
A Programmable
Approach to Neural
Network Compression

Vinu Joseph and Ganesh L. Gopalakrishnan

University of Utah

Saurav Muralidharan and Michael Garland

NVIDIA

Animesh Garg

University of Toronto and Vector Institute

Abstract—Deep neural networks (DNNs) frequently contain far moreweights, represented

at a higher precision, than are required for the specific task, which they are trained to

perform. Consequently, they can often be compressed using techniques such asweight

pruning and quantization that reduce both themodel size and inference timewithout

appreciable loss in accuracy. However, finding the best compression strategy and

corresponding target sparsity for a given DNN, hardware platform, and optimization

objective currently requires expensive, frequentlymanual, trial-and-error experimentation.

In this article, we introduce a programmable system formodel compression called

CONDENSA. Users programmatically compose simple operators, in Python, to build more

complex and practically interesting compression strategies. Given astrategyanduser-

providedobjective (suchasminimizationof running time),CONDENSAusesanovelBayesian

optimization-basedalgorithm toautomatically infer desirable sparsities.Our experiments

on four real-worldDNNsdemonstratememory footprint andhardware runtime throughput

improvementsof 188�and2.59�, respectively, usingatmost ten samplesper search.

& MODERN DEEP NEURAL networks (DNNs) are

complex and often containmillions of parameters

spanning dozens or even hundreds of layers.1;2

This complexity translates into substantial mem-

ory and runtime costs on hardware platforms at

all scales. Recent work has demonstrated that

DNNs are often overprovisioned and can be com-

pressed without appreciable loss of accuracy.

Model compression can be used to reduce both

Digital Object Identifier 10.1109/MM.2020.3012391

Date of publication 28 July 2020; date of current version

1 September 2020.

Theme Article: Machine Learning for SystemsTheme Article: Machine Learning for Systems

September/October 2020 Published by the IEEE Computer Society 0272-1732 � 2020 IEEE 17
Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.

model memory footprint and inference latency

using techniques such as weight pruning, quanti-

zation, and low-rank factorization.3�5 Unfortu-

nately, the requirements of different compression

contexts—DNN structure, target hardware plat-

form, and the user’s optimization objective—are

often in conflict. The recommended compression

strategy for reducing inference latency may be

different from that required to reduce total

memory footprint. For example, in a convolu-

tional neural network (CNN), reducing inference

latency may require pruning filters to realize

speedups on real hardware,4 while reducing

memory footprint may be accomplished by zero-

ing out individual weights. Similarly, even for the

same optimization objective, say reducing infer-

ence latency, one may employ filter pruning for a

CNN, while pruning 2-D blocks of nonzeroweights

for a language translation network such as Trans-

former, since the latter has no convolutional

layers. Thus, it is crucial to enable convenient

expression of alternative compression schemes;

however, none of today’s model compression

approaches help the designer tailor compression

schemes to their needs.

Current approaches to model compression

also require manual specification of compres-

sion hyperparameters, such as target spar-

sity—the proportion of zero-valued parameters

in the compressed model versus the original.

However, with current approaches, finding the

best sparsity often becomes a trial-and-error

search, with each such trial having a huge cost

(often multiple days for large models such as

BERT), as each such trial involves training the

compressed model to convergence, only to find

(in most cases) that the compression objec-

tives are not met. The main difficulty faced by

such unguided approaches is that sparsities

vary unpredictably with changes in the com-

pression context, making it very difficult to pro-

vide users with any guidelines, whatsoever.

Therefore, automatic and sample-efficient appr-

oaches that minimize the number of trials are

crucial to support the needs of designers who

must adapt a variety of neural networks to a

broad spectrum of platforms targeting a wide

range of tasks.

To address the above-mentioned problems

of flexible expression of compression strategies,

automated compression hyperparameter infer-

ence, and sample efficiency, we make the follow-

ing contributions.

1) We present CONDENSA, a new framework for

programmable neural network compression.

CONDENSA supports the expression of the

overall compression strategy in Python using

operators provided by its compression library.

Since each strategy is a Python function, users

are able to programmatically compose ele-

mentary schemes to build much more com-

plex and practically interesting schemes.

2) We present a novel sample-efficient algorithm

based on Bayesian optimization (B.O.) in

CONDENSA for automatically inferring optimal

sparsities based on a user-provided objective

function. Given CONDENSA’s ability to support

the expression of meaningful high-level objec-

tive functions—for example, the throughput

(images per second) of a CNN—users are freed

from the burden of having to specify compres-

sion hyperparameters manually.

3) We demonstrate the effectiveness of

CONDENSA on three image classification and

language modeling tasks, resulting in mem-

ory footprint reductions of up to 188� and

runtime throughput improvements of up to

2:59� using at most ten samples per search.

BACKGROUND
For a given task such as image classification,

assume we have trained a large reference model

w ¼ argminwLðwÞ, where LðÞ denotes a loss func-

tion (e.g., cross-entropy on a given training set),

and w 2 RP . Model compression refers to finding

a smaller model Q that can be applied to the

same task and ideally achieves the same accu-

racy as w. Model compression can be performed

in various ways, and CONDENSA currently sup-

ports two commonly used techniques: pruning

and quantization. In pruning, nonzero values

from w are eliminated or “pruned” to obtain Q.

Pruning is usually performed using some kind of

thresholding (for e.g., magnitude-based) and can

be unstructured (prune any nonzero value) or

structured (prune only blocks of nonzeros).4;3

On the other hand, quantization retains the num-

ber of parameters in Q but assigns parameters in

Machine Learning for Systems

18 IEEE Micro

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.

w one of K codebook values, where the code-

book may be fixed or adaptive. CONDENSA sup-

ports low-precision approximation, which refers

to assigning each parameter in w a correspond-

ing lower-precision representation (for example,

converting from 32-bit to 16-bit floating-point).

Automating model compression involves

finding both an optimal compression strategy

for a given w, along with its corresponding com-

pression hyperparameters such as target spar-

sity with minimal manual intervention. Current

state-of-the-art frameworks in this domain

include AMC3 and AutoCompress,5 which use

reinforcement learning and simulated annealing,

respectively, to automatically find desirable tar-

get sparsities for a fixed pruning strategy. CON-

DENSA, in contrast, supports the programmable

expression of a wide variety of compression

strategies (not just pruning). Also, in the context

of automated model compression, each sample

corresponds to training the compressed model

to convergence, and can be extremely expensive

to compute; unfortunately, techniques such as

reinforcement learning, which is used in AMC,3

can be highly sample-inefficient.6 To minimize

the number of samples drawn, CONDENSA uses

a novel and sample-efficient B.O.-based algo-

rithm for automatically arriving at desirable tar-

get sparsities.

CONDENSA FRAMEWORK
In CONDENSA, users specify compression

schemes to systematically describe how a given

reference model w is transformed into a com-

pressed version. Schemes are expressed as

Python functions and can utilize a rich set of

compression operators provided by the CON-

DENSA library. Integrating with the Python eco-

system makes the expression of common

compression patterns more natural. For exam-

ple, operators can be combined with conditional

statements to selectively compress layers based

on properties of the input DNN and/or target

hardware platform. The CONDENSA Library pro-

vides operators and prebuilt schemes for

unstructured and structured (filter and block)

pruning, and quantization. Listing 1 provides a

concrete example of invoking CONDENSA to com-

press a model.

CONDENSA System Design

Figure 1 provides a high-level overview of the

CONDENSA framework. As shown on the left-hand

side of the figure, a user compresses a pretrained

modelw by specifying a compression scheme and

an objective function f . Both the compression

scheme and objective are specified in Python

using operators from the CONDENSA library; alter-

natively, users may choose from a selection of

commonly used built-in schemes and objectives.

Apart from the operator library, the core frame-

work, shown in the middle of the figure, consists

primarily of two components: 1) the constrained

Bayesian optimizer for inferring optimal target

sparsities; and 2) the “learning-compression” (L-

C) optimizer7 for accuracy recovery. The remain-

der of this section describes both the Bayesian

and L-C optimizers inmore detail.

Sample-Efficient Bayesian Optimization

It is intuitive to split the problem of finding

optimal target sparsities into two stages: 1) find

the highest target sparsity that loses at most �

accuracy w.r.t the original uncompressed model

w; and 2) in a constrained sparsity regime

obtained from stage 1), optimize a user-provided

objective function f (e.g., throughput, or

Listing 1. Example usage of the CONDENSA

library.

September/October 2020 19
Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.

memory footprint) and return the solution as the

final sparsity. For both stages, CONDENSA uti-

lizes B.O., as shown in Figure 1.

B.O. is an optimization framework based on

continually updating a probabilistic model with

measurements of a function to be optimized.8

Given a set of parameters to be optimized, B.O.

makes black-box calls to the objective, updates the

probabilistic model with the new information, and

selects the next point to evaluate using an acquisi-

tion function that combines information about

the expectation and uncertainty of a function

value under the probabilistic model. CONDENSA

employs a Gaussian Process (G.P.) model for B.O.

due to its favorable statistical and computational

characteristics.9 It is worth highlighting that B.O.

leverages principled Bayesian inference to tradeoff

exploration and exploitation and is sample-effi-

cient for nonconvex black-box functions such as

the ones optimized by CONDENSA.8

In CONDENSA’s two-stage optimization pipe-

line, we first find a sparsity ratio sacc that constrains

the model accuracy function A to the provided �.

We then constrain the sparsity search space to

ð0; saccÞ while optimizing the user-provided objec-

tive function f . Note that we assume that A

decreases monotonically w.r.t. sparsity in the

region ð0; saccÞ. For each stage, CONDENSA uses a

distinct acquisition function to guide the next best

point for function evaluation.

Stage 1: Solving Accuracy Constraints: Recall that

in the first stage of the sparsity inference process,

we aim to find the highest sparsity sacc that loses at

most � accuracy w.r.t. the original reference model

w. To this end, we first define a Level-Set L that

represents AccðwÞ � � and aim to find the point on

the accuracy curve of the compressed model that

intersects with L; the sparsity corresponding to

this solution will be sacc. We propose a novel acqui-

sition function to find sacc named domain-restricted

upper confidence bound (DR-UCB).

DR-UCB builds upon an existing level-set black-

box optimization technique named ILS-UCB,10

which is characterized by two properties. 1) It pri-

oritizes searching in the region where the level set

intersects the accuracy curve. 2) It does not seek

to precisely learn the shape of the entire accuracy

curve. However, in CONDENSA, since accuracy

values can be safely assumed to decrease mono-

tonically with increasing sparsity, we notice that it

is also possible to progressively restrict the

search domain of sparsities based on whether the

currently sampled point meets the level-set con-

straints. In DR-UCB, we exploit this property to

greatly improve sample efficiency over ILS-UCB.

Mathematically, we define st, the sparsity value

sampled at iteration t using DR-UCB, as follows:

st ¼ argmax
s

ð1� gÞsðsÞ � gjmðsÞ � Lj

s.t. st > si 8i 2 ½0; t� 1�; BfðstÞ � L:
(1)

Here,Bf represents the L-C accuracy function, and

st is 1) greater than all the previous sparsities si;

and 2) satisfies the level set constraint BfðstÞ � L.

We achieve this by minimizing the difference

between the GP’s mean curve mðsÞ and the level

set using the term jmðsÞ � Lj in (1); the parameter

g controls the tradeoff between exploitation and

exploration. Algorithm 1 illustrates howDR-UCB is

employed to efficiently find sacc.

Figure 1. CONDENSA framework overview. The user provides the pretrained model (w), a compression scheme, and an

objective function f. CONDENSA uses the Bayesian and L-C optimizers to infer an optimal target sparsity s� and
corresponding compressed model Q.

Machine Learning for Systems

20 IEEE Micro

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. Bayesian Sparsity Inference with

Domain Restriction

1: procedure BODR�UCB ðBf , L, T Þ
" Bf : Function to optimize

" L: Level set
" T : # Iterations

2: GP GP-Regressor.initialize()
3: s0 0;D ð0; 1Þ; X ;
4: for t 1; 2; T � 1 do
5: st argmaxDDR-UCBðsjX0:t�1Þ
6: yt BfðstÞ
7: if st > st�1 and yt � L then

8: D ðst; 1Þ
9: end if

10: X0:t fX0:t�1; ðst; ytÞg
11: GP.Update(X0:t)

12: end for

13: return sT�1
14: end procedure

Stage 2: Optimizing the User-Defined Objective:

Once we find a sparsity sacc that satisfies the user-

provided accuracy constraints in stage 1, our next

objective is to find the final sparsity s� that opti-
mizes the user-defined objective function f in the

constrained sparsity domain ð0; saccÞ. For this, we

employ the upper and lower confidence bound

(UCB/LCB) acquisition functions for functionmax-

imization andminimization, respectively.9

Accuracy Recovery Using L-C

As described earlier in this section, given a ref-

erence modelw, compression scheme, and target

sparsity (obtained automatically by the Bayesian

optimizer), CONDENSA tries to recover any accu-

racy lost due to compression. In this article, we

use the recently proposed L-C algorithm7 for accu-

racy recovery, which formulates model compres-

sion as a constrained optimization problem. L-C

naturally supports all the compression operators

supported by CONDENSA while providing opti-

mality guarantees whenever possible. Due to

space restrictions, we refer the reader to the arti-

cle by Carreira-Perpin�an and Idelbayev7 for a

more detailed description of the L-C algorithm.

EVALUATION
We conduct extensive experiments and fully

analyze CONDENSAon three tasks: 1) image classi-

fication on the CIFAR-10 data set11 using the VGG-

192 and ResNet561 neural networks; 2) image clas-

sification on the ILSVRC (ImageNet) task12 using

the VGG-16 neural network2; and 3) language

modeling on WikiText-213 using a two-layer LSTM

network described by Yu et al.14 We optimize the

networks in each task for two distinct objectives

described below.

Objective 1: Minimize Memory Footprint: The

memory footprint of a model is defined as the

number of bytes consumed by the model’s non-

zero parameters. Reducing the footprint below a

threshold value is desirable, especially for mem-

ory-constrained devices such as mobile phones,

and can be accomplished through either pruning

or quantization, or both. For reducing footprint,

we define a compression scheme that performs

unstructured pruning of each learnable layer

(except batch normalization layers), and then

quantizes it to half-precision floating-point, yield-

ing an additional 2� reduction. We denote this

scheme by P+Q and implement it using the

CONDENSA library as follows:

from schemes import Compose; Prune; Quantize

scheme ¼ Composeð½PruneðÞ; Quantize ðfloat16Þ�Þ

Objective 2: Maximize Throughput: Inference

throughput is defined as the number of input

samples processed by a model per second and

is commonly used for measuring real-world per-

formance. For CIFAR-10 and ImageNet, we mea-

sure hardware inference throughput of the

compressed model in the objective function. We

use an NVIDIA Titan V GPU with the TensorRT 5

framework to obtain throughput data. For Wiki-

Text-2, due to the lack of optimized block-sparse

kernels for PyTorch, we measure the floating-

point operations (FLOPs) of the compressed

model instead as a proxy for inference perfor-

mance. To improve throughput, we focus on

removing entire blocks of nonzeros, such as con-

volutional filters, since they have been shown to

improve performance on real-world hardware.4

For CIFAR-10 and ImageNet, we use filter prun-

ing, since all the networks we consider are

CNNs. In WikiText-2, we employ block pruning

with a block size of 5.

Bayesian Optimizer Settings: We use a Gaussian

Processes prior with the Matern kernel (n ¼ 2:5),

length scale of 1.0, and a value of 0.1 with normali-

zation of the predictions. For the DR-UCB acquisi-

tion function, we use a g value of 0.95 for all our

September/October 2020 21
Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.

experiments with a bias toward sampling more in

the area of level set, with the intention that the

Bayesian optimizer results in a favorable sparsity

level in as few samples as possible. We imple-

mented DR-UCB using the fmfn/BO package.�

Results

We present the memory footprint reductions

and inference throughput improvements obtai-

ned by CONDENSA for each of the three tasks we

evaluate in Table 1. For each task, we list the tar-

get sparsity obtained by the CONDENSABayesian

optimizer (s� in the table), its corresponding

accuracy/perplexity (top-1 accuracy, top-5 accu-

racy, and log perplexity for CIFAR-10, ImageNet,

and WikiText-2, respectively), memory footprint

reductions using pruning and quantization

(column labeled rc), and inference throughput/

FLOP improvements using filter/block pruning.

We also compare our approach with recent work

on automated model compression. For CIFAR-10

and ImageNet, we compare our results with AMC3

and AutoCompress,5 and for WikiText-2, we com-

pare with Yu et al.14 Since AMC3 and Yu et al.14 do

not report actual runtime numbers on hardware,

we report the corresponding FLOP improve-

ments instead (values marked sF). We also use

FLOP reduction as a metric for LSTM block prun-

ing, as described above.

Using the P+Q scheme designed to minimize

memory footprint, CONDENSA is able to obtain

compression ratios up to 188�, which surpasses

those of frameworks such as AutoCompress. While

AMC and AutoCompress only report theoretical

FLOP improvements on CIFAR-10 and ImageNet,

the filter pruning strategy implemented using

CONDENSA yields real-world runtime improve-

ments of up to 2:59� on an NVIDIA Titan V GPU.

Since AMC and AutoCompress do not report the

number of samples evaluated to arrive at their

Table 1. CONDENSA performance results on CIFAR-10, ImageNet, and WikiText-2.

Method Dataset Network s� Accuracy rc Throughput

Baseline CIFAR-10 VGG19-BN 92:98% 1� 1�

CONDENSA P+Q CIFAR-10 VGG19-BN 0.99 93:26% 188:23� N/A

CONDENSA Filter CIFAR-10 VGG19-BN 0.79 93:34% 1:35� 2:59�

Baseline CIFAR-10 ResNet56 92:75% 1� 1�

AMC3 CIFAR-10 ResNet56 N/A 90:1% N/A sF ¼ 2�

CONDENSA P+Q CIFAR-10 ResNet56 0.95 91:42% 31:14� N/A

CONDENSA Filter CIFAR-10 ResNet56 0.63 93:18% 1:14� 1:17�

Baseline ImageNet VGG16-BN 91:50% 1� 1�

Filter Pruning4 ImageNet VGG16-BN 89:80% � 4� N/A

AutoCompress5 ImageNet VGG16-BN N/A 90:90% 6:4� N/A

AMC3 ImageNet VGG16-BN N/A 90:1% N/A sF ¼ 1:25�

CONDENSA P+Q ImageNet VGG16-BN 0.93 89:89% 29.29 N/A

CONDENSA Filter ImageNet VGG16-BN 0.12 90:25% 1� 1:16�

Baseline WikiText-2 LSTM Log-Perplexity: 4.70 1� 1�

Lottery Ticket14 WikiText-2 LSTM N/A Log-Perplexity: 4.70 � 10� N/A

CONDENSA P+Q WikiText-2 LSTM 0.92 Log-Perplexity: 4.75 4:2� N/A

CONDENSA Block WikiText-2 LSTM 0.60 Log-Perplexity: 4.62 1:1� sF ¼ 2:14

Here, s� represents the target sparsity obtained by CONDENSA, rc is the memory footprint reduction, and sF the FLOP

reduction. The level-set, represented by �, is set to 2% below baseline in all experiments.

�
https://github.com/fmfn/BayesianOptimization

Machine Learning for Systems

22 IEEE Micro

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.

solutions, we are unable to directly compare sam-

ple efficiencies with these frameworks; however,

we notice that CONDENSA obtains desirable model

sparsities using a fixed ten iterations per search

in all experiments. Finally, while we set the level

set to be 2% below the accuracy of the reference

model in all our experiments, we notice that

CONDENSA-compressedmodels often exceedbase-

line accuracy.

Sparsity Profile Analysis

Figure 2 illustrates how a compressed model’s

accuracy, inference performance, and memory

footprint varies w.r.t. sparsity for the CIFAR-10

task. All three of these functions are assumed to be

unknown in our problem formulation, but we com-

pute them explicitly here to better understand the

quality of solutions produced by CONDENSA. For

each figure, compression accuracies (shown in

green) are obtained by running the L-C algorithm

to convergence for 100 sparsities ranging from 0.9

to 1.0 (for pruning + quantization), and from 0 to 1

for the filter and block pruning schemes; collect-

ing each such point requires between 30 min and

8 h of time on a single NVIDIA Tesla V100 GPU.

Inference throughput, FLOPs, and memory foot-

print data are collected for each compressed

model and depicted by red lines in the figures

(right-hand-side y-axis). We also show direct com-

pression (D-C) accuracies in gray for comparison;

Figure 2. CONDENSA sparsity profiles for VGG19-BN and ResNet56 for CIFAR-10. Column 1 shows the

problem of the form “minimizememory footprint with a lower bound on accuracy,” while Column 2 illustrates

“maximize throughput with a lower bound on accuracy.” The dc line (gray) shows accuracy values if no

accuracy recovery with L-C is performed. Note that the x-axis ranges are different: the plots on the left have

sparsities ranging from 0.9 to 1.0 while those on the right have values ranging from 0 to 1.

September/October 2020 23
Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.

direct compression refers to applying a compres-

sion scheme to a model without any subsequent

attempt at accuracy recovery. In each figure, the

sparsity found by CONDENSA is shown as a black

vertical dashed line.

We notice three important trends in Figure 2.

1) CONDENSA consistently finds solutions near

the “knee” of the L-C accuracy curves, signify-

ing the effectiveness of the DR-UCB acquisi-

tion function.

2) Local minima/maxima is avoided while opti-

mizing the objective function, demonstrating

that the UCB acquisition func-

tion for objective function opti-

mization is working as expected.

3) The knees of the D-C accuracy

curves occur at significantly

lower sparsities; the L-C opti-

mizer, on the other hand is able

to recover accuracies up to

much higher target sparsities.

Layerwise Compression Analysis

In this section, we analyze how

improving throughput using compression trans-

lates to execution time improvements for each

layer on actual hardware. For this experiment, we

focus on VGG-19 on CIFAR-10, since it has a rela-

tively simple structure and is easy to analyze on a

layer-by-layer basis. We use filter pruning with a

target sparsity of 0.79 (found by the Bayesian opti-

mizer, as decribed in Table 1) for this experiment.

Figure 3 shows layer-by-layer mean runtimes col-

lected over 100 runs using TensorRT (blue bars,

left y-axis), and compression ratios (green line,

right y-axis) for filter pruning. We only show data

for convolutional layers as they dominate compu-

tation time for this network. We make two key

observations: 1) runtime speedups on real hard-

ware are largely correlated with compression

ratios, but may be affected by hardware and

implementation details (e.g., compare conv13
with conv14 in the Figure); and 2) higher com-

pression ratios and corresponding speedups for

the later layers of the network, which indicates

that distributing a given global sparsity evenly

across network layers may not always be optimal,

and algorithms such as L-C are essential to auto-

matically finding desirable distributions of spar-

sity across layers.

CONCLUSIONS
This article has presented CONDENSA, which

is a flexible programming system forDNNcompres-

sion and corresponding hyperparameter opti-

mization. We have demonstrated CONDENSA’s

effectiveness and ease-of-use on a range of

state-of-the-art DNNs for image classification

and language modeling, and achieved memory

footprint reductions of up to 188� and runtime

throughput improvements of up to 2:59� using

at most ten samples per search.

ACKNOWLEDGMENTS
This work was supported in

part by DARPA under Contract

HR0011-18-3-0007; in part by

National Science Foundation

(NSF) under Award CCF-1704715;

and in part by a CIFAR AI Chair

award. Any opinions, findings,

and conclusions or recommenda-

tions expressed in this material are those of the

author(s) and do not necessarily reflect the

views of the U.S. Government. Distribution State-

ment “A” (Approved for Public Release, Distribu-

tion Unlimited).

& REFERENCES

1. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2016, pp. 770–778.

Figure 3. TensorRT runtimes and compression

ratios of convolutional layers in VGG19-BN (filter

pruning).

This article has

presented

CONDENSA, which is a

flexible programming

system for DNN

compression and

corresponding

hyperparameter

optimization.

Machine Learning for Systems

24 IEEE Micro

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.

2. K. Simonyan andA. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” inProc. Int.

Conf. Learn. Representations, 2015.

3. Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han,

“AMC: AutoML for model compression and

acceleration on mobile devices,” in Proc. 10th Eur.

Conf. Comput. Vis., 2018, pp. 784–800.

4. Y. He, X. Zhang, and J. Sun, “Channel pruning for

accelerating very deep neural networks,” in Proc. IEEE

Int. Conf. Comput. Vis., 2017, vol. 2, pp. 1398–1406.

5. N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye,

“AutoCompress: An automatic DNN structured

pruning framework for ultra-high compression rates,”

in Proc. AAAI Conf. Artif. Intell., 2020, pp. 4876–4883.

6. V. Mnih et al., “Playing Atari with deep reinforcement

learning,” 2013, arXiv:1312.5602.

7. M. A. Carreira-Perpin�an and Y. Idelbayev, ““Learning-

compression” algorithms for neural net pruning,” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,

pp. 8532–8541.

8. D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient

global optimization of expensive black-box functions,”

J. Global Optim., vol. 13, no. 4, pp. 455–492, 1998.

9. N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger,

“Gaussian process optimization in the bandit setting:

No regret and experimental design,” in Proc. 27th Int.

Conf. Mach. Learn., 2010.

10. A. Garg et al., “Tumor localization using automated

palpation with Gaussian process adaptive sampling,”

in Proc. IEEE Int. Conf. Autom. Sci. Eng., 2016,

pp. 194–200.

11. A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10

dataset,” [Online]. Avaliable: http://www. cs. toronto.

edu/kriz/cifar. html, vol. 55, 2014.

12. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei, “ImageNet: A large-scale hierarchical image

database,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., 2009, pp. 248–255.

13. S. Merity, C. Xiong, J. Bradbury, and R. Socher,

“Pointer sentinel mixture models,” 2016,

arXiv:1609.07843.

14. H. Yu, S. Edunov, Y. Tian, and A. S. Morcos, “Playing

the lottery with rewards and multiple languages:

Lottery tickets in RL and NLP,” 2019,

arXiv:1906.02768.

Vinu Joseph is currently working toward the Ph.D.

degree in computer science at the University of

Utah. Contact him at vinu@cs.utah.edu.

Ganesh L. Gopalakrishnan is a Professor of

computer science with the School of Computing, Uni-

versity of Utah. Contact him at ganesh@cs.utah.edu.

Saurav Muralidharan is a Senior Research Scientist

in the Programming Systems & Applications research

groupwithNVIDIA.Contact himat sauravm@nvidia.com.

Michael Garland is the Senior Director for Pro-

gramming Systems & Applications research with

NVIDIA. Contact him at mgarland@nvidia.com.

AnimeshGarg is anAssistant Professor of computer

science with the University of Toronto, and a Faculty

Member with the Vector Institute, Canada. Contact him

at garg@cs.toronto.edu.

September/October 2020 25
Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.

http://www. cs. toronto. edu/kriz/cifar. html
http://www. cs. toronto. edu/kriz/cifar. html

