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Abstract—Feedback dynamic routing is a commonly used
control strategy in transportation systems. This class of control
strategies rely on real-time information about the traffic state in
each link. However, such information may not always be
observable due to temporary sensing faults. In this article, we
consider dynamic routing over two parallel routes, where the
sensing on each link is subject to recurrent and random faults.
The faults occur and clear according to a finite-state Markov
chain. When the sensing is faulty on a link, the traffic state on
that link appears to be zero to the controller. Building on the
theories of Markov processes and monotone dynamical systems,
we derive lower and upper bounds for the resilience score, i.e.
the guaranteed throughput of the network, in the face of sensing
faults by establishing stability conditions for the network. We
use these results to study how a variety of key parameters affect
the resilience score of the network. The main conclusions are: (i)
Sensing faults can reduce throughput and destabilize a
nominally stable network; (ii) A higher failure rate does not
necessarily reduce throughput, and there may exist a worst rate
that minimizes throughput; (iii) Higher correlation between the
failure probabilities of two links leads to greater throughput;
(iv) A large difference in capacity between two links can result
in a drop in throughput.

Keywords—Traffic control, cooperative dynamical systems,
Ppiecewise-deterministic Markov processes, sensing faults.

L INTRODUCTION

The rapidly growing deployment of traffic sensing and
vehicle-to-vehicle/infrastructure (V2V/V2I) communications
has enabled the concept of intelligent transportation system
(ITS). In ITS, system operators and travelers have access to
real-time traffic conditions and can thus make better decisions.
Dynamic routing is a typical ITS capability, which is
conducted via route guidance tools such as Google Maps and
WAZE. System operators can also influence routing via
tolling and instructions for traffic diversion, which also rely
on real-time traffic conditions. A major challenge for dynamic
routing in ITS is how to ensure system functionality and
efficiency under a variety of sensing faults. Quality of sensing
and communications = significantly affects  system
performance. However, data health is a serious issue that
system operators must face. On some highways, up to 30%-
40% of loop sensors do not report accurate measurements [1],
[2]; similar issue exists for camera sensors. Even though some

routing guidance tools may have certain internal fault
detection and correction actions, the benefits of such actions
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can be further evaluated. Moreover, without appropriate fault-
tolerant mechanisms, feedback control algorithms may make
decisions based on wrong information, and ITS may even
perform worse than a comparable conventional transportation
system. Therefore, ITS will not be well accepted by the public
and transportation authorities unless the impact of sensing
faults is adequately evaluated and addressed. However, such
impact has not been well understood, and practically relevant
fault-tolerant routing algorithms have not been developed.

In this paper, we propose a novel model that synthesizes traffic
flow dynamics and stochastic sensing faults. Based on this
model, we evaluate the impact of faults on fault- unaware
routing algorithm and derive practically relevant insights for
designing fault-tolerant routing algorithms in ITS. We
consider the routing problem over two parallel links, as shown
in Fig. 1. Our approach and results can be extended to more
complex networks and a broader class of ITS control
capabilities, such as ramp metering and speed limit control.
We consider a stochastic model, since in practice it is not easy
to deterministically predict when and where a sensing fault
will occur. We will show that this model leads to tractable
analysis and insightful results for fault-tolerant design of ITS.
We study the stability and guaranteed throughput of the
network, which we consider as the resilience score. We also
establish the link between the resilience score and key model
parameters, including the number of fault-prone links and the
average frequency and duration of faults.

Existing model-based traffic management approaches
typically assume complete knowledge of the traffic condition
[31, [4], [5], [6], but feedback traffic management for ITS in
the face of sensing faults has not been well studied. Como et
al. [7] studied the resilience of distributed routing in the face
of physical disruptions to link capacities in a dynamic flow
network. Lygeros et al. [8] proposed a conceptual framework
for fault-tolerant traffic management, but the concrete algo-
rithms are still yet to be developed. A body of work on fault-
tolerant control has been developed for a class of dynamical
systems [9], [10], [11]. However, very limited results are
available for recurrent and random faults. In addition, there
exist some results on adaptive/learning-based fault-tolerant
control with applications in electrical/mechanical/aerospace
engineering [12], [13], [14], but these results are not directly
applicable to ITS, nor do they explicitly consider stochastic
sensing faults.

Our modeling approach is innovative in that we model the
occurrence and clearance of sensing faults as a finite-state,
continuous-time Markov process. If the sensing on a link is
normal, travelers know the true traffic state (traffic density) on
the link. If the sensing is faulty, the traffic state will appear to
be zero to the travelers. Besides such denial-of-service, our



modeling approach can also be extended to incorporate other
forms of sensing faults, such as bias and distortion. We adopt
the classical logit model [15] for routing; the essential
principle of this model is that more traffic will go to a less
congested link. When the sensing on a link is faulty, travelers
may mistakenly consider a congested link to be uncongested.
We show that such faulty information may affect the
network’s throughput. The discrete states of the Markov
process are essentially modes for the flow dynamics, which
govern the evolution of the continuous states. Hence, our
model belongs to a class of stochastic processes called
piecewise-deterministic Markov processes [16], [17]. Similar
models have been used for demand/capacity fluctuations [18],
[19]; this paper extends the modeling approach to sensing
faults.

A key step for resilience analysis is to determine the stability
of the traffic densities under various combinations of
parameters. We study the stability of the network based on the
theory of continuous-time Markov processes [20]. We de- rive
a necessary condition for stability by constructing a positively
invariant set for the dynamic flow network. We derive a
sufficient condition by considering a quadratic, switched
Lyapunov function that verifies the Foster-Lyapunov drift
condition. We exploit a special property of the flow dynamics,
called cooperative dynamics [21], [22], to derive an easy-to-
check stability criterion, which states that the network is stable
if there exists a queuing state such that the rate of change of
the fastest growing queue averaged over the modes is
negative.

Based on the stability analysis, we analyze the network’s
throughput (resilience score). We define throughput as the
maximal inflow that the network can take while maintaining
stable. As a baseline, we first study the behavior of the
network if both links have the same flow functions. We
perturb the baseline in multiple dimensions (probability and
correlation of sensing faults on two links) and analyze how
throughput can be affected. We also show that throughput
reduces as the two link’s asymmetry increases.

The main contributions of this paper include (i) a novel
stochastic model for sensing fault-prone transportation net-
works, (ii) easy-to-check stability conditions for the network,
and (iii) resilience analysis under various settings. The rest of
this paper is organized as follows. In Section II, we introduce
the dynamic flow model with sensing faults. In Section III, we
establish the stability conditions. In Section IV, we study the
resilience score under various scenarios. In Section V, we
summarize the conclusions and mention several future
directions.

II. DYNAMIC FLOW MODEL WITH SENSING FAULTS

Consider the two-link network in Fig. 1. Let U, (t) be the flow
into link k € {1, 2} and X, (t) be the traffic density of link k
at time t. The capacity of link k is F,, € [0, 1] where F; +
F, = 1. The flow out of link k is fi(X,(t)), which is
specified by the flow function

fuCa) = Fk(l—e ™), k= 1,2.

The source node is subject to a constant demand n > 0, which
is considered as a model parameter rather than a state or input
variable in the subsequent analysis.

Ui XA
n =
© (®)
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Fig. 1: The two-link network facing the sensing faults.

Travelers can observe the state X(t) . However, the
observation is not always accurate. We consider the sensing
on each link to be stochastically switching between a “good”
and a “bad” mode. That is, we consider aset S = {1,2,3,4}
of sensing fault modes. Each mode s € S is characterized by
a fault mapping T, : RZ, - R2, such that

=[] 10 = 2] rco = (5] meo = [3)

In mode s, the observed state is X = Ty(x). At the source
node, the demand 7 is distributed to each link according to a
routing policy u: RZ, — R2, , which specifies the fraction of
inflow that goes to each link according to the logit model
e Bk
mx) = o——p7, k=12
k ?:1 e Bx j
Note that the routing is based on the observed state rather than

the true state.

For notational convenience, with a slight abuse of notation, we
write u(s,x) = M(Ts(x)). That is, the routing policy can be
viewed as a switching function u: S X RZ, — [0,1]? with a
discrete argument s € S and a continuous argument x €
RZ,. Finally, we emphasize that we consider  as a model
parameter rather than a state or input variable in the
subsequent analysis.

Then, we define the dynamics of the hybrid-state process
{(S(t),X(t));t > 0} as follows. The discrete-state process
{S(t);t > 0} of the mode is a time-invariant finite-state
Markov process that is independent of the continuous-state
process {X(t); t > 0} of the traffic densities. The state space
of the finite-state Markov process is S. The transition rate from
mode s to mode s; is A, . Without loss of generality, we
assume that Ag¢ = 0 for all s € S [23]. Hence, the discrete-
state process evolves as follows:

Pr{S(t + 6) = s'|S(t) = s} = A58 + 0(6),
Vs' #s,Vs ES.
where § denotes infinitesimal time. We assume that the

discrete-state process is ergodic [24] and admits a unique
steady-state probability distribution {p,; s € S} satisfying

Ds Z /15,5' = 2 ps'As',s' Vs €5,

S #S S #S



The continuous-state process {X(t);t > 0} is defined as
follows. For any initial condition S(0) = sand X(0) = «x,

d
2%k = (S, X(®) — fu(X(®),
t=>0k=12.

Note that the routing policy u and the flow function f ensure
that X (t) is continuous in t. We can define the flow dynamics
with a vector field G: S x RZ, » R? as follows:
G(s,x) = nu(s,x) — f(x). The joint evolution of S(t) and
X(t) is in fact a piecewise-deterministic Markov process and
can be described compactly using an infinitesimal generator

£g(s, %) = (qu(s,x) = £()) Vg (s, %)
+ 3 ae(g(s'0 - g(s,)

s'es
for any differentiable function g.

The network is stable if there exists Z < oo such that for any
initial condition (s, x) € S X RZ,

1 t
lim supt_,oo?f E[|X(r)|]ldr < Z.
r=0

This notion of stability follows a classical definition [25],
some authors name it as “first-moment stable” [26]. The rest
of this paper is devoted to establishing and analyzing the
relation between the stability of the continuous-state process
{X(t);t > 0} and the demand 7.

III.  STABILITY ANALYSIS
The main result of this section is as follows.

Theorem 1. Consider two parallel links with sensors switching
between two modes as defined in section II.

1) A necessary condition for stability is that
1 1 <
n (ml’z + §P4) < F,

1 1
(e tam) <P
n<1
where X is the solution to

e_sz

- = — e %Xk
771 +e—5£k Fk(l e )

fork = 1,2.

2) A sufficient condition for stability is that there exists
0 € RZ, such that

- e BTsk(6k) ]
—_ — e Yk
z Ps kren{?,)z(} {n e_BTs,k(ez) + e_BTS,k(el) Fk(l e )}
s=1

<0.

The rest of this subsection is devoted to the proof of the above
result.
A. Proof of necessary condition

An apparent necessary condition for stability is n < 1. If this
does not hold, then the network is unstable even in the absence

of sensing faults [27]. First, an invariant set of the process
{X();t > 0}isM = [x;,0) X [x5,00). To see this, note
that for any s € S and for any (x;, x,) € M€, the vector G of
time derivatives of the traffic densities has a non-zero
component that points to the interior of the invariant set M;
see Fig. 2.

(a) s=1

Fig. 2: Illustration of the continuous state process and the invariant set M.
The arrows represent the vector field G defined in (6) for the four states.

Second, by ergodicity of the process {(S(t), X(t));t > 0},
we have for k € {1,2},

t
X () = X, (0) = f (ue (@) — £ (@),
=0

where u, () and f; (7) are inflow and outflow of link k at
time 7. Since gim%Xk(O) =0 and }im%Xk(t) =0 as,
then

1 t
0= }Ln;;(f (uk(T) - fk(T))dT + X, (0) — Xk(t)>
0

1 rt
- th—g?]o (w (@ = fi(®)dr a.s.

Note that fi(t) < F, foranyt > 0and k € {1, 2}, hence
1t 1t 1t

tllrg? | u(t)dr = tll_)rg?-l; fr(mdr < tll_)rg;-l; F.dt

= Fk'

According to the definition of steady-state probability,
1 t

lim — HS(T)=SdT = Ds,»
tJo

t—>oo

a.s. Vs € S.

Combining with (10), we obtain

1 t 1 t
F, = lim—f uy (t)dr = lim—f nul(S(T),X(T))dT
tooo t 0 tooo t 0

t—ooo

4
1 t
=7 lim ?ZJ’ Isy=st1 (S(T), X (x))dz
s=1"0

1 t
> n lim ? (J’ ]15(,)=10d‘[
0

t—ooo

¢ 1
], oms g
t t 1
+f HS(T):SOdT-l_f ]IS(T)=4—dT
0 0 2
1 t
=7 (ﬁf fsw=247
1. 1t
* ziziz,zfo Iso=edt

_ &) &)
_”(1+e—ﬁzz+ 2)

which gives (8a). We can prove (8b) in a similar way.



B. Proof of sufficient condition

Suppose that there exists a vector § € RZ, satisfying (9).
Then, for the hybrid process {(S(t), X(t));t > 0}, consider
the Lyapunov function

1
V(s,x) = E((’H =04+ (x; — 92)+)2
+ as(( — 014 + (xz — 63)4)

where (x;, — 0;)+ = max{0,x;, — 0}, k = 1,2, and the
coefficients as are given by

a;
a;
as
ay
_ -1
T
i#1 /‘{13 /114— G— _ G(l, 9)
| —Z Aai 2 G —-G2,0)
i#2 G—-G(3,0)
Az Az - Z Asi A 1
1 0 i#3
0 0

where G is defined in (7) and G = Y..espsG (s, 8). Based on
the ergodicity assumption of the mode switching process, the
matrix in the above must be invertible. This Lyapunov
function is valid in that V (s,x) — oo as|x| — oo for all s.
Define
D, = krg{elig}(uk(s. 0) — f(6)), s €S.

The Lyapunov function V essentially penalizes the quantity
(x —6), , which can be viewed as a “derived state”.
Apparently, boundedness of X(t) is equivalent to the
boundedness of (X (t) — ). Note that the dynamic equation
ofthe derived state (x — 0), is slightly different from that of
X

%(Xk(t) — 0+ = D (S, X(®))
(S, X®) - fi(X@®)  Xe(®) > 6y,
(1@, X () = fu(X(©)) | Xu(®) = 61 k=12
0 otherwise,

Applying the infinitesimal generator to the Lyapunov
function, we obtain

2 2
(s = ) D50 = 0

k=1j=1
2
+ Z <As,s’(as’ - as) Z(xk - 9k)+>
s'#s k=1
2
+ Z as Dy (S, x)
k=1

= (22: Dy (s,x)
k=1

+ Z As,s’(as’ - as)) |(xk - 9k)+|

s'#s

2
+ z as 1Dy (s, x).
k=1

This proof establishes the stability of the process
{(S(6),X(t));t > 0} by verifying that the Lyapunov
function V as defined above satisfies the Foster-Lyapunov
drift condition for stability

LV(s,x) < —clx| +d V(s,x) €S x RZ,

forsome ¢ > Oandd < oo, where |x]| is the one-norm of x;
this condition will imply (8). To proceed, we partition RZ,,
the space of x, into two subsets:

x0={x:OSXS9},x1=xg;

that is, X, and X; are the complement to each other in the
space R2,. In the rest of this proof, we first verify (16) over
X, and then over X;. To verify (16) over X,, note that u and f
are bounded functions, so, for any as, there exists d < oo
such that

2
dy = a; ) Di(s,x) V(s,x) €S X RZ,.
k=1

In addition, (x, — 6,); = 0, k = 1,2,...,K for all x €
X; this and (15) imply LV (s, x) < d,. Furthermore, for any
¢ > 0, there exists d, = c|0] such that d, = c|x| for all
x € X,.Hence, lettingd = d; + d,, we have

LV(s,x) < —c|x| +d V(s,x) €S X X,.

To verify (16) over X;, we further decompose X; into the
following subsets:

Xt ={x €eX;:ix; = 6,,x, <6},
X2 ={x€X:x;, <01,x, > 0,},
X2 ={x €Xyix; =6,x, = 0,}.

For each x € X1, we have



LV (s,x) = (DI(S, x) + Z ls,s’(as’ - as)) [(x — 0)4]

s'#s
2
+ ag Z Dy (s, x)
k=1

< (/-41(5' x) — f1(x1))

£ Aglag —ap) | 16— 0),l + dy

s'#s
< (sos £ dggay - as)> [CRON
s'#s
+ d1|

From the definition of a,, we have

1
D5+ z As,s’(as’ - as) = Z Z PsiDsi-

s'#s s’es

The above and (20) imply
LV (s, %) < 7 (Tyres P Dy x| +d, x € X1,

1
Letc == — ;Zs’es ps,Ds,. Hence, we have

LV(s,x) < —clx| +d V(s,x) €S x X}
Analogously, we can show
LV(s,x) < —clx| +d V(s,x) €S x (X2 uUX3),

IV. RESILIENCE ANALYSIS

In this section, we study the resilience score, i.e. the
guaranteed throughput (the supremum of 7 that maintains
stability), under various scenarios. We first consider two
symmetric links and focus on the impact of transition rates of
the discrete state (Section IV-A). Then, we study how the
throughput varies with the asymmetry of the links (Section IV-
B).

A. Impact of transition rates

If the two links are homogeneous in the sense that they have
same flow functions f; = f,, we have the main result of this
section as follows:

Proposition 1. For the homogeneous network, the resilience
score " , i.e. the guaranteed throughput has a lower bound of

1
nt=—
1+p,+p;

Proof': The lower bound results from the sufficient condition
in Theorem 1.

Next, we discuss how characteristics of link failures
(specifically, link failure rate and link failure correlation)
affect the resilience score.

Link failure rate: Suppose that the health of each link is
independent of the other link. Furthermore, suppose that the
failure rates of both links are identical, denoted as p, then

P2t Ps =P =D3+tDs
. 1 _ 1
T " Top,+p; 1+2p(-p)
When the link failure rate is either O or 1, the two-link network
becomes open-loop, the lower bound can naturally be 1. The

lower bound reaches minimum when the link failure rate is
0.5; see Fig. 3.

1 1
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link failure rate p

link failure correlation p

Fig. 3: Impact of link failure probability (p = 0) and link failure
correlation (p = 0.5) on the lower bound of resilience score.

Link failure correlation: Suppose that the health of each link
is correlated with the other link while the failure rates of both
links are still identical. Denote the correlation as p, then
_Pa—(P2+p)@s+p) _P—P2— P
\ P2P3 p

i 1 1
n = = .
= 1+p,+ps 1+2p(1-p—-p)

As the link failure correlation increases from —p to1 — p,
the lower bound increases from ﬁ to 1. When the failure of

the two links are strongly (positively) correlated, the two-link
network also turns to be open-loop and hence the lower bound
reaches 1; see Fig. 3.

Now we relax the assumption of symmetric links and allow
F, # F,. Without loss of generality, we assume that F; > F,.
Instead, we will consider symmetric failure rate, i.e. p, = ps.
The following result links the resilience score to |F; — F,|,
which quantifies the asymmetry of links:

Proposition 2. Suppose that p, = p; and F; = F,. Then,
the resilience score has a lower bound of

1=(Fi—F) 1-p,(F, - F,)
1-pn ° 1+2p,

Now we are ready to discuss how link capacity difference
affects the resilience score. When F; = F,, the lower bound

nt = min{

is Tozmy’ in consistence with our lower bound in subsection
2

4.1, and the upper bound is 1 (note that when

V2 max{p2,p3} + p4 < 1,wecanderiven < 1 from the
necessary condition).

As F; — F, increases, the lower bound gradually drops and
after certain point, it drops faster to 0 while the upper bound
remains 1 for a while and then drops to 0. It means that when
the difference between two link capacities gets larger, one link
starts getting more congested than the other, then the system
can be less stable.



When F; = 1, F, — 0, the network has weak resilience to
the sensing faults and the resilience score tends to be zero.

V. CONCLUDING REMARKS

In this paper, we propose a two-link dynamic flow model with
sensing faults to study the stability conditions and guaranteed
throughput of the network. Based on this model, we are able
to derive lower and upper bounds of the resilience score and
analyze the impact of transition rates and heterogeneous link
capacities on them. This work can be extended in several
directions. First, we can consider a complicated network with
k links (not necessarily parallel) rather than a simple two
parallel link network. Second, other forms of flow functions
can be assumed in the model. Third, the logit model can be
replaced with other routing polices. Last, several variations of
fault modes can also be discussed.
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