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a b s t r a c t 

For convection research, one important topic is the maximum heat flux achieved on a boiling surface, 

known as the critical heat flux (CHF). This phenomenon is characterized by the formation of a blanket 

of heat-blocking vapor on the surface. Over several decades, numerous surface structures have been fab- 

ricated to enhance the CHF for various high-power cooling applications. However, the complexity of the 

surface structures and many other factors (e.g., capillary wicking flux) restrict the prediction of the CHF 

using theoretical models. In this work, three popular machine learning (ML) methods are employed to 

analyze and further predict the CHFs for a given surface modified with micro-structures. Among these, 

the random forest regression method consistently produced the best fitting models of previously pub- 

lished data. The importance analysis algorithm developed for random forest models facilitated efficient 

discovery of the most important descriptors predicting the CHF. One key descriptor used in these models 

was the mean beam length (MBL), a terminology borrowed from radiative heat transfer, which effectively 

described the characteristic spacing between adjacent surface features. The models showed greatest sen- 

sitivity to the MBL and the height of the features, compared to the other surface descriptors. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Boiling is characterized by very large heat transfer coefficients 

nd is therefore used in applications that require rapid heat re- 

oval. The maximum practical heat flux that can be achieved 

hrough boiling is limited by the CHF, which occurs when the va- 

or produced on the boiling surface coalesces into a vapor film, 

rastically impeding further heat transfer and leading to a rapid 

urface temperature increase. 

In the literature, a few analytical models have been developed. 

 majority of models can be expressed in the non-dimensional 

orm derived by Kutateladze [1] using dimensional analysis, 

 = 

q ′′ CHF 

h f g 
[
σ gρ2 

g ( ρl − ρg ) 
] 1 

4 

(1) 

Models with this form have since been derived based on pro- 

osed triggering mechanisms of bubble interference, hydrodynamic 

nstability, macrolayer dryout, irreversible dry spot growth, and 

acrolayer “lift-off” [2] . Although there has been disagreement 
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n the triggering mechanism, these models consistently have the 

ame general form, indicating agreement in the major impacts of 

uid properties on the CHF. However, these models do not account 

or the impact of surface morphology. 

The impact of surface morphology and material on the CHF has 

een proposed to be due to surface area enhancement, wettability, 

apillary wicking, nucleation site density, and separation of liquid 

nd vapor flow paths [3] . Due to the complexity of these phenom- 

na, previous models are either limited in scope or require further 

easurements on parameters such as capillary wicking flux [4] or 

ynamic liquid contact angle [5] . These impair the model’s useful- 

ess in predicting an optimized CHF, particularly for the optimiza- 

ion of surface structures in pursuit of an even higher CHF. 

By analyzing the forces acting on a surface bubble, Kandlikar 

5] developed another popular model for the CHF incorporating the 

mpact of contact angle and surface orientation relative to horizon- 

al: 

 = 

1 + cos θ

16 

[ 
2 

π
+ 

π

4 
( 1 + cos θ ) cos ψ 

] 1 
2 

, (2) 

here K is defined in Eq. (1) . Kandlikar proposed to use the dy- 

amic receding contact angle; however it has been common to use 

he static contact angle at room temperature, which is easier to 

easure and usually only makes a small difference in the model 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121744
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Nomenclature 

CHF critical heat flux 

DFNN deep feedforward neural network 

DT decision tree 

MBL mean beam length 

ML machine learning 

Greek symbols 

ρg vapor density 

ρl liquid density 

θ contact Angle 

σ surface tension 

φ porosity 

ψ surface orientation angle 

Roman symbols 

g gravitational acceleration 

h surface feature height 

h f g latent heat of vaporization 

K dimensionless critical heat flux 

q ′′ 
CHF 

critical heat flux 

r roughness factor 

rediction [6] . Kandlikar’s model correctly predicts that superhy- 

rophilic surfaces will have higher CHF values; however, at small 

ontact angles, Kandlikar’s model saturates to a constant value that 

enerally underestimates the CHF of these surfaces [7] . 

Chu et al. [8] improved Kandlikar’s model by expanding upon 

he impact of roughness, which was defined as the ratio of the 

rue surface area in contact with the liquid to the apparent or “pro- 

ected” area. The inherent limitation of Chu’s model is that it is not 

ensitive to the specific geometry of the structures, which can also 

nfluence the capillary wicking and separation of liquid and vapor 

aths. 

Several other authors have proposed models that account for 

he impact of capillary wicking using experimentally measured pa- 

ameters such as the wicking coefficient, absorption rate, or wicked 

olume flux [ 4 , 6 ]. The reported accuracy of these models sug-

ests capillary wicking is an important mechanism for the CHF en- 

ancement. However, these models require fabricating and testing 

ach surface before a prediction can be made, which limits their 

ractical use. Li and Huang [6] developed a model to account for 

apillary wicking based on surface material and morphology. This 

voids the issue of requiring complex experimental measurements 

ut at a cost of decreased model scope and accuracy. Nonetheless, 

y considering the specific shape of surface structures instead of 

olely using the surface roughness, Li’s model was able to capture 

reviously observed behaviors that were not accounted for by pre- 

ious models. 

Other than analytical models, machine learning has been previ- 

usly used to model various aspects of flow boiling and pool boil- 

ng, though few groups have included the influence of surface mor- 

hology. Neural networks have been used to model flow boiling 

eat flux [9] , CHF [10–13] , heat transfer coefficient [14–16] , max- 

mum wall temperature [17] , and onset of nucleate boiling [18] . 

urface morphology has a reduced importance for flow boiling, so 

hese previous studies have been able to accurately model flow 

oiling behaviors only based on the overall geometry and flow pa- 

ameters. 

For pool boiling, neural networks have been used to model 

inimum film boiling temperature during quenching of rods 

19] and pool boiling with nanofluids [20–23] . Das and Kishor 

24] used fuzzy systems to model heat transfer coefficients for pool 

oiling of water on plain tubes. Random forest regressions have 
2 
lso been applied to model the CHF in flow boiling [10] . These 

odels have incorporated fluid properties, flow parameters, and 

verall geometry, but have not considered enhanced microscale 

urface morphologies. 

As the only model to consider specific microscale surface mor- 

hologies, He and Lee [25] used neural networks to model the CHF 

n silicon pin fin surfaces. They observed that deep belief networks 

ere most suitable for CHF modelling compared to other neural 

etwork types. Their models fit the data very well but were signif- 

cantly limited in scope and did not present an obvious means of 

xpanding their model to other surface types. 

In this work, a new data-driven model has been developed us- 

ng machine learning, which improves upon previous pool boiling 

odels by directly accounting for surface morphology using fun- 

amental surface descriptors. As a first step, data was collected for 

he reported CHFs from surfaces with pin-fin arrays, which allowed 

or rapid calculation and testing of proposed descriptors used as 

nputs for the machine learning model. All of the surface descrip- 

ors used in the models can be easily calculated based solely on 

eometric surface properties and are not necessarily limited to pin- 

n array surfaces. Three popular machine learning methods (ran- 

om forests, linear lasso, and neural network) were applied to 

ake CHF predictions based on surface geometry descriptors and 

o investigate the sensitivity of the models to each descriptor. One 

ey descriptor used in these models was the mean beam length 

MBL), a term borrowed from radiative heat transfer, which effec- 

ively described the characteristic spacing between adjacent sur- 

ace features. The models showed greatest sensitivity to the MBL 

nd the height of the features, compared to the other surface de- 

criptors. Root mean squared relative error (RMSRE), mean abso- 

ute relative error (MARE) and coefficient of determination ( R 2 ) 

ere used to measure the accuracy of machine learning models, 

hich showed greatest accuracy for the random forest method 

with R 2 up to 0.986). The success in using these descriptors sug- 

ests the possibility of expanding this model to a broader scope 

f surface morphologies and surface materials, eventually leading 

o a general model for the CHF that applies to all types of surface 

odifications. 

. Machine learning models 

Three machine learning methods were applied: linear LASSO 

Least Absolute Shrinkage and Selection Operator) [26] , deep feed- 

orward neural networks (DFNN) [27] , and random forest [28] . 

Linear regression is the most common statistical method for 

redictive modeling. LASSO is a type of advanced linear regression 

hat includes regularization factors to avoid overfitting and lower 

odel complexity. Whereas the cost function in typical linear re- 

ression is the sum of squared errors, in LASSO regression, the cost 

unction is modified by adding the L 1 norm of the coefficients, β, 
s a penalty such that the cost function is penalized if the coeffi- 

ients are large. The coefficients are calculated by minimizing this 

ost function, as shown in Eq. (3) , where X represents the matrix 

f input descriptors, y is the actual CHF values, and the λ is the 

uning parameter. 

ˆ 
lasso = argmin 

β

‖ y − X 
T β‖ 

2 
2 + λ‖ β‖ 1 (3) 

The additional term in the cost function shrinks the coefficients 

nd helps to overcome multicollinearity. This form of regulariza- 

ion might result in certain coefficients being absolutely zero, im- 

lying that some descriptors are totally ignored in the output eval- 

ation. As a result, LASSO regression aids not only in the overfitting 

eduction but also the descriptor selection. However, there should 

e strong linear relationship between the inputs and response to 

ake a good prediction with LASSO. 
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Fig. 1. Graphical representation of (a) random forest regressions and (b) artificial neural networks. 
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DFNN employs numerous layers of nodes, each of which is fully 

inked to the next layer ( Fig. 1 b). The surface descriptors and ex- 

eriment parameters in our study are represented by a set of neu- 

ons in the input layer. Each hidden layer neuron is the result of 

 weighted sum of the neurons in the preceding layer, followed by 

n activation function that introduces non-linearity into the model. 

he output layer can comprise one or more nodes that gather the 

nformation processed from the last hidden layer, depending upon 

he problem type (classification or regression). Due to the emer- 

ence of backpropagation [29] , which allows the network to al- 

er the connection weights between layers when processing each 

atch of data, DFNN has grown in popularity over the last several 

ecades. There are three commonly used activation functions in 

ractice: sigmoid function, tanh function and rectified linear units 

ReLU) [30] . However, sigmoid and tanh functions have the satu- 

ation problem (the gradient gets to near-zero) when dealing with 

eep neural networks. The ‘Adam’ solver proposed by Kingma et al. 

31] is a stochastic gradient-based optimizer and usually a good 

hoice in terms of both training time and validation score. Learn- 

ng rate is a very important hyperparameter for training neural 

etworks. Because a small learning rate may lead to a very slow 

onvergence rate and potentially get trapped in a local optimum, 

hereas a large learning rate can make the training process un- 

table and even diverge. However, it is not necessary to manually 

djust the learning rates with Adam optimizer because they will 

e adaptively selected for each parameter during the training pro- 

ess [32] . Based on some empirically-derived rules-of-thumb, the 

FNN architecture applied here is X/50/50/50/1, with X the num- 

er of input descriptors. Generally speaking, the deeper the net- 

ork, the more data required for training. We may not have a sat- 

sfactory result without enough data to train DFNN. Besides, the 

erformance of DFNN is highly dependent on the hyperparameters 

pplied in the training process, but there is no generic way to de- 

ermine them. 

Decision trees (DTs) [33] learn hierarchically by continuously 

ividing training samples into branches that maximize the infor- 

ation gain of each split. DTs work very well especially if they are 

f small depth. However, DTs with higher depth are more prone 

o overfitting and thus lead to higher variance in the model. This 

hortcoming of DT is overcome by the random forest model, which 

ses many uncorrelated DTs ( Fig. 1 a). The samples used to train 

ach tree are randomly drawn with replacement, known as boot- 

trapping [34] , which means that some samples may be used mul- 

iple times in a single tree. These bootstrap samples are then fed 

s training data to many DTs of large depths. Each of these DTs 

s trained separately on these bootstrap samples. This aggregation 
c

3 
f DTs is called the random forest ensemble. For regression mod- 

ls, the final prediction is taken as the average of the prediction of 

ach tree. The discrepancies in the original training dataset have 

o impact on the final result derived from the aggregate of DTs 

ecause each DT takes a different set of training data as input. The 

escriptor selected in each node is utilized to partition the data 

et into two different sets with similar responses (CHFs) inside. 

n the case of regression, we normally compare variance reduction 

o choose the descriptor, and the descriptor with the greatest de- 

rease is chosen for that node. In addition, the descriptor impor- 

ance can be measured based on how much the descriptor reduces 

he variance on average over all the trees in the forest. The ease of 

alculating relative descriptor importance makes the random for- 

st method effective for informing descriptor selection. Our mod- 

ls use 50 trees to minimize overfitting; adding additional trees 

eyond this did not improve model performance. The best results 

ere obtained with 50 leaf nodes per tree. Only 80% of the input 

escriptors are considered in each individual tree. Tuning parame- 

ers were optimized using 10-fold cross-validation. A limitation of 

andom forest regressions is that they cannot be used for extrapo- 

ation [35] . The thresholds for the splits in each tree will always be 

ithin the domain of the training data inputs, therefore the trees 

annot be used to predict how the performance will change out- 

ide of that domain. 

. Descriptors used for machine learning models 

Boiling CHF data for a total of 175 surfaces from 16 representa- 

ive papers [36] were collected and used to train and test ML mod- 

ls. The data include boiling of water on silicon surfaces and FC-72 

n silicon or copper surfaces. Only flat surfaces and surfaces with 

eriodic arrays of pin-fins were included in the data set, but oth- 

rwise the fin size, shape, and array pattern were not restricted. 

he data include circular, square, and octagonal fin shapes, and 

quare and hexagonal unit cells for the array pattern. Some avail- 

ble papers were excluded from the dataset if their reported CHF 

or water on a smooth silicon surface was less than 700 kW/m 
2 

r greater than 850 kW/m 
2 , which limited the amount of varia- 

ion due to differences in methods between previous experimen- 

al studies, thus allowing the data to better represent the impact 

f the surface morphology. Many combinations of descriptors for 

hese surfaces were attempted in order to assess the relative im- 

ortance and effectiveness of each descriptor for predicting the 

HF. The tested surface descriptors include the fin width, spac- 

ng, height, total MBL, lateral MBL, roughness factor, porosity, and 

overage. Descriptors for the fluid type and fluid subcooling were 
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Table 1 

Accuracy of models using MBL descriptors. Model performance metrics are based on 

model prediction accuracy for a test data set that was not used in model training. 

MARE RMSRE R 2 Length Descriptor Other Descriptors 

7.4% 9.2% 0.98 Width and Spacing Subcooling, height, 

coverage, fluid type 7.8% 10.6% 0.91 Lateral MBL 

7.8% 10.4% 0.96 Total MBL 

6.6% 8.4% 0.986 Width and Spacing Subcooling, height, 

coverage, fluid type, 

porosity, roughness 

6.7% 8.5% 0.981 Lateral MBL 

6.5% 8.5% 0.984 Total MBL 
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lso included in every ML model. The impact of environmental 

ressure was not included in these models; only data correspond- 

ng to boiling near one standard atmosphere was included in the 

ataset. Each of these descriptors was believed to be relevant to 

ne or more previously proposed physical mechanisms for the CHF 

nhancement, such as wettability or capillary wicking. Identifying 

he fundamental surface parameters relevant to each CHF enhance- 

ent mechanism is progress towards a general model for the CHF. 

Since almost all of the recent boiling experiments on pin fin 

urfaces have used either water or FC-72 as the test fluid, the 

ataset used in this study was not diverse enough to thoroughly 

valuate the impact of fluid properties on the CHF. Both commonly 

ested fluids were incorporated into the model using a categorical 

escriptor. 

Fluid subcooling describes the temperature difference between 

he bulk pool temperature and the saturation temperature of the 

uid. Although subcooling is not a surface property, the subcooling 

escriptor was included in the models to allow the large amount 

f data on boiling with subcooling to be included in the models. 

For heat conduction within a porous media, various descrip- 

ors have been introduced [37] . As a novel characteristic length, 

he MBL [38] is emphasized here for boiling: 

BL = 

4 V f luid 

A sur face 
. (4) 

The term MBL is used because this length is similar to the ge- 

metric MBL used in radiation heat transfer, though in this con- 

ext this length is unrelated to radiation. This characteristic length 

s proposed to be relevant to the capillary wicking and contact 

ine pinning mechanisms. The volume used here was the fluid vol- 

me bounded by the projected area of the heated surface and the 

eight of the surface features, i.e., V f luid = h A projected φ, where h is 

he height and φ is the porosity. Two different surface area ex- 

ressions were proposed and tested: the total surface area and 

he lateral surface area. When the lateral surface area is used, the 

BL represents a characteristic spacing between the lateral sur- 

aces of the fins. When the total surface area is used, the distance 

o the flat bottom surface is also considered. Using the same defi- 

ition of the dimensionless roughness factor r used by Chu [8] and 

any others, the total and lateral surface areas can be expressed as 

 total = r A projected , and A lateral = ( r − 1 ) A projected . The total and lat- 

ral MBL can then be expressed in very general terms that could 

e applied to any boiling surface. 

B L total = 

4 hφ

r 
(5) 

B L lateral = 

4 hφ

r − 1 
(6) 

The coverage descriptor was used to partially account for the 

mpact of heterogeneous surfaces. Coverage was defined as the 

raction of the surface that was intentionally kept smooth. If the fin 

attern was applied uniformly to the entirely surface, then the cov- 

rage value was unity. Only 25 data points in the set corresponded 

o boiling on heterogenous surfaces, and many of these data cor- 

espond to nominally identical surfaces tested at different subcool- 

ng temperatures, so there is not enough diversity in the data set 

o capture the impact of surface heterogeneity on the CHF. Future 

tudies could expand upon this behavior if more heterogenous sur- 

aces are included in the data set. 

Although wettability – characterized by the contact angle – is 

nown to be important to the boiling CHF [2] , the contact angle 

as not included as a descriptor in our models. This was primarily 

ecause of limitations in the available data. Almost all of the col- 

ected data was either for copper or silicon surfaces. It was noted 

hat reported CHFs for boiling of water on copper were generally 
4 
igher though copper has lower wettability than silicon [4] . This 

ehavior is in opposition with the currently accepted understand- 

ng of the impact of wettability on the CHF [2] . In order to accu-

ately model the true impact of the contact angle on the CHF of 

icro-structured surfaces, a greater variety of surface materials is 

ecessary. 

It was noted that papers studying the boiling of FC-72 had 

maller relative variation in reported CHF values on smooth sur- 

aces compared to the variation in the CHF for water. Due to its 

ery low surface tension [39] , FC-72 has a nearly zero contact an- 

le on most surfaces, so the impact of different surface materials 

n the CHF is small. This allowed data for FC-72 on both silicon 

nd copper surfaces to be included in the dataset, while data for 

ater on copper surfaces was not included. 

The domain of the input features is important for understand- 

ng limitations of the current models and the directions for fu- 

ure investigation. Fig. 2 shows the distribution of six of the de- 

criptors considered in this study. The data for boiling of water 

nly included microscale surfaces, while the both microscale and 

acroscale surfaces were included for boiling of FC-72. For most 

ata in the dataset, the height, width, and spacing of the fins were 

ll similar in magnitude, which limited the variation in the rough- 

ess factor and porosity of the surfaces. In order to move towards 

ore general models for predicting the CHF, it is necessary to col- 

ect data from a wider variety of surfaces. 

. Results and discussion 

Using random forest regressions, the MBL descriptor has proven 

o be effective for replacing the fin width and spacing descriptors, 

hich is beneficial because the MBL is a more general characteris- 

ic length that could be applied to a wider scope of surfaces. The 

elative effectiveness of the total MBL as opposed to the lateral 

BL was also evaluated. For these comparisons, only a small num- 

er of key surface descriptors were included, so as to better focus 

n the impact of the tested length descriptors. RMSRE, MARE and 

oefficient of determination ( R 2 ) were used to measure the accu- 

acy of the random forest model. For RMSRE and MARE, we first 

alculate the relative error for each test data by dividing the er- 

or (between estimated and true value) by the true CHF values 

nd then compute the mean absolute value and root mean squared 

alue of their relative errors. 

There was a concern that the total MBL might be less effec- 

ive because it is strongly dependent on the height of the struc- 

ures and the height is already included as a separate descriptor. 

n contrast, for pin-fin surfaces, the lateral MBL is completely in- 

ependent of height, and only depends on the size and spacing 

etween fins. However, as seen in Table 1 , the total MBL was found

o be more effective for predicting the CHF than the lateral MBL. 

hen the length descriptors are supplemented by only the sub- 

ooling, height, coverage, and fluid type descriptors, neither MBL 

escriptor quite matches the performance of using both the width 

nd spacing descriptors. When roughness and porosity descriptors 

re added, the additional information allows the models to be reli- 
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Fig. 2. Data distribution for six descriptors used in machine learning models. 
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Table 2 

Relative importance analysis of tested descriptors. 

Subcooling Height Coverage Porosity Total MBL Roughness 

0.229 0.403 0.019 0.017 0.218 0.114 

Fig. 3. Random forest regression using subcooling, roughness, height, total MBL, 

and fluid type descriptors. 
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bly accurate for any of the proposed length descriptors. Thus, the 

idth and spacing descriptors can be replaced by the total MBL 

escriptor. Although the accuracy of the models is not significantly 

ltered after switching to the MBL descriptor, the MBL is an im- 

rovement over the width and spacing descriptors because it is 

 more fundamental characteristic length. Whereas the width and 

pacing descriptors are only relevant to pin-fin surfaces, the MBL 

s meaningful for any type of surface enhancement. The discovery 

f more fundamental descriptors, such as the MBL, allows for the 
5 
evelopment of more general machine learning models for boiling 

ritical heat flux. 

The ability to easily perform importance analyses on descrip- 

ors used in a random forest regression model was found to be 

ery helpful for identifying the most influential descriptors. Table 2 

hows the results of an importance analysis performed on the best 

odel from Table 1 . It can be seen that the height, subcooling 

nd total MBL demonstrate more significance than the other de- 

criptors. The fluid type descriptor was not included in this analy- 

is because its importance is obvious. The analysis shows that the 

orosity and coverage descriptors have a much smaller impact on 

he CHF compared to the other descriptors. It is interesting that 

he coverage descriptor has such a small impact. However, this is 

ikely because there is not enough data for surfaces with non-unity 

overage, so the model cannot yet accurately predict the impact of 

hat feature. The result for porosity suggests that the porosity of 

in fin surfaces does not have a large impact on the boiling perfor- 

ance. 

A new model developed using only the subcooling, height, to- 

al MBL, roughness, and fluid type descriptors had almost identi- 

al model performance, shown in Fig. 3 , compared to the previous 

odel that also included coverage and porosity. This model is be- 

ieved to be superior to the other models presented in this paper, 

ecause it maintains a similar accuracy to the highest performing 

odels but requires less information. 

Neural networks and linear LASSO algorithms were also at- 

empted with various descriptor combinations throughout this 

tudy, but were not able to replicate the accuracy of the random 

orest regression algorithm for this dataset (see Table 3 ). This is 

ttributed to the small size of the dataset and the large amount 

f uncertainty present in the CHF measurements. The random for- 

st regression algorithm works well despite the limited amount 

f training data without overfitting to the random errors. Fig. 4 

hows the RMSE time history for the neural network method. As 

he epoch increases, the training error decreases and the validation 

rror becomes stable after 30 epochs. Fig. 5 illustrates the changes 

f the RMSRE versus the number of decision trees in the random 



B. Swartz, L. Wu, Q. Zhou et al. International Journal of Heat and Mass Transfer 180 (2021) 121744 

Table 3 

Comparison of ML algorithms using descriptors 

of subcooling, height, total MBL, roughness, and 

fluid type. 

Algorithm MARE RMSRE R 2 

Random Forest 6.2% 8.7% 0.98 

Neural Network 20.7% 30.0% 0.91 

Linear LASSO 19.0% 26.8% 0.84 

Fig. 4. RMSE time history for the neural network method. RMSE is the root mean 

squared error. 

Fig. 5. RMSRE versus the number of decision trees in random forest 
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Fig. 6. Comparison of prediction accuracy with published CHF models for struc- 

tured surfaces. To keep the comparison fair, only homogeneous surfaces tested 

without subcooling from the testing dataset are included. 

Fig. 7. Random forest regression model applied pin fins surfaces with an additional 

nanoscale surface enhancement. 
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F
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i

t

a

s

f

e

orest model. It can be observed that the RMSRE value decreases 

uickly as more trees are added but becomes stable after 50 deci- 

ion trees. Therefore, 50 decision trees were used in the final ran- 

om forest models to achieve a good prediction result. 

In Fig. 6 , our random forest model is compared to Chu’s [8] and

i’s [6] models. The ten compared points are drawn from the test- 

ng dataset. Data with subcooling was not included in the com- 

arison because Chu and Li did not include the impact of subcool- 

ng in their models. This comparison shows that our random for- 

st model has greater prediction accuracy for a wide range of pin 

n surfaces. Necessary fluid properties for each model were drawn 

rom published tables [39] . Intrinsic static contact angle data for 

ach point was collected from the point’s originating paper when- 

ver possible. Many papers on FC-72 do not report the contact an- 

le, so for FC-72 on silicon and SiO surfaces, the intrinsic static 
2 

6 
ontact angle was approximated as 1 ° for all surfaces [39] . This ap- 
roximation has negligible impact on the referenced model predic- 

ions, which are only functions of the cosine of the contact angle 

nd therefore are insensitive to small uncertainties in contact an- 

le near zero degrees. When evaluating predictions for the models, 

ll assumptions posed in Chu’s and Li’s papers were used, except 

or the correction suggested by Chu to account for change in con- 

act angle between room temperature and saturation temperature. 

or FC-72, this correction would have little to no effect, because 

C-72 already has a near zero contact angle. However, for water 

the rightmost four points) this correction would result in a slight 

mprovement to Chu’s prediction accuracy. 

Although our random forest model can only be directly applied 

o pin fin surfaces, it could also be useful for evaluating the rel- 

tive enhancement of nanoscale features added to micro-pin-fin 

urfaces. Fig. 7 shows the results for five different nanoscale sur- 

ace modifications for a micro pin fin surface [4,40–42] . All of the 

xperimental CHF values for these surfaces are greater than the 
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redicted values, and the difference between the two can be at- 

ributed to the benefits from nanofeatures. Using the model in this 

ay could allow for the interaction between nanoscale and mi- 

roscale surface modifications to be studied. 

The models developed in this study are limited to pin fin sur- 

aces because they have only been trained using data for pin fin 

urfaces. However, the framework and systematic procedure for 

eveloping boiling CHF models could be extended to create mod- 

ls that apply for a greater scope of surface types. Data for ad- 

itional surface types could be added to the training dataset and 

ew fundamental descriptors could be added based on theoreti- 

al and optical studies of what surface morphological features are 

xpected to impact boiling performance. Using random forest re- 

ressions, the importance of proposed descriptors can be quickly 

valuated, which can streamline the process of descriptor selec- 

ion. This procedure could be applied to generate accurate mod- 

ls with a large scope of applicability that thoroughly account for 

oth known and unknown relationships between surface morphol- 

gy and boiling performance. 

. Conclusion 

The precise relationships between the boiling CHF and surface 

orphology are not well understood, which has limited the scope 

nd accuracy of previous CHF models. However, the large body of 

oiling data that has been collected over the past several decades 

akes this relationship a good candidate for ML modelling. By us- 

ng known physical behaviors to guide the selection of descrip- 

ors and verifying the effectiveness of proposed descriptors using 

andom forest regression algorithms, the most important descrip- 

ors for predicting the CHF have been identified. Among the most 

mportant descriptors in the MBL, which is a novel characteristic 

ength for the spacing between surface features. 

This work has provided a framework for future ML models, 

hich would be improved by incorporating a larger variety of sur- 

ace morphology types. As more surface types are added to the 

odel, additional descriptors may be added and tested to account 

or the impact new feature types on known behaviors that influ- 

nce the CHF, gradually improving the scope and accuracy of the 

L model. 

The random forest regression method has been found to be the 

ost effective ML method for this application, compared to neural 

etworks and support vector regression. As the model is expanded 

o include more data, it may become more feasible to apply other 

achine learning methods, like neural networks, that work better 

ith larger datasets. 
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