net-
work [12] to undistort image features. To enable robust ro-
tation estimation, we propose a Global Polar Pooling (GP-
Pooling) operator to capture rotational shifts in convolu-
tional features. Through our experiments, we show how our
rotational rectification network can be used to improve the
performance of state-of-the-art pedestrian detectors under
heavy image rotation by up to 45%.

1. Introduction

Pedestrian detection is an active research area in com-

puter vision that rapidly progressed over the past decade.

There are many benchmark pedestrian detection datasets

available for learning and evaluation [6, 10, 7, 4]. One

common setting in these datasets is that the camera’s y-

axis is roughly aligned to the direction of gravity meaning

that pedestrians are captured in the vertical direction be-

cause pedestrians usually stand upright on the ground. This

Figure 1. Upper: Schematic diagram of how the proposed rotation

rectification network (blue) is inserted into a CNN-based pedes-

trian detector (yellow). Lower: Illustrative results produced by

a state-of-the-art pedestrian detector (left) and with the R2N in-

serted (right). The R2N increases the robustness of the network to

image rotation and decreases the miss-rate of detection.

“upright assumption” in benchmark datasets distinguishes

pedestrians from many objects in the scene. Much work

has been devoted to designing features [4, 9] or model ar-

chitectures [29, 21, 25] to learn the appearance of upright

pedestrians.

However, this upright assumption may not always be

valid in real-world situations where the camera orientation

is highly dynamic. For example, when recording a video

with a mobile phone camera, the angle of the camera can

vary significantly as one walks or runs. For cameras in-

stalled on construction vehicles, the upright assumption is

easily invalidated when recording video over rough terrain.

In both examples, the projection of pedestrians in the image

can be at extreme angles of rotation, and detecting pedestri-
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ans in such situations is difficult with current state-of-the-art

models.

One straightforward way to achieve rotational robustness

for pedestrian detection is to simply increase the size of the

training data to include more instances of pedestrians im-

aged at an angle. When new data is not available, the ex-

isting data may also be augmented [26] by rotating images.

While such a data augmentation approach can lead to im-

provements, merely creating more data does not necessar-

ily address the fundamental problem of understanding and

modeling image rotations.

An alternative solution is to infer the rotational distor-

tion of the image and to remove the effect of that distortion

prior to detection within a unified rotation-invariant detec-

tion network. However, estimating rotational changes in an

image is difficult with the current paradigm of convolutional

feature extraction because they are based on a rectangular

spatial decomposition of the image. In other words, rota-

tional changes in image content can produce very different

feature responses in the upper convolutional layers of a con-

volutional neural network.

To facilitate a smoother change in convolutional feature

responses due to image rotation, we propose the use of a

novel Global Polar Pooling (GP-Pooling) operator, which

converts rectangular convolutional feature responses into a

polar grid system. Using polar coordinates, rotations of

the input images result in translational shifts of the polar

features maps making it easier for higher-level convolution

layers to model image rotation. In this way, our proposed

GP-Pooling operator provides CNNs the ability to encode

image rotations more effectively.

To obtain rotational invariance during detection, we pro-

pose a rotational rectification network (R2N) that can be

flexibly inserted into an intermediate layer of a general de-

tection network. The R2N uses a CNN with GP-Pooling

layers to estimate the rotation angle present in the im-

ages. Then, the estimated rotation, θ, is passed to a spa-

tial transformer network to undistort the image features. An

overview of the network architecture is illustrated in Figure

2. We show that after removing the effect of rotation in-

side a network, the general detector can be easily adapted

to work on pedestrians imaged at arbitrary rotation angles.

The contributions of our work include the proposals of

(1) a Global Polar Pooling (GP-Pooling) operator, which

can be used to encode the radial distribution of features

within a general CNN architecture, and (2) a rotational rec-

tification network (R2N) that can be inserted into CNN-

based detectors to achieve rotational invariance.

2. Related Work
Rotational Robustness in CNNs. Existing methods to in-

corporate CNNs with rotational robustness can be split into

two categories. The first includes methods to add robustness

by manipulating the images or feature maps. Prior works

[1, 14, 11, 8, 13] achieve rotational robustness by augment-

ing the input images on the fly and fusing the response in

the upper layer of the network. Dieleman et al. [5] copy the

feature responses from intermediate layers in four 90◦ an-

gles and compress them by their proposed operators, which

compactly achieves rotational robustness. However, by aug-

menting the data, these methods are only robust to a discrete

set of rotations instead of 360◦ continuous rotations. This

does not directly address the fundamental problem of incor-

porating rotation robustness in CNNs.

[12] introduce a general warp framework called Spa-

tial Transformer Networks to enable affine transformations

with differentiable sampling inside the network. It achieves

transformation invariance within CNN architectures very

efficiently without data augmentation. An important point

often overlooked is that the design of the localization net-
work, with the purpose to estimate transformation parame-

ters, is not explored in the original work. They use two base-

line CNNs as the localization networks in the spatial trans-

former: (1) two fully-connected layers, and (2) a CNN with

two convolutional and two max pooling layers. The mod-

els are evaluated on the distorted MNIST dataset, which is

small with low-resolution images and does not offer strict

criterion to judge transformation invariance of a network.

In other words, the design of a network with natural trans-

formation invariance is still an open problem. Our work is

complementary to the spatial transformer because our pro-

posed rotation estimation module with GP-Pooling opera-

tors can be viewed as an expert localization network with

natural rotation invariance.

The second category methods achieve rotational robust-

ness by modifying filters within CNN architectures instead

of manipulating the data. Cohen et al. [2, 3] apply kernel-

based pooling to sample responses in symmetry space such

that only the least important features are lost at each layer.

Prior works [19, 30, 20, 22] replicate and transform the

learned canonical filters in a finite set of orientations and

then fuse the output responses at each layer to achieve ro-

tational robustness. Similarly, these methods are robust to

only a discrete set of rotations. Instead, our proposed GP-

Pooling operator adds rotational robustness to general CNN

architectures in 360◦ continuous rotations.

Perhaps Harmonic Network (H-Nets) [27] is the clos-

est work to ours. H-Nets replace regular CNN filters with

complex circular harmonics and is also able to capture con-

tinuous rotational changes. However, H-Nets assume the

learned filters are in the harmonic wavelets space whereas

GP-Pooling does not impose any assumption on the im-

age filters. Moreover, H-Nets is designed to learn local

rotational robust filters while GP-Pooling operator focuses

on global rotational changes. More importantly, most ex-

isting methods only test rotational robustness on simple

1085



Figure 2. Architectural Overview. Rotation rectification network (R2N) (cyan) is inserted into the intermediate layer of a CNN-based

pedestrian detector (yellow). R2N uses a rotation estimation network (see Figure 4) with GP-Pooling (gray) operators to estimate the

rotation angle (blue). The estimated rotation angle θ is passed to the Spatial Transformer (green). R2N warps the image features to remove

global rotation. The last layer (yellow) yields tight rotated bounding boxes.

tasks, such as digit recognition from MNIST. Our proposed

GP-Pooling operator succeeds on real-world tasks, namely,

pedestrian detection on the Caltech Pedestrians dataset.

Detection. Recent detection methods are based on region

proposals that perform detection by classifying region pro-

posals of images and regressing the bounding box. For ex-

ample, Ren et al. [23] introduce a Region Proposal Net-

work (RPN) to enable nearly cost-free region proposals and

propose a unified detection framework. Liu et al. [17] in-

troduce default boxes, which tiles input images and then

regress the offset for each box in the work of Single Shot

MultiBox Detector (SSD). In the context of pedestrian de-

tection, Zhang et al. [29] analyze the performance of Faster-

RCNN on pedestrian detection and propose a simple and

powerful baseline for pedestrian detection based on RPN.

In many of these methods, the region proposals are repre-

sented by axis-aligned rectangles, which are not suitable for

detecting pedestrians imaged at an angle. To address this is-

sue, Ma et al. [18] propose a novel framework to detect text

with arbitrary orientation in natural scene images. In their

work, they present the Rotation Region Proposal Networks

(RRPN) to generate rectangular proposals at different ro-

tations instead of axis-aligned proposals. This approach is

limited because the RRPN can only deal with a discrete set

of rotations and it is only applicable to proposal-based de-

tection networks.

3. Global Polar Pooling (GP-Pooling)
In a CNN, pooling increases the receptive field and fil-

ters out the noisy feature responses from previous lay-

ers. Moreover, existing pooling operators, especially spatial

max pooling, are frequently used because of their robust-

ness to translation. In other words, translational changes

Figure 3. Left: GP-Pooling Operator. Feature map in polar coor-

dinates. Right: Feature Responses of GP-Pooling Operator. Input

rotations result in translational shifts of feature responses.

in image content can produce feature responses with trans-

lational shifts in existing spatial pooling operators. How-

ever, this is not the case for rotational changes. Current

paradigms of convolutional feature extraction are strictly

based on a rectangular spatial decomposition of the image

features. As a result, any rotational changes in image con-

tent can produce a very different feature response.

To achieve a smoother change in general CNN feature

responses due to rotational changes, we propose the Global

Polar Pooling (GP-Pooling) operator. This operator ex-

tends existing pooling operators from rectangular to a ra-

dial decomposition. It makes the global rotational changes

from the input image content easily recognizable in CNNs.

Specifically, the GP-Pooling operator represents convolu-

tional feature responses on a polar grid system such that

any in-plane rotation from an input image results in a trans-

lational shift of the polar feature map. Then, the transla-

tional shifts can be easily captured by the upper layers of

the network.

The core idea of how GP-Pooling works is illustrated in

Figure 3. Inside the GP-Pooling operator, the feature maps

are represented in a polar coordinate system with the ori-
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gin defined at the center of the feature map. While our

GP-Pooling layer is designed primarily for in-plane rotation

about the image center, we empirically find that it can han-

dle moderate levels of off-center rotation. To be concrete, a

pixel P (x, y) of the feature map with width w and height h
can be represented in polar coordinate Pp(xp, yp) by:

Pn(xn, yn) = (x− w

2
,−y + h

2
) (1)

Pp(xp, yp) = (
√
x2
n + y2n, atan2(yn, xn)), (2)

where Pn(xn, yn) is the normalized coordinate based on the

center of the feature map.

The key difference of GP-Pooling from existing pooling

operators is that we define parameters of kernel size, stride,

and padding along radial and angular axes in polar coordi-

nates. These parameters determine how the input feature

map is tiled into a grid. Inside each grid cell, a max opera-

tion is executed for pixels that fall into that cell. A switch

variable records the location of maximum activation. Then,

the gradient flows back to this location during backpropaga-

tion as illustrated in Figure 3, where the input feature map

is tiled with a kernel size of π
4 , stride of π

4 , and padding of

0 along the angular axis. In this illustrative example, the

feature map is tiled into eight angular sectors, each of size
π
4 radians, which are further divided into seven cells along

the radial axis. In practice, it is necessary to set the stride

and kernel size along the angular axis to π
180 to capture one

degree of image rotation.

To demonstrate the functionality of converting rotational

changes to translational shifts, we visualize the output fea-

tures of the proposed GP-Pooling operator in Figure 3. We

take two MNIST images (28 × 28) as the input of the GP-

Pooling operator. The kernel size, stride, and padding along

the angular and radial axes are π
36 , π

36 , 0, 1, 1, and 0, re-

spectively. This results in output features of size 20 × 72.

We then re-scale these to a size of 28 × 100 to obtain the

same height as the input image for better visualization. The

results show that the feature responses approximately shift

leftwards or rightwards when we rotate the input image.

Rotation Estimation Module. To estimate the rotation pa-

rameter from images or image features efficiently, the prop-

erty of converting rotational changes to translational shifts

is beneficial. We insert multiple GP-Pooling layers into the

rotation estimation module in a multi-scale manner and con-

catenate their output feature responses with features from

the spatial max pooling layer. The rotation estimation mod-

ule ultimately outputs the estimation of rotation, θ, ranging

from −π to π present in the input image by solving a re-

gression problem. A typical architecture of our rotation es-

timation module embedded with the GP-Pooling operators

is shown in Figure 4.

4. Rotational Rectification Network (R2N)

Here we describe the rotational rectification network

(R2N) and how we fit it into a general pedestrian detec-

tor to achieve rotation-robust detection. The R2N takes two

inputs: (1) the input image, and (2) a feature map from an

intermediate layer of the detection network. Next, it out-

puts a warped image feature where the global rotation is re-

moved. This process transforms a complex task of arbitrary-

oriented pedestrian detection into an easier task of upright

pedestrian detection. The overall architecture is shown in

Figure 2. The R2N is composed of a rotation estimation

module and a spatial transformer. We use the estimation of

rotation θ from the rotation estimation module to construct

a 2× 3 transformation (rotation) matrix M .

M =

[
cosθ -sinθ 0
sinθ cosθ 0

]
(3)

The transformation matrix M is then passed to the spatial

transformer to warp the input feature map. This warping

removes the effect of global rotation distortion present in

the image features prior to detection. In our paradigm, the

spatial transformer is used only for image warping. The

warp parameters are provided by our specific localization

net1, the rotation estimation module, which is designed for

increasing robustness to image rotation.

We emphasize, again, that the R2N is a separate mod-

ule, independent of the pedestrian detector. It can work

as a plugin and be inserted into an intermediate layer in

many CNN-based pedestrian detectors to achieve rotation-

invariant detection. In practice, we usually insert the R2N

module into the feature extraction part of the network (e.g.,

after the pool3 layer of the VGG part). The R2N can enable

the final layer of the pedestrian detector to yield the tight

rotated bounding boxes based on the estimated rotation, θ.

5. Datasets

To evaluate the performance of our GP-pooling layer and

our rotation invariant R2N network, we need a dataset with

images of people undergoing heavy rotation. For a detailed

quantitative analysis, we utilize rotated MNIST and rotated

Caltech datasets, where the digit and pedestrian images are

synthetically rotated at various angles. To verify the perfor-

mance on real rotated data, we obtained a YouTube Wear-

able Video dataset, where people with wearable cameras

capture images during dynamic activities (e.g., running or

riding a bike) such that pedestrians are imaged at various

angles.

1Please refer to [12] for more details about the spatial transformer and

definition of localization net.
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Figure 4. Architecture of a rotation estimation module embedded with the GP-Pooling (blue) operators. This network is composed of

convolution (red), max pooling (yellow), GP-Pooling (blue), batch normalization (gray), concatenation (green), flatten (magenta), and

fully connected (cyan) layers. The rotation estimation module takes images or image features as the input. The final regression layer

produces the estimation of rotation θ present in the input.

5.1. Rotated MNIST

The rotated MNIST dataset is created by rotating images

from the MNIST dataset [16] with the rotation angle uni-

formly selected from −90◦ to 90◦ (the upper half of a cir-

cle). The rotated MNIST dataset contains 10,000 training

images, 2,000 validation images, and 50,000 testing images,

each with a size of 28×28. We emphasize that this dataset

is not used to evaluate digit classification, but to evaluate

the performance of image rotation estimation.

Figure 5. Sample images from the rotated MNIST dataset.

5.2. Rotated Caltech

We use a rotated version of the Caltech pedestrian dataset

to evaluate the ability of a pedestrian detector to detect peo-

ple imaged at varying angles of rotation. The original Cal-

tech dataset contains six video sequences for training and

five for testing. Since consecutive images are very simi-

lar, images are sampled every three frames in the training

set and every 30 frames in the testing set. This results in

42,786 training images and 4,024 testing images in our ro-

tated Caltech dataset. We rotate all images by uniformly

selecting the rotation angle from −90◦ to 90◦, which are

saved as ground truth for training and testing the rotation

estimation module.

Figure 6. Sample images from the rotated Caltech dataset.

5.3. YouTube Wearable

To evaluate the performance of our rotation invariant

R2N in the real world, we create the YouTube Wear-

able dataset where images contain pedestrians with vari-

ous poses without manual rotation. We obtained 100 short

YouTube videos recorded by people with wearable cameras.

To have a high possibility to contain pedestrians within im-

ages, we cut 4,000 frames from videos where images are

taken outdoor in the city. As a result, around 500 images

contain pedestrians, and we label the bounding boxes man-

ually and remove boxes under 400 pixels.

Figure 7. Sample images from the YouTube Wearable dataset.

6. Evaluating the Rotation Estimation Module
The success of the R2N module to enable rotation in-

variant detection relies heavily on the precision of the es-

timated rotation, θ, so it is critical to estimate the image

rotation precisely. In the first experiment, we evaluate the

accuracy of the rotation estimation module using the pro-

posed GP-Pooling operator on rotated MNIST and rotated

Caltech dataset.

6.1. Rotation Estimation on Rotated MNIST

To see how the rotation estimation module works inde-

pendently, despite the R2N, we evaluate three baseline rota-

tion estimation modules. Descriptions of the baselines are

in Table 1 (first three rows). We train all baselines us-

ing the rotation angle as the ground truth and evaluate them

based on root of sum of squared error.

Training Details. We use Euclidean loss during training.

The training takes 160 epochs with a batch size of 128 for

all models. Adam optimizer is used with a learning rate of

0.001 and two momentums of 0.9 and 0.999.

Results. In Table 3, we see that the 2-layer fully connected

network cannot work very well because the network has

too few neurons and a simple structure. Importantly, the

GP-Pooling+CNN outperforms the CNN by achieving 22%

lower error (from 11.26◦ to 8.78◦), showing that adding

GP-Pooling operators to the network increases robustness

to image rotation.

Visualization. To understand what is learned in the rota-

tion estimation module (GP-Pooling+CNN), we extract the

feature responses before the fc3 layer as a vector represen-

tation for each image patch. For a set of seven random digit

images, we find the 19 nearest neighbors (Figure 8) and

observe that the nearest neighbors are not necessarily the

same digit. More importantly, the nearest neighbors have

the same rotation angle as the query image, which seems

to indicate that the learned feature representation encodes

digit angle instead of digit label.
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Name With STN? [12] Description

2FC No a 2-layer fully connected network (20 and 1 neurons per layer respectively).

CNN No a standard CNN described in Table 2.

CNN+GP-Pooling No Two GP-Pooling operators are inserted into the CNN in the 2nd row after the conv1

and conv2 layers before concatenating with the pool2 features.

STN-2FC [12] Yes a spatial transformer with 2FC as the rotation estimation module.

STN-CNN [12] Yes a spatial transformer with CNN as the rotation estimation module.

STN-CNN+GP-Pooling Yes a spatial transformer with CNN+GP-Pooling as the rotation estimation module.

Table 1. Baselines used in two rotated MNIST experiments.

Layer conv1 ReLU pool1 conv2 ReLU pool2 fc3 ReLU dropout fc4 sigmoid

Units 16 16 16 32 32 32 20 20 20 1 1

Feature 28×28 28×28 14×14 14×14 14×14 7×7 1 1 1 1 1

Table 2. Topology of the CNN used in the rotated MNIST dataset.

6.2. Rotation Estimation with Spatial Transformer
Network (STN) on Rotated MNIST

As our proposed rotation estimation module with the

GP-Pooling operator is similar and complementary to the

spatial transformer (STN), we evaluate the STN with and

without our GP-Pooling to see if it is helpful in STN. We

use the same rotation estimation modules evaluated in sec-

tion 6.1. Descriptions of the baselines are in Table 1 (last
three rows). As we estimate the rotation parameters, the

transformation matrix of the STN is restricted to a rotation

matrix in the form of Equation 3. We train three baseline

STNs using digit labels as the ground truth because STN is

trained with a digit classification task in the MNIST dataset.

However, during testing, to see how the GP-Pooling oper-

ator affects the performance of rotation estimation, we do

not care about the predicted digit and, instead, evaluate the

estimation of rotation produced by the rotation estimation

module, an intermediate output of the overall network.

Training Details. As we are solving a classification task

during training, we use Cross Entropy Loss instead of Eu-

clidean Loss. All other training details are the same as in

section 6.1.

Results. In table 4, we observe, while STNs are trained

with a classification task without using rotation angle, the

rotation estimation module is learning to estimate the im-

age rotation. A stronger rotation estimation module (STN-

CNN) can have lower estimation error than a simpler model

(STN-2FC). Additionally, we found that adding the GP-

Pooling operators to the rotation estimation module helps

improve the accuracy of rotation estimation even with the

spatial transformer.

6.3. Rotation Estimation on Rotated Caltech

As the rotated MNIST dataset is very simple and con-

tains only low-resolution images, it cannot be a strict dataset

to judge the rotation invariance of a network. As such, we

also evaluate the rotation estimation module on the rotated

Caltech dataset, where images contain much higher resolu-

Methods Error (degree)

2FC 44.91◦
CNN 11.26◦

GP-Pooling+CNN 8.78◦

Table 3. Rotation estimation error on rotated MNIST dataset. 2FC,

CNN, and GP-Pooling+CNN are the rotation estimation modules

defined in Table 1.

Methods Error (degree)

STN-2FC [12] 23.37◦
STN-CNN [12] 18.00◦

STN-GP-Pooling+CNN 16.38◦

Table 4. Rotation estimation error on the Rotated MNIST dataset

with the Spatial Transformer Network.

Figure 8. Feature Space Visualization. Nearest neighbors of probe

images (left column). Feature representation encodes digit angle,

not digit label.

tion (480 × 640) and more complex content compared to

the MNIST. However, the task of pedestrian detection on

the Caltech dataset is beyond the scope of the spatial trans-

former, so the comparison experiments with STN are not

applicable. On the other hand, the task of horizontal line

detection is very similar to the rotation estimation (estima-

tion of rotation is the slope of the horizontal line), so we

compare our rotation estimation module with two state-of-

the-art horizontal line detection algorithms.

Baselines.
1. Zhai et al. [28]: a state-of-the-art CNN-based horizon-

tal line detector.
2. Lezama et al. [15]: an edge-based horizontal line de-

1089



Methods Error (degree)

Zhai et al [28] 38.79◦
Lezama et al [15] 29.26◦

VGG-S [24] 18.33◦
GP-Pooling+VGG-S 15.82◦

Table 5. Results from the rotated Caltech dataset. The topology of

the GP-Pooling+VGG-S is described in Figure 4 and Section 5.2.

tector.
3. VGG-S [24]: the small version of VGG network.
4. GP-Pooling+VGG-S: two GP-Pooling operators are

inserted into VGG-S after the conv2 and conv5 lay-

ers before concatenation. The topology of the network

is shown in Figure 4. All convolution layers have ker-

nel size of 3, stride of 1, and padding of 1. All max

pooling layers have kernel size of 2 and stride of 2.

Training Details. For baselines 1 and 2, we follow the

training procedure from the original work. For baselines 3

and 4, We fine-tune both networks from the VGG-S model

pre-trained on ImageNet (up to the pool5 layer) for 16

epochs with a batch size of 4, learning rate of 0.000001,

and weight decay of 0.00005.

Results. In Table 5, we observe that [29] and [15] are not

working as well as VGG-S and GP-Pooling+VGG-S be-

cause both two horizontal line detection algorithms heav-

ily rely on the geometric priors, which are not always true

on the rotated Caltech dataset, especially when the im-

age rotation is heavy. Importantly, when comparing GP-

Pooling+VGG-S with VGG-S, we can achieve lower er-

ror in degree by 13.7% (from 18.3◦ to 15.8◦) by simply

adding two GP-Pooling operators to the rotation estimation

module. This demonstrates again that the proposed GP-

Pooling operator increases robustness to image rotation and

improves rotation estimation.

7. Evaluating the Rotational Rectification Net-
work (R2N)

To see how our R2N can enable rotation invariance in

CNN-based pedestrian detectors, we evaluate the perfor-

mance of two end-to-end pedestrian detectors with R2N

on the original and rotated Caltech and YouTube Wearable

datasets.

Baselines. Faster-RCNN2 [23] and RPN-BF3 [29] are very

strong pedestrian detectors, and we use four variants as the

baselines for comparative analysis:
1. Base4: Faster-RCNN is trained on the VOC2007

dataset, and RPN-BF is trained on the original Caltech

dataset.

2The Faster-RCNN used is pre-trained on the VOC2007 dataset. We

only evaluate the class of “person” from the total 20 classes in VOC2007.
3For RPN-BF, we do not use the random forest part compared to the

original work.
4Base represents one of the pedestrian detectors: Faster-RCNN or

RPN-BF.

2. Base+Aug: Faster-RCNN and RPN-BF are fine-tuned

on the mixture of original and rotated Caltech datasets

for data augmentation.

3. Base+R2N: The Faster-RCNN is trained on the

VOC2007 dataset and RPN-BF is trained on the origi-

nal Caltech dataset, then the proposed R2N module is

inserted after the pool3 layer of both detectors without

fine-tuning on the rotated Caltech dataset.

4. Base+R2N+GT: Instead of estimating the rotation

from the rotation estimation module, the ground truth

of rotation is passed to the STN such that all pedes-

trians within images lead to an upright pose, which

should achieve the upper-bound performance of the

Base+R2N.

The evaluation metric for all following experiments is

the log-average miss rate on false positive per image (FPPI)

[6]. As is standard practice, an intersection over union (IoU)

of 0.5 is used to determine true positives.

Results on Rotated Caltech. We now evaluate the ability

of our proposed R2N to transform a pre-trained pedestrian

detector into a rotation-invariant pedestrian detector. We be-

gin with experiments on the rotated Caltech dataset with re-

sults shown in Figure 9 (left). The average miss rate (FPPI)

of the base detectors (Faster-RCNN and RPN-BF) have a

maximum of 89.8% and 83.3%, respectively, because both

detectors are only trained on datasets without rotated pedes-

trians. By fine-tuning the detectors on a mixture of the origi-

nal and rotated Caltech datasets, the performance of Faster-

RCNN and RPN-BF increases 1% and 20%, respectively,

which is expected because data augmentation is known to

improve performance.

If we add the R2N to each detector, the performance

increases by a significant percentage: 11.0% for Faster-

RCNN and 44.6% for RPN-BF (the average miss rate de-

creased from 83.3% to 57.6%). This result demonstrates

that adding rotation invariance via our R2N module to

CNNs is more effective at improving detection performance

than data augmentation. We emphasize that we do not fine-

tune the two baseline models after adding the R2N module.

This shows that the R2N module works like a plugin with-

out additional tuning.

Additionally, when comparing baseline base+R2N with

base+R2N+GT, the performance is very close meaning that,

in the case of no fine-tuning, the performance of base+R2N

nearly achieves the upper bound on the rotated Caltech

dataset. Qualitative results are shown in Figure 10.

Results on Original Caltech. To see how adding the R2N

module affects the performance of the original pedestrian

detector when detecting upright pedestrians, the second ex-

periment focuses on the original dataset instead of the ro-

tated one. When evaluated on the original Caltech dataset

(Figure 9 middle), we found that the performance drops
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Figure 9. Quantitative results on the rotated Caltech (left), original Caltech (middle), and YouTube Wearable (right) datasets. An Inter-

section of Union (IoU) of 0.5 is used to determine true positives.

Figure 10. Detection Results. Upper two rows: rotated Caltech dataset. Lower two rows: YouTube Wearable dataset.

1% and 3% for RPN-BF and Faster-RCNN, respectively,

after inserting the R2N into the original detector. This drop

is reasonable because we do not jointly fine-tune the net-

works after inserting the R2N module and the estimation

of rotation from the rotation estimation module is not per-

fectly precise (i.e., it might add some rotations to the up-

right pedestrians). The performance of the Faster-RCNN

variants is much worse than the RPN-BF variants because

Faster-RCNN is pre-trained on the VOC2007 dataset and

not Caltech dataset.

Results on YouTube Wearable. To see how our R2N per-

forms on real-world rotated image data, we compare the

Faster-RCNN and RPN-BF with and without our R2N on

the YouTube Wearable dataset. Quantitative and qualita-

tive results are shown in Figure 9 (right) and 10, respec-

tively. Compared to the results from the Caltech dataset,

Faster-RCNN+R2N performs much better, which might re-

sult from a similar appearance and scale of pedestrians be-

tween the YouTube Wearable and VOC2007 datasets. More

importantly, adding the R2N increases the performance by

18.2% for Faster-RCNN and 11.7% for RPN-BF, although

we do not fine-tune the detectors on this completely new

dataset. This demonstrates again that the proposed R2N can

add rotation invariance to a detection network immediately

without joint fine-tuning such that the detector can detect

pedestrians with various poses.

8. Conclusion
We introduce the GP-Pooling operator to convert rota-

tional changes to translational shifts enabling CNNs to en-

code rotational information. We propose a rotational rec-

tification network (R2N) and apply it to a real application

of oriented pedestrian detection. We show that the use of

R2N can immediately help achieve rotation invariance with-

out any fine-tuning given a detector trained on datasets with

only upright pedestrians.
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