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Abstract—In this article, we study the classical shortest queue 
problem under the influence of malicious attacks, which is 
relevant to a variety of engineering system including 
transportation, manufacturing, and communications. We 
consider a homogeneous Poisson arrival process of jobs and two 
parallel exponential servers with symmetric service rates. A 
system operator route incoming jobs to the shorter queue; if the 
queues are equal, the job is routed randomly. A malicious attacker 
is able to intercept the operator’s routing instruction and 
overwrite it with a randomly generated one. The operator is able 
to defend individual jobs to ensure correct routing. Both attacking 
and defending induce technological costs. The attacker’s (resp. 
operator’s) decision is the probability of attacking (resp. 
defending) the routing of each job. We first quantify the queuing 
cost for given strategy profiles by deriving a theoretical upper 
bound for the cost. Then, we formulate a nonzero-sum attacker-
defender game, characterize the equilibria in multiple regimes, 
and quantify the security risk. We find that the attacker’s best 
strategy is either to attack all jobs or not to attack, and the 
defender’s strategy is strongly influenced by the arrival rate of 
jobs. Finally, as a benchmark, we compare the security risks of the 
feedback-controlled system to a corresponding open-loop system 
with Bernoulli routing. We show that the shorter-queue policy has 
a higher (resp. lower) security risk than the Bernoulli policy if the 
demand is lower (resp. higher) than the service rate of one server. 

Keywords: Queuing systems, dynamic routing, attacker-defender 
game, security 

I. INTRODUCTION 
The shorter-queue policy is a classical routing policy 

applicable to a variety of engineering systems, including 
transportation [1], production lines [2], and communications 
[3]. The idea of this routing policy is that a job is allocated to a 
server with a shorter queue when it arrives, which has been 
proved to be optimal if the system operator has perfect 
observation of the system states and perfect implementation of 
the policy [4]. Such sensing and actuating typically rely on 
cyber components connected via wired or wireless 
communications. Although such connectivity can significantly 
improve throughput and reduce delay, it is vulnerable to 
malicious remote attacks and thus brings security risks. In 
intelligent transportation systems, researchers have shown that 
traffic sensors and traffic lights can be easily intruded and 
manipulated [5]. Similar security risks also exist in production 
lines [6] and communication networks [7]. However, such risk 

has not been well modeled and studied in the setting of queuing 
systems. 

In this paper, we develop a game-theoretic model for the 
two-queue system subject to malicious attacks and estimate the 
security risk by characterizing the steady-state queue lengths 
and the game equilibrium. We consider a homogeneous Poisson 
arrival process of jobs and two parallel exponential servers with 
symmetric service rates. A system operator route incoming jobs 
to the shorter queue; if the queues are equal, the job is routed 
randomly. A malicious attacker is able to intercept the 
operator’s routing instruction and overwrite it with a randomly 
generated one. The operator is able to defend individual jobs to 
ensure correct routing. Both attack and defense induce 
technological costs. The attacker’s (resp. operator’s) decision is 
the probability of attacking (resp. defending) the routing of each 
customer. The attacker (resp. operator) is interested in 
maximizing (resp. minimizing) the long-time-average network-
wide queuing cost minus the attacking cost (resp. plus the 
defending cost). 

Numerous results have been developed for the two-queue 
system with perfect routing, i.e., perfect sensing plus perfect 
actuating [4], [8], [9], [10], [11]. Although some of these results 
provide hints for our problem, they do not directly apply to the 
security setting with imperfect sensing and/or actuating. The 
two-queue system has been studied with delayed [12], [13], 
erroneous [14], or decentralized information [15], which 
provides insights for our purpose. Based on previous results 
about the behavior of the generalized two-queue problem [10], 
we show that the two-queue system is stable in the face of 
attacks if and only if the probability of a successful attack, 
which is equal to the product of the probability of a job being 
attacked and the probability of a job not being defended, is less 
than the ratio between the service rate of one server and the 
jobs’ arrival rate. We further present an upper bound for the 
queue length, which we use as an approximation for queuing 
cost. 

Next, we characterize the Nash equilibrium of the attacker-
defender game. Game theory is a powerful tool for security 
risks analysis that has been extensively used in various 
engineering systems [16], [17], [18], [19]. Game theoretic 
approaches have been applied to studying security of routing in 
transportation [20], [21], [22] and communications [23], [24]. 
However, to the best of our knowledge, the security risk of 
feedback routing policies has not been well studied from a 
perspective combining game theory and queuing theory, which 
is essential for capturing the interaction between the queuing 
dynamics and the players’ decisions. We quantitatively 
characterize the security risk (in terms of additional queuing 
cost and technological cost for defense) in various scenarios. 
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We show that the game has multiple regimes for equilibria 
dependent on the technological costs of attacking and of 
defending as well as the demand. 

As a benchmark for the closed-loop shorter-queue routing 
policy, we also consider an open-loop Bernoulli routing policy. 
The Bernoulli policy allocates each arriving job to either server 
with equal probabilities. In this case, the attacker can still 
intercept the routing instruction and replace it with a falsified 
one, and the defender can still protect a job from being attacked. 
It is well known that the shorter-queue policy is in general more 
efficient than the Bernoulli policy in the nominal setting with 
perfect sensing and actuating. In the presence of security 
failures, we show the shorter-queue policy could have a higher 
(resp. lower) security risk than the Bernoulli policy if the 
demand is lower (resp. higher) than the service rate of one 
server. 

The contributions of this paper are as follows. First, we 
develop a formulation for security risk analysis of the two-
queue system by synthesizing a queuing model and a game-
theoretic model. Second, we quantify the relation between the 
queuing cost and the actions for the attacker and the defender. 
Third, we characterize the equilibria of the attacker-defender 
game and derive practical insights for dynamic routing. Finally, 
we compare the security risks of the closed-loop shorter queue 
policy with the open-loop Bernoulli policy. 

The rest of this paper is organized as follows. In Section II, 
we introduce the two-queue model and derive the queuing cost. 
In Section III, we formulate the attacker-defender game and 
characterize the structure of the equilibria in various regimes. 
In Section IV, we compare the shorter-queue routing policy 
with the Bernoulli routing policy in terms of both nominal 
efficiency and security risk. 

II. PARALLEL QUEUING SYSTEM FACING ATTACKS 
Consider the parallel queuing system in Fig. 1. Jobs arrive 

according to a Poisson process of rate 𝜆𝜆. Each server serves jobs 
at an exponential rate of 𝜇𝜇. We use 𝑋𝑋(𝑡𝑡) and 𝑌𝑌(𝑡𝑡) to denote the 
number of jobs, including waiting and being served, in the two 
servers, respectively. The state space of the parallel queuing 
system is ℤ≥02 . 

 
Fig. 1. Two-queue system with shorter-queue routing and malicious attacks. 

In the absence of attacks, the system operator has perfect 
observation of the states 𝑋𝑋(𝑡𝑡) and 𝑌𝑌(𝑡𝑡). When a job arrives at 
time 𝑡𝑡, the operator allocates it to the shorter queue. That is, the 
job is allocated to server 1 (resp. 2) if 𝑋𝑋(𝑡𝑡) < 𝑌𝑌(𝑡𝑡)  (resp. 
𝑋𝑋(𝑡𝑡) > 𝑌𝑌(𝑡𝑡)); if 𝑋𝑋(𝑡𝑡) = 𝑌𝑌(𝑡𝑡), then the job is allocated to each 
server with probability 1/2. 

A malicious attacker is able to compromise the operator’s 
dynamic routing. When a job arrives and is being allocated, the 
attacker is able to intercept the operator’s routing instruction 
and replace it with a random one. Consequently, the job may be 
mistakenly allocated to the longer queue. Attacks have no 
impact when the queues are equal. Each job is attacked with 
probability 𝑎𝑎 ∈ [0, 1] , where 𝑎𝑎  is selected by the attacker. 
When a job’s routing is attacked, the original routing instruction 
is overwritten; instead, the job is routed to server 1 with 
probability 𝑝𝑝 and to server 2 with probability 1 − 𝑝𝑝, where 𝑝𝑝 ∈
[0, 1] is selected by the attacker. The system operator is able to 
protect a job’s routing. When a job is protected, its routing is 
guaranteed to be correct, i.e., going to the shorter queue. The 
probability that a job is protected is 𝑑𝑑 ∈ [0, 1], which is selected 
by the operator. If the attacker does not attack or if the defender 
defends, which happens with probability (1 − 𝑎𝑎(1 − 𝑑𝑑)) a job 
goes to the good node (“G” in Fig. 1) and is routed by the 
shorter-queue policy. Otherwise, the job goes to the bad node 
(“B” in Fig. 1) and is routed randomly. 

In the rest of this section, we first discuss the stability of the 
queues in the face of malicious attacks. Then, we provide a 
theoretical upper bound for the queue length, which we will use 
as an approximation of queuing cost. 

A. Stability 
It is well known that, in the absence of malicious attacks, 

the two-queue system is stable if and only if the demand is less 
than the total capacity, i.e., 𝜆𝜆 < 2𝜇𝜇 . In the result below, we 
show that malicious attacks can destabilize the queuing system. 

Proposition 1: The parallel queueing system is stable (i.e., 
positive recurrent) if and only if 

𝜆𝜆 < 2𝜇𝜇, (1a) 
𝑎𝑎(1 − 𝑑𝑑)𝑝𝑝𝑝𝑝 < 𝜇𝜇, (1b) 

𝑎𝑎(1 − 𝑑𝑑)(1 − 𝑝𝑝)𝜆𝜆 < 𝜇𝜇. (1c) 
Proof. The queuing system is equivalent to a two-queue 

system with three classes of jobs. The first class enters server 1 
as a Poisson process of rate 𝑎𝑎(1 − 𝑑𝑑)𝑝𝑝𝑝𝑝 . The second class 
enters server 2 as a Poisson process of rate 𝑎𝑎(1 − 𝑑𝑑)(1 − 𝑝𝑝)𝜆𝜆. 
The third class arrive at the two-queue system as a Poisson 
process of rate (1 − 𝑎𝑎(1 − 𝑑𝑑))𝜆𝜆 ; when a job of this class 
arrives, the job joins the shorter queue. Thus, by [10, 
Theorem1], the three-class, two-queue system is stable if and 
only if 

max{𝑎𝑎(1 − 𝑑𝑑)(1 − 𝑝𝑝)𝜆𝜆/𝜇𝜇, (1 − 𝑎𝑎(1 − 𝑑𝑑))𝜆𝜆/𝜇𝜇, 𝜆𝜆/(2𝜇𝜇)} < 1  

which is equivalent to (1a)–(1c). 

Proposition 1 indicates the two-queue system with shorter-
queue routing is stable regardless of attack and defense given 
𝜆𝜆 < 𝜇𝜇. But when 𝜆𝜆 ≥ 𝜇𝜇, the system stability is associated with 
𝑎𝑎, 𝑑𝑑 and 𝑝𝑝. In general, defending probability 𝑑𝑑 should not be 
too low when attacking probability is high; otherwise, the 
system is unstable. 

B. Computing queuing cost 
Analytical solution to the shorter-queue problem is very 

hard and unnecessarily complex for our purpose. Instead, we 
derive a simple theoretical upper bound as an approximation. 
The derivation is based on [10]. 



Proposition 2: The mean number of jobs Ν� = 𝑋𝑋� + 𝑌𝑌�  in the 
system is upper bounded by 

𝑁𝑁� < 𝑛𝑛�(𝑎𝑎, 𝑝𝑝,𝑑𝑑; 𝜆𝜆) (2) 

≜ −2 +
2𝜇𝜇

min{𝜇𝜇 − 𝑎𝑎�𝑝𝑝𝑝𝑝, 𝜇𝜇 − 𝑎𝑎�(1 − 𝑝𝑝)𝜆𝜆, 𝜇𝜇 − 𝜆𝜆/2}
  

where 𝑎𝑎� = 𝑎𝑎(1 − 𝑑𝑑).  

III. SECURITY GAME 
Throughout this paper, we assume that the queuing system 

is nominally stable, i.e., 𝜆𝜆 < 2𝜇𝜇 . Consider the two-queue 
system with the shorter-queue routing policy and under the 
attack of the attacker and defense of the operator (defender). An 
attack induces a technological cost of 𝑐𝑐𝑎𝑎 ≥ 0. The attacker’s 
utility is the difference of the (upper bound of) average total 
queue size and the average technological cost: 𝑢𝑢𝑎𝑎(𝑎𝑎, 𝑝𝑝,𝑑𝑑; 𝜆𝜆) =
𝑛𝑛�(𝑎𝑎, 𝑝𝑝,𝑑𝑑; 𝜆𝜆) − 𝜆𝜆𝑐𝑐𝑎𝑎𝑎𝑎 . As for the operator, protecting a job 
induces a technological cost of 𝑐𝑐𝑑𝑑 ≥ 0. The operator aims at 
shorter queue length and lower cost, and thus the utility is given 
by 𝑢𝑢𝑑𝑑(𝑎𝑎, 𝑝𝑝,𝑑𝑑; 𝜆𝜆) = −𝑛𝑛�(𝑎𝑎, 𝑝𝑝,𝑑𝑑; 𝜆𝜆) − 𝜆𝜆𝑐𝑐𝑑𝑑𝑑𝑑 . The technological 
cost can be transformed into same unit as the queuing cost. 

An important observation from (2) is that the best response 
of the attacker must be such that either 𝑝𝑝 = 0 or 𝑝𝑝 = 1. That is, 
when the attacker modifies the routing instruction, the attacker 
always allocate jobs to the same server. This is intuitive in that 
sending all jobs to one server will cause higher delay than 
distributing jobs over two servers. Hence, 𝑝𝑝  can be actually 
dropped from the utility function, and we will let 𝑝𝑝 = 1 
henceforth. With a slight abuse of notation, we write 

𝑢𝑢𝑎𝑎(𝑎𝑎,𝑑𝑑; 𝜆𝜆) = �
−2 +

2𝜇𝜇
min{𝜇𝜇 − 𝑎𝑎�𝜆𝜆,𝜇𝜇 − 𝜆𝜆/2}

− 𝜆𝜆𝑐𝑐𝑎𝑎𝑎𝑎 𝑎𝑎� <
𝜇𝜇
𝜆𝜆

+∞ 𝑎𝑎� ≥
𝜇𝜇
𝜆𝜆

 

and 

𝑢𝑢𝑑𝑑(𝑎𝑎,𝑑𝑑; 𝜆𝜆) = �
2 −

2𝜇𝜇
min{𝜇𝜇 − 𝑎𝑎�𝜆𝜆, 𝜇𝜇 − 𝜆𝜆/2}

− 𝜆𝜆𝑐𝑐𝑑𝑑𝑑𝑑 𝑎𝑎� <
𝜇𝜇
𝜆𝜆

−∞ 𝑎𝑎� ≥
𝜇𝜇
𝜆𝜆

 

where 𝑎𝑎� = 𝑎𝑎(1 − 𝑑𝑑).  

We define security risk 𝑅𝑅𝑠𝑠𝑠𝑠(𝑎𝑎,𝑑𝑑; 𝜆𝜆) for two-queue system 
with shorter-queue routing as 𝑅𝑅𝑠𝑠𝑠𝑠(𝑎𝑎,𝑑𝑑; 𝜆𝜆) ≜ 𝑢𝑢𝑑𝑑(0,0; 𝜆𝜆) −
𝑢𝑢𝑑𝑑(𝑎𝑎,𝑑𝑑; 𝜆𝜆) . Fig. 2 illustrates 𝑅𝑅𝑠𝑠𝑠𝑠(𝑎𝑎,𝑑𝑑; 𝜆𝜆)  in two numerical 
examples with different 𝜆𝜆, given 𝜇𝜇 = 0.5  and 𝑐𝑐𝑑𝑑 = 20. Fig. 2a 
shows that 𝑅𝑅𝑠𝑠𝑠𝑠(𝑎𝑎,𝑑𝑑; 𝜆𝜆) mainly rises with 𝑑𝑑, which means that 
defense cost 𝑐𝑐𝑑𝑑  dominates in security risk when 𝜆𝜆 = 0.4 and 
𝜇𝜇 = 0.5 . In this case, it is expected that defense might be 
forsaken if defense cost becomes too high. In addition, Fig. 2b 
shows the stronger relationship between 𝑅𝑅𝑠𝑠𝑠𝑠(𝑎𝑎,𝑑𝑑; 𝜆𝜆) and attack 
probability 𝑎𝑎  when 𝜆𝜆 = 0.6  and 𝜇𝜇 = 0.5 . Under the fierce 
attack, 𝑅𝑅𝑠𝑠𝑠𝑠(𝑎𝑎,𝑑𝑑; 𝜆𝜆)  increases dramatically, and the operator 
must take defense action to minimize the security risk; 
otherwise, the system would get into the unstable state that is 
denoted by the empty under red line in Fig. 2b. 

  
(a) 𝜆𝜆 = 0.4  (b) 𝜆𝜆 = 0.6 

Fig. 2. Security risk under shorter-queue routing. 

We use (𝑎𝑎∗,𝑑𝑑∗)  to denote the equilibria in the above 
security game, then we have the following theorem. 

Theorem 1: The attacker-defender game has the following 
regimes of equilibria:  

 (𝐴𝐴) 𝑎𝑎∗ = 0, 𝑑𝑑∗ = 0;  

 (𝐵𝐵) 𝑎𝑎∗ = 1 with two subregimes: 

     (𝐵𝐵1) 𝑎𝑎∗ = 1, 𝑑𝑑∗ = 0; 

     (𝐵𝐵2) 𝑎𝑎∗ = 1, 𝑑𝑑∗ = 1 − 1
𝜆𝜆

(𝜇𝜇 − �2𝜇𝜇/𝑐𝑐𝑑𝑑). 

Furthermore, regime is non-empty if and only if 𝜆𝜆 < 𝜇𝜇.  

The rest of this section is devoted to the proof of Theorem 
1 and the characterization and visualization of the regime 
boundaries. 

The following results characterize important qualitative 
properties of the equilibria. 

Proposition 3: For any equilibrium (𝑎𝑎∗,𝑑𝑑∗), either 𝑎𝑎∗ = 0 
or 𝑎𝑎∗ = 1. 

Proof. Given 𝑑𝑑 = 𝑑𝑑∗ , the attacker’s utility is given by 
𝑢𝑢𝑎𝑎(𝑎𝑎,𝑑𝑑∗; 𝜆𝜆) = −2 + 2𝜇𝜇

min{𝜇𝜇−𝑎𝑎(1−𝑑𝑑∗)𝜆𝜆,𝜇𝜇−𝜆𝜆/2}
− 𝜆𝜆𝑐𝑐𝑎𝑎𝑎𝑎. We need to 

consider two cases. In the first case that 𝜇𝜇 − 𝑎𝑎(1 − 𝑑𝑑∗)𝜆𝜆 > 𝜇𝜇 −
𝜆𝜆/2 , we have 𝑢𝑢𝑎𝑎(𝑎𝑎,𝑑𝑑∗; 𝜆𝜆) = −2 + 2𝜇𝜇

𝜇𝜇−𝜆𝜆/2
− 𝜆𝜆𝑐𝑐𝑎𝑎𝑎𝑎 , which 

immediately implies that 𝑎𝑎∗ = argmax𝑎𝑎∈[0,1]𝑓𝑓(𝑎𝑎) = 0. In the 
second case that 𝜇𝜇 − 𝑎𝑎(1 − 𝑑𝑑∗)𝜆𝜆 < 𝜇𝜇 − 𝜆𝜆/2 , note that the 
stability condition 𝜇𝜇 − 𝑎𝑎(1 − 𝑑𝑑∗)𝜆𝜆 > 0 must hold; otherwise, 
the defender must be able to improve the utility by increasing 
𝑑𝑑. Thus, we have 𝑢𝑢𝑎𝑎(𝑎𝑎,𝑑𝑑∗; 𝜆𝜆) = −2 + 2𝜇𝜇

𝜇𝜇−𝑎𝑎(1−𝑑𝑑∗)𝜆𝜆
− 𝜆𝜆𝑐𝑐𝑎𝑎𝑎𝑎 with 

𝜕𝜕2𝑢𝑢𝑎𝑎(𝑎𝑎,𝑑𝑑∗; 𝜆𝜆)/𝜕𝜕𝑎𝑎2 > 0 , which implies that 𝑢𝑢𝑎𝑎(𝑎𝑎,𝑑𝑑∗; 𝜆𝜆)  is 
convex in 𝑎𝑎 for any 𝑑𝑑∗; therefore 𝑎𝑎∗ = 0 or 𝑎𝑎∗ = 1.  

Proposition 4: For any equilibrium (𝑎𝑎∗,𝑑𝑑∗) such that 𝑎𝑎∗ =
0, we have 𝑑𝑑∗ = 0. 



Proof. If 𝑎𝑎∗ = 0 , we have 𝑑𝑑∗ = argmax𝑑𝑑∈[0,1] − 2 +
2𝜇𝜇

𝜇𝜇−𝜆𝜆/2
+ 𝜆𝜆𝑐𝑐𝑑𝑑𝑑𝑑, which immediately implies 𝑑𝑑∗ = 0. 

B. Regime boundaries 
Since, by Proposition 3, each equilibrium (𝑎𝑎∗,𝑑𝑑∗) satisfies 

either 𝑎𝑎∗ = 0 or 𝑎𝑎∗ = 1, we only need to consider the utilities 
for 𝑎𝑎 = 0 and 𝑎𝑎 = 1. By Proposition 4, the best response for 
the defender when 𝑎𝑎 = 0 is 𝑑𝑑∗(0) = 0. For 𝑎𝑎 = 0 and 𝑑𝑑 = 0, 
we have 𝑢𝑢𝑎𝑎(0,0; 𝜆𝜆) = −2 + 2𝜇𝜇

𝜇𝜇−𝜆𝜆/2
 and 𝑢𝑢𝑑𝑑(0,0; 𝜆𝜆) = 2 −

2𝜇𝜇
𝜇𝜇−𝜆𝜆/2

. For 𝑎𝑎 = 1, we have 

𝑢𝑢𝑎𝑎(1,𝑑𝑑; 𝜆𝜆) = �
−2 +

2𝜇𝜇
min{𝜇𝜇 − (1 − 𝑑𝑑)𝜆𝜆, 𝜇𝜇 − 𝜆𝜆/2}

− 𝜆𝜆𝑐𝑐𝑎𝑎 1− 𝑑𝑑 <
𝜇𝜇
𝜆𝜆

+∞ 1 − 𝑑𝑑 ≥
𝜇𝜇
𝜆𝜆

,
 

𝑢𝑢𝑑𝑑(1,𝑑𝑑; 𝜆𝜆) = �
2 −

2𝜇𝜇
min{𝜇𝜇 − (1− 𝑑𝑑)𝜆𝜆, 𝜇𝜇 − 𝜆𝜆/2}

− 𝜆𝜆𝑐𝑐𝑑𝑑𝑑𝑑 1 − 𝑑𝑑 <
𝜇𝜇
𝜆𝜆

−∞ 1 − 𝑑𝑑 ≥
𝜇𝜇
𝜆𝜆

.
 

For ease of presentation, define 𝛾𝛾 ∶= √𝜇𝜇�√𝜇𝜇 − �2/𝑐𝑐𝑑𝑑�/𝜆𝜆. 

Given 𝑎𝑎 = 1, the best response for the defender is given by 

𝑑𝑑∗(1) = �

0 𝑖𝑖𝑖𝑖 𝛾𝛾 ≥ 1
1 − 𝛾𝛾 𝑖𝑖𝑖𝑖 1/2 < 𝛾𝛾 < 1

1
2

𝑖𝑖𝑖𝑖 𝛾𝛾 ≤ 1/2.
 

and the utility associated with the above best response is given 
by 

𝑢𝑢𝑎𝑎(1,𝑑𝑑∗(1);𝜆𝜆) =

⎩
⎪⎪
⎨

⎪⎪
⎧ −2 +

2𝜇𝜇
𝜇𝜇 − 𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎 𝑖𝑖𝑖𝑖 𝛾𝛾 ≥ 1

−2 +
2𝜇𝜇

𝜇𝜇 − 𝛾𝛾𝛾𝛾
− 𝜆𝜆𝑐𝑐𝑎𝑎 𝑖𝑖𝑖𝑖 1/2 < 𝛾𝛾 < 1

−2 +
2𝜇𝜇

𝜇𝜇 − 𝜆𝜆/2
− 𝜆𝜆𝑐𝑐𝑎𝑎 𝑖𝑖𝑖𝑖 𝛾𝛾 ≤ 1/2.

 

For 𝛾𝛾 ≤ 1/2 , we have 𝑢𝑢𝑎𝑎(0,𝑑𝑑∗(0); 𝜆𝜆) > 𝑢𝑢𝑎𝑎(1,𝑑𝑑∗(1); 𝜆𝜆) . 
Therefore, the equilibrium is (0, 0).   

For 1/2 < 𝛾𝛾 < 1 , if −2 + 2𝜇𝜇
𝜇𝜇−𝜆𝜆/2

> −2 + 2𝜇𝜇
𝜇𝜇−𝛾𝛾𝛾𝛾

− 𝜆𝜆𝑐𝑐𝑎𝑎 , the 

equilibrium is (0, 0) ; if −2 + 2𝜇𝜇
𝜇𝜇−𝜆𝜆/2

< −2 + 2𝜇𝜇
𝜇𝜇−𝛾𝛾𝛾𝛾

− 𝜆𝜆𝑐𝑐𝑎𝑎 , the 
equilibrium is (1, 1 − 𝛾𝛾). 

For 𝛾𝛾 ≥ 1 , if −2 + 2𝜇𝜇
𝜇𝜇−𝜆𝜆/2

> −2 + 2𝜇𝜇
𝜇𝜇−𝛾𝛾𝛾𝛾

− 𝜆𝜆𝑐𝑐𝑎𝑎 , the 

equilibrium is (0, 0) ; if −2 + 2𝜇𝜇
𝜇𝜇−𝜆𝜆/2

< −2 + 2𝜇𝜇
𝜇𝜇−𝛾𝛾𝛾𝛾

− 𝜆𝜆𝑐𝑐𝑎𝑎 , the 
equilibrium is (1, 0). 

In summary, the regimes are  

(𝐴𝐴 ) 𝑎𝑎∗ = 0 , 𝑑𝑑∗ = 0  if (i) 1/2 < 𝛾𝛾 < 1  and 2𝜇𝜇
𝜇𝜇−𝜆𝜆/2

> 2𝜇𝜇
𝜇𝜇−𝛾𝛾𝛾𝛾

−

𝜆𝜆𝑐𝑐𝑎𝑎, or if (ii) 𝛾𝛾 ≥ 1 and 2𝜇𝜇
𝜇𝜇−𝜆𝜆/2

> 2𝜇𝜇
𝜇𝜇−𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎, or if (iii) 𝛾𝛾 < 1/2; 

 (𝐵𝐵) 𝑎𝑎∗ = 1 with two subregimes: 

     (𝐵𝐵1) 𝑎𝑎∗ = 1, 𝑑𝑑∗ = 0 if 2𝜇𝜇
𝜇𝜇−𝜆𝜆/2

< 2𝜇𝜇
𝜇𝜇−𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎 and 𝛾𝛾 ≥ 1; 

     ( 𝐵𝐵2 ) 𝑎𝑎∗ = 1 , 𝑑𝑑∗ = 1 − 1
𝜆𝜆

(𝜇𝜇 − �2𝜇𝜇/𝑐𝑐𝑑𝑑)  if 2𝜇𝜇
𝜇𝜇−𝜆𝜆/2

<
2𝜇𝜇

𝜇𝜇−𝛾𝛾𝛾𝛾
− 𝜆𝜆𝑐𝑐𝑎𝑎 and 1/2 < 𝛾𝛾 < 1. 

Fig. 3 illustrates the regimes in two numerical cases with 
different 𝜆𝜆 , given 𝜇𝜇 = 0.5 . Each regime is labeled with the 
corresponding (𝑎𝑎∗,𝑑𝑑∗) . The regime denoted by (0, 0)  is 
associated with high attack cost 𝑐𝑐𝑎𝑎  and low defense cost 𝑐𝑐𝑑𝑑 . 
Given large 𝑐𝑐𝑎𝑎, the attack has no incentive and given small 𝑐𝑐𝑑𝑑, 
the attack must be counteracted by the defender. When 𝑐𝑐𝑑𝑑  
increases, the defender’s strategy will be increasingly 
influenced by the technological cost, which leaves 
opportunities for the attacker. This regime is denoted by �1, 𝑑̂𝑑�. 
Importantly, the defender’s action strongly depends on whether 
𝜆𝜆  is less than 𝜇𝜇 . As shown in Fig. 3a, the defender has no 
incentive to defend when 𝜆𝜆 < 𝜇𝜇. But given 𝜆𝜆 ≥ 𝜇𝜇, the defense 
would continue since the outcome of instability is much 
severer. As a result, (1, 0) is removed in Fig. 3b. 

  
(a) 𝜆𝜆 = 0.4  (b) 𝜆𝜆 = 0.6 

Fig. 3. Equilibrium regime under shorter-queue routing. 

IV. COMPARISON WITH OPEN-LOOP ROUTING 
To evaluate the system performance under shorter-queue 

routing, we compare it with that under Bernoulli routing. 
Bernoulli routing herein means that the router assigns jobs to 
each server with probability 1/2. We first point out the queuing 
cost for Bernoulli routing, then compare the security risk and 
equilibrium regime with those of shorter-queue routing. 

A. Queuing cost for Bernoulli routing 
The job arriving at server 1 can be divided into two classes. 

The first is attacked, while the second is not attacked. The 
arrival rates are 𝑝𝑝𝑝𝑝(1 − 𝑑𝑑)𝜆𝜆  and (1 − 𝑎𝑎(1 − 𝑑𝑑))𝜆𝜆/2 , 
respectively. Thus, the arrival rate at server 1 equals 
(1−𝑎𝑎(1−𝑑𝑑)

2
+ 𝑝𝑝𝑝𝑝(1 − 𝑑𝑑))𝜆𝜆 . Recall that we use 𝑎𝑎�  to denote 

𝑎𝑎(1 − 𝑑𝑑) . Then the arrival rate at server 1 is simplified as 
1−𝑎𝑎�+2𝑝𝑝𝑎𝑎�

2
𝜆𝜆. The arrival rate at server 2 is computed similarly. 

Then we have the mean number of jobs at server 1 and 2: 𝑋𝑋� +
𝑌𝑌� = (1−𝑎𝑎�+2𝑝𝑝𝑎𝑎�)𝜆𝜆

2𝜇𝜇−(1−𝑎𝑎�+2𝑝𝑝𝑎𝑎�)𝜆𝜆
+ (1+𝑎𝑎�−2𝑝𝑝𝑎𝑎�)𝜆𝜆

2𝜇𝜇−(1+𝑎𝑎�−2𝑝𝑝𝑎𝑎�)𝜆𝜆
. 

B. Security game for Bernoulli routing 
Similar to the attack on shorter-queue routing, the best 

attack strategy must be either 𝑝𝑝 = 1 or 𝑝𝑝 = 0. We let 𝑝𝑝 = 1, 
then the attacker’s utility under Bernoulli routing is 

𝑣𝑣𝑎𝑎(𝑎𝑎,𝑑𝑑; 𝜆𝜆) =

⎩
⎨

⎧
(1 + 𝑎𝑎�)𝜆𝜆

2𝜇𝜇 − (1 + 𝑎𝑎�)𝜆𝜆
+

(1 − 𝑎𝑎�)𝜆𝜆
2𝜇𝜇 − (1− 𝑎𝑎�)𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎𝑎𝑎 1 + 𝑎𝑎� <
2𝜇𝜇
𝜆𝜆

+∞ 1 + 𝑎𝑎� ≥
2𝜇𝜇
𝜆𝜆

,
 

and the defender’s utility is 



𝑣𝑣𝑑𝑑(𝑎𝑎,𝑑𝑑;𝜆𝜆) =

⎩
⎨

⎧
−(1 + 𝑎𝑎�)𝜆𝜆

2𝜇𝜇 − (1 + 𝑎𝑎�)𝜆𝜆
−

(1− 𝑎𝑎�)𝜆𝜆
2𝜇𝜇 − (1 − 𝑎𝑎�)𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑑𝑑𝑑𝑑 1 + 𝑎𝑎� <
2𝜇𝜇
𝜆𝜆

−∞ 1 + 𝑎𝑎� ≥
2𝜇𝜇
𝜆𝜆

.
 

We define security risk 𝑅𝑅𝑠𝑠𝑏𝑏(𝑎𝑎,𝑑𝑑; 𝜆𝜆) for two-queue system 

with Bernoulli routing as 𝑅𝑅𝑠𝑠𝑏𝑏(𝑎𝑎,𝑑𝑑; 𝜆𝜆) ∶= 𝑣𝑣𝑑𝑑(0,0; 𝜆𝜆) −
𝑣𝑣𝑑𝑑(𝑎𝑎,𝑑𝑑; 𝜆𝜆) . Fig. 4 illustrates 𝑅𝑅𝑠𝑠𝑏𝑏(𝑎𝑎,𝑑𝑑; 𝜆𝜆)  in two numerical 
examples with different 𝜆𝜆 , given 𝜇𝜇 = 0.5  and 𝑐𝑐𝑑𝑑 = 20 . The 
revealed relationship between security risk and 𝑎𝑎 , 𝑑𝑑  in 
Bernoulli routing is similar to that in shorter-queue routing. 
However, in terms of security risk, Fig. 2a and Fig. 4a show 
Bernoulli routing slightly superior to shorter-queue routing, 
while Fig. 2b and Fig. 4b show shorter-queue routing is much 
better than Bernoulli routing. Combining Fig. 2a and Fig. 4a, 
we find 𝑅𝑅𝑠𝑠𝑏𝑏(𝑎𝑎,𝑑𝑑; 𝜆𝜆)  is lower than 𝑅𝑅𝑠𝑠𝑠𝑠(𝑎𝑎,𝑑𝑑; 𝜆𝜆)  when (𝑎𝑎,𝑑𝑑)  is 
around (1,0) given 𝜆𝜆 = 0.4. On the contrary, Fig. 2b and Fig. 
4b show security risks of Bernoulli routing is obviously higher 
than those of shorter-queue routing when 𝑎𝑎 > 0.5, given 𝜆𝜆 =
0.6. 

The contradictory observations from Fig. 2 and Fig. 4 are 
caused by the approximation error of queue cost in shorter-
queue routing. Recall that we use a up bound to represent the 
queue cost for shorter-queue routing, and the above findings 
indicate the upper bound might overestimate the queue length 
when 𝜆𝜆 < 𝜇𝜇   and then mislead the strategy in equilibrium, 
which is demonstrated later. 

  
(a) 𝜆𝜆 = 0.4  (b) 𝜆𝜆 = 0.6 

Fig. 4. Security risk under Bernoulli routing. 

We use (𝑎𝑎†,𝑑𝑑†) to denote the equilibrium in the security 
game for Bernoulli routing. The regimes are summarized as 
follows and more details are available in the appendix. Fig. 5 
illustrates the regimes in two numerical examples with different 
𝜆𝜆, given 𝜇𝜇 = 0.5. 

(𝐴𝐴 ) 𝑎𝑎† = 0 , 𝑑𝑑† = 0  if (i) 𝜆𝜆 < 𝜇𝜇 , (2𝜇𝜇−𝜆𝜆)𝜆𝜆
2(𝜇𝜇−𝜆𝜆)𝜇𝜇

≤ 𝑐𝑐𝑑𝑑  and 2𝜆𝜆
2𝜇𝜇−𝜆𝜆

≥
𝜆𝜆

𝜇𝜇−𝜆𝜆
− 𝜆𝜆𝑐𝑐𝑎𝑎 , or if (ii) 𝜆𝜆 < 𝜇𝜇 , (2𝜇𝜇−𝜆𝜆)𝜆𝜆

2(𝜇𝜇−𝜆𝜆)𝜇𝜇
> 𝑐𝑐𝑑𝑑  and 2𝜆𝜆

2𝜇𝜇−𝜆𝜆
>

(2−𝑑𝑑�)𝜆𝜆
2𝜇𝜇−(2−𝑑𝑑�)𝜆𝜆

+ 𝑑𝑑�𝜆𝜆
2𝜇𝜇−𝑑𝑑�𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎 , or if (iii) 𝜆𝜆 ≥ 𝜇𝜇  and 2𝜆𝜆
2𝜇𝜇−𝜆𝜆

>
(2−𝑑𝑑�)𝜆𝜆

2𝜇𝜇−(2−𝑑𝑑�)𝜆𝜆
+ 𝑑𝑑�𝜆𝜆

2𝜇𝜇−𝑑𝑑�𝜆𝜆
− 𝜆𝜆𝑐𝑐𝑎𝑎; 

 (𝐵𝐵) 𝑎𝑎† = 1 with two subregimes: 

     (𝐵𝐵1 ) 𝑎𝑎† = 1 , 𝑑𝑑† = 0  if 𝜆𝜆 < 𝜇𝜇 , (2𝜇𝜇−𝜆𝜆)𝜆𝜆
2(𝜇𝜇−𝜆𝜆)𝜇𝜇

≤ 𝑐𝑐𝑑𝑑  and 2𝜆𝜆
2𝜇𝜇−𝜆𝜆

<
𝜆𝜆

𝜇𝜇−𝜆𝜆
− 𝜆𝜆𝑐𝑐𝑎𝑎; 

     ( 𝐵𝐵2 ) 𝑎𝑎† = 1 , 𝑑𝑑† = 𝑑̂𝑑  if (i) 𝜆𝜆 < 𝜇𝜇 , (2𝜇𝜇−𝜆𝜆)𝜆𝜆
2(𝜇𝜇−𝜆𝜆)𝜇𝜇

> 𝑐𝑐𝑑𝑑  and 
2𝜆𝜆

2𝜇𝜇−𝜆𝜆
< (2−𝑑𝑑�)𝜆𝜆

2𝜇𝜇−(2−𝑑𝑑�)𝜆𝜆
+ 𝑑𝑑�𝜆𝜆

2𝜇𝜇−𝑑𝑑�𝜆𝜆
− 𝜆𝜆𝑐𝑐𝑎𝑎 , or if (ii) 𝜆𝜆 ≥ 𝜇𝜇  and 2𝜆𝜆

2𝜇𝜇−𝜆𝜆
<

(2−𝑑𝑑�)𝜆𝜆
2𝜇𝜇−(2−𝑑𝑑�)𝜆𝜆

+ 𝑑𝑑�𝜆𝜆
2𝜇𝜇−𝑑𝑑�𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎, 

where 𝑑̂𝑑 = 1 − 1
𝜆𝜆
�𝜃𝜃 − �𝜁𝜁2 − 𝜃𝜃2 + 2𝜅𝜅𝜅𝜅

𝜃𝜃
�, 𝜁𝜁 = 2𝜇𝜇 − 𝜆𝜆 , 𝜅𝜅 = 𝜇𝜇/

𝑐𝑐𝑑𝑑, 𝜃𝜃 = �𝜂𝜂 + 𝜁𝜁4

9𝜂𝜂
+ 𝜁𝜁2

3
, and 𝜂𝜂 = �𝜁𝜁6

27
+ 𝜅𝜅2𝜁𝜁2

2
+ �𝜅𝜅2𝜁𝜁8

27
+ 𝜅𝜅4𝜁𝜁4

4

3
.   

  
(a) 𝜆𝜆 = 0.4  (b) 𝜆𝜆 = 0.6 

Fig. 5. Equilibrium regime under Bernoulli routing. 

We further compare security risks in a state of equilibrium 
under the two routing policies. By fixing 𝜇𝜇 = 0.5 and 𝑐𝑐𝑎𝑎 = 1, 
we choose (𝜆𝜆, 𝑐𝑐𝑑𝑑) = (0.4, 20), (0.4, 110), (0.6, 110)  to study 
three kinds of equilibrium respectively, namely (1, 𝑑̂𝑑)  given 
𝜆𝜆 < 𝜇𝜇 , (1, 0)  given 𝜆𝜆 < 𝜇𝜇  and (1, 𝑑̂𝑑)  given 𝜆𝜆 ≥ 𝜇𝜇 . The 
comparison is presented in Fig. 6, where 𝑅𝑅𝑞𝑞  and 𝑅𝑅𝑠𝑠 respectively 
denote queue risk and security risk through theoretical analysis, 
while 𝑅𝑅�𝑞𝑞  and 𝑅𝑅�𝑠𝑠  denote the values through numerical 
simulation. Herein we define queue risk 𝑅𝑅𝑞𝑞  as queue length 
under attack and defense minus that free from attack. Then the 
blank area in the bars of Fig. 6 can be recognized as defense 
costs. Fig. 6a shows the defense cost of shorter-queue routing 
in equilibrium given 𝜆𝜆 = 0.4 , 𝜇𝜇 = 0.5 , 𝑐𝑐𝑎𝑎 = 1 , 𝑐𝑐𝑑𝑑 = 20  is 
much more than that of Bernoulli routing. The reason might lie 
in that the queue length overestimated by the upper bound 
induces the defender to adopt larger 𝑑̂𝑑, which finally results in 
more security risk. Fig. 6b explicitly presents the relative 
approximation error might be large when 𝜆𝜆 < 𝜇𝜇 . Fig. 6c 
illustrates the huge advantage of shorter-queue routing when 
𝜆𝜆 ≥ 𝜇𝜇. The numerical simulation shows that the security risk is 
decreased by 37%. 

   
(a) 𝜆𝜆 = 0.4, 𝑐𝑐𝑑𝑑 = 20 (b) 𝜆𝜆 = 0.4, 𝑐𝑐𝑑𝑑 = 110 (c) 𝜆𝜆 = 0.6, 𝑐𝑐𝑑𝑑 = 110 

Fig. 6. Comparison of security risk. 

V. CONCLUDING REAMARKS 
This work quantifies the security risks of two-queue system 

that is routed by shortest-queue policy and suffers malicious 



attack. Our theoretical analysis can help decisionmakers figure 
out appropriate strategies against attack. The comparison with 
Bernoulli routing demonstrates that the proposed methodology 
has great potentials, especially when the system is congested, 
but it also indicates the requirement for more powerful tools 
that accurately approximates queue cost in two-queue system. 

This work can serve as the basis for multiple future research 
directions. First, the impact of more sophisticated attacking 
strategies such as state-dependent attacking probability can be 
studied in our framework. Second, the effect of fault-tolerant 
routing algorithms can be analyzed for tandem servers with 
spillback, which is important for transportation systems [25]. 
Third, multi-stage attacker-defender game with strategy 
learning (e.g., the formulation in [26]) may provide additional 
insights about secure design. 

APPENDIX 

A. Equilibrium regime under Bernoulli routing 
Like the equilibria (𝑎𝑎∗,𝑑𝑑∗)  in shorter-queue routing, the 

equilibria (𝑎𝑎†,𝑑𝑑†) have the properties that 𝑎𝑎† equals either 0 or 
1 and 𝑑𝑑† must equal 0 given 𝑎𝑎† = 0. For 𝑎𝑎 = 0 and 𝑑𝑑 = 0, we 
have 𝑣𝑣𝑎𝑎(0,0; 𝜆𝜆) = 2𝜆𝜆

2𝜇𝜇−𝜆𝜆
 and 𝑣𝑣𝑑𝑑(0,0; 𝜆𝜆) = − 2𝜆𝜆

2𝜇𝜇−𝜆𝜆
. 

For 𝑎𝑎 = 1, the attacker’s utility is given by 

𝑣𝑣𝑎𝑎(1,𝑑𝑑; 𝜆𝜆) =

⎩
⎨

⎧
(2 − 𝑑𝑑)𝜆𝜆

2𝜇𝜇 − (2− 𝑑𝑑)𝜆𝜆
+

𝑑𝑑𝑑𝑑
2𝜇𝜇 − 𝑑𝑑𝑑𝑑

− 𝜆𝜆𝑐𝑐𝑎𝑎 2 − 𝑑𝑑 <
2𝜇𝜇
𝜆𝜆

+∞ 2 − 𝑑𝑑 ≥
2𝜇𝜇
𝜆𝜆

,
 

and the defender’s utility is given by 

𝑣𝑣𝑑𝑑(1,𝑑𝑑;𝜆𝜆) =

⎩
⎨

⎧
−(2− 𝑑𝑑)𝜆𝜆

2𝜇𝜇 − (2− 𝑑𝑑)𝜆𝜆
−

𝑑𝑑𝑑𝑑
2𝜇𝜇 − 𝑑𝑑𝑑𝑑

− 𝜆𝜆𝑐𝑐𝑑𝑑𝑑𝑑 2 − 𝑑𝑑 <
2𝜇𝜇
𝜆𝜆

−∞ 2 − 𝑑𝑑 ≥
2𝜇𝜇
𝜆𝜆

.
 

Given 𝑎𝑎 = 1, we have the following best response 

𝑑𝑑†(1) =

⎩
⎪
⎨

⎪
⎧0 if 𝜆𝜆 < 𝜇𝜇 and 

(2𝜇𝜇 − 𝜆𝜆)𝜆𝜆
2(𝜇𝜇 − 𝜆𝜆)𝜇𝜇

− 𝑐𝑐𝑑𝑑 > 0

𝑑̂𝑑 if i) 𝜆𝜆 < 𝜇𝜇 and 
(2𝜇𝜇 − 𝜆𝜆)𝜆𝜆
2(𝜇𝜇 − 𝜆𝜆)𝜇𝜇

− 𝑐𝑐𝑑𝑑 ≤ 0 𝑜𝑜𝑜𝑜 ii) 𝜆𝜆 ≥ 𝜇𝜇
 

where 𝑑̂𝑑 satisfies 𝜕𝜕
𝜕𝜕𝜕𝜕

𝑣𝑣𝑑𝑑(1, 𝑑𝑑; 𝜆𝜆)|𝑑𝑑=𝑑𝑑� = 0. By solving 

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑣𝑣𝑑𝑑(1,𝑑𝑑; 𝜆𝜆)|𝑑𝑑=𝑑𝑑� = 0 

we have  

𝑑̂𝑑 = 1 −
1
𝜆𝜆 �

𝜃𝜃 − �𝜁𝜁2 − 𝜃𝜃2 +
2𝜅𝜅𝜅𝜅
𝜃𝜃 � 

where 𝜁𝜁 = 2𝜇𝜇 − 𝜆𝜆 , 𝜅𝜅 = 𝜇𝜇/𝑐𝑐𝑑𝑑 , 𝜃𝜃 = �𝜂𝜂 + 𝜁𝜁4

9𝜂𝜂
+ 𝜁𝜁2

3
, and 𝜂𝜂 =

�𝜁𝜁6

27
+ 𝜅𝜅2𝜁𝜁2

2
+ �𝜅𝜅2𝜁𝜁8

27
+ 𝜅𝜅4𝜁𝜁4

4

3
 

The attacker’s best utility is given by  

𝑣𝑣𝑎𝑎�1, 𝑑𝑑†(1); 𝜆𝜆�

=

⎩
⎪
⎨

⎪
⎧ 𝜆𝜆

𝜇𝜇 − 𝜆𝜆
− 𝜆𝜆𝑐𝑐𝑎𝑎 𝑖𝑖𝑖𝑖 𝜆𝜆 < 𝜇𝜇 𝑎𝑎𝑎𝑎𝑎𝑎 

(2𝜇𝜇 − 𝜆𝜆)𝜆𝜆
2(𝜇𝜇 − 𝜆𝜆)𝜇𝜇

> 𝑐𝑐𝑑𝑑

(2 − 𝑑̂𝑑)𝜆𝜆
2𝜇𝜇 − (2 − 𝑑̂𝑑)𝜆𝜆

+
𝑑̂𝑑𝜆𝜆

2𝜇𝜇 − 𝑑̂𝑑𝜆𝜆
− 𝜆𝜆𝑐𝑐𝑎𝑎 𝑖𝑖𝑖𝑖 𝑖𝑖) 𝜆𝜆 < 𝜇𝜇 𝑎𝑎𝑎𝑎𝑎𝑎 

(2𝜇𝜇 − 𝜆𝜆)𝜆𝜆
2(𝜇𝜇 − 𝜆𝜆)𝜇𝜇

≤ 𝑐𝑐𝑑𝑑 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖) 𝜆𝜆 ≥ 𝜇𝜇.
 

For 𝜆𝜆 < 𝜇𝜇  and (2𝜇𝜇−𝜆𝜆)𝜆𝜆
2(𝜇𝜇−𝜆𝜆)𝜇𝜇

> 𝑐𝑐𝑑𝑑 , if 2𝜆𝜆
2𝜇𝜇−𝜆𝜆

> 𝜆𝜆
𝜇𝜇−𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎 , the 

equilibrium is (0, 0); if 2𝜆𝜆
2𝜇𝜇−𝜆𝜆

< 𝜆𝜆
𝜇𝜇−𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎 , the equilibrium is 
(1, 0). 

For 𝜆𝜆 < 𝜇𝜇 and (2𝜇𝜇−𝜆𝜆)𝜆𝜆
2(𝜇𝜇−𝜆𝜆)𝜇𝜇

≤ 𝑐𝑐𝑑𝑑, if 2𝜆𝜆
2𝜇𝜇−𝜆𝜆

> (2−𝑑𝑑�)𝜆𝜆
2𝜇𝜇−(2−𝑑𝑑�)𝜆𝜆

+ 𝑑𝑑�𝜆𝜆
2𝜇𝜇−𝑑𝑑�𝜆𝜆

−

𝜆𝜆𝑐𝑐𝑎𝑎 , the equilibrium is (0, 0); if 2𝜆𝜆
2𝜇𝜇−𝜆𝜆

< (2−𝑑𝑑�)𝜆𝜆
2𝜇𝜇−(2−𝑑𝑑�)𝜆𝜆

+ 𝑑𝑑�𝜆𝜆
2𝜇𝜇−𝑑𝑑�𝜆𝜆

−
𝜆𝜆𝑐𝑐𝑎𝑎, the equilibrium is (1, 𝑑̂𝑑). 

Finally, for 𝜆𝜆 ≥ 𝜇𝜇, if 2𝜆𝜆
2𝜇𝜇−𝜆𝜆

> (2−𝑑𝑑�)𝜆𝜆
2𝜇𝜇−(2−𝑑𝑑�)𝜆𝜆

+ 𝑑𝑑�𝜆𝜆
2𝜇𝜇−𝑑𝑑�𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎 , the 

equilibrium is (0, 0); if 2𝜆𝜆
2𝜇𝜇−𝜆𝜆

< (2−𝑑𝑑�)𝜆𝜆
2𝜇𝜇−(2−𝑑𝑑�)𝜆𝜆

+ 𝑑𝑑�𝜆𝜆
2𝜇𝜇−𝑑𝑑�𝜆𝜆

− 𝜆𝜆𝑐𝑐𝑎𝑎 , the 
equilibrium is (1, 𝑑̂𝑑). 
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	Security Risk Analysis of the Shorter-Queue Routing Policy for Two Symmetric Servers
	Yu Tang, Yining Wen, Li Jin
	Abstract—In this article, we study the classical shortest queue problem under the influence of malicious attacks, which is relevant to a variety of engineering system including transportation, manufacturing, and communications. We consider a homogeneous Poisson arrival process of jobs and two parallel exponential servers with symmetric service rates. A system operator route incoming jobs to the shorter queue; if the queues are equal, the job is routed randomly. A malicious attacker is able to intercept the operator’s routing instruction and overwrite it with a randomly generated one. The operator is able to defend individual jobs to ensure correct routing. Both attacking and defending induce technological costs. The attacker’s (resp. operator’s) decision is the probability of attacking (resp. defending) the routing of each job. We first quantify the queuing cost for given strategy profiles by deriving a theoretical upper bound for the cost. Then, we formulate a nonzero-sum attacker-defender game, characterize the equilibria in multiple regimes, and quantify the security risk. We find that the attacker’s best strategy is either to attack all jobs or not to attack, and the defender’s strategy is strongly influenced by the arrival rate of jobs. Finally, as a benchmark, we compare the security risks of the feedback-controlled system to a corresponding open-loop system with Bernoulli routing. We show that the shorter-queue policy has a higher (resp. lower) security risk than the Bernoulli policy if the demand is lower (resp. higher) than the service rate of one server.
	In this paper, we develop a game-theoretic model for the two-queue system subject to malicious attacks and estimate the security risk by characterizing the steady-state queue lengths and the game equilibrium. We consider a homogeneous Poisson arrival process of jobs and two parallel exponential servers with symmetric service rates. A system operator route incoming jobs to the shorter queue; if the queues are equal, the job is routed randomly. A malicious attacker is able to intercept the operator’s routing instruction and overwrite it with a randomly generated one. The operator is able to defend individual jobs to ensure correct routing. Both attack and defense induce technological costs. The attacker’s (resp. operator’s) decision is the probability of attacking (resp. defending) the routing of each customer. The attacker (resp. operator) is interested in maximizing (resp. minimizing) the long-time-average network-wide queuing cost minus the attacking cost (resp. plus the defending cost).
	Numerous results have been developed for the two-queue system with perfect routing, i.e., perfect sensing plus perfect actuating [4], [8], [9], [10], [11]. Although some of these results provide hints for our problem, they do not directly apply to the security setting with imperfect sensing and/or actuating. The two-queue system has been studied with delayed [12], [13], erroneous [14], or decentralized information [15], which provides insights for our purpose. Based on previous results about the behavior of the generalized two-queue problem [10], we show that the two-queue system is stable in the face of attacks if and only if the probability of a successful attack, which is equal to the product of the probability of a job being attacked and the probability of a job not being defended, is less than the ratio between the service rate of one server and the jobs’ arrival rate. We further present an upper bound for the queue length, which we use as an approximation for queuing cost.
	Keywords: Queuing systems, dynamic routing, attacker-defender game, security
	I. Introduction
	The shorter-queue policy is a classical routing policy applicable to a variety of engineering systems, including transportation [1], production lines [2], and communications [3]. The idea of this routing policy is that a job is allocated to a server with a shorter queue when it arrives, which has been proved to be optimal if the system operator has perfect observation of the system states and perfect implementation of the policy [4]. Such sensing and actuating typically rely on cyber components connected via wired or wireless communications. Although such connectivity can significantly improve throughput and reduce delay, it is vulnerable to malicious remote attacks and thus brings security risks. In intelligent transportation systems, researchers have shown that traffic sensors and traffic lights can be easily intruded and manipulated [5]. Similar security risks also exist in production lines [6] and communication networks [7]. However, such risk has not been well modeled and studied in the setting of queuing systems.
	Next, we characterize the Nash equilibrium of the attacker-defender game. Game theory is a powerful tool for security risks analysis that has been extensively used in various engineering systems [16], [17], [18], [19]. Game theoretic approaches have been applied to studying security of routing in transportation [20], [21], [22] and communications [23], [24]. However, to the best of our knowledge, the security risk of feedback routing policies has not been well studied from a perspective combining game theory and queuing theory, which is essential for capturing the interaction between the queuing dynamics and the players’ decisions. We quantitatively characterize the security risk (in terms of additional queuing cost and technological cost for defense) in various scenarios. We show that the game has multiple regimes for equilibria dependent on the technological costs of attacking and of defending as well as the demand.
	This work was in part supported by NYU Tandon School of Engineering and the C2SMART University Transportation Center.
	 Y. Tang and L. Jin are with the Department of Civil and Urban Engineering and C2SMART University Transportation Center, and Y. Wen is with the Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA. 
	E-mails: tangyu@nyu.edu, lijin@nyu.edu, yw3997@nyu.edu.
	A malicious attacker is able to compromise the operator’s dynamic routing. When a job arrives and is being allocated, the attacker is able to intercept the operator’s routing instruction and replace it with a random one. Consequently, the job may be mistakenly allocated to the longer queue. Attacks have no impact when the queues are equal. Each job is attacked with probability 𝑎∈[0, 1], where 𝑎 is selected by the attacker. When a job’s routing is attacked, the original routing instruction is overwritten; instead, the job is routed to server 1 with probability 𝑝 and to server 2 with probability 1−𝑝, where 𝑝∈[0, 1] is selected by the attacker. The system operator is able to protect a job’s routing. When a job is protected, its routing is guaranteed to be correct, i.e., going to the shorter queue. The probability that a job is protected is 𝑑∈[0, 1], which is selected by the operator. If the attacker does not attack or if the defender defends, which happens with probability 1−𝑎(1−𝑑) a job goes to the good node (“G” in Fig. 1) and is routed by the shorter-queue policy. Otherwise, the job goes to the bad node (“B” in Fig. 1) and is routed randomly.
	As a benchmark for the closed-loop shorter-queue routing policy, we also consider an open-loop Bernoulli routing policy. The Bernoulli policy allocates each arriving job to either server with equal probabilities. In this case, the attacker can still intercept the routing instruction and replace it with a falsified one, and the defender can still protect a job from being attacked. It is well known that the shorter-queue policy is in general more efficient than the Bernoulli policy in the nominal setting with perfect sensing and actuating. In the presence of security failures, we show the shorter-queue policy could have a higher (resp. lower) security risk than the Bernoulli policy if the demand is lower (resp. higher) than the service rate of one server.
	The contributions of this paper are as follows. First, we develop a formulation for security risk analysis of the two-queue system by synthesizing a queuing model and a game-theoretic model. Second, we quantify the relation between the queuing cost and the actions for the attacker and the defender. Third, we characterize the equilibria of the attacker-defender game and derive practical insights for dynamic routing. Finally, we compare the security risks of the closed-loop shorter queue policy with the open-loop Bernoulli policy.
	In the rest of this section, we first discuss the stability of the queues in the face of malicious attacks. Then, we provide a theoretical upper bound for the queue length, which we will use as an approximation of queuing cost.
	It is well known that, in the absence of malicious attacks, the two-queue system is stable if and only if the demand is less than the total capacity, i.e., 𝜆<2𝜇. In the result below, we show that malicious attacks can destabilize the queuing system.
	The rest of this paper is organized as follows. In Section II, we introduce the two-queue model and derive the queuing cost. In Section III, we formulate the attacker-defender game and characterize the structure of the equilibria in various regimes. In Section IV, we compare the shorter-queue routing policy with the Bernoulli routing policy in terms of both nominal efficiency and security risk.
	Proposition 1: The parallel queueing system is stable (i.e., positive recurrent) if and only if
	II. Parallel queuing system facing attacks
	A. Stability
	B. Computing queuing cost

	Consider the parallel queuing system in Fig. 1. Jobs arrive according to a Poisson process of rate 𝜆. Each server serves jobs at an exponential rate of 𝜇. We use 𝑋(𝑡) and 𝑌(𝑡) to denote the number of jobs, including waiting and being served, in the two servers, respectively. The state space of the parallel queuing system is ℤ≥02.
	Proof. The queuing system is equivalent to a two-queue system with three classes of jobs. The first class enters server 1 as a Poisson process of rate 𝑎(1−𝑑)𝑝𝜆. The second class enters server 2 as a Poisson process of rate 𝑎(1−𝑑)(1−𝑝)𝜆. The third class arrive at the two-queue system as a Poisson process of rate (1−𝑎(1−𝑑))𝜆; when a job of this class arrives, the job joins the shorter queue. Thus, by [10, Theorem1], the three-class, two-queue system is stable if and only if
	max{𝑎(1−𝑑)(1−𝑝)𝜆/𝜇,(1−𝑎(1−𝑑))𝜆/𝜇,𝜆/(2𝜇)}<1 
	which is equivalent to (1a)–(1c).
	Proposition 1 indicates the two-queue system with shorter-queue routing is stable regardless of attack and defense given 𝜆<𝜇. But when 𝜆≥𝜇, the system stability is associated with 𝑎, 𝑑 and 𝑝. In general, defending probability 𝑑 should not be too low when attacking probability is high; otherwise, the system is unstable.
	/
	Fig. 1. Two-queue system with shorter-queue routing and malicious attacks.
	In the absence of attacks, the system operator has perfect observation of the states 𝑋(𝑡) and 𝑌(𝑡). When a job arrives at time 𝑡, the operator allocates it to the shorter queue. That is, the job is allocated to server 1 (resp. 2) if 𝑋(𝑡)<𝑌(𝑡) (resp. 𝑋(𝑡)>𝑌(𝑡)); if 𝑋(𝑡)=𝑌(𝑡), then the job is allocated to each server with probability 1/2.
	Analytical solution to the shorter-queue problem is very hard and unnecessarily complex for our purpose. Instead, we derive a simple theoretical upper bound as an approximation. The derivation is based on [10].
	Proposition 2: The mean number of jobs Ν=𝑋+𝑌 in the system is upper bounded by
	where 𝑎=𝑎(1−𝑑). 
	III. Security game
	A. Properties of equilibria
	B. Regime boundaries

	Throughout this paper, we assume that the queuing system is nominally stable, i.e., 𝜆<2𝜇. Consider the two-queue system with the shorter-queue routing policy and under the attack of the attacker and defense of the operator (defender). An attack induces a technological cost of 𝑐𝑎≥0. The attacker’s utility is the difference of the (upper bound of) average total queue size and the average technological cost: 𝑢𝑎𝑎,𝑝,𝑑;𝜆=𝑛𝑎,𝑝,𝑑;𝜆−𝜆𝑐𝑎𝑎. As for the operator, protecting a job induces a technological cost of 𝑐𝑑≥0. The operator aims at shorter queue length and lower cost, and thus the utility is given by 𝑢𝑑𝑎,𝑝,𝑑;𝜆=−𝑛𝑎,𝑝,𝑑;𝜆−𝜆𝑐𝑑𝑑. The technological cost can be transformed into same unit as the queuing cost.
	Fig. 2. Security risk under shorter-queue routing.
	We use 𝑎∗,𝑑∗ to denote the equilibria in the above security game, then we have the following theorem.
	Theorem 1: The attacker-defender game has the following regimes of equilibria: 
	 (𝐴) 𝑎∗=0, 𝑑∗=0; 
	 (𝐵) 𝑎∗=1 with two subregimes:
	     (𝐵1) 𝑎∗=1, 𝑑∗=0;
	An important observation from (2) is that the best response of the attacker must be such that either 𝑝=0 or 𝑝=1. That is, when the attacker modifies the routing instruction, the attacker always allocate jobs to the same server. This is intuitive in that sending all jobs to one server will cause higher delay than distributing jobs over two servers. Hence, 𝑝 can be actually dropped from the utility function, and we will let 𝑝=1 henceforth. With a slight abuse of notation, we write
	     (𝐵2) 𝑎∗=1, 𝑑∗=1−1𝜆(𝜇−2𝜇/𝑐𝑑).
	Furthermore, regime is non-empty if and only if 𝜆<𝜇. 
	The rest of this section is devoted to the proof of Theorem 1 and the characterization and visualization of the regime boundaries.
	𝑢𝑎𝑎,𝑑;𝜆=−2+2𝜇min{𝜇−𝑎𝜆,𝜇−𝜆/2}−𝜆𝑐𝑎𝑎𝑎<𝜇𝜆+∞𝑎≥𝜇𝜆
	Any equilibrium 𝑎∗,𝑑∗ satisfies
	𝑎∗=argmax𝑎∈[0,1]𝑛(𝑎,𝑑∗;𝜆)−𝜆𝑐𝑎𝑎,
	and
	𝑑∗=argmax𝑑∈[0,1]−𝑛(𝑎∗,𝑑;𝜆)−𝜆𝑐𝑑𝑑.
	𝑢𝑑𝑎,𝑑;𝜆=2−2𝜇min{𝜇−𝑎𝜆,𝜇−𝜆/2}−𝜆𝑐𝑑𝑑𝑎<𝜇𝜆−∞𝑎≥𝜇𝜆
	The following results characterize important qualitative properties of the equilibria.
	where 𝑎=𝑎(1−𝑑). 
	Proposition 3: For any equilibrium 𝑎∗,𝑑∗, either 𝑎∗=0 or 𝑎∗=1.
	We define security risk 𝑅𝑠𝑠𝑎,𝑑;𝜆 for two-queue system with shorter-queue routing as 𝑅𝑠𝑠𝑎,𝑑;𝜆≜𝑢𝑑0,0;𝜆−𝑢𝑑𝑎,𝑑;𝜆. Fig. 2 illustrates 𝑅𝑠𝑠𝑎,𝑑;𝜆 in two numerical examples with different 𝜆, given 𝜇=0.5  and 𝑐𝑑=20. Fig. 2a shows that 𝑅𝑠𝑠𝑎,𝑑;𝜆 mainly rises with 𝑑, which means that defense cost 𝑐𝑑 dominates in security risk when 𝜆=0.4 and 𝜇=0.5. In this case, it is expected that defense might be forsaken if defense cost becomes too high. In addition, Fig. 2b shows the stronger relationship between 𝑅𝑠𝑠𝑎,𝑑;𝜆 and attack probability 𝑎 when 𝜆=0.6 and 𝜇=0.5. Under the fierce attack, 𝑅𝑠𝑠𝑎,𝑑;𝜆 increases dramatically, and the operator must take defense action to minimize the security risk; otherwise, the system would get into the unstable state that is denoted by the empty under red line in Fig. 2b.
	Proof. Given 𝑑=𝑑∗, the attacker’s utility is given by 𝑢𝑎𝑎,𝑑∗;𝜆=−2+2𝜇min{𝜇−𝑎(1−𝑑∗)𝜆,  𝜇−𝜆/2}−𝜆𝑐𝑎𝑎. We need to consider two cases. In the first case that 𝜇−𝑎(1−𝑑∗)𝜆>𝜇−𝜆/2, we have 𝑢𝑎𝑎,𝑑∗;𝜆=−2+2𝜇𝜇−𝜆/2−𝜆𝑐𝑎𝑎, which immediately implies that 𝑎∗=argmax𝑎∈[0,1]𝑓(𝑎)=0. In the second case that 𝜇−𝑎(1−𝑑∗)𝜆<𝜇−𝜆/2, note that the stability condition 𝜇−𝑎(1−𝑑∗)𝜆>0 must hold; otherwise, the defender must be able to improve the utility by increasing 𝑑. Thus, we have 𝑢𝑎𝑎,𝑑∗;𝜆=−2+2𝜇𝜇−𝑎(1−𝑑∗)𝜆−𝜆𝑐𝑎𝑎 with 𝜕2𝑢𝑎𝑎,𝑑∗;𝜆/𝜕𝑎2>0, which implies that 𝑢𝑎𝑎,𝑑∗;𝜆 is convex in 𝑎 for any 𝑑∗; therefore 𝑎∗=0 or 𝑎∗=1. 
	Proposition 4: For any equilibrium 𝑎∗,𝑑∗ such that 𝑎∗=0, we have 𝑑∗=0.
	Fig. 3 illustrates the regimes in two numerical cases with different 𝜆, given 𝜇=0.5. Each regime is labeled with the corresponding 𝑎∗,𝑑∗. The regime denoted by 0, 0 is associated with high attack cost 𝑐𝑎 and low defense cost 𝑐𝑑. Given large 𝑐𝑎, the attack has no incentive and given small 𝑐𝑑, the attack must be counteracted by the defender. When 𝑐𝑑 increases, the defender’s strategy will be increasingly influenced by the technological cost, which leaves opportunities for the attacker. This regime is denoted by 1,𝑑. Importantly, the defender’s action strongly depends on whether 𝜆 is less than 𝜇. As shown in Fig. 3a, the defender has no incentive to defend when 𝜆<𝜇. But given 𝜆≥𝜇, the defense would continue since the outcome of instability is much severer. As a result, 1, 0 is removed in Fig. 3b.
	Proof. If 𝑎∗=0, we have 𝑑∗=argmax𝑑∈[0,1]−2+2𝜇𝜇−𝜆/2+𝜆𝑐𝑑𝑑, which immediately implies 𝑑∗=0.
	Since, by Proposition 3, each equilibrium 𝑎∗,𝑑∗ satisfies either 𝑎∗=0 or 𝑎∗=1, we only need to consider the utilities for 𝑎=0 and 𝑎=1. By Proposition 4, the best response for the defender when 𝑎=0 is 𝑑∗(0)=0. For 𝑎=0 and 𝑑=0, we have 𝑢𝑎0,0;𝜆=−2+2𝜇𝜇−𝜆/2 and 𝑢𝑑0,0;𝜆=2−2𝜇𝜇−𝜆/2. For 𝑎=1, we have
	𝑢𝑎1,𝑑;𝜆=−2+2𝜇min{𝜇−(1−𝑑)𝜆,𝜇−𝜆/2}−𝜆𝑐𝑎1−𝑑<𝜇𝜆+∞1−𝑑≥𝜇𝜆,
	𝑢𝑑1,𝑑;𝜆=2−2𝜇min{𝜇−(1−𝑑)𝜆,𝜇−𝜆/2}−𝜆𝑐𝑑𝑑1−𝑑<𝜇𝜆−∞1−𝑑≥𝜇𝜆.
	For ease of presentation, define 𝛾∶=𝜇𝜇−2/𝑐𝑑/𝜆. Given 𝑎=1, the best response for the defender is given by
	𝑑∗(1)=0𝑖𝑓 𝛾≥11−𝛾𝑖𝑓 1/2<𝛾<112𝑖𝑓 𝛾≤1/2.
	Fig. 3. Equilibrium regime under shorter-queue routing.
	and the utility associated with the above best response is given by
	IV. Comparison with open-loop routing
	A. Queuing cost for Bernoulli routing
	B. Security game for Bernoulli routing

	To evaluate the system performance under shorter-queue routing, we compare it with that under Bernoulli routing. Bernoulli routing herein means that the router assigns jobs to each server with probability 1/2. We first point out the queuing cost for Bernoulli routing, then compare the security risk and equilibrium regime with those of shorter-queue routing.
	𝑢𝑎(1,𝑑∗(1);𝜆)=−2+2𝜇𝜇−𝜆−𝜆𝑐𝑎𝑖𝑓 𝛾≥1−2+2𝜇𝜇−𝛾𝜆−𝜆𝑐𝑎𝑖𝑓 1/2<𝛾<1−2+2𝜇𝜇−𝜆/2−𝜆𝑐𝑎𝑖𝑓 𝛾≤1/2.
	For 𝛾≤1/2, we have 𝑢𝑎(0,𝑑∗(0);𝜆)>𝑢𝑎(1,𝑑∗(1);𝜆). Therefore, the equilibrium is (0, 0).  
	The job arriving at server 1 can be divided into two classes. The first is attacked, while the second is not attacked. The arrival rates are 𝑝𝑎(1−𝑑)𝜆 and (1−𝑎(1−𝑑))𝜆/2, respectively. Thus, the arrival rate at server 1 equals (1−𝑎(1−𝑑)2+𝑝𝑎(1−𝑑))𝜆. Recall that we use 𝑎 to denote 𝑎(1−𝑑). Then the arrival rate at server 1 is simplified as 1−𝑎+2𝑝𝑎2𝜆. The arrival rate at server 2 is computed similarly. Then we have the mean number of jobs at server 1 and 2: 𝑋+𝑌=(1−𝑎+2𝑝𝑎)𝜆2𝜇−(1−𝑎+2𝑝𝑎)𝜆+(1+𝑎−2𝑝𝑎)𝜆2𝜇−(1+𝑎−2𝑝𝑎)𝜆.
	For 1/2<𝛾<1, if −2+2𝜇𝜇−𝜆/2>−2+2𝜇𝜇−𝛾𝜆−𝜆𝑐𝑎, the equilibrium is (0, 0); if −2+2𝜇𝜇−𝜆/2<−2+2𝜇𝜇−𝛾𝜆−𝜆𝑐𝑎, the equilibrium is (1, 1−𝛾).
	For 𝛾≥1, if −2+2𝜇𝜇−𝜆/2>−2+2𝜇𝜇−𝛾𝜆−𝜆𝑐𝑎, the equilibrium is (0, 0); if −2+2𝜇𝜇−𝜆/2<−2+2𝜇𝜇−𝛾𝜆−𝜆𝑐𝑎, the equilibrium is (1, 0).
	In summary, the regimes are 
	(𝐴) 𝑎∗=0, 𝑑∗=0 if (i) 1/2<𝛾<1 and 2𝜇𝜇−𝜆/2>2𝜇𝜇−𝛾𝜆−𝜆𝑐𝑎, or if (ii) 𝛾≥1 and 2𝜇𝜇−𝜆/2>2𝜇𝜇−𝜆−𝜆𝑐𝑎, or if (iii) 𝛾<1/2;
	Similar to the attack on shorter-queue routing, the best attack strategy must be either 𝑝=1 or 𝑝=0. We let 𝑝=1, then the attacker’s utility under Bernoulli routing is
	 (𝐵) 𝑎∗=1 with two subregimes:
	𝑣𝑎𝑎,𝑑;𝜆=(1+𝑎)𝜆2𝜇−(1+𝑎)𝜆+(1−𝑎)𝜆2𝜇−(1−𝑎)𝜆−𝜆𝑐𝑎𝑎1+𝑎<2𝜇𝜆+∞1+𝑎≥2𝜇𝜆,
	     (𝐵1) 𝑎∗=1, 𝑑∗=0 if 2𝜇𝜇−𝜆/2<2𝜇𝜇−𝜆−𝜆𝑐𝑎 and 𝛾≥1;
	     (𝐵2) 𝑎∗=1, 𝑑∗=1−1𝜆(𝜇−2𝜇/𝑐𝑑) if 2𝜇𝜇−𝜆/2<2𝜇𝜇−𝛾𝜆−𝜆𝑐𝑎 and 1/2<𝛾<1.
	and the defender’s utility is
	𝑣𝑑𝑎,𝑑;𝜆=−(1+𝑎)𝜆2𝜇−(1+𝑎)𝜆−(1−𝑎)𝜆2𝜇−(1−𝑎)𝜆−𝜆𝑐𝑑𝑑1+𝑎<2𝜇𝜆−∞1+𝑎≥2𝜇𝜆.
	     (𝐵2) 𝑎†=1, 𝑑†=𝑑 if (i) 𝜆<𝜇, (2𝜇−𝜆)𝜆2(𝜇−𝜆)𝜇>𝑐𝑑 and 2𝜆2𝜇−𝜆<(2−𝑑)𝜆2𝜇−(2−𝑑)𝜆+𝑑𝜆2𝜇−𝑑𝜆−𝜆𝑐𝑎, or if (ii) 𝜆≥𝜇 and 2𝜆2𝜇−𝜆<(2−𝑑)𝜆2𝜇−(2−𝑑)𝜆+𝑑𝜆2𝜇−𝑑𝜆−𝜆𝑐𝑎,
	We define security risk 𝑅𝑠𝑏(𝑎,𝑑;𝜆) for two-queue system with Bernoulli routing as 𝑅𝑠𝑏(𝑎,𝑑;𝜆)∶=𝑣𝑑(0,0;𝜆)−𝑣𝑑(𝑎,𝑑;𝜆). Fig. 4 illustrates 𝑅𝑠𝑏(𝑎,𝑑;𝜆) in two numerical examples with different 𝜆, given 𝜇=0.5 and 𝑐𝑑=20. The revealed relationship between security risk and 𝑎, 𝑑 in Bernoulli routing is similar to that in shorter-queue routing. However, in terms of security risk, Fig. 2a and Fig. 4a show Bernoulli routing slightly superior to shorter-queue routing, while Fig. 2b and Fig. 4b show shorter-queue routing is much better than Bernoulli routing. Combining Fig. 2a and Fig. 4a, we find 𝑅𝑠𝑏(𝑎,𝑑;𝜆) is lower than 𝑅𝑠𝑠(𝑎,𝑑;𝜆) when (𝑎,𝑑) is around (1,0) given 𝜆=0.4. On the contrary, Fig. 2b and Fig. 4b show security risks of Bernoulli routing is obviously higher than those of shorter-queue routing when 𝑎>0.5, given 𝜆=0.6.
	where 𝑑=1−1𝜆𝜃−𝜁2−𝜃2+2𝜅𝜁𝜃, 𝜁=2𝜇−𝜆, 𝜅=𝜇/𝑐𝑑, 𝜃=𝜂+𝜁49𝜂+𝜁23, and 𝜂=3𝜁627+𝜅2𝜁22+𝜅2𝜁827+𝜅4𝜁44.  
	The contradictory observations from Fig. 2 and Fig. 4 are caused by the approximation error of queue cost in shorter-queue routing. Recall that we use a up bound to represent the queue cost for shorter-queue routing, and the above findings indicate the upper bound might overestimate the queue length when 𝜆<𝜇  and then mislead the strategy in equilibrium, which is demonstrated later.
	Fig. 5. Equilibrium regime under Bernoulli routing.
	We further compare security risks in a state of equilibrium under the two routing policies. By fixing 𝜇=0.5 and 𝑐𝑎=1, we choose (𝜆,𝑐𝑑)=(0.4, 20), (0.4, 110), (0.6, 110) to study three kinds of equilibrium respectively, namely (1,𝑑) given 𝜆<𝜇, (1, 0) given 𝜆<𝜇 and (1,𝑑) given 𝜆≥𝜇. The comparison is presented in Fig. 6, where 𝑅𝑞 and 𝑅𝑠 respectively denote queue risk and security risk through theoretical analysis, while 𝑅𝑞 and 𝑅𝑠 denote the values through numerical simulation. Herein we define queue risk 𝑅𝑞 as queue length under attack and defense minus that free from attack. Then the blank area in the bars of Fig. 6 can be recognized as defense costs. Fig. 6a shows the defense cost of shorter-queue routing in equilibrium given 𝜆=0.4, 𝜇=0.5, 𝑐𝑎=1, 𝑐𝑑=20 is much more than that of Bernoulli routing. The reason might lie in that the queue length overestimated by the upper bound induces the defender to adopt larger 𝑑, which finally results in more security risk. Fig. 6b explicitly presents the relative approximation error might be large when 𝜆<𝜇. Fig. 6c illustrates the huge advantage of shorter-queue routing when 𝜆≥𝜇. The numerical simulation shows that the security risk is decreased by 37%.
	Fig. 4. Security risk under Bernoulli routing.
	We use 𝑎†,𝑑† to denote the equilibrium in the security game for Bernoulli routing. The regimes are summarized as follows and more details are available in the appendix. Fig. 5 illustrates the regimes in two numerical examples with different 𝜆, given 𝜇=0.5.
	(𝐴) 𝑎†=0, 𝑑†=0 if (i) 𝜆<𝜇, (2𝜇−𝜆)𝜆2(𝜇−𝜆)𝜇≤𝑐𝑑 and 2𝜆2𝜇−𝜆≥𝜆𝜇−𝜆−𝜆𝑐𝑎, or if (ii) 𝜆<𝜇, (2𝜇−𝜆)𝜆2(𝜇−𝜆)𝜇>𝑐𝑑 and 2𝜆2𝜇−𝜆>(2−𝑑)𝜆2𝜇−(2−𝑑)𝜆+𝑑𝜆2𝜇−𝑑𝜆−𝜆𝑐𝑎, or if (iii) 𝜆≥𝜇 and 2𝜆2𝜇−𝜆>(2−𝑑)𝜆2𝜇−(2−𝑑)𝜆+𝑑𝜆2𝜇−𝑑𝜆−𝜆𝑐𝑎;
	 (𝐵) 𝑎†=1 with two subregimes:
	Fig. 6. Comparison of security risk.
	     (𝐵1) 𝑎†=1, 𝑑†=0 if 𝜆<𝜇, (2𝜇−𝜆)𝜆2(𝜇−𝜆)𝜇≤𝑐𝑑 and 2𝜆2𝜇−𝜆<𝜆𝜇−𝜆−𝜆𝑐𝑎;
	V. Concluding reamarks
	This work quantifies the security risks of two-queue system that is routed by shortest-queue policy and suffers malicious attack. Our theoretical analysis can help decisionmakers figure out appropriate strategies against attack. The comparison with Bernoulli routing demonstrates that the proposed methodology has great potentials, especially when the system is congested, but it also indicates the requirement for more powerful tools that accurately approximates queue cost in two-queue system.
	𝑣𝑎1,𝑑†1;𝜆=𝜆𝜇−𝜆−𝜆𝑐𝑎𝑖𝑓 𝜆<𝜇 𝑎𝑛𝑑 (2𝜇−𝜆)𝜆2(𝜇−𝜆)𝜇>𝑐𝑑(2−𝑑)𝜆2𝜇−(2−𝑑)𝜆+𝑑𝜆2𝜇−𝑑𝜆−𝜆𝑐𝑎𝑖𝑓 𝑖) 𝜆<𝜇 𝑎𝑛𝑑 (2𝜇−𝜆)𝜆2(𝜇−𝜆)𝜇≤𝑐𝑑 𝑜𝑟 𝑖𝑖) 𝜆≥𝜇. 
	For 𝜆<𝜇 and (2𝜇−𝜆)𝜆2(𝜇−𝜆)𝜇>𝑐𝑑, if 2𝜆2𝜇−𝜆>𝜆𝜇−𝜆−𝜆𝑐𝑎, the equilibrium is (0, 0); if 2𝜆2𝜇−𝜆<𝜆𝜇−𝜆−𝜆𝑐𝑎, the equilibrium is (1, 0).
	This work can serve as the basis for multiple future research directions. First, the impact of more sophisticated attacking strategies such as state-dependent attacking probability can be studied in our framework. Second, the effect of fault-tolerant routing algorithms can be analyzed for tandem servers with spillback, which is important for transportation systems [25]. Third, multi-stage attacker-defender game with strategy learning (e.g., the formulation in [26]) may provide additional insights about secure design.
	For 𝜆<𝜇 and (2𝜇−𝜆)𝜆2(𝜇−𝜆)𝜇≤𝑐𝑑, if 2𝜆2𝜇−𝜆>(2−𝑑)𝜆2𝜇−(2−𝑑)𝜆+𝑑𝜆2𝜇−𝑑𝜆−𝜆𝑐𝑎, the equilibrium is (0, 0); if 2𝜆2𝜇−𝜆<(2−𝑑)𝜆2𝜇−(2−𝑑)𝜆+𝑑𝜆2𝜇−𝑑𝜆−𝜆𝑐𝑎, the equilibrium is (1, 𝑑).
	Finally, for 𝜆≥𝜇, if 2𝜆2𝜇−𝜆>(2−𝑑)𝜆2𝜇−(2−𝑑)𝜆+𝑑𝜆2𝜇−𝑑𝜆−𝜆𝑐𝑎, the equilibrium is (0, 0); if 2𝜆2𝜇−𝜆<(2−𝑑)𝜆2𝜇−(2−𝑑)𝜆+𝑑𝜆2𝜇−𝑑𝜆−𝜆𝑐𝑎, the equilibrium is (1, 𝑑).
	Appendix
	A. Equilibrium regime under Bernoulli routing

	Like the equilibria 𝑎∗,𝑑∗ in shorter-queue routing, the equilibria 𝑎†,𝑑† have the properties that 𝑎† equals either 0 or 1 and 𝑑† must equal 0 given 𝑎†=0. For 𝑎=0 and 𝑑=0, we have 𝑣𝑎0,0;𝜆=2𝜆2𝜇−𝜆 and 𝑣𝑑0,0;𝜆=−2𝜆2𝜇−𝜆.
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