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Resilience of Dynamic Routing in the Face of 

Recurrent and Random Sensing Faults 

Qian Xie and Li Jin 

Abstract—Feedback dynamic routing is a commonly used 

control strategy in transportation systems. This class of control 

strategies rely on real-time information about the traffic state in 

each link. However, such information may not always be 

observable due to temporary sensing faults. In this article, we 

consider dynamic routing over two parallel routes, where the 

sensing on each link is subject to recurrent and random faults. 

The faults occur and clear according to a finite-state Markov 

chain. When the sensing is faulty on a link, the traffic state on 

that link appears to be zero to the controller. Building on the 

theories of Markov processes and monotone dynamical systems, 

we derive lower and upper bounds for the resilience score, i.e. 

the guaranteed throughput of the network, in the face of sensing 

faults by establishing stability conditions for the network. We 

use these results to study how a variety of key parameters affect 

the resilience score of the network. The main conclusions are: (i) 

Sensing faults can reduce throughput and destabilize a 

nominally stable network; (ii) A higher failure rate does not 

necessarily reduce throughput, and there may exist a worst rate 

that minimizes throughput; (iii) Higher correlation between the 

failure probabilities of two links leads to greater throughput; 

(iv) A large difference in capacity between two links can result 

in a drop in throughput.  

Keywords—Traffic control, cooperative dynamical systems, 

piecewise-deterministic Markov processes, sensing faults.  

I. INTRODUCTION 

The rapidly growing deployment of traffic sensing and 

vehicle-to-vehicle/infrastructure (V2V/V2I) communications 

has enabled the concept of intelligent transportation system 

(ITS). In ITS, system operators and travelers have access to 

real-time traffic conditions and can thus make better decisions. 

Dynamic routing is a typical ITS capability, which is 

conducted via route guidance tools such as Google Maps and 

WAZE. System operators can also influence routing via 

tolling and instructions for traffic diversion, which also rely 

on real-time traffic conditions. A major challenge for dynamic 

routing in ITS is how to ensure system functionality and 

efficiency under a variety of sensing faults. Quality of sensing 

and communications significantly affects system 

performance. However, data health is a serious issue that 

system operators must face. On some highways, up to 30%- 

40% of loop sensors do not report accurate measurements [1], 

[2]; similar issue exists for camera sensors. Even though some  

routing guidance tools may have certain internal fault 

detection and correction actions, the benefits of such actions 

can be further evaluated. Moreover, without appropriate fault-

tolerant mechanisms, feedback control algorithms may make 

decisions based on wrong information, and ITS may even 

perform worse than a comparable conventional transportation 

system. Therefore, ITS will not be well accepted by the public 

and transportation authorities unless the impact of sensing 

faults is adequately evaluated and addressed. However, such 

impact has not been well understood, and practically relevant 

fault-tolerant routing algorithms have not been developed.  

In this paper, we propose a novel model that synthesizes traffic 

flow dynamics and stochastic sensing faults. Based on this 

model, we evaluate the impact of faults on fault- unaware 

routing algorithm and derive practically relevant insights for 

designing fault-tolerant routing algorithms in ITS. We 

consider the routing problem over two parallel links, as shown 

in Fig. 1. Our approach and results can be extended to more 

complex networks and a broader class of ITS control 

capabilities, such as ramp metering and speed limit control. 

We consider a stochastic model, since in practice it is not easy 

to deterministically predict when and where a sensing fault 

will occur. We will show that this model leads to tractable 

analysis and insightful results for fault-tolerant design of ITS. 

We study the stability and guaranteed throughput of the 

network, which we consider as the resilience score. We also 

establish the link between the resilience score and key model 

parameters, including the number of fault-prone links and the 

average frequency and duration of faults.  

Existing model-based traffic management approaches 

typically assume complete knowledge of the traffic condition 

[3], [4], [5], [6], but feedback traffic management for ITS in 

the face of sensing faults has not been well studied. Como et 

al. [7] studied the resilience of distributed routing in the face 

of physical disruptions to link capacities in a dynamic flow 

network. Lygeros et al. [8] proposed a conceptual framework 

for fault-tolerant traffic management, but the concrete algo- 

rithms are still yet to be developed. A body of work on fault- 

tolerant control has been developed for a class of dynamical 

systems [9], [10], [11]. However, very limited results are 

available for recurrent and random faults. In addition, there 

exist some results on adaptive/learning-based fault-tolerant 

control with applications in electrical/mechanical/aerospace 

engineering [12], [13], [14], but these results are not directly 

applicable to ITS, nor do they explicitly consider stochastic 

sensing faults.  

Our modeling approach is innovative in that we model the 

occurrence and clearance of sensing faults as a finite-state, 

continuous-time Markov process. If the sensing on a link is 

normal, travelers know the true traffic state (traffic density) on 

the link. If the sensing is faulty, the traffic state will appear to 

be zero to the travelers. Besides such denial-of-service, our 
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modeling approach can also be extended to incorporate other 

forms of sensing faults, such as bias and distortion. We adopt 

the classical logit model [15] for routing; the essential 

principle of this model is that more traffic will go to a less 

congested link. When the sensing on a link is faulty, travelers 

may mistakenly consider a congested link to be uncongested. 

We show that such faulty information may affect the 

network’s throughput. The discrete states of the Markov 

process are essentially modes for the flow dynamics, which 

govern the evolution of the continuous states. Hence, our 

model belongs to a class of stochastic processes called 

piecewise-deterministic Markov processes [16], [17]. Similar 

models have been used for demand/capacity fluctuations [18], 

[19]; this paper extends the modeling approach to sensing 

faults.  

A key step for resilience analysis is to determine the stability 

of the traffic densities under various combinations of 

parameters. We study the stability of the network based on the 

theory of continuous-time Markov processes [20]. We de- rive 

a necessary condition for stability by constructing a positively 

invariant set for the dynamic flow network. We derive a 

sufficient condition by considering a quadratic, switched 

Lyapunov function that verifies the Foster-Lyapunov drift 

condition. We exploit a special property of the flow dynamics, 

called cooperative dynamics [21], [22], to derive an easy-to-

check stability criterion, which states that the network is stable 

if there exists a queuing state such that the rate of change of 

the fastest growing queue averaged over the modes is 

negative.  

Based on the stability analysis, we analyze the network’s 

throughput (resilience score). We define throughput as the 

maximal inflow that the network can take while maintaining 

stable. As a baseline, we first study the behavior of the 

network if both links have the same flow functions. We 

perturb the baseline in multiple dimensions (probability and 

correlation of sensing faults on two links) and analyze how 

throughput can be affected. We also show that throughput 

reduces as the two link’s asymmetry increases.  

The main contributions of this paper include (i) a novel 

stochastic model for sensing fault-prone transportation net- 

works, (ii) easy-to-check stability conditions for the network, 

and (iii) resilience analysis under various settings. The rest of 

this paper is organized as follows. In Section II, we introduce 

the dynamic flow model with sensing faults. In Section III, we 

establish the stability conditions. In Section IV, we study the 

resilience score under various scenarios. In Section V, we 

summarize the conclusions and mention several future 

directions.  

II. DYNAMIC FLOW MODEL WITH SENSING FAULTS 

Consider the two-link network in Fig. 1. Let 𝑈𝑘(𝑡) be the flow 

into link 𝑘 ∈ {1, 2} and 𝑋𝑘(𝑡) be the traffic density of link 𝑘 

at time 𝑡. The capacity of link k is 𝐹𝑘  ∈  [0, 1] where 𝐹1  +

 𝐹2  =  1 . The flow out of link k is 𝑓𝑘(𝑋𝑘(𝑡)) , which is 

specified by the flow function 

𝑓𝑘(𝑥𝑘)  =  𝐹𝑘(1 − 𝑒−𝑥𝑘  ), 𝑘 =  1, 2. 

The source node is subject to a constant demand η ≥ 0, which 

is considered as a model parameter rather than a state or input 

variable in the subsequent analysis. 

  

Fig. 1: The two-link network facing the sensing faults. 

Travelers can observe the state 𝑋(𝑡) . However, the 

observation is not always accurate. We consider the sensing 

on each link to be stochastically switching between a “good” 

and a “bad” mode. That is, we consider a set 𝑆 =  {1, 2, 3, 4} 
of sensing fault modes. Each mode 𝑠 ∈  𝑆 is characterized by 

a fault mapping 𝑇𝑠 ∶  ℝ≥0
2 → ℝ≥0

2  such that 

𝑇1(𝑥) = [
𝑥1

𝑥2
] , 𝑇2(𝑥) = [

0
𝑥2

] , 𝑇3(𝑥) = [
𝑥1

0
] , 𝑇4(𝑥) = [

0
0
]. 

In mode 𝑠 , the observed state is 𝑥̂ = 𝑇𝑠(𝑥) . At the source 

node, the demand 𝜂 is distributed to each link according to a 

routing policy 𝜇:ℝ≥0
2 → ℝ≥0

2  , which specifies the fraction of 

inflow that goes to each link according to the logit model 

𝜇𝑘(𝑥) =
𝑒−𝛽𝑥𝑘

∑ 𝑒−𝛽𝑥𝑗2
𝑗=1

, 𝑘 = 1,2. 

Note that the routing is based on the observed state rather than 

the true state. 

For notational convenience, with a slight abuse of notation, we 

write 𝜇(𝑠, 𝑥) = 𝜇(𝑇𝑠(𝑥)). That is, the routing policy can be 

viewed as a switching function 𝜇: 𝑆 × ℝ≥0
2  →  [0, 1]2 with a 

discrete argument 𝑠 ∈  𝑆  and a continuous argument 𝑥 ∈
ℝ≥0

2 . Finally, we emphasize that we consider 𝜂  as a model 

parameter rather than a state or input variable in the 

subsequent analysis. 

Then, we define the dynamics of the hybrid-state process 

{(𝑆(𝑡), 𝑋(𝑡)); 𝑡 >  0} as follows. The discrete-state process 

{𝑆(𝑡); 𝑡 >  0}  of the mode is a time-invariant finite-state 

Markov process that is independent of the continuous-state 

process {𝑋(𝑡); 𝑡 >  0} of the traffic densities. The state space 

of the finite-state Markov process is S. The transition rate from 

mode 𝑠 to mode 𝑠0  is 𝜆𝑠,𝑠0 . Without loss of generality, we 

assume that 𝜆𝑠,𝑠 = 0 for all 𝑠 ∈  𝑆 [23]. Hence, the discrete-

state process evolves as follows: 

Pr{𝑆(𝑡 + 𝛿) = 𝑠′|𝑆(𝑡) = 𝑠} = 𝜆𝑠,𝑠′𝛿 + 𝑜(𝛿),

∀𝑠′ ≠ 𝑠, ∀𝑠 ∈ 𝑆. 

where 𝛿  denotes infinitesimal time. We assume that the 

discrete-state process is ergodic [24] and admits a unique 

steady-state probability distribution {𝑝𝑠;  𝑠 ∈  𝑆} satisfying 

𝑝𝑠 ∑ 𝜆𝑠,𝑠′ = ∑ 𝑝𝑠′𝜆𝑠′,𝑠,

𝑠′≠𝑠𝑠′≠𝑠 

 ∀𝑠 ∈ 𝑆, 

𝑝𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 

∑𝑝𝑠

𝑠∈𝑆

= 1. 



The continuous-state process {𝑋(𝑡); 𝑡 >  0}  is defined as 

follows. For any initial condition 𝑆(0)  =  𝑠 and 𝑋(0)  =  𝑥, 

𝑑

𝑑𝑡
𝑋𝑘(𝑡) = 𝜂𝜇𝑘(𝑆(𝑡), 𝑋(𝑡)) − 𝑓𝑘(𝑋(𝑡)),

𝑡 ≥ 0, 𝑘 = 1,2. 

Note that the routing policy 𝜇 and the flow function 𝑓 ensure 

that 𝑋(𝑡) is continuous in 𝑡. We can define the flow dynamics 

with a vector field 𝐺 ∶  𝑆 ×  ℝ≥0
2  →  ℝ2  as follows: 

𝐺(𝑠, 𝑥) ≔ 𝜂𝜇(𝑠, 𝑥) − 𝑓(𝑥). The joint evolution of 𝑆(𝑡) and 

𝑋(𝑡) is in fact a piecewise-deterministic Markov process and 

can be described compactly using an infinitesimal generator  

ℒ𝑔(𝑠, 𝑥) = (𝜂𝜇(𝑠, 𝑥) − 𝑓(𝑥))
𝑇
∇𝑥𝑔(𝑠, 𝑥)

+ ∑ 𝜆𝑠,𝑠′(𝑔(𝑠′, 𝑥) − 𝑔(𝑠, 𝑥))

𝑠′∈𝑆

. 

for any differentiable function 𝑔.  

The network is stable if there exists 𝑍 <  ∞ such that for any 

initial condition (𝑠, 𝑥) ∈ 𝑆 × ℝ≥0
2  

lim sup𝑡→∞

1

𝑡
∫ 𝐸[|𝑋(𝑟)|]𝑑𝑟 ≤ 𝑍.

𝑡

𝑟=0

 

This notion of stability follows a classical definition [25], 

some authors name it as “first-moment stable” [26]. The rest 

of this paper is devoted to establishing and analyzing the 

relation between the stability of the continuous-state process 

{𝑋(𝑡); 𝑡 >  0} and the demand 𝜂. 

III. STABILITY ANALYSIS 

The main result of this section is as follows. 

Theorem 1. Consider two parallel links with sensors switching 

between two modes as defined in section II. 

1) A necessary condition for stability is that 

𝜂 (
1

𝑒−𝛽𝑥2 + 1
𝑝2 +

1

2
𝑝4) ≤ 𝐹1, 

𝜂 (
1

𝑒−𝛽𝑥1 + 1
𝑝3 +

1

2
𝑝4) ≤ 𝐹1, 

𝜂 < 1. 

where 𝑥𝑘 is the solution to 

𝜂
𝑒−𝛽𝑥𝑘

1 + 𝑒−𝛽𝑥𝑘
= 𝐹𝑘(1 − 𝑒−𝑥𝑘) 

for 𝑘 =  1, 2. 

2) A sufficient condition for stability is that there exists 

𝜃 ∈ ℝ≥0
2  such that 

∑𝑝𝑠 max
𝑘∈{1,2}

{𝜂
𝑒−𝛽𝑇𝑠,𝑘(𝜃𝑘)

𝑒−𝛽𝑇𝑠,𝑘(𝜃2) + 𝑒−𝛽𝑇𝑠,𝑘(𝜃1)
− 𝐹𝑘(1 − 𝑒−𝜃𝑘)}

4

𝑠=1

< 0. 

The rest of this subsection is devoted to the proof of the above 

result. 

A. Proof of necessary condition 

An apparent necessary condition for stability is 𝜂 < 1. If this 

does not hold, then the network is unstable even in the absence 

of sensing faults [27]. First, an invariant set of the process 

{𝑋(𝑡); 𝑡 >  0} is 𝑀 =  [𝑥1 , ∞)  ×  [𝑥2 , ∞). To see this, note 

that for any 𝑠 ∈  𝑆 and for any (𝑥1, 𝑥2) ∈ 𝑀𝑐, the vector 𝐺 of 

time derivatives of the traffic densities has a non-zero 

component that points to the interior of the invariant set 𝑀; 

see Fig. 2. 

 

Fig. 2: Illustration of the continuous state process and the invariant set 𝑴. 

The arrows represent the vector field 𝑮 defined in (6) for the four states. 

Second, by ergodicity of the process {(𝑆(𝑡), 𝑋(𝑡)); 𝑡 >  0}, 
we have for 𝑘 ∈  {1, 2}, 

𝑋𝑘(𝑡) = 𝑋𝑘(0) = ∫ (𝑢𝑘(𝜏) − 𝑓𝑘(𝜏))𝑑𝜏
𝑡

𝜏=0

, 

where 𝑢𝑘(𝜏) and 𝑓𝑘(𝜏) are inflow and outflow of link k at 

time 𝜏 . Since lim
𝑡→∞

1

𝑡
𝑋𝑘(0) = 0  and lim

𝑡→∞

1

𝑡
𝑋𝑘(𝑡)  =  0  a.s., 

then 

0 = lim
𝑡→∞

1

𝑡
(∫ (𝑢𝑘(𝜏) − 𝑓𝑘(𝜏))𝑑𝜏

𝑡

0

+ 𝑋𝑘(0) − 𝑋𝑘(𝑡))

= lim
𝑡→∞

1

𝑡
∫ (𝑢𝑘(𝜏) − 𝑓𝑘(𝜏))𝑑𝜏

𝑡

0

  𝑎. 𝑠. 

Note that 𝑓𝑘(𝜏) ≤ 𝐹𝑘 for any 𝜏 ≥  0 and 𝑘 ∈  {1, 2}, hence 

lim
𝑡→∞

1

𝑡
∫ 𝑢𝑘(𝜏)𝑑𝜏

𝑡

0

= lim
𝑡→∞

1

𝑡
∫ 𝑓𝑘(𝜏)𝑑𝜏

𝑡

0

≤ lim
𝑡→∞

1

𝑡
∫ 𝐹𝑘𝑑𝜏

𝑡

0

= 𝐹𝑘 . 

According to the definition of steady-state probability, 

lim
𝑡→∞

1

𝑡
∫ 𝕀𝑆(𝜏)=𝑠𝑑𝜏

𝑡

0

= 𝑝𝑠 , 𝑎. 𝑠.  ∀𝑠 ∈ 𝑆. 

Combining with (10), we obtain 

𝐹1 ≥ lim
𝑡→∞

1

𝑡
∫ 𝑢1(𝜏)𝑑𝜏

𝑡

0

= lim
𝑡→∞

1

𝑡
∫ 𝜂𝜇1(𝑆(𝜏), 𝑋(𝜏))𝑑𝜏

𝑡

0

= 𝜂 lim
𝑡→∞

1

𝑡
∑∫ 𝕀𝑆(𝜏)=𝑠𝜇1(𝑆(𝜏), 𝑋(𝜏))𝑑𝜏

𝑡

0

4

𝑠=1

≥ 𝜂 lim
𝑡→∞

1

𝑡
(∫ 𝕀𝑆(𝜏)=10𝑑𝜏

𝑡

0

+ ∫ 𝕀𝑆(𝜏)=2

1

1 + 𝑒−𝛽𝑥2
 𝑑𝜏

𝑡

0

+ ∫ 𝕀𝑆(𝜏)=30𝑑𝜏
𝑡

0

+ ∫ 𝕀𝑆(𝜏)=4

1

2
𝑑𝜏

𝑡

0

)

= 𝜂 (
1

1 + 𝑒−𝛽𝑥2
∫ 𝕀𝑆(𝜏)=2𝑑𝜏

𝑡

0

+
1

2
lim
𝑡→∞

1

𝑡
∫ 𝕀𝑆(𝜏)=4𝑑𝜏

𝑡

0

)

= 𝜂 (
𝑝2

1 + 𝑒−𝛽𝑥2
+

𝑝4

2
), 

which gives (8a). We can prove (8b) in a similar way. 



B. Proof of sufficient condition 

Suppose that there exists a vector 𝜃 ∈ ℝ≥0
2   satisfying (9). 

Then, for the hybrid process {(𝑆(𝑡), 𝑋(𝑡)); 𝑡 >  0}, consider 

the Lyapunov function 

𝑉(𝑠, 𝑥) =
1

2
((𝑥1 − 𝜃1)+ + (𝑥2 − 𝜃2)+)2

+ 𝑎𝑠((𝑥1 − 𝜃1)+ + (𝑥2 − 𝜃2)+) 

where (𝑥𝑘  −  𝜃𝑘)+ =  𝑚𝑎𝑥{0, 𝑥𝑘  −  𝜃𝑘}, 𝑘 =  1, 2, and the 

coefficients as are given by 

[

𝑎1

𝑎2
𝑎3

𝑎4

]

=

[
 
 
 
 
 
 
 −∑𝜆1𝑖

𝑖≠1

𝜆12

𝜆21 −∑𝜆2𝑖

𝑖≠2

𝜆13 𝜆14

𝜆23 𝜆24

𝜆31 𝜆32

1 0

−∑ 𝜆3𝑖

𝑖≠3

𝜆34

0 0 ]
 
 
 
 
 
 
 
−1

[
 
 
 
𝐺̅ − 𝐺(1, 𝜃)

𝐺̅ − 𝐺(2, 𝜃)

𝐺̅ − 𝐺(3, 𝜃)
1 ]

 
 
 

 

where 𝐺 is defined in (7) and  𝐺̅ =  ∑ 𝑝𝑠𝐺(𝑠, 𝜃)𝑠∈𝑆 . Based on 

the ergodicity assumption of the mode switching process, the 

matrix in the above must be invertible. This Lyapunov 

function is valid in that 𝑉 (𝑠, 𝑥)  →  ∞ as |𝑥| →  ∞ for all 𝑠. 

Define 

𝔇𝑠 = max
𝑘∈{1,2}

(𝜇𝑘(𝑠, 𝜃) − 𝑓𝑘(𝜃𝑘)),   𝑠 ∈ 𝑆. 

The Lyapunov function 𝑉 essentially penalizes the quantity 

(𝑥 − 𝜃)+ , which can be viewed as a “derived state”. 

Apparently, boundedness of 𝑋(𝑡)  is equivalent to the 

boundedness of (𝑋(𝑡) −  𝜃)+ Note that the dynamic equation 

of the derived state (𝑥 −  𝜃)+ is slightly different from that of 

𝑥: 

𝑑

𝑑𝑡
(𝑋𝑘(𝑡) − 𝜃𝑘)+ = 𝐷𝑘(𝑆(𝑡), 𝑋(𝑡))

≔ {

𝜇𝑘(𝑆(𝑡), 𝑋(𝑡)) − 𝑓𝑘(𝑋(𝑡)) 𝑋𝑘(𝑡) > 𝜃𝑘,

(𝜇𝑘(𝑆(𝑡), 𝑋(𝑡)) − 𝑓𝑘(𝑋(𝑡)))
+

𝑋𝑘(𝑡) = 𝜃𝑘,

0 otherwise,

  𝑘 = 1,2. 

Applying the infinitesimal generator to the Lyapunov 

function, we obtain 

ℒ𝑉(𝑠, 𝑥) = ∑ ∑𝐷𝑗(𝑠, 𝑥)(𝑥𝑘 − 𝜃𝑘)+

2

𝑗=1

2

𝑘=1

+ ∑ (𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠) ∑(𝑥𝑘 − 𝜃𝑘)+

2

𝑘=1

)

𝑠′≠𝑠

+ ∑ 𝑎𝑠,𝑘𝐷𝑘(𝑠, 𝑥)

2

𝑘=1

= (∑ 𝐷𝑘

2

𝑘=1

(𝑠, 𝑥)

+ ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

) |(𝑥𝑘 − 𝜃𝑘)+|

+ ∑ 𝑎𝑠,𝑘𝐷𝑘(𝑠, 𝑥)

2

𝑘=1

. 

This proof establishes the stability of the process 

{(𝑆(𝑡), 𝑋(𝑡)); 𝑡 >  0}  by verifying that the Lyapunov 

function 𝑉 as defined above satisfies the Foster-Lyapunov 

drift condition for stability  

ℒ𝑉(𝑠, 𝑥) ≤ −𝑐|𝑥| + 𝑑  ∀(𝑠, 𝑥) ∈ 𝑆 × ℝ≥0
2  

for some 𝑐 >  0 and 𝑑 <  ∞, where |𝑥| is the one-norm of 𝑥; 

this condition will imply (8). To proceed, we partition ℝ≥0
2 , 

the space of 𝑥, into two subsets: 

𝒳0 = {𝑥: 0 ≤ 𝑥 ≤ 𝜃},𝒳1 = 𝒳0
𝐶 ; 

that is, 𝑋0  and 𝑋1  are the complement to each other in the 

space ℝ≥0
2 . In the rest of this proof, we first verify (16) over 

𝑋0 and then over 𝑋1. To verify (16) over 𝑋0, note that 𝜇 and 𝑓 

are bounded functions, so, for any 𝑎𝑠,𝑘, there exists 𝑑 <  ∞ 

such that 

𝑑1 ≥ 𝑎𝑠 ∑ 𝐷𝑘(𝑠, 𝑥)

2

𝑘=1

  ∀(𝑠, 𝑥) ∈ 𝑆 × ℝ≥0
2 . 

In addition, (𝑥𝑘  −  𝜃𝑘)+  =  0, 𝑘 =  1, 2, . . . , 𝐾  for all 𝑥 ∈
 𝑋0; this and (15) imply ℒ𝑉(𝑠, 𝑥) ≤ 𝑑1. Furthermore, for any 

𝑐 >  0, there exists 𝑑2  =  𝑐|𝜃 | such that 𝑑2  ≥  𝑐|𝑥| for all 

𝑥 ∈  𝑋0. Hence, letting 𝑑 =  𝑑1  +  𝑑2, we have 

ℒ𝑉(𝑠, 𝑥) ≤ −𝑐|𝑥| + 𝑑  ∀(𝑠, 𝑥) ∈ 𝑆 × 𝒳0. 

To verify (16) over 𝑋1 , we further decompose 𝑋1  into the 

following subsets: 

𝒳1
1 = {𝑥 ∈ 𝒳1: 𝑥1 ≥ 𝜃1, 𝑥2 < 𝜃2}, 

𝒳1
2 = {𝑥 ∈ 𝒳1: 𝑥1 < 𝜃1, 𝑥2 ≥ 𝜃2}, 

𝒳1
3 = {𝑥 ∈ 𝒳1: 𝑥1 ≥ 𝜃1, 𝑥2 ≥ 𝜃2}. 

For each 𝑥 ∈  𝑋1
1, we have 



ℒ𝑉(𝑠, 𝑥) = (𝐷1(𝑠, 𝑥) + ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

) |(𝑥 − 𝜃)+|

+ 𝑎𝑠 ∑ 𝐷𝑘(𝑠, 𝑥)

2

𝑘=1

≤ ((𝜇1(𝑠, 𝑥) − 𝑓1(𝑥1))

+ ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

) |(𝑥 − 𝜃)+| + 𝑑1

≤ (𝔇𝑠 + ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

) |(𝑥 − 𝜃)+|

+ 𝑑1. 

From the definition of 𝑎𝑠, we have 

𝔇𝑠 + ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

=
1

4
∑ 𝑝𝑠′𝔇𝑠′

𝑠′∈𝑆

. 

The above and (20) imply 

ℒ𝑉(𝑠, 𝑥) ≤
1

4
(∑ 𝑝𝑠′𝔇𝑠′𝑠′∈𝑆 . )|𝑥| + 𝑑, 𝑥 ∈ 𝒳1

1. 

Let 𝑐 ≔ −
1

4
∑ 𝑝𝑠′𝐷𝑠′𝑠′∈𝑆 . Hence, we have 

ℒ𝑉(𝑠, 𝑥) ≤ −𝑐|𝑥| + 𝑑  ∀(𝑠, 𝑥) ∈ 𝑆 × 𝒳1
1. 

Analogously, we can show 

ℒ𝑉(𝑠, 𝑥) ≤ −𝑐|𝑥| + 𝑑  ∀(𝑠, 𝑥) ∈ 𝑆 × (𝒳1
2 ∪ 𝒳1

3), 

IV. RESILIENCE ANALYSIS 

In this section, we study the resilience score, i.e. the 

guaranteed throughput (the supremum of 𝜂  that maintains 

stability), under various scenarios. We first consider two 

symmetric links and focus on the impact of transition rates of 

the discrete state (Section IV-A). Then, we study how the 

throughput varies with the asymmetry of the links (Section IV-

B). 

A. Impact of transition rates 

If the two links are homogeneous in the sense that they have 

same flow functions 𝑓1  =  𝑓2, we have the main result of this 

section as follows: 

Proposition 1. For the homogeneous network, the resilience 

score 𝜂∗ , i.e. the guaranteed throughput has a lower bound of 

𝜂∗ ≥
1

1 + 𝑝2 + 𝑝3

. 

Proof : The lower bound results from the sufficient condition 

in Theorem 1.  

Next, we discuss how characteristics of link failures 

(specifically, link failure rate and link failure correlation) 

affect the resilience score. 

Link failure rate: Suppose that the health of each link is 

independent of the other link. Furthermore, suppose that the 

failure rates of both links are identical, denoted as 𝑝, then 

𝑝2 + 𝑝4 = 𝑝 = 𝑝3 + 𝑝4, 

𝜂∗ =
1

1 + 𝑝2 + 𝑝3

=
1

1 + 2𝑝(1 − 𝑝)
. 

When the link failure rate is either 0 or 1, the two-link network 

becomes open-loop, the lower bound can naturally be 1. The 

lower bound reaches minimum when the link failure rate is 

0.5; see Fig. 3. 

 

Fig. 3: Impact of link failure probability (𝝆 =  𝟎) and link failure 

correlation (𝒑 =  𝟎. 𝟓) on the lower bound of resilience score. 

Link failure correlation: Suppose that the health of each link 

is correlated with the other link while the failure rates of both 

links are still identical. Denote the correlation as 𝜌, then 

𝜌 =
𝑝4 − (𝑝2 + 𝑝4)(𝑝3 + 𝑝4)

√𝑝2𝑝3

=
𝑝 − 𝑝2 − 𝑝2

𝑝
, 

𝜂∗ =
1

1 + 𝑝2 + 𝑝3

=
1

1 + 2𝑝(1 − 𝑝 − 𝜌)
. 

As the link failure correlation increases from −𝑝 to 1 −  𝑝, 

the lower bound increases from 
1

1+2𝑝
 to 1. When the failure of 

the two links are strongly (positively) correlated, the two-link 

network also turns to be open-loop and hence the lower bound 

reaches 1; see Fig. 3. 

Now we relax the assumption of symmetric links and allow 

𝐹1 ≠ 𝐹2. Without loss of generality, we assume that 𝐹1  ≥  𝐹2. 

Instead, we will consider symmetric failure rate, i.e. 𝑝2  =  𝑝3. 

The following result links the resilience score to |𝐹1  −  𝐹2|, 
which quantifies the asymmetry of links: 

Proposition 2. Suppose that 𝑝2  =  𝑝3  and 𝐹1  ≥  𝐹2 . Then, 

the resilience score has a lower bound of 

𝜂∗ ≥ min {
1 − (𝐹1 − 𝐹2)

1 − 𝑝1

,
1 − 𝑝4(𝐹1 − 𝐹2)

1 + 2𝑝2

}. 

Now we are ready to discuss how link capacity difference 

affects the resilience score. When 𝐹1  =  𝐹2, the lower bound 

is 
1

1+2𝑝2
 , in consistence with our lower bound in subsection 

4.1, and the upper bound is 1 (note that when 

√2 𝑚𝑎𝑥{𝑝2, 𝑝3}  +  𝑝4 ≤  1, we can derive 𝜂 <  1 from the 

necessary condition). 

As 𝐹1 − 𝐹2  increases, the lower bound gradually drops and 

after certain point, it drops faster to 0 while the upper bound 

remains 1 for a while and then drops to 0. It means that when 

the difference between two link capacities gets larger, one link 

starts getting more congested than the other, then the system 

can be less stable. 



When 𝐹1  →  1, 𝐹2  →  0, the network has weak resilience to 

the sensing faults and the resilience score tends to be zero. 

V. CONCLUDING REMARKS 

In this paper, we propose a two-link dynamic flow model with 

sensing faults to study the stability conditions and guaranteed 

throughput of the network. Based on this model, we are able 

to derive lower and upper bounds of the resilience score and 

analyze the impact of transition rates and heterogeneous link 

capacities on them. This work can be extended in several 

directions. First, we can consider a complicated network with 

k links (not necessarily parallel) rather than a simple two 

parallel link network. Second, other forms of flow functions 

can be assumed in the model. Third, the logit model can be 

replaced with other routing polices. Last, several variations of 

fault modes can also be discussed. 
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