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Expanded view of electron-hole recollisions in solid-state high-order harmonic generation:
Full-Brillouin-zone tunneling and imperfect recollisions
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We theoretically investigate electron-hole recollisions in high-harmonic generation (HHG) in band-gap solids
irradiated by linearly and elliptically polarized drivers. We find that in many cases, the emitted harmonics do not
originate in electron-hole pairs created at the minimum band gap, where the tunneling probability is maximized,
but rather in pairs created across an extended region of the Brillouin zone (BZ). In these situations, the
analogy to gas-phase HHG in terms of the short- and long-trajectory categorizations is inadequate. Our analysis
methodology comprises three complementary levels of theory: the numerical solutions to the semiconductor
Bloch equations, an extended semiclassical recollision model, and a quantum wave-packet approach. We apply
this methodology to two general material types with representative band structures: a bulk system and a
hexagonal monolayer system. In the bulk, the interband harmonics generated using elliptically polarized drivers
are found to originate not from tunneling at the minimum band gap �, but from regions away from it. In the
monolayer system driven by linearly polarized pulses, tunneling regions near different symmetry points in the
BZ lead to distinct harmonic energies and emission profiles. We show that the imperfect recollisions, where an
electron-hole pair recollide while being spatially separated, are important in both bulk and monolayer materials.
The excellent agreement between our three levels of theory highlights and characterizes the complexity behind
the HHG emission dynamics in solids, and expands on the notion of interband HHG as always originating in
trajectories tunnelled at the minimum band gap. Our work furthers the fundamental understanding of HHG in
periodic systems and will benefit the future design of experiments.
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I. INTRODUCTION

Recent experimental observations of high-harmonic gen-
eration (HHG) in solids [1–6] have contributed to the rapid
progress of attosecond physics in the condensed-matter phase
[7–9]. Solid-state HHG carries exciting prospects for the en-
gineering of compact attosecond light sources [10–16] and
ultrafast spectroscopy methods capable of probing band struc-
tures [17,18], impurities [19–22], and topological features
[23–30]. The understanding of the HHG process has been
aided by accurate computational quantum theories such as
time-dependent density functional theory (TD-DFT) [31–33]
and semiconductor Bloch equations (SBEs) [34,35]. These
theories have helped to establish that the high harmonics with
energies less than the band gap have large contributions from
the intraband currents originating in the electron-hole motion
in their respective bands, while above-band-gap harmonics are
generally dominated by the interband currents originating in
the coupling between the bands. While the SBEs and TD-DFT
methods are able to accurately simulate the HHG process,
they can be regarded as numerical experiments that contain
all the relevant physics, and the underlying physical pictures
can be difficult to extract. For this reason, the celebrated
gas-phase three-step model [36,37] has been generalized to
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solids [38–40] and has been shown to provide an intuitive
real-space picture for the interband harmonics: an electron-
hole pair is created when the external field causes an electron
to tunnel from the valence band to the conduction band at the
minimum band gap; the electron and hole are driven apart by
the laser; they can recollide when they spatially reencounter
each other, leading to the emission of harmonic radiation. The
recollision picture has been instrumental in our fundamental
understanding of solid-state HHG [2,18,38,39,41,42], as well
as other related nonlinear phenomena such as high-order-
sideband generation [43–47].

The tunneling, propagation, and recollision dynamics re-
sponsible for HHG in solids differ significantly from their
counterpart in the gas phase. In gases, the continuum electron
is free and its dispersion is quadratic such that its group
velocity is always along the direction of the canonical momen-
tum. In crystalline solids, however, the quadratic dispersion
only holds near certain high-symmetry points in reciprocal
space. Consequently, the group velocities of the electron and
hole are generally much more complex, and can even lead to
imperfect recollisions where an electron-hole pair recollide
even though their centers are spatially separated [42,48,49].
The exponential dependence of the tunneling rate on the
band gap [50] dictates that tunneling occurs with the highest
probability at the minimum band gap. However, due to the
complicated dispersions, electron-hole trajectories that orig-
inate away from the minimum band gap could have higher
chances of recollision and end up dominating the emission
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process. Similarly, electron-hole pairs created near different
symmetry points in the Brillouin zone (BZ) could lead to
drastically different harmonic energies and emission time pro-
files. The full understanding of these complexities for HHG in
solids are critical for the probing of the full BZ, as well as the
design of new ultrafast light sources. The original semiclas-
sical recollision model in solids, however, assumes tunneling
at the minimum band gap and with perfect recollisions, and
cannot provide a full framework for the HHG process in
solids apart from simple cases. Due to these limitations, for
example, the authors in Ref. [51] concluded that the recol-
lision picture would fail for solid-state HHG with circularly
polarized fields.

In this paper, we conclusively show that in many common
experimental scenarios, and for several types of materials,
the electron-hole pairs created away from the minimum band
gap not only contribute to, but can strongly dominate the
recollision-driven harmonic emission. In these cases, the un-
derstanding of the emission dynamics in terms of short and
long trajectories, well-known from gas-phase HHG, breaks
down. This breakdown can be due to either the band structure
or the laser polarization, and we provide two examples of cur-
rent experimental and theoretical interest: HHG in a generic
bulk crystal induced by elliptically polarized fields and HHG
induced in a generic monolayer material by linearly polarized
fields. Our analysis comprises three complementary levels of
theory: the full numerical solution of the SBEs, an extended
recollision model (ERM), and a model based on construction
of recolliding electron-hole wave packets. We find that the
harmonic emission profiles are due to the collective emission
associated with trajectories originating in extended regions
near different symmetry points. We show that tunneling from
different regions can lead to different time-frequency emission
characteristics, with impact for HHG-based optical probing of
the whole BZ. The familiar short and long trajectories can be
recovered in special cases: the bulk irradiated by a linearly po-
larized field, and the monolayer irradiated by fields polarized
along specific symmetry directions. We provide general rules
for when one can expect the underlying physics in solid-state
HHG to substantially deviate from that of the gas phase.

This paper is organized as follows. Section II contains the
theoretical framework pertinent to this work: The SBEs are
given in Sec. II A, the semiclassical picture is detailed in
Sec. II B, and the electron-hole wave packet construction is
described in Sec. II C. Section III treats the ellipticity depen-
dence of HHG in the representative bulk system zinc oxide
(ZnO): The model is defined in Sec. III A, the full quantum
result from the SBEs are presented in Sec. III B, the semiclas-
sical analysis with tunneling at � is discussed in Sec. III C,
and the full-BZ recollision picture is given in Sec. III D.
Section IV investigates the HHG in the representative mono-
layer system hexagonal boron nitride (hBN): The model is
described in Sec. IV A, the wavelength dependence is ex-
plored in Sec. IV C, the orientation dependence in Sec. IV B,
and the quantum wave packet analysis in Sec. IV D. Section V
concludes the paper and provides an outlook. Appendix A
provides details on the derivations of the saddle-point equa-
tions and Appendix B includes relevant supplemental figures.
Atomic units are used throughout this paper unless indicated
otherwise.

II. THEORETICAL METHODS

In this section, we describe the theoretical framework per-
tinent to this paper. The numerical solutions to the SBEs
can be considered a numerical experiment and is our full
quantum benchmark result, which the semiclassical recolli-
sion and wave packet methods will be compared to. In the
following subsections, we assume that relevant quantities such
as the band structures, transition dipole moments, Berry con-
nections, and Berry curvatures are known in advance, either
by employing model systems or using commercial solid-state
structure codes [52,53].

A. Semiconductor Bloch equations

The SBEs governing a solid driven by a strong laser reads
[34,35,38,54–56]

ρ̇K
mn(t ) = −i

[
EK+A(t )
m − EK+A(t )

n − i(1 − δmn)

T2

]
ρK
mn(t )

− iF(t ) ·
∑
l

[
dK+A(t )
ml ρK

ln(t ) − dK+A(t )
ln ρK

ml (t )
]
, (1)

with K the crystal momenta in a reciprocal reference frame
moving with A(t ) ≡ − ∫ t F(t ′)dt ′, F(t ) the electric field,
Ek
n the band energies, dk

mn = i〈ukm|∇k|ukn〉 the dipole matrix
elements, |ukm〉 the cell-periodic part of the Bloch function
|φk

m〉, ρk
mn the density matrix elements, T2 the dephasing time,

and Ak
n ≡ dk

nn the Berry connections.
The total current can be split into the interband and intra-

band contributions by

jter(t ) = −
∑
K

∑
m �=n

ρK
nm(t )pK+A(t )

mn , (2a)

jtra(t ) = −
∑
K

∑
n

ρK
nn(t )pK+A(t )

nn , (2b)

with pkmn = 〈φk
m| p̂|φk

n〉 the momentum matrix elements, and
the summation over K is over the whole BZ (throughout the
text). The HHG spectrum is taken as the modulus squares of
the Fourier transforms of the currents, after weighting by a
window function.

Throughout this paper, we make use of the two-band ap-
proximation with an initially filled valence band labeled v and
an empty conduction band labeled c. For notational conve-
nience, we henceforth use dk ≡ dk

cv for the transition dipole
and ωk

g ≡ Ek
c − Ek

v for the band gap.

B. Extended semiclassical picture

In this subsection, we go over the semiclassical models
used in this paper. We start by obtaining the saddle-point
equations from the SBEs and then describe our ERM. The
case for linearly polarized fields was partly discussed in
Ref. [49]. More info on the details of the derivation can be
found in Appendix A.

1. Saddle-point equations

For the laser pulses and systems considered in this pa-
per, the conduction band population during the laser is
small [ρk

vv (t ) − ρk
cc(t ) ≈ 1], such that solutions to Eq. (1) can
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formally be written down. The interband spectrum is jter(ω) =∫ ∞
−∞ dteiωt jter(t ), where the Cartesian (μ = {x, y, z}) current

components in the fixed frame are (see the derivation in
Appendix A 1)

jter,μ(t ) =
∑
k

Rk
μ

∫ t

T κ(t,s)e−iSμ(k,t,s)ds + c.c., (3)

with T κ(t,s) = |F(s) · dκ(t,s)| the transition matrix element,
Rk

μ = ωk
g|dk

μ| the recombination dipole, and κ(t, t ′) = k −
A(t ) + A(t ′). The times s and t can be interpreted as the
excitation and emission times, respectively. The accumulated
phase in Eq. (3) is (dephasing ignored)

Sμ(k, t, s) =
∫ t

s

[
ωκ(t,t ′ )
g + F(t ′) · �Aκ(t,t ′ )]dt ′

+ αk,μ − βκ(t,s), (4)

with �Ak ≡ Ak
c − Ak

v , αk,μ ≡ arg(dk
μ) the transition-dipole

phases (TDPs), and βκ(t,s) ≡ arg[F(s) · dκ(t,s)]. The saddle-
point conditions for Sμ(k, t, s) − ωt read

ωκ(t,s)
g + F(s) · Qκ(t,s) = 0, (5a)

�Rμ ≡ �r − Dk,μ + Qκ(t,s) = 0, (5b)

ωk
g + F(t ) · [Qκ(t,s) + �r] = ω, (5c)

where the electron-hole separation vector and group
velocities are

�r ≡
∫ t

s

[
vκ(t,t ′ )
c − vκ(t,t ′ )

v

]
dt ′, (6a)

vκ(t,t ′ )
n ≡ ∇kE

κ(t,t ′ )
n + F(t ′) × �κ(t,t ′ )

n , (6b)

with the Berry curvature �k
n ≡ ∇k × Ak

n, and

Dk,μ ≡ �Ak − ∇kα
k,μ, (7a)

Qk ≡ �Ak − ∇kβ
k. (7b)

Note that in our notation, μ used as a subscript points to
a scalar quantity, while μ used as a superscript corresponds
to a function variable: for example, Dk,μ is a vector that
depends on μ.

Equations (5a)–(5c) can be interpreted by the following
three steps in the interband HHG process: At time s, an
electron-hole pair is created by tunnel excitation at the crystal
momentum k0 ≡ κ(t, s); the laser accelerates the electron and
hole with the instantaneous group velocities vκ(t,t ′ )

n ; and the
electron and hole recollide at time t with final crystal mo-
mentum k and relative distance �r, with the simultaneous
emission of high-harmonics with energy ω.

The saddle-point equations first proposed by Vampa et al.
[2,38,39] include only the first term on the left-hand sides
of Eqs. (5a)–(5c). The above equations additionally include
(i) laser-dressing of the bands with F · Qκ (t,s) in Eqs. (5a)
and (5c), (ii) the anomalous velocity term [57] in Eq. (6a)
involving the Berry curvatures, (iii) a shift of the recollision
condition in Eq. (5b), and (iv) the possibility of an additional
nonzero electron-hole-pair polarization energy at recollision
(eh-PER) F · �r in Eq. (5c). Physically, the eh-PER consti-
tutes the potential energy of the electric dipole comprised of
the positively charged hole and negatively charged electron at

the time of recollision. We note that in systems with inversion
and time-reversal symmetries, the Berry curvatures are zero.
We mention that equivalent equations to Eq. (5) appear in
Ref. [58] but with the strict constraint �r = 0 such that the
eh-PER is zero.

Note that for the all physics to be relevant and consistent,
under an arbitrary structure-gauge transformation |ukn〉 →
|ukn〉eiϕ

k
n (ϕk

n ∈ R), Eq. (5) should remain unchanged. While
the individual terms on the right-hand sides of Eq. (7) gen-
erally depend on the gauge choice, the composed quantities,
Dk

μ and Qk
μ, are shown to be gauge invariant in Appendix A 2.

The gauge invariance of the saddle-point equations in Eq. (5)
then trivially follows.

In many studies of solid-state HHG, linearly polarized
drivers F(t ) = F (t )ê‖ are used, in which case Eq. (5)
reduces to

ωκ(t,s)
g + F(s) · Dκ(t,s)

‖ = 0, (8a)

�Rμ ≡ �r − Dk,μ + Dκ(t,s),‖ = 0, (8b)

ωk
g + F(t ) · [Dκ(t,s),‖ + �r] = ω, (8c)

with μ = ‖,⊥1,⊥2, where ê⊥1 and ê⊥2 are unit vectors per-
pendicular to ê‖, and we used βκ(t,s) = ακ(t,s),‖ + arg[F (s)] in
the derivation.

2. Extended recollision model

We solve the saddle-point equations (5) semiclassically, in
an extension to the original recollision model, and will refer
to it as the extended recollision model (ERM). We note that
we first introduced this method in Ref. [49], for a linearly
polarized field. Since the band gaps in semiconductors and
insulators are never zero, we neglect to solve Eq. (5a). Instead,
we choose to consider the electron-hole creation at an initial
crystal momentum, k0 ≡ κ(t, s), taken to be close to or at a
high-symmetry point. We then integrate the group velocities
in Eq. (6b) to obtain the classical motions of the electron and
hole, with the time-dependent crystal momentum given by

κ(t, t ′) = k0 + A(t ′) − A(s), t ′ ∈ [s, t]. (9)

During the propagation, we calculate the generalized
electron-hole distance vector �Rμ in Eq. (5b), and a return-
ing trajectory is said to have recollided at time t ′ = t if:
(i) ‖�Rμ‖ as a function of t ′ is at a local minimum and
(ii) the ‖�Rμ‖ < R0 requirement is fulfilled, where R0 is a
preset recollision threshold value. In our calculations, we will
use R0 ∈ [15, 100]. The R0 is chosen such that the semiclas-
sical results agree with the time-frequency profiles. Using a
larger R0 value for a given calculation will make the fea-
tures in the recollision-energy-versus-time spectrum broader,
but the same qualitative trend remains. As also discussed in
Ref. [49], the minimum R0 that yields reasonable agreement
with the SBE calculations is a measure of the effective size of
the recolliding quantum wave packet. We set R0 = 30 unless
indicated otherwise. If a trajectory has recollided, we record s,
t , and the recollision energy ω(k0, s, t ) in Eq. (5c). We initiate
trajectories for times spanning an optical cycle (o.c.) s ∈
[−T, 0], and propagate each trajectory maximally up two opti-
cal cycles after tunneling t ∈ [s, s + 2T ]. For each trajectory,
we count up to a maximum of three recollisions. However,
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unless indicated otherwise, we present results for the first
recollision. Often, we perform calculations for all k0s in a disk
with radius �k around a high-symmetry point. We note that
allowing electron tunneling at different k0 points away from
the minimum band gap is inherently distinct from the summa-
tion over all k points in the expressions for the total current
in Eqs. (2) and (3). In the former case, we attempt to find all
the stationary-phase points {k, s, t} that most contribute to the
integral (3).

We formally define an imperfect recollision as having a
nonzero electron-hole distance ‖�Rμ‖ �= 0, i.e., whenever the
electron and hole centers do not exactly spatially reencounter
each other. Note that the electron-hole pair will get driven
further apart spatially whenever the direction of motion of the
time-dependent crystal momentum in Eq. (9) is not along the
group velocities in Eq. (6b), and in such cases the imperfect
recollisions could be important. One can thus control and
force such recollisions by either tuning the laser or studying
different materials, e.g., by using elliptical drivers or con-
sidering materials with large Berry curvatures. Also, since
the group velocities are the gradient of the band dispersions,
tunneling at a reciprocal point that is not the minimum band
gap can also lead to imperfect recollisions [49], even when
using linearly polarized driving fields.

It should be mentioned that recent progress [18,40,59] has
been made toward solving the saddle-point equations (5) and
performing the stationary phase approximation on the integral
in Eq. (3). However, these studies present a monumental task,
even in reduced dimensionalities and without the extra terms
involving Qκ(t,s) and Dk,μ. It also remains to be seen whether
such formalisms can treat electron-hole-pair creation at dif-
ferent symmetry points in the BZ. We mention that a recent
work [40] has suggested the possibility of the electron and
hole starting at different lattice sites after tunneling.

C. Electron and hole wave-packet analysis

We present here a quantum wave-packet method that is
able to provide additional details on the spatially extended
nature of the imperfect recollisions by explicitly constructing
the real-space electron and hole wave packets for a specific
semiclassical trajectory. We label this method, which was
first applied in our previous work [49] for the electron wave
packet, as the wave-packet trajectory (WPT) method.

For concreteness, consider a semiclassical electron tra-
jectory in the conduction band that tunneled at time s and
reciprocal coordinate k0 = K0 − qA(s), where q = −1 is the
electron charge and k0 (K0) is the crystal momentum in the
fixed (moving) frame. We expand the real-space electron wave
packet in the Houston-state basis

�e(r, t ) =
∑
K

aKe (t )hKc (r, t ), (10)

where |aKe (s)|2 is chosen to be a Gaussian centered at K0,
with a full width at half maximum (FWHM) estimated by
Zener-tunneling as described in Appendix A 3 and Eq. (A8).
The Houston states [60,61] are related to the accelerated
Bloch states:

hKc (r, t ) = eiqA(t )·rφK−qA(t )
c (r). (11)

Inserting Eq. (10) into the time-dependent Schrödinger equa-
tion, and neglecting coupling to the other bands, leads to the
equations of motion:

iȧKe (t ) = [
EK−qA(t )
c − qF(t ) · AK−qA(t )

c

]
aKe (t ). (12)

We thus propagate Eq. (12) starting from time s, and at
desired time intervals calculate the real-space wave packet
using Eq. (10). More details on the evaluation of the wave
packet is given in Appendix A 4. With access to the real-
space wave packet, the observables such as the expectation
values 〈r〉(t ) and standard deviations σμ =

√
〈μ̂2〉 − 〈μ̂〉2,

with μ̂ ∈ {x̂, ŷ, ẑ}, can be calculated. For better visualization
of the width, we define the FWHM-like σ̄ ≡ √

2 log 2(σx +
σy). We note that since the initial phase of aKc (s) is unknown
(we set the phase to zero), the width of the wave packet
will have a dependence on the phase of the structure gauge
chosen for |φK

c 〉. However, since the twisted parallel transport
gauge has optimally smooth Bloch states [62], we expect this
dependence to be small.

A hole is left behind in the valence band when an electron
tunnels from the valence to the conduction band. Seen as a
quasiparticle, the hole has positive charge qh = 1, and sat-
isfies Kh = −K (total crystal momentum conservation) and
Ek
h = −Ek

v . The corresponding equations for the hole wave
packet �h(r, t ) is then obtained from Eqs. (10) and (12) by
substituting in the equations ae → ah, hc → hv , K → Kh,
q → qh, and Ec → Eh.

Finally, it should be noted that the construction of the quan-
tum wave packet in Eqs. (10) and (11) requires the knowledge
of the Bloch wave functions φk

n (r), which sometimes can be
hard to obtain.

III. ELLIPTICITY DEPENDENCY IN A BULK SOLID

Recently, the ellipticity dependence of HHG in bulk
solids has attracted both theoretical and experimental atten-
tion [1,3,4,23,42,63–66]. In contrast to HHG in gases, where
the HHG yield falls off with increasing ellipticity, HHG in
solids exhibits nontrivial ellipticity dependence where the har-
monic yield can increase with increasing ellipticity. In this
section, we investigate the ellipticity dependence of HHG in
a generic bulk-solid system with the minimum band gap at
the � point. We consider a model for bulk ZnO, using a two-
band approximation and neglecting the Berry connections,
Berry curvatures, and TDPs. As we will show below, this
treatment allows a detailed and quantitative understanding of
the recolliding trajectories and emission dynamics in a generic
bulk solid.

A. Generic bulk solid: ZnO model

For the band structure of wurtzite ZnO, we consider the
plane containing the �, K , and M high-symmetry points. The
band structure is obtained using the analytical model

Ek
n = u−1[tn

√
f k + qn + t ′ f k + pn], (13a)

f k = 2 cos(aky) + 4 cos

[
1

2
aky

]
cos

[√
3

2
akx

]
, (13b)
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FIG. 1. (a) Band gap of ZnO in the plane containing the high
symmetry points �, K , and M. (b) Norm of the transition dipole
moment. (c) Group velocities of holes in the valence band. (d) Group
velocities of the electrons in the conduction band. The hexagon in
the plots guides the eye and traces the first BZ.

with the fitted parameters tv = 2.38, tc = −2.38, qv = 4.0,
qc = 3.3, t ′ = −0.020, pv = −7.406, pc = 10.670, u = 27.1.
Our model is adapted from Ref. [42], but now using the real
lattice constant of a = 6.14 for ZnO. The k-dependent band
gap shown in Fig. 1(a) is seen to exhibit hexagonal symmetry
with the minimum band gap at � ω�

g = 3.3 eV. The transition
dipole is taken to be real and approximated by [38,41]

dk
x = dk

y =
√

K

2(ωk
g )2

, (14)

with the Kane parameter K = 0.302. Fig. 1(b) shows the
dipole magnitude, with the obvious maximum at �.

The group velocities for the valence and conduction bands
are plotted as vector fields in Figs. 1(c) and 1(d), respectively.
For the hole (electron) group velocities, the � (K) point acts
as a sink with the vectors pointing toward it, while the K (�)
point acts as a source.

Note that even though a hexagonal BZ is visualized in
Fig. 1, in the actual calculations we use a Monkhorst-Pack
mesh spanned by the reciprocal vectors b1 = 2π (3− 1

2 êx +
êy)/a and b2 = 2π (3− 1

2 êx − êy)/a.

B. Driver ellipticity dependence of HHG in ZnO

We irradiate the bulk with elliptically polarized vector po-
tentials of the form

A(t ) = A0g(t )√
1 + ε2

[sin(ω0t )êx + ε cos(ω0t )êy], (15)

FIG. 2. High-harmonic spectra of ZnO driven by elliptically
polarized light (major axis of ellipse along �-M). The laser parame-
ters are ω0 = 0.0142 (λ = 3200 nm), A0 = 0.35, and τ = 106.7 fs,
with dephasing T2 = 10 fs. The first vertical dashed line at ∼H8.5
traces the minimum band-gap energy ω�

g and separates the drop-
off region from the plateau region; the second vertical line at H27
guides and eye and approximately separates the plateau and cutoff
regions.

where ε is the ellipticity, ω0 is the carrier frequency, F0 =
ω0A0 is the electric field maximum, and the pulse envelope
is on the form g(t ) = cos2[πt/(2τ )] with t ∈ [−τ, τ ]. For
our calculations in this section, we choose ω0 = 0.0142 (λ =
3200 nm), A0 = 0.35, and τ = 106.7 fs. We note that Eq. (15)
describes an elliptically polarized field with the major axis
along the � − M1 (êx) direction. Simulations with the ellipse
major axis along � − K yields nearly indistinguishable results
from those in Fig. 2 and will not be discussed further in
this paper.

Figure 2(a) shows the HHG spectrum for three different
ellipticities: ε = 0 (linear polarization), ε = 0.5, and ε = 1.0
(circular polarization). The HHG spectra are seen to be di-
vided into three regions by the vertical lines at ω�

g and
harmonic 27 (H27): a drop-off region, a plateau region, and
a cutoff region. For ε = 0.5, the harmonic intensity in the
plateau region is reduced by up to five orders of magnitudes
compared to ε = 0, while in the cutoff region the harmonic
yield is actually increased, going from ε = 0 to ε = 0.5. The
shape of the spectrum for circular polarization is qualitatively
similar to the ε = 0.5 case, but with an overall decrease in
yield in the plateau and cutoff regions.

Figure 2(b) shows a more complete analysis with the
HHG spectrum scanned over the ellipticities ε ∈ [0, 1]. We
focus our attention on the harmonics with energies above the
minimum band gap ω�

g where the interband harmonics dom-
inate. In the plateau region, a monotonic decrease of yield
with increasing ε is evident, with the yield almost vanishing at
ε = 1. Such a behavior is similar to the ellipticity dependence
of HHG in gases. The cutoff region in Fig. 2(b), however, ex-
hibits anomalous ellipticity dependence, with relatively large
yields between ε = 0 and ε = 1. Qualitatively similar ellip-
ticity dependencies were reported in Refs. [42,51].
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FIG. 3. Time-frequency emission profiles (color maps) of the
harmonics for three different ellipticities: (a) ε = 0; (b) ε = 0.5,
and (c) ε = 1.0. The black lines are semiclassical ERM results
with tunneling initiated at k0 = �, counting the first two recolli-
sions, and assuming the recollision thresholds R0 = 30, 60, 100 for
ε = 0, 0.5, 1, respectively. Note that semiclassical recollisions with
tunneling from the � point are only observed for the linearly polar-
ized driver in (a). A and B mark different classes of trajectories as
discussed in the text.

C. Emission profiles and semiclassical analysis for �

The character and periodicity of the harmonic time-
frequency emission profiles also depend strongly on the
ellipticity, as illustrated in Fig. 3. For ε = 0 in Fig. 3(a), the
profile exhibits half-cycle periodicity, with the most promi-
nent feature exhibiting a peak at around H27 and emitted
at −0.29 o.c. Overall, it resembles a typical time-frequency
profile from HHG in gases, where every energy below the
maximum is emitted twice, corresponding to the short and
long trajectories. In contrast, the time-frequency profile for
ε = 0.5 in Fig. 3(b) looks entirely different: the highest-order
harmonics in the cutoff region are much more dominant
and energetic, exhibiting a characteristic broad triangular
structure, and with the emission time shifted to ∼ − 0.1 o.c.
The harmonics emitted with energies corresponding to the
plateau region (H9 to H21) are shifted in time by a quarter cy-
cle compared to the triangular structure. The time-frequency
profile for ε = 1 in Fig. 3 shows six bursts of light during each
o.c.—a clear reflection of the sixfold rotational symmetry of
the BZ (see Fig. 1).

FIG. 4. Two different semiclassical trajectories for the linearly
polarized driver with � as the tunnel point. The recollision event is
marked with the filled circle in each panel. Left panels: trajectory
that (perfectly) recollides at t = −0.29 o.c. with recollision energy
ω = 27ω0; right panels: trajectory that (imperfectly) recollide at
t = −0.14 o.c. with recollision energy ω = 38ω0. The gray lines in
(a) and (b) show Ax (t ). In (g) and (h), the gray lines show the energies
without the eh-PER, while the purple lines show the total energies.

We first analyze the emission profiles for the linearly po-
larized case by using the ERM in Sec. II B and assuming that
tunneling occurs at the minimum band gap �. The emission
times for individual trajectories are shown in Fig. 3(a) by
the gray dots. The agreement with the color map is quite
good, with the semiclassical results reproducing the emission
profiles during each half cycle. Even the peculiar structure
at ∼H38 is captured by the semiclassical model. The very
different emission profiles of the trajectories labeled A and
B in Fig. 3(a) suggest that they belong to different classes
of trajectories. This is further illustrated in Fig. 4, where in
the left panels we consider trajectory A. Figure 4(a) shows
the reciprocal-space motion: the electron-hole pair is created
at the � point at time s = −0.941 o.c., and afterward is
driven by the vector potential according to Eq. (9). The time-
dependent crystal momentum initially moves toward −M1,
and later changes direction when the vector potential changes
direction; it never moves beyond the BZ boundaries (at ±M1).
In Fig. 4(c), the electron group velocity is negative (positive)
when kx < 0 (kx > 0), which is also observed in Fig. 1(d). The
electron and hole undergo a perfect recollision (‖�r‖ = 0) at
time −0.29 o.c. in Fig. 4(e), and consequently the recollision
energy in Fig. 4(g) with and without the eh-PER is the same.
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Trajectories of class A in Fig. 3(a) are thus similar to the ones
in HHG in gases, consisting of short and long trajectories.

Consider now the special trajectory labeled B in Fig. 3(a).
After tunneling at �, the crystal momentum goes beyond
the BZ boundary [Fig. 4(b)], where electron and hole group
velocities abruptly change signs [Fig. 4(d)] and undergo a
Bragg reflection. Consequently, the electron and hole only
imperfectly recollide in real space, with ‖�r‖ ≈ 30 shown
in Fig. 4(f). The resulting extra eh-PER contributes ∼7ω0

which is added to the total energy of the emitted harmonics
in Fig. 4(h). Bragg reflections can thus lead to imperfect
recollisions in bulk solids even when using linearly polarized
drivers. Note that the effects of the Bragg reflection on HHG
in solids have been investigated in several previous works
[1,42,67–69].

In contrast to the linear-polarization case, the elliptically
polarized fields do not lead to any recollisions initiated from
the � point, as shown in Figs. 3(b) and 3(c). To ensure that
this is not just due to a larger recollision distance, the rec-
ollision thresholds have been relaxed from R0 = 30 at ε = 0
to R0 = 60 at ε = 0.5 and R0 = 100 at ε = 1. Including only
trajectories initiated at the minimum band is thus insufficient
for the description of HHG with elliptically polarized drivers
in bulk solids.

D. Full semiclassical picture—effect of the full BZ

We now extend our semiclassical ERM analysis to in-
clude tunneling from a disk around � in reciprocal space,
as described previously in Sec. II B. In our calculations, we
choose the radius of the disk for ε = 0, 0.5, 1 to be �k =
0.15, 0.2, 0.25, respectively. In the left (right) panels of Fig. 5,
the results for the ERM simulations without (with) the eh-PER
are shown together with the quantum results in the back-
ground (we have made the color plots transparent to highlight
the semiclassical results). For ε = 0 in Figs. 5(a) and 5(b), the
ERM result is similar to the one in Fig. 3(a): the overall struc-
ture is broader, and the short and long types of trajectories are
now continuously connected to the higher energy structure.
The result with and without the eh-PER are also similar, with
Fig. 5(b) having some trajectories with higher energy, forming
a boot structure. We note that in Figs. 3, 5, 7(a), 9(b), and 11,
we are showing all recolliding trajectories with equal weights.
An interesting extension of this paper might be to quantify the
contribution of individual trajectories by weighting them with
their respective tunneling and recollision probabilities.

For ε = 0.5 in Figs. 5(c) and 5(d), we clearly observe
semiclassical recollisions, in contrast to the case with only the
� point in Fig. 3(b). The half-cycle periodicity and emission
times are in overall agreement with the SBE results. To clearly
reproduce the triangular structure, it is seen by comparing
Figs. 5(c) and 5(d) that one has to take into account the
eh-PER. It is important to notice that the triangular structure
is not due to trajectories tunneled at a single k0 but rather
trajectories from different k0 points that collectively give rise
to the full triangular emission structure. This finding is in stark
contrast to HHG in gases and updates the previous conception
for HHG in solids where the trajectories tunnelled from the
minimum band gap is the only ones that mattered. Interest-

FIG. 5. Semiclassical recollision energies versus recollision
times obtained using the ERM (gray dots) with tunneling initiated
for all k0 in a disk around �. Left (right) panels show the semiclas-
sical results without (with) the inclusion of the eh-PER F(t ) · �r
in Eq. (5c), while different row panels correspond to different el-
lipticities ε. For ε = 0, 0.5, 1, we chose �k = 0.15, 0.2, 0.25 and
R0 = 30, 60, 100, respectively (see text). The background shows the
time-frequency profiles from Fig. 3, using the same color scale. The
red diamonds in (c) and (d) highlight the trajectories that tunnel at
s = −0.83 o.c. and recollide at t = −0.081 o.c. (discussed in more
detail in Fig. 7).

ingly, comparing the ε = 0 case with ε = 0.5, the origin of the
triangular structure seems to be due to the class B trajectories.

For the circularly polarized case in Figs. 5(e) and 5(f), the
sixfold symmetry is clearly reproduced in the semiclassical
calculations. Inclusion of the eh-PER reproduces the almost
vertical structures extending up to H60. For clarity, only the
first recollision for each trajectory is counted in Fig. 5; when
more recollisions are counted, the ERM reproduces more
features in the color plots (see Fig. 13 in Appendix B).

To explore the contributions from different initial tunnel
sites k0 to the time-frequency profiles and the HHG spectra,
we show in Fig. 6 the maximum recollision energy (color
bar) as a function of the tunnel site in reciprocal space.
Each subfigure in Fig. 6 uses the same ERM data set as the
corresponding subfigure in Fig. 5. For example, the ERM
calculation in Fig. 5(a) contains all initial k0 points inside
the gray circle in Fig. 6(a) (with radius �k = 0.15). Missing
points inside a gray circle in Fig. 6 indicate no semiclassical
recollisions for that particular k0. For the ε = 0 case shown in
Figs. 6(a) and 6(b), the recolliding trajectories clearly origi-
nate with k0 along the kx axis (laser polarization direction):
electron-hole trajectories created too far away from the kx

063105-7



LUN YUE AND METTE B. GAARDE PHYSICAL REVIEW A 103, 063105 (2021)

FIG. 6. Maximum semiclassical recollision energy for different
initial tunneling crystal momenta k0 in the BZ. Left (right) panels
show the semiclassical results without (with) the inclusion of the eh-
PER F(t ) · �r in Eq. (5c), while different row panels correspond to
different ellipticities ε. All k0 points contained inside the gray circles
are propagated and missing points indicate no trajectory recollision
(or recollision energy ω < 11ω0). The k0 with the highest recollision
energy in (d) is enclosed by a square.

axis will be driven apart in the y direction in real space
and never recollide [see Figs. 1(c) and 1(d)]. For ε = 0.5 in
Figs. 6(c) and 6(d), trajectories starting at the � point clearly
do not recollide, in agreement with Fig. 3(b). For the circu-
larly polarized case in Figs. 6(e) and 6(f), only trajectories
with ‖k0‖ � 0.15 can recollide, and the sixfold symmetry of
the BZ is clearly visible. Note in Fig. 6 that the larger the
ellipticity, the larger the hole around � becomes, and the less
the trajectories starting near � contribute to the interband
emissions. The maximum recollision energies including the
eh-PER (right panels in Fig. 6) are substantially higher than
the calculations without (left panels), in agreement with the
results in Fig. 5. Figure 6 again reinforces our central finding
that taking into account only k0 = � is insufficient for the
description of HHG in bulk solids with elliptically polarized
drivers. While tunneling indeed occurs mostly at � [e.g., the
band gap at k = (0, 0, 0.1) is increased by 13% compared to
k = �], the dynamics imposed by the laser and the dispersion
relation is such that recollision is prevented.

For ε = 0.5, the k0 with the highest recollision energy
is marked with a square in Fig. 6(d). Correspondingly,

FIG. 7. Semiclassical analysis for ε = 0.5 and the trajectories
that tunnel at k0 = (0.118, 0.068) [enclosed by a square in Fig. 6(d)].
(a) Recollision energy as a function of tunnel and recollision times.
(b), (c) Analysis for the specific trajectory with the highest recollision
energy (tunnel at s = −0.83 o.c. and recollide at t = −0.081 o.c.,
red diamonds in Fig. 5): (b) motion in reciprocal space (purple solid
trajectory) and the hole group velocity (red vector field); (c) electron-
hole distance versus time; (d) energy versus time, with the gray
(purple) line showing the energies without (with) the eh-PER.

this k0 gives rise to the tip of the triangular structure in
time-frequency profiles of Fig. 5(d). Figure 7(a) shows the
recollision energies versus the tunnel and recollision times
for all trajectories originating with this k0. Clearly, all re-
semblances to the short and long trajectories from gas-phase
HHG are gone. Instead, the recollision energies versus the
recollision times exhibits a highly irregular structure, with
harmonics above order ∼35 emitted approximately at the
same time.

To give an example, we now focus on the trajectory with
the highest recollision energy that tunnels at s = −0.83 o.c.
and recollides at t = −0.081 o.c. (red diamonds in Fig. 5).
The time-dependent crystal momentum shown in Fig. 7(b)
extends beyond the first BZ and the electron-hole trajectories
are seen to recollide imperfectly with ‖�r‖ ≈ 60 in Fig. 7(c).
The recollision energy is increased by ∼15 harmonic orders
due to the eh-PER [Fig. 7(d)], which leads to the correct
reproduction of the triangular structure in Fig. 5(d) and not
in Fig. 5(c).

To summarize this section, we have shown that for a
generic bulk solid with the minimum band gap at �, elliptical
drivers enhance the harmonic emissions at high frequencies
typically associated with the cutoff region of a harmonic spec-
trum, and greatly reduce the harmonic intensity in the plateau
region. The time-frequency analysis reveals that the highest-
order harmonics are not emitted from trajectories tunnelled
at �, but rather due to collective emissions originating from
many k0s near �.
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FIG. 8. (a) Band gap of monolayer hBN. (b) Norm of the tran-
sition dipole moment. Group velocities of (c) holes in the valence
band and (d) of the electrons in the conduction band, without the
anomalous velocity. The hexagon in the plots guides the eye and
traces the first BZ.

IV. RECOLLISIONS IN A MONOLAYER
BAND-GAP MATERIAL

In the previous section, we investigated HHG in a generic
model for bulk solids where the minimum band gap is at the
high-symmetry point � of the BZ. In band-gap monolayer
materials, in contrast, the minimum band gap is usually lo-
cated at the high-symmetry point K , with the maximum band
gap at �. In this section, we investigate the wavelength and
orientation dependence of HHG in a typical topologically
trivial monolayer system, using the formalisms presented
in Sec. II.

A. Typical monolayer system: hBN model

We use monolayer hBN as an example of a typical mono-
layer band-gap material. For the band-structure calculations,
we employ the pseudopotential from Ref. [70], and we employ
the twisted parallel transport gauge [62] to obtain BZ-periodic
transition dipole moments and Berry connections [71]. Con-
trary to the bulk case, the band gap is smallest near the K and
M symmetry points and largest at �, as shown in Fig. 8(a).
Correspondingly, the norm of the dipole coupling is largest
near the K and M points in Fig. 8(b). Figures 8(c) and 8(d)
show that � (K) acts as a source (sink) and K acts as a sink
(source) for the hole (electron) group velocity.

B. Orientation dependence of HHG in hBN

We irradiate hBN with linearly polarized infrared pulses
and investigate the HHG process with respect to the driver

FIG. 9. (a) HHG spectrum for the parallel-polarized harmon-
ics as a function of the driver polarization orientation. The pulse
parameter of the driver is ω0 = 0.0190 (λ = 2.4 μm), F0 = 0.010
(A0 = 0.525), and 5.5 o.c. The black line at ∼ H15 indicates the
minimum band gap. (a) Time-frequency profile for the � − M1 driver
polarization direction, with the semiclassical ERM result superim-
posed. For the ERM results, the gray points are recollisions with
tunneling around k0 = M1 with �k = 0.1 and the recollision thresh-
old R0 = 15; the purple points are recollisions with tunneling around
k0 = M2,M3,K,K ′.

polarization angle θ . The chosen field parameters are λ =
2.4 μm, F0 = 0.010, and τ contains 5.5 o.c. The SBEs are
solved with T2 = 10 fs, and the HHG spectra for the parallel-
polarized harmonics are shown in Fig. 9(a). The sixfold
symmetry of the BZ is clearly reflected in the spectrum, with
stronger yields along the � − K directions compared to the
� − M1 directions.

Figure 9(b) shows the time-frequency profile for the � −
M1 driver direction with the semiclassical ERM result su-
perimposed [72]. Part of the time profile resembles that due
to the short trajectories in HHG in gases, with a single arm
extending from H20 to H50 during each half cycle. In addi-
tion, the most intense part of the radiation is emitted between
H15 and H25, at times around t = 0,±0.5 o.c. The gray
points show the semiclassical ERM results for trajectories that
tunnel around k0 = M1 with �k = 0.1 and R0 = 15. The sin-
gle arm in the time-frequency profile is clearly reproduced.
Note that the current situation is similar to the atomic HHG
case, as well as HHG in bulk solids driven by linearly polar-
ized pulses described in Sec. III. In all these cases, the group
velocities [Figs. 8(c) and 8(d)] of the trajectories are pointing
along the vector potential A(t ), leading to (almost) perfect
recollisions. The intense features at lower-order harmonics
are due to recollisions from trajectories that tunnel near the
other symmetry points k0 = M2,M3,K,K ′. The ERM results
originating from these points are shown in Fig. 9(b) by the
purple points and reproduce the intense features very well.
The fact that trajectories originating from M1 lead to much
higher recollision energies compared to the other symmetry
points can be intuitively predicted by considering the band
structure in Fig. 8(a): Starting from the M1 symmetry point,
the time-dependent crystal momentum κ moving along the
� − M1 direction can get closer to the large-band-gap region
near the � point, compared to if one starts from a non-M1

symmetry point. Our results here show that tunneling from
different regions in the BZ can lead to distinct regions in the
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FIG. 10. High-harmonic spectra of hBN driven by linearly
polarized pulse along �-K, with (a) parallel harmonics and (b) per-
pendicular harmonics. The field amplitude is fixed at F0 = 0.010,
with the FWHM of the pulse containing 5.5 o.c., and dephasing
is set to T2 = 10 fs. The vertical dashed lines trace the minimum
band-gap energy.

emission profiles separated in frequency and time. In such
cases, the ERM provides a full understanding of the emission
dynamics.

The case for θ = 30◦, i.e., driver polarization along � − K ,
will be discussed in detail in the next subsection. We only note
that compared to the θ = 0◦ case discussed here, additional
complexities will arise by considering the dispersion relations
in Figs. 8(c) and 8(d): the group velocities of the electron-hole
pairs that start near k0 = M1 will no longer be along the vector
potential direction (� − K).

C. Wavelength dependence of HHG in hBN

We irradiate hBN with linearly polarized pulses along
the � − K direction, keeping the field maximum fixed at
F0 = 0.010 and varying the wavelength λ from 1.6 μm to
2.4 μm, with the FWHM of the pulse τ chosen to con-
tain 5.5 o.c.. The HHG spectra calculated from the SBEs
are shown in Figs. 10(a) and 10(b) for the parallel- and
perpendicular-polarized harmonics, respectively. The HHG
spectra extend toward higher harmonic energies with in-
creasing wavelengths, which can be qualitatively understood
simply by the larger A0 and, consequently, the larger excursion
of the time-dependent crystal momenta in Eq. (9).

The time-frequency profiles in the color plots of Fig. 11
reveal the emission dynamics of the HHG process. For the
1.6 μm case in Fig. 11(a), the characteristic double-peak
structure during each half cycle is observed, which was stud-
ied in detail in Ref. [49]. When the wavelength is increased,
during each half cycle, the double peak seems to split into
two almost-vertical, downward-sloping structures, as shown
in Fig. 11(c). The ERM results in the case of only taking into
account the M1 and M2 symmetry points are overlaid on top of
the color plots in Figs. 11(a) and 11(c). Clearly, in Fig. 11(a),
they are unable to reproduce the double-peak structure and in

FIG. 11. Time-frequency profiles (color maps) for the parallel-
polarized harmonics obtained from the SBE simulations with the
semiclassical ERM results superimposed. Panels (a) and (b) are for
a 1.6 μm driver, while panels (c)–(f) are for a 2.4 μm driver. For
the ERM results, panels (a) and (c) show the results for tunneling
initiated only at k0 = M1,M2, while panels (b) and (d) are for tunnel-
ing in discs of radius �k = 0.1 around the M1,M2 symmetry points,
with the recollision threshold set to R0 = 15. Panels (e) and (f) show
ERM results with the first recollisions and R0 = 30: (e) results for
tunneling from discs around k0 = M3,K,K ′, while (f) results for
tunneling from discs around k0 = M1,M2. The rectangular squares
are guides to the eye for the discussions in the text.

Fig. 11(c) the semiclassical results seem to be at odds with
the color plot, predicting recollisions at times when there are
actually no emissions.

We extend the ERM analysis to include all tunnel points k0

in a disk of radius �k = 0.1 around M1 and M2, shown by the
gray dots in Figs. 11(b) and 11(d). The recollision threshold
is set to R0 = 15. For the 1600 nm case in Fig. 11(b), it is
seen that the double peak structures are attributed to imperfect
recollisions for trajectories tunnelled close to the M points
[49]. For the 2.4 μm case in Fig. 11(d), we first focus on
the downward-sloping structures enclosed by the rectangular
boxes in Fig. 11(d). The ERM results are seen to reproduce
these downward-sloping structures quite well, although they
are not continuous and resemble groups of horizontal lines
separated by vertical spacings. These gaps are due to the den-
sity of discrete k0 points chosen in our simulations: when the
density is increased, the empty spacings in the semiclassical
results get filled.

We now turn our attention to the prominent downward-
sloping structures in the time profiles that are not reproduced,
highlighted by the rectangular boxes in Figs. 11(e) and 11(f).
We argue that these structures are due not just to contributions
from a number of different regions in the BZ, as we have seen
above, but also how these contributions interfere with each
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other. We perform ERM calculations with R0 = 30, taking
into account the first three recollisions (instead of one). The
gray dots in Fig. 11(f) show the ERM results for trajectories
with k0 near M1 and M2. The prominent downward-sloping
structures in the boxes are mostly covered by the ERM re-
sults. However, the time-frequency profile contains prominent
holes in the left bottom part of the boxes, indicating the
absence of harmonic emissions, which are not reproduced by
the ERM results. To examine further, we show in Fig. 11(e)
the ERM results for recolliding trajectories initiated with k0

near the K , K ′, and M3 symmetry points. Recollisions are
observed covering the lower left parts of the boxes, exactly
in the regions where emissions should be absent according
to the quantum results. Since emissions with the same time
and harmonic energy should be added coherently, and the
trajectories initiated near all the symmetry points (M1, M2,
M3, K , K ′) overlap here with widely different phases, they
appear to destructively interfere and lead to the absence of
emissions. The dominant structures in the time profiles are
then reproduced by the parts of the ERM result in Fig. 11(f)
that do not overlap with the ERM result in Fig. 11(e). Note
that a definite proof of the described destructive interference
effect is beyond the ERM and the scope of the current paper.
Still, the semiclassical method gives us insight on where in
the BZ the different trajectories originate, which can lead to,
in our opinion, a satisfying understanding of this interference
effect and the final dynamics.

Again, in this section we have found that the time-
frequency profiles for HHG in solids are due to the collective
emission of harmonics originating from different k0 points
in the BZ.

D. Quantum wave-packet analysis

We have shown that the semiclassical ERM model is able
to capture the emission dynamics of the HHG process in
solids. The imperfect recollision and the origin of the eh-PER
can be interpreted in the context of spatially extended wave
packets at the time of recollision. We employ the formalism
described in Sec. II C to construct and visualize such wave
packets. We assume tunneling at k0 = M1 with initial FWHM
0.1 in reciprocal space (approximated by Zener tunneling).
For the 1.6 μm driver polarized along � − K , we consider the
trajectory with the highest recollision energy which tunnels
at s = −0.931 o.c. and recollides at t = −0.321 o.c. The
dashed red curves in Figs. 12(a) and 12(b) show the real-space
motion 〈r〉 of the hole and electron wave packets, respectively.
The quantum wave-packet results are seen to agree perfectly
with the semiclassical ERM results shown by the solid black
curves. The hollow circles indicate the real-space position at
the time of recollision t , and the color plots show the wave-
packet probability density at t . The wave packets have a large
width and extend over many lattice sites. The time dependence
of the wave packet width σ̄ from s to t is shown in the insets of
Figs. 12(a) and 12(b). Due to the lower effective mass of the
conduction band, the electron wave packet moves a greater
distance compared to the hole and spreads more. Note that
at the time of recollision, the electron and hole wave packets
clearly occupy the same spatial region and overlap.

Figures 12(c) and 12(d) show the wave packet results for
the 2.4 μm driver and the trajectory that attains the highest

FIG. 12. Quantum wave packet results for specific recolliding
trajectories that tunnel at k0 = M1 with initial FWHM 0.1 in re-
ciprocal space. (a), (b) Electron and hole motion for the 1.6 μm
driver pulse and the specific trajectory that tunnels at s = −0.931 o.c.
and recollides at t = −0.321 o.c. The solid black curves show the
trajectory real-space motion obtained using ERM, while the dashed
red curve shows the expectation value 〈r〉 of the wave packets. The
real-space position at the time of recollision t is indicated by the cir-
cle, with the color plot showing the wave-packet probability density
at t . The insets show the widths of the wave packets from s to t . (c),
(d) Same as (a) and (b), but for the 2.4 μm driver and the trajectory
that tunnels at s = −0.922 o.c. and recollides at t = −0.3634 o.c.

recollision energy. The quantum wave packet and the semi-
classical motion are again in full agreement. Due to the longer
half cycle and larger A0 compared to the 1.6 μm case, the
electron and hole are driven apart further along the y direc-
tion according to the group velocities in Fig. 8 before the
vector potential changes sign, leading to a larger recollision
distance. The large electron-hole spatial separation at the time
of recollision, however, does not prevent their spatial over-
lap, as evidenced by the the wave-packet densities. Due to
longer time duration between tunneling and recollision for
the 2.4 μm, the wave packets spread more compared to the
1.6 μm cases (insets of Fig. 12).

V. CONCLUSION AND OUTLOOK

We have presented a recollision formalism for HHG in
solids that conclusively shows that in many realistic situations
the harmonic spectrum and emissions are not due to tunneling
at the minimum band gap, but instead due to the collective ef-
fect of trajectories originating near different symmetry points
in the BZ. Indeed, for the example of HHG in a bulk solid
with elliptical drivers, we showed that the electron-hole pairs
created at � do not recollide at all and contribute nothing to
the highest-order harmonics. For monolayer materials with
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hexagonal symmetry, the highest order harmonics originate
not from the minimum band gap at the K symmetry points,
but near the M points. In addition, we found that the HHG
for different driver orientations results in very distinct time-
frequency profiles, and we showed that this is due to collective
emissions from many different reciprocal-space tunneling
sites. Interestingly, for certain driver orientations, different
parts of the emission profiles can be ascribed to electrons
initially tunneling near different symmetry points in the BZ,
allowing for future prospects of probing the BZ tunneling re-
gions. We also showed that the imperfect recollisions leading
to the electron-hole polarization energies are important for the
correct description of the harmonic emissions, a result which
is further supported by our quantum wave-packet construc-
tions. Generally, imperfect recollisions and eh-PER will be
important whenever the electron-hole separation vector �r
[Eq. (6a)] is nonzero (the different Cartesian components of
�r could be zero at different times), i.e., whenever the direc-
tion of motion of the time-dependent crystal momentum

∂t ′κ(t, t ′) = −F(t ′) (16)

is not along the instantaneous group velocities vκ(t,t ′ )
n . Thus,

situations where solid-state HHG in topogolically trivial
systems differ significantly from gas-phase HHG can be
summarized by two simple rules of thumb: (a) when the
instantaneous carrier group velocities are not along the
electric-field polarization direction and (b) when the time-
dependent crystal momentum goes beyond the BZ boundaries
and induces Bragg reflections.

Our paper illustrates the complexity of HHG in solids
compared to HHG in the gas phase and broadens the no-
tion of which parts of the BZ contribute to the emission
process—in particular, that the most important symmetry
point is not always at the minimum band gap. The detailed
knowledge gained from the collective emissions responsible
for the time-frequency profiles, aside from the fundamental
perspective, will have an impact on future experiments that in-
volves phase matching and ultrafast spectroscopy. The strong
interest in the generation of elliptically polarized harmonics
will also benefit from this paper. Furthermore, the fact that
tunneling from different regions in the BZ leads to distinct
harmonic time-frequency characteristics can potentially facil-
itate the all-optical reconstruction of the band structure not
only near the minimum band gap as demonstrated in Ref. [17]
but near all relevant symmetry points in the BZ.

ACKNOWLEDGMENTS

The authors acknowledge support from the National
Science Foundation, under Grant No. PHY1713671 and
useful interactions with Guilmot Ernotte. Portions of this
research were conducted with high performance computa-
tional resources provided by the Louisiana Optical Network
Infrastructure [73].

APPENDIX A: DERIVATIONS

In this Appendix, we provide some more details on some
of the derivation steps in Sec. II.

1. Saddle-point equations

In the two-band approximation, the SBEs in Eq. (1)
reduce to

ρ̇K
vv = iF · dK+AρK

vc + c.c., (A1a)

ρ̇K
cc = −iF · dK+AρK

vc + c.c., (A1b)

ρ̇K
cv = [−iωK+A

g − iF · �AK+A − T−1
2

]
ρK
cv

−i
(
ρK

vv − ρK
cc

)
F · dK+A, (A1c)

where �Ak ≡ Ak
c − Ak

v and for notational convenience
the explicit time dependencies in A(t ), F(t ), and ρK

mn(t ) have
been omitted. Now we make the approximation of minimum
population transfer for the conduction band, ρK

vv − ρK
cc ≈ 1,

the formal solutions to Eq. (1) read

ρK
vv (t ) = i

∫ t

dsF(s) · dK+A(s)ρK
vc(s) + c.c., (A2a)

ρK
cc(t ) = −i

∫ t

dsF(s) · dK+A(s)ρK
vc(s) + c.c., (A2b)

ρK
cv (t ) = −i

∫ t

dsF(s) · dK+A(s)e−T−1
2 (t−s) (A2c)

×e−i
∫ t
s [ωK+A(t ′ )

g +F(t ′ )·�AK+A(t ′ )]dt ′ . (A2d)

The expression for the interband current in Eq. (3) is then
obtained by inserting the solution (A2) into Eq. (2a), and
transforming into the fixed frame k = K + A(t ).

The saddle-point conditions for the interband harmonics
are obtained by taking the partial derivatives of Sμ(k, t, s) −
ωt . The derivative with respect to s reads (henceforth the
dephasing time T2 is ignored)

∂s[S
μ(k, t, s) − ωt]

= −ωκ(t,s)
g − F(s) · �Aκ(t,s) − ∂sβ

κ(t,s)

= −ωκ(t,s)
g − F(s) · Qκ(t,s), (A3)

where we used ∂sβ
κ(t,s) = −F(s) · ∇kβ

k|k=κ(t,s), and Qκ(t,s) is
defined in Eq. (7b). The derivative with respect to k reads

∇k[Sμ(k, t, s) − ωt]

=
∫ t

s

{∇kω
κ(t,t ′ )
g + ∇k

[
F(t ′) · �Aκ(t,t ′ )]}dt ′

+ ∇kα
k,μ − ∇kβ

κ(t,s)

=
∫ t

s

{
vκ(t,t ′ )
c − vκ(t,t ′ )

v

}
dt ′ − �Aκ(t,t ′ )∣∣t ′=t

t ′=s

+ ∇kα
k,μ − ∇kβ

κ(t,s)

= �r − Dk,μ + Qκ(t,s), (A4)

with Dk,μ, �r, and vκ(t,t ′ )
n defined in Eqs. (5) and (6), and

in the second equality we used the identity ∇(A · B) =
(A · ∇ )B + (B · ∇)A + A × (∇ × B) + B × (∇ × A), such
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that∫ t

s
∇k

[
F(t ′) · Aκ(t,t ′ )

n

]
dt ′

=
∫ t

s

{
[F(t ′) · ∇k]Aκ(t,t ′ )

n + F(t ′) × [∇k × Aκ(t,t ′ )
n

]}
dt ′

=
∫ t

s

[−∂t ′Aκ(t,t ′ )
n + F(t ′) × �κ(t,t ′ )

n

]
dt ′

= −Aκ(t,t ′ )
n

∣∣t ′=t

t ′=s +
∫ t

s

[
F(t ′) × �κ(t,t ′ )

n

]
dt ′. (A5)

The derivative with respect to t reads

∂t [S
μ(k, t, s) − ωt]

= ωk
g + F(t ) · �Ak − ∇κβ

κ(t,s) · F(t ) − ω

+
∫ t

s
∂t

[
ωκ(t,t ′ )
g + F(t ′) · �Aκ(t,t ′ )]dt ′

= ωk
g + F(t ) · [

�Ak − ∇κβ
κ(t,s)

] − ω

+
∫ t

s
∇κ

[
ωκ(t,t ′ )
g + F(t ′) · �Aκ(t,t ′ )]dt ′ · F(t )

= ωk
g + F(t ) · [

�Ak − ∇κβ
κ(t,s)

] − ω

+
∫ t

s
∇κω

κ(t,t ′ )
g dt ′ · F(t ) − �Aκ(t,t ′ )∣∣t ′=t

t ′=s · F(t )

+
∫ t

s

[
F(t ′) × (

�κ(t,t ′ )
c − �κ(t,t ′ )

v

)]
dt ′ · F(t )

= ωk
g + F(t ) · (

�Aκ(t,s) − ∇κβ
κ(t,s)

) − ω

+
∫ t

s

(
v

κ(t,t ′ )
2 − v

κ(t,t ′ )
1

)
dt ′ · F(t )

= ωk
g + F(t ) · [Qκ(t,s) + �r] − ω. (A6)

The saddle-point conditions in Eq. (5) are then obtained by
setting Eqs. (A3), (A4), and (A6) to zero.

2. Structure-gauge invariance of Dk,μ and Qk

Under the gauge transformation |ukn〉 → |ukn〉eiϕ
k
n , with

n = v, c, the relevant quantities transform as

Ak
n → Ak

n − ∇kϕ
k
n , (A7a)

dk → dke−i(ϕk
c −ϕk

v ), (A7b)

αk,μ → αk,μ − ϕk
c + ϕk

v , (A7c)

βk → βk − ϕk
c + ϕk

v , (A7d)

Dk,μ → Dk,μ, (A7e)

Qk → Qk, (A7f)

where the transforms in Eqs. (A7e) and (A7f) are obtained by
using the definitions in Eq. (7).

3. Approximation of tunneling width in WPT

The Landau-Zener tunneling probability [74–76] reads

Pk ∝ exp

[
− πωk

g

4|E · dk|

]
, (A8)

with ω0 the laser carrier frequency and E chosen at a
time when |E · dk| is maximal. In our WPT calculations,
we start with a Gaussian wave packet in reciprocal space,
with the FWHM width approximated by the FWHM of the
above formula.

4. Evaluation of the real-space wave packet

We show here more details on our evaluation of the real-
space wave packets. Insertion of the Houston state (11) into
the expression for the wave packet in Eq. (10) yields

�e(r, t ) =
∑
K∈BZ

aKe (t )uK−qA(t )
c (r)eiK·r, (A9)

which is seen to not be on the form of a Fourier transform,
making it expensive for numerical evaluations.

Often, the uKc functions are given in the Fourier basis (as is
the case for our hBN calculations),

uKc (r) =
∑
G

uKcGe
iG·r, (A10)

with the sum running over the reciprocal lattice vectors G. In
the twisted parallel transport gauge, the Fourier coefficients
satisfy

∣∣uK+bi
c

〉 = e−ibi ·r∣∣uKc 〉
⇔ uK+bi

cG = 〈
eiG·r∣∣e−ibi·r∣∣uKc 〉

=
∑
G′

V−1
cell

∫
cell

ei(−G−bi+G′ )·rdruKcG′

=
∑
G′

δG′,G+bi u
K
cG′

= uKc,G+bi . (A11)

From the above, we have uK+G
c0 = uKcG, and the wave-packet

expression can be rewritten,

�e(r, t ) =
∑

K ′∈lattice

aK
′

e (t )uK
′−qA(t )

c0 (r)eiK
′ ·r, (A12)

where K ′ ≡ K + G now runs over the entire reciprocal lattice
and aK

′
e (t ) = aKe (t ).

The crystal momenta K ′ and real-space coordinates r are
in our calculations given in the basis of the reciprocal and
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real-space lattice vectors, respectively, such that

K ′ · r =
(

D∑
d=1

K ′
d b̂d

)
·
(

D∑
d=1

rd âd

)
=

D∑
d=1

K ′
dηd , (A13)

where we have defined ηd ≡ rd2π/(|ad ||bd |). Writing the sum
in Eq. (A12) as an integral and taking into account the Jaco-
bian JK ′ of the coordinate transformation for (K ′

x,K
′
y,K

′
z ) →

(K ′
1,K

′
2,K

′
3), we can write the wave packet as

�e(η, t ) = det(JK ′ )
∫

dK ′aK
′

e (t )uK
′−qA(t )

c0 (η)ei
∑D

d=1 K
′
dηd ,

(A14)

which we recognize as a multidimensional Fourier transform
that can be treated using the standard fast-Fourier-transform
algorithms.

APPENDIX B: SUPPLEMENTAL CALCULATIONS

To discuss the role of multiple recollisions, we show in
Fig. 13 the semiclassical results plotted on top of the time-
frequency profiles obtained from the SBEs, for maximum one,
two, and three recollisions. For both ε = 0 (left panels) and
ε = 0.5 (right panels), more features are reproduced in the
case of maximum two recollisions compared to maximum one
recollision. The case of maximum three recollisions includes
features not seen in the time profiles, which is understandable
due to the low probability of these events.

FIG. 13. Semiclassical recollision energies versus recollision
times obtained with the ERM (gray dots). Left (right) panels are for
ε = 0 (ε = 0.5), while different row panels correspond to different
numbers of allowed recollisions in the calculations. The background
shows the time-frequency profiles from Fig. 3 using the same
color scale.
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