Theme Article: Machine Learning for Systems

A Programmable
Approach to Neural
Network Compression

Vinu Joseph and Ganesh L. Gopalakrishnan Animesh Garg
University of Utah University of Toronto and Vector Institute

Saurav Muralidharan and Michael Garland
NVIDIA

Abstract—Deep neural networks (DNNs) frequently contain far more weights, represented
at a higher precision, than are required for the specific task, which they are trained to
perform. Consequently, they can often be compressed using techniques such as weight
pruning and quantization that reduce both the model size and inference time without
appreciable loss in accuracy. However, finding the best compression strategy and
corresponding target sparsity for a given DNN, hardware platform, and optimization
objective currently requires expensive, frequently manual, trial-and-error experimentation.
In this article, we introduce a programmable system for model compression called
CONDENSA. Users programmatically compose simple operators, in Python, to build more
complex and practically interesting compression strategies. Given a strategy and user-
provided objective (such as minimization of running time), CONDENSA uses a novel Bayesian
optimization-based algorithm to automatically infer desirable sparsities. Our experiments
on four real-world DNNs demonstrate memory footprint and hardware runtime throughput
improvements of 188 x and 2.59 x, respectively, using at most ten samples per search.

B Mobern DEep NEURAL networks (DNNs) are  spanning dozens or even hundreds of layers.'?
complex and often contain millions of parameters  This complexity translates into substantial mem-
ory and runtime costs on hardware platforms at
all scales. Recent work has demonstrated that

Digital Object Identifier 10.1109/MM.2020.3012391 DNNs are often overprovisioned and can be com-
Date of publication 28 July 2020; date of current version pressed without appreciable loss of accuracy.
1 September 2020. Model compression can be used to reduce both
September/October 2020 Published by the IEEE Computer Society 0272-1732 © 2020 |IEEE ‘I 7

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.



18

Machine Learning for Systems

model memory footprint and inference latency
using techniques such as weight pruning, quanti-
zation, and low-rank factorization.>~> Unfortu-
nately, the requirements of different compression
contexts—DNN structure, target hardware plat-
form, and the user’s optimization objective—are
often in conflict. The recommended compression
strategy for reducing inference latency may be
different from that required to reduce total
memory footprint. For example, in a convolu-
tional neural network (CNN), reducing inference
latency may require pruning filters to realize
speedups on real hardware,® while reducing
memory footprint may be accomplished by zero-
ing out individual weights. Similarly, even for the
same optimization objective, say reducing infer-
ence latency, one may employ filter pruning for a
CNN, while pruning 2-D blocks of nonzero weights
for a language translation network such as Trans-
former, since the latter has no convolutional
layers. Thus, it is crucial to enable convenient
expression of alternative compression schemes;
however, none of today’s model compression
approaches help the designer tailor compression
schemes to their needs.

Current approaches to model compression
also require manual specification of compres-
sion hyperparameters, such as target spar-
sity—the proportion of zero-valued parameters
in the compressed model versus the original.
However, with current approaches, finding the
best sparsity often becomes a trial-and-error
search, with each such trial having a huge cost
(often multiple days for large models such as
BERT), as each such trial involves training the
compressed model to convergence, only to find
(in most cases) that the compression objec-
tives are not met. The main difficulty faced by
such unguided approaches is that sparsities
vary unpredictably with changes in the com-
pression context, making it very difficult to pro-
vide users with any guidelines, whatsoever.
Therefore, automatic and sample-efficient appr-
oaches that minimize the number of trials are
crucial to support the needs of designers who
must adapt a variety of neural networks to a
broad spectrum of platforms targeting a wide
range of tasks.

To address the above-mentioned problems
of flexible expression of compression strategies,

automated compression hyperparameter infer-
ence, and sample efficiency, we make the follow-
ing contributions.

1) We present CONDENSA, a new framework for
programmable neural network compression.
CONDENSA supports the expression of the
overall compression strategy in Python using
operators provided by its compression library.
Since each strategy is a Python function, users
are able to programmatically compose ele-
mentary schemes to build much more com-
plex and practically interesting schemes.

2) We present a novel sample-efficient algorithm
based on Bayesian optimization (B.O.) in
CONDENSA for automatically inferring optimal
sparsities based on a user-provided objective
function. Given CONDENSA'’s ability to support
the expression of meaningful high-level objec-
tive functions—for example, the throughput
(images per second) of a CNN—users are freed
from the burden of having to specify compres-
sion hyperparameters manually.

3) We demonstrate the effectiveness of
CONDENSA on three image classification and
language modeling tasks, resulting in mem-
ory footprint reductions of up to 188x and
runtime throughput improvements of up to
2.59x using at most ten samples per search.

BACKGROUND

For a given task such as image classification,
assume we have trained a large reference model
W = argmin, L(w), where L() denotes a loss func-
tion (e.g., cross-entropy on a given training set),
and w € R”. Model compression refers to finding
a smaller model ® that can be applied to the
same task and ideally achieves the same accu-
racy as w. Model compression can be performed
in various ways, and CONDENSA currently sup-
ports two commonly used techniques: pruning
and quantization. In pruning, nonzero values
from W are eliminated or “pruned” to obtain 0.
Pruning is usually performed using some kind of
thresholding (for e.g., magnitude-based) and can
be unstructured (prune any nonzero value) or
structured (prune only blocks of nonzeros).*?
On the other hand, quantization retains the num-
ber of parameters in O but assigns parameters in

IEEE Micro

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.



w one of K codebook values, where the code-
book may be fixed or adaptive. CONDENSA sup-
ports low-precision approximation, which refers
to assigning each parameter in W a correspond-
ing lower-precision representation (for example,
converting from 32-bit to 16-bit floating-point).

Automating model compression involves
finding both an optimal compression strategy
for a given w, along with its corresponding com-
pression hyperparameters such as target spar-
sity with minimal manual intervention. Current
state-of-the-art frameworks in this domain
include AMC® and AutoCompress,” which use
reinforcement learning and simulated annealing,
respectively, to automatically find desirable tar-
get sparsities for a fixed pruning strategy. CON-
DENSA, in contrast, supports the programmable
expression of a wide variety of compression
strategies (not just pruning). Also, in the context
of automated model compression, each sample
corresponds to training the compressed model
to convergence, and can be extremely expensive
to compute; unfortunately, techniques such as
reinforcement learning, which is used in AMC,3
can be highly sample-inefficient.® To minimize
the number of samples drawn, CONDENSA uses
a novel and sample-efficient B.O.-based algo-
rithm for automatically arriving at desirable tar-
get sparsities.

CONDENSA FRAMEWORK

In CONDENSA, users specify compression
schemes to systematically describe how a given
reference model w is transformed into a com-
pressed version. Schemes are expressed as
Python functions and can utilize a rich set of
compression operators provided by the CON-
DENSA library. Integrating with the Python eco-
system makes the expression of common
compression patterns more natural. For exam-
ple, operators can be combined with conditional
statements to selectively compress layers based
on properties of the input DNN and/or target
hardware platform. The CONDENSA Library pro-
vides operators and prebuilt schemes for
unstructured and structured (filter and block)
pruning, and quantization. Listing 1 provides a
concrete example of invoking CONDENSA to com-
press a model.

September/October 2020

Listing 1. Example usage of the CONDENSA
library.

1 # Construct pre-trained model

2 criterion = torch.nn.CrossEntropyLoss()

3 train(model, num_epochs, trainloader, criterion)
4

5

5 # Instantiate compression scheme
6 prune = condensa.schemes.FilterPrune()
7 # Define objective function
tput = condensa.objectives.throughput
9 # Specify optimization operator
10 obj = condensa.searchops.Maximize (tput)
11 # Instantiate L-C optimizer
12 1c = condensa.optimizers.LC(steps=30, 1r=0.01)
13  # Build model compressor instance
14 compressor = condensa.Compressor(

15 model=model, # Trained model

16 objective=obj, # Objective

17 eps=0.02, # Accuracy threshold

18 optimizer=lc, # Accuracy recovery

19 scheme=prune, # Compression scheme

20 trainloader=trainloader, # Train dataloader
21 testloader=testloader, # Test dataloader

22 valloader=valloader, # Val dataloader

23 criterion=criterion # Loss criterion

24 )

25 # Obtain compressed model
26 wc = compressor.run()

CONDENSA System Design

Figure 1 provides a high-level overview of the
CONDENSA framework. As shown on the left-hand
side of the figure, a user compresses a pretrained
model W by specifying a compression scheme and
an objective function f. Both the compression
scheme and objective are specified in Python
using operators from the CONDENSA library; alter-
natively, users may choose from a selection of
commonly used built-in schemes and objectives.
Apart from the operator library, the core frame-
work, shown in the middle of the figure, consists
primarily of two components: 1) the constrained
Bayesian optimizer for inferring optimal target
sparsities; and 2) the “learning-compression” (L-
C) optimizer’ for accuracy recovery. The remain-
der of this section describes both the Bayesian
and L-C optimizers in more detail.

Sample-Efficient Bayesian Optimization

It is intuitive to split the problem of finding
optimal target sparsities into two stages: 1) find
the highest target sparsity that loses at most ¢
accuracy w.r.t the original uncompressed model
w; and 2) in a constrained sparsity regime
obtained from stage 1), optimize a user-provided
objective function f (e.g.,, throughput, or

19

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.



Machine Learning for Systems

SCHEME

CONDENSA FRAMEWORK

L-C OPTIMIZER S BAYESIAN OPT.

OBJECTIVE f '—»

PHASE-I

| S OBJECTIVE f @
> @.
-
L °
S
L fs) 2
e
PHASE-II

Figure 1. CONDENSA framework overview. The user provides the pretrained model (w), a compression scheme, and an
objective function f. CONDENSA uses the Bayesian and L-C optimizers to infer an optimal target sparsity s* and
corresponding compressed model 6.

20

memory footprint) and return the solution as the
final sparsity. For both stages, CONDENSA uti-
lizes B.O., as shown in Figure 1.

B.O. is an optimization framework based on
continually updating a probabilistic model with
measurements of a function to be optimized.®
Given a set of parameters to be optimized, B.O.
makes black-box calls to the objective, updates the
probabilistic model with the new information, and
selects the next point to evaluate using an acquisi-
tion function that combines information about
the expectation and uncertainty of a function
value under the probabilistic model. CONDENSA
employs a Gaussian Process (G.P.) model for B.O.
due to its favorable statistical and computational
characteristics.? It is worth highlighting that B.O.
leverages principled Bayesian inference to tradeoff
exploration and exploitation and is sample-effi-
cient for nonconvex black-box functions such as
the ones optimized by CONDENSA.2

In CONDENSA’s two-stage optimization pipe-
line, we first find a sparsity ratio s,.. that constrains
the model accuracy function A to the provided e.
We then constrain the sparsity search space to
(0, sacc) While optimizing the user-provided objec-
tive function f. Note that we assume that A
decreases monotonically w.r.t. sparsity in the
region (0, s, ). For each stage, CONDENSA uses a
distinct acquisition function to guide the next best
point for function evaluation.

Stage 1: Solving Accuracy Constraints: Recall that
in the first stage of the sparsity inference process,
we aim to find the highest sparsity s... that loses at
most € accuracy w.r.t. the original reference model
w. To this end, we first define a Level-Set L that

represents Acc(w) — e and aim to find the point on
the accuracy curve of the compressed model that
intersects with L; the sparsity corresponding to
this solution will be s,... We propose a novel acqui-
sition function to find s,.. named domain-restricted
upper confidence bound (DR-UCB).

DR-UCB builds upon an existing level-set black-
box optimization technique named ILS-UCB,'
which is characterized by two properties. 1) It pri-
oritizes searching in the region where the level set
intersects the accuracy curve. 2) It does not seek
to precisely learn the shape of the entire accuracy
curve. However, in CONDENSA, since accuracy
values can be safely assumed to decrease mono-
tonically with increasing sparsity, we notice that it
is also possible to progressively restrict the
search domain of sparsities based on whether the
currently sampled point meets the level-set con-
straints. In DR-UCB, we exploit this property to
greatly improve sample efficiency over ILS-UCB.
Mathematically, we define s;, the sparsity value
sampled at iteration ¢ using DR-UCB, as follows:

st = arginax (I =yp)o(s) — y|u(s) — L] o
st. s > Viel0,t—1], By(sy) > L.

Here, B; represents the L-C accuracy function, and
s; is 1) greater than all the previous sparsities s;;
and 2) satisfies the level set constraint B(s;) > L.
We achieve this by minimizing the difference
between the GP’s mean curve u(s) and the level
set using the term |u(s) — L| in (1); the parameter
y controls the tradeoff between exploitation and
exploration. Algorithm 1 illustrates how DR-UCB is

employed to efficiently find s,..

IEEE Micro

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.



Algorithm 1. Bayesian Sparsity Inference with
Domain Restriction
1: procedure BOpr_ucs (B, L, T')
> B;: Function to optimize
> L: Level set
> T # Iterations
2:  GP « GP-Regressor.initialize()
3 59— 0;D—(0,1); X0
4. fort—1,2,....T—1do
5: s «— argmax, DR-UCB(s|Xg.—1)
6.
7
8

ye — By(st)
ifs;, > 5,1 and y; > L then
: D «— (s4,1)
9: end if
10: Xo:t e {Xo:t—1, (56, y¢) }
11: GP.Update(Xo.,)
12:  end for
13:  return s;_;
14: end procedure

Stage 2: Optimizing the User-Defined Objective:
Once we find a sparsity s, that satisfies the user-
provided accuracy constraints in stage 1, our next
objective is to find the final sparsity s* that opti-
mizes the user-defined objective function f in the
constrained sparsity domain (0, s, ). For this, we
employ the upper and lower confidence bound
(UCB/LCB) acquisition functions for function max-
imization and minimization, respectively.’

Accuracy Recovery Using L-C

As described earlier in this section, given a ref-
erence model w, compression scheme, and target
sparsity (obtained automatically by the Bayesian
optimizer), CONDENSA tries to recover any accu-
racy lost due to compression. In this article, we
use the recently proposed L-C algorithm’ for accu-
racy recovery, which formulates model compres-
sion as a constrained optimization problem. L-C
naturally supports all the compression operators
supported by CONDENSA while providing opti-
mality guarantees whenever possible. Due to
space restrictions, we refer the reader to the arti-
cle by Carreira-Perpinan and Idelbayev’ for a
more detailed description of the L-C algorithm.

EVALUATION

We conduct extensive experiments and fully
analyze CONDENSA on three tasks: 1) image classi-
fication on the CIFAR-10 data set'! using the VGG-
192 and ResNet56' neural networks; 2) image clas-
sification on the ILSVRC (ImageNet) task'? using

September/October 2020

the VGG-16 neural network’ and 3) language
modeling on WikiText-2'3 using a two-layer LSTM
network described by Yu et al.!* We optimize the
networks in each task for two distinct objectives
described below.

Objective 1: Minimize Memory Footprint: The
memory footprint of a model is defined as the
number of bytes consumed by the model’s non-
zero parameters. Reducing the footprint below a
threshold value is desirable, especially for mem-
ory-constrained devices such as mobile phones,
and can be accomplished through either pruning
or quantization, or both. For reducing footprint,
we define a compression scheme that performs
unstructured pruning of each learnable layer
(except batch normalization layers), and then
quantizes it to half-precision floating-point, yield-
ing an additional 2x reduction. We denote this
scheme by P+Q and implement it using the
CONDENSA library as follows:

fromschemes import Compose, Prune, Quantize

scheme = Compose([Prune(), Quantize (float16)])

Objective 2: Maximize Throughput: Inference
throughput is defined as the number of input
samples processed by a model per second and
is commonly used for measuring real-world per-
formance. For CIFAR-10 and ImageNet, we mea-
sure hardware inference throughput of the
compressed model in the objective function. We
use an NVIDIA Titan V GPU with the TensorRT 5
framework to obtain throughput data. For Wiki-
Text-2, due to the lack of optimized block-sparse
kernels for PyTorch, we measure the floating-
point operations (FLOPs) of the compressed
model instead as a proxy for inference perfor-
mance. To improve throughput, we focus on
removing entire blocks of nonzeros, such as con-
volutional filters, since they have been shown to
improve performance on real-world hardware.?
For CIFAR-10 and ImageNet, we use filter prun-
ing, since all the networks we consider are
CNNs. In WikiText-2, we employ block pruning
with a block size of 5.

Bayesian Optimizer Settings: We use a Gaussian
Processes prior with the Matern kernel (v = 2.5),
length scale of 1.0, and « value of 0.1 with normali-
zation of the predictions. For the DR-UCB acquisi-
tion function, we use a y value of 0.95 for all our

21

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.



Machine Learning for Systems

Table 1. CONDENSA performance results on CIFAR-10, ImageNet, and WikiText-2.

22

Method Dataset Network s* Accuracy e Throughput
Baseline CIFAR-10 VGG19-BN 92.98% 1x 1x
CONDENSA P+Q CIFAR-10 VGG19-BN 0.99 93.26% 188.23 % N/A
CONDENSA Filter CIFAR-10 VGG19-BN 0.79 93.34% 1.35% 2.59%
Baseline CIFAR-10 ResNet56 92.75% 1x 1x
AMC? CIFAR-10 ResNet56 N/A 90.1% N/A Sp = 2X
CONDENSA P+Q CIFAR-10 ResNet56 0.95 91.42% 31.14x N/A
CONDENSA Filter CIFAR-10 ResNet56 0.63 93.18% 1.14x 1.17x
Baseline ImageNet VGG16-BN 91.50% Ix 1x
Filter Pruning? ImageNet VGG16-BN 89.80% ~ 4x N/A
AutoCompress® ImageNet VGG16-BN N/A 90.90% 6.4x N/A
AMC? ImageNet VGG16-BN N/A 90.1% N/A sp=1.25x%
CONDENSA P+Q ImageNet VGG16-BN 0.93 89.89% 29.29 N/A
CONDENSA Filter ImageNet VGG16-BN 0.12 90.25% 1x 1.16x
Baseline WikiText-2 LSTM Log-Perplexity: 4.70 1x 1x
Lottery Ticket!* WikiText-2 LSTM N/A Log-Perplexity: 4.70 ~ 10x N/A
CONDENSA P+Q WikiText-2 LSTM 0.92 Log-Perplexity: 4.75 4.2x N/A
CONDENSA Block WikiText-2 LSTM 0.60 Log-Perplexity: 4.62 1.1x sp =214

Here, s* represents the target sparsity obtained by CONDENSA, r. is the memory footprint reduction, and sz the FLOP
reduction. The level-set, represented by ¢, is set to 2% below baseline in all experiments.

experiments with a bias toward sampling more in
the area of level set, with the intention that the
Bayesian optimizer results in a favorable sparsity
level in as few samples as possible. We imple-
mented DR-UCB using the fmfn/BO package.”

Results

We present the memory footprint reductions
and inference throughput improvements obtai-
ned by CONDENSA for each of the three tasks we
evaluate in Table 1. For each task, we list the tar-
get sparsity obtained by the CONDENSA Bayesian
optimizer (s* in the table), its corresponding
accuracy/perplexity (top-1 accuracy, top-5 accu-
racy, and log perplexity for CIFAR-10, ImageNet,
and WikiText-2, respectively), memory footprint
reductions using pruning and quantization
(column labeled r.), and inference throughput/
FLOP improvements using filter/block pruning.

*https://github4com/fmfn/BayesianOptimization

We also compare our approach with recent work
on automated model compression. For CIFAR-10
and ImageNet, we compare our results with AMC?
and AutoCompress,5 and for WikiText-2, we com-
pare with Yu e al.'* Since AMC? and Yu et al.'* do
not report actual runtime numbers on hardware,
we report the corresponding FLOP improve-
ments instead (values marked sp). We also use
FLOP reduction as a metric for LSTM block prun-
ing, as described above.

Using the P+Q scheme designed to minimize
memory footprint, CONDENSA is able to obtain
compression ratios up to 188 x, which surpasses
those of frameworks such as AutoCompress. While
AMC and AutoCompress only report theoretical
FLOP improvements on CIFAR-10 and ImageNet,
the filter pruning strategy implemented using
CONDENSA vyields real-world runtime improve-
ments of up to 2.59x on an NVIDIA Titan V GPU.
Since AMC and AutoCompress do not report the
number of samples evaluated to arrive at their

IEEE Micro

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.



---- Direct Compression Acc. —¢— Condensa Compression Acc. —e— Objective Fn.

VGG-19 P+Q (CIFAR-10)

Top-1 Test Accuracy (%)

100

VGG-19 Filter Pruning (CIFAR-10)

80 -

(]

[

\‘

IR

4500

- 4000

- 3500

- 3000

- 2500

- 2000

- 1500

- 1000

-~ 500

0.

© o e e e

T T
0.4 0.6
Sparsity

0 0.2

.0

ResNet-56 Filter Pruning (CIFAR-10)
100 x 1000

- 950

=900

Throughput (images/sec)

100 ; 4.0
s
£ 80 1 \ ~
< ol [oa)
i 3.0 =
> tH l <
O \
© ;{ )
; 60 - F2.5 E
3 | o
Q L Q
< It F2.0 5
+ N o)
o 40 1 w
= 1.5 5
1} 4
T I 2
Q L1190 o
o 20 1 =
= 1
l 0.5
i
0 T T T T
0.90 ©0.92 0.94 0.9 0.98 1.00
Sparsity
oo ResNet-56 P+Q (CIFAR-10) "
" H
! - 0.18
L 8o 1 ‘v*\x ~
< ! l -0.16 @
> 1 ~
1 1
® ! F0.14 £
S 60 1 \' -
3] 1 Fo.12 &
<€ +2
o 40 ! * Fo.10 2
@ 1 >
- H -0.08 &
: , N
Q (7}
o 20 ! “0.06 =
o 1
H -0.04
) 1

-850

- 800

=750

- 700

Top-1 Test Accuracy (%)
Throughput (images/sec)

- 650

T T T
0.94 0.96 0.98 1.00

Sparsity

T
0.90 0.92

4 T T rt

. 600

0.0 0.2 0.4 0.6

Sparsity

Figure 2. CONDENSA sparsity profiles for VGG 19-BN and ResNet56 for CIFAR-10. Column 1 shows the
problem of the form “minimize memory footprint with a lower bound on accuracy,” while Column 2 illustrates

“maximize throughput with a lower bound on accuracy.

” The dc line (gray) shows accuracy values if no

accuracy recovery with L-C is performed. Note that the x-axis ranges are different: the plots on the left have
sparsities ranging from 0.9 to 1.0 while those on the right have values ranging from O to 1.

solutions, we are unable to directly compare sam-
ple efficiencies with these frameworks; however,
we notice that CONDENSA obtains desirable model
sparsities using a fixed ten iterations per search
in all experiments. Finally, while we set the level
set to be 2% below the accuracy of the reference
model in all our experiments, we notice that
CONDENSA-compressed models often exceed base-
line accuracy.

Sparsity Profile Analysis

Figure 2 illustrates how a compressed model’s
accuracy, inference performance, and memory
footprint varies w.r.t. sparsity for the CIFAR-10
task. All three of these functions are assumed to be

September/October 2020

unknown in our problem formulation, but we com-
pute them explicitly here to better understand the
quality of solutions produced by CONDENSA. For
each figure, compression accuracies (shown in
green) are obtained by running the L-C algorithm
to convergence for 100 sparsities ranging from 0.9
to 1.0 (for pruning + quantization), and from 0 to 1
for the filter and block pruning schemes; collect-
ing each such point requires between 30 min and
8 h of time on a single NVIDIA Tesla V100 GPU.
Inference throughput, FLOPs, and memory foot-
print data are collected for each compressed
model and depicted by red lines in the figures
(right-hand-side y-axis). We also show direct com-
pression (D-C) accuracies in gray for comparison;

23

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.



24

Machine Learning for Systems

VGG19-BN Layer-wise Runtimes and Compression Ratigcs)ooA

x
50 =
— =)
x ©
Z40 200088
=3 c
330 o
(9] w0
3 20 1000 &
Q. ful
Y10 s
€
oL =& = 0 0 RN B ‘08
$3232¢L5223233238%8
5586585585686z2z2z2z2z2¢2¢z
O 0O O0OO0OO0UOULUULUOLUOLOOOOOoOOoOOo
O 0 0 0 00 Lo

Figure 3. TensorRT runtimes and compression
ratios of convolutional layers in VGG19-BN (filter
pruning).

direct compression refers to applying a compres-
sion scheme to a model without any subsequent
attempt at accuracy recovery. In each figure, the
sparsity found by CONDENSA is shown as a black
vertical dashed line.

We notice three important trends in Figure 2.

1) CONDENSA consistently finds solutions near
the “knee” of the L-C accuracy curves, signify-
ing the effectiveness of the DR-UCB acquisi-
tion function.

2) Local minima/maxima is avoided while opti-
mizing the objective function, demonstrating
that the UCB acquisition func-
tion for objective function opti-
mization is working as expected.

3) The knees of the D-C accuracy
curves occur at significantly
lower sparsities; the L-C opti-
mizer, on the other hand is able
to recover accuracies up to
much higher target sparsities.

Layerwise Compression Analysis
In this section, we analyze how

improving throughput using compression trans-
lates to execution time improvements for each
layer on actual hardware. For this experiment, we
focus on VGG-19 on CIFAR-10, since it has a rela-
tively simple structure and is easy to analyze on a
layer-by-layer basis. We use filter pruning with a
target sparsity of 0.79 (found by the Bayesian opti-
mizer, as decribed in Table 1) for this experiment.
Figure 3 shows layer-by-layer mean runtimes col-
lected over 100 runs using TensorRT (blue bars,
left y-axis), and compression ratios (green line,

CONDENSA, which is a
flexible programming
system for DNN
compression and
corresponding
hyperparameter
optimization.

right y-axis) for filter pruning. We only show data
for convolutional layers as they dominate compu-
tation time for this network. We make two key
observations: 1) runtime speedups on real hard-
ware are largely correlated with compression
ratios, but may be affected by hardware and
implementation details (e.g., compare conv13
with conv14 in the Figure); and 2) higher com-
pression ratios and corresponding speedups for
the later layers of the network, which indicates
that distributing a given global sparsity evenly
across network layers may not always be optimal,
and algorithms such as L-C are essential to auto-
matically finding desirable distributions of spar-
sity across layers.

CONCLUSIONS

This article has presented CONDENSA, which
is a flexible programming system for DNN compres-
sion and corresponding hyperparameter opti-
mization. We have demonstrated CONDENSA'’s
effectiveness and ease-of-use on a range of
state-of-the-art DNNs for image classification
and language modeling, and achieved memory
footprint reductions of up to 188x and runtime
throughput improvements of up to 2.59x using

at most ten samples per search.

This article has

presented

ACKNOWLEDGMENTS

This work was supported in
part by DARPA under Contract
HR0011-18-3-0007; in part by
National Science Foundation
(NSF) under Award CCF-1704715;
and in part by a CIFAR Al Chair
award. Any opinions, findings,
and conclusions or recommenda-
tions expressed in this material are those of the
author(s) and do not necessarily reflect the
views of the U.S. Government. Distribution State-
ment “A” (Approved for Public Release, Distribu-
tion Unlimited).

B REFERENCES

1. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 770-778.

IEEE Micro

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.



2. K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. Int.
Conf. Learn. Representations, 2015.

3. Y.He, J.Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han,
“AMC: AutoML for model compression and
acceleration on mobile devices,” in Proc. 10th Eur.
Conf. Comput. Vis., 2018, pp. 784-800.

4. Y.He, X. Zhang, and J. Sun, “Channel pruning for
accelerating very deep neural networks,” in Proc. IEEE
Int. Conf. Comput. Vis., 2017, vol. 2, pp. 1398-14086.

5. N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye,
“AutoCompress: An automatic DNN structured
pruning framework for ultra-high compression rates,”
in Proc. AAAI Conf. Artif. Intell., 2020, pp. 4876-4883.

6. V. Mnih et al., “Playing Atari with deep reinforcement
learning,” 2013, arXiv:1312.5602.

7. M. A. Carreira-Perpinan and Y. Idelbayev, ““Learning-
compression” algorithms for neural net pruning,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 8532-8541.

8. D.R. Jones, M. Schonlau, and W. J. Welch, “Efficient
global optimization of expensive black-box functions,”
J. Global Optim., vol. 13, no. 4, pp. 455-492, 1998.

9. N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger,
“Gaussian process optimization in the bandit setting:
No regret and experimental design,” in Proc. 27th Int.
Conf. Mach. Learn., 2010.

10. A. Garg et al., “Tumor localization using automated
palpation with Gaussian process adaptive sampling,”
in Proc. IEEE Int. Conf. Autom. Sci. Eng., 2016,
pp. 194-200.

11. A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10
dataset,” [Online]. Avaliable: http://www. cs. toronto.
edu/kriz/cifar. html, vol. 55, 2014.

September/October 2020

12. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “ImageNet: A large-scale hierarchical image
database,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2009, pp. 248-255.

13. S. Merity, C. Xiong, J. Bradbury, and R. Socher,
“Pointer sentinel mixture models,” 2016,
arXiv:1609.07843.

14. H.Yu, S. Edunov, Y. Tian, and A. S. Morcos, “Playing
the lottery with rewards and multiple languages:
Lottery tickets in RL and NLP,” 2019,
arXiv:1906.02768.

Vinu Joseph is currently working toward the Ph.D.
degree in computer science at the University of
Utah. Contact him at vinu@cs.utah.edu.

Ganesh L. Gopalakrishnan is a Professor of
computer science with the School of Computing, Uni-
versity of Utah. Contact him at ganesh@cs.utah.edu.

Saurav Muralidharan is a Senior Research Scientist
in the Programming Systems & Applications research
group with NVIDIA. Contact him at sauravm@nvidia.com.

Michael Garland is the Senior Director for Pro-
gramming Systems & Applications research with
NVIDIA. Contact him at mgarland@nvidia.com.

Animesh Garg is an Assistant Professor of computer
science with the University of Toronto, and a Faculty
Member with the Vector Institute, Canada. Contact him
at garg@cs.toronto.edu.

25

Authorized licensed use limited to: The University of Utah. Downloaded on November 30,2021 at 21:05:12 UTC from IEEE Xplore. Restrictions apply.


http://www. cs. toronto. edu/kriz/cifar. html
http://www. cs. toronto. edu/kriz/cifar. html

