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Abstract

The goal of this article is to enable robots to perform robust task execution following human instructions in partially
observable environments. A robot’s ability to interpret and execute commands is fundamentally tied to its semantic world
knowledge. Commonly, robots use exteroceptive sensors, such as cameras or LIDAR, to detect entities in the workspace
and infer their visual properties and spatial relationships. However, semantic world properties are often visually imper-
ceptible. We posit the use of non-exteroceptive modalities including physical proprioception, factual descriptions, and
domain knowledge as mechanisms for inferring semantic properties of objects. We introduce a probabilistic model that
fuses linguistic knowledge with visual and haptic observations into a cumulative belief over latent world attributes to infer
the meaning of instructions and execute the instructed tasks in a manner robust to erroneous, noisy, or contradictory evi-
dence. In addition, we provide a method that allows the robot to communicate knowledge dissonance back to the human
as a means of correcting errors in the operator s world model. Finally, we propose an efficient framework that anticipates
possible linguistic interactions and infers the associated groundings for the current world state, thereby bootstrapping
both language understanding and generation. We present experiments on manipulators for tasks that require inference
over partially observed semantic properties, and evaluate our frameworks ability to exploit expressed information and
knowledge bases to facilitate convergence, and generate statements to correct declared facts that were observed to be
inconsistent with the robot s estimate of object properties.
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Human-robot collaboration, semantic state estimation, Bayesian modeling, multimodal interaction, natural lan-
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“The right most barrel is full.”
i “Push the full barrel.”

“The barrel in front of me was empty.”

Fig. 1. Bi-directional communication for human-robot teams: (a) a Husky with a URS arm, understanding language utterances in a
partially known environment; (b) multimodal semantic knowledge estimation followed by linguistic feedback generation to the human
operator. A human operator can share his mental model of an object with a robot by stating declaratively that ““‘the barrel on the right is
full.” However, the shared world knowledge can be inaccurate in partially observable environments. Upon updating the world
knowledge state via physical estimation, the robot reports back a declarative statement in order to correct the operator’s mental model.

alone. The lack of knowledge of non-visual properties may
make it impossible to synthesize plans or lead to unantici-
pated failures during plan execution.

In this work, we address the problem of inferring seman-
tic properties of the world that may not be observable from
exteroceptive modalities such as visual or LiDAR sensors.
We incorporate three information sources for estimating the
latent world properties. First, we use factual, task-relevant
knowledge that is implicit or explicit in the natural language
communication between the robot and its human partner.
For example, the utterance ‘“‘the nearest barrel is empty”
provides factual knowledge about a property of the indicated
object. Second, we leverage the robot’s ability to directly
interact with the world to inform its belief over the latent
attributes of the environment. Force and torque observations
and other end-effector measurements provide cues about
physical properties of an object, such as whether it can be
pushed or lifted, or whether it is pliable. Third, we utilize
commonsense knowledge about particular object types (e.g.,
that plastic containers are typically lighter and less rigid than
their metal counterparts) present in crowdsourced corpora,
such as the VerbPhysics dataset (Forbes and Choi, 2017),
derived from human judgement annotations.

We present a probabilistic model and inference algorithm
that estimate semantic knowledge about the workspace
through natural language communication, physical interac-
tion measurements, and background knowledge sources.
This is a challenging estimation problem as it involves distil-
ling high-level semantic knowledge from low-level measure-
ments arising from physical interactions or highly complex
and varied sources such as human language utterances and
relational data stores. We present a probabilistic model that
fuses measurements from multiple modalities into a

probabilistic belief over the latent semantic knowledge about
world entities. We factor the inference task into one of esti-
mating the presence of semantic properties from each mod-
ality and of temporally fusing the semantic observations into
a probabilistic belief that is robust to erroneous or contradic-
tory evidence. We show how the robot can use this model to
plan exploratory actions to improve its belief over latent
semantic properties of its world model. The ability to infer
missing semantic aspects of the world allows robots to fol-
low instructions while remaining resilient to incomplete or
inaccurate workspace knowledge.

Further, we observe that effective human—robot teaming
requires seamless communication as well as transparent
ways to provide feedback in case of observed discrepancies
between the mental model of the human and that of the
robot. We describe how a robot can learn to synthesize lin-
guistic feedback to the human operator when the robot’s
direct observations differ from the inferred model of the
human. Finally, we address the problem of reducing latency
in instruction interpretation and feedback generation that
arises while evaluating possible associations between lan-
guage utterances and semantic entities in the world, particu-
larly in large environments. We propose an approach that
anticipates future language interactions based on changes
in the environmental context and the robot’s environmental
knowledge. This allows the robot to pre-compute associa-
tions, thereby reducing the latency of future command
interpretation and language generation tasks.

We demonstrate the model’s effectiveness in real-world
scenarios in which fixed or mobile manipulation platforms
follow natural language instructions in environments that
are only partially known. By fusing declarative knowledge
provided by natural language with observations made
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during physical interactions, our method successfully
infers the latent object attributes necessary for task execu-
tion. We show that the proactive approach to language
understanding and feedback generation improves the run-
time performance. The proposed model builds on the fol-
lowing lines of work: (i) efficient language grounding in
large semantic spaces (Paul et al., 2018), where the
approximation of the complete model is fundamental to
efficient inference; (ii) acquiring factual knowledge (Paul
et al., 2017) over a temporally extended visual and linguis-
tic interaction; (iii) learning an informed belief from back-
ground knowledge corpora; and (iv) improved efficient
communication by proactively searching for and inferring
the meaning of likely phrases given the interaction history
and current state of the world (Arkin and Howard, 2018).

Contemporary approaches that incorporate declarative
knowledge (Kollar et al., 2013b; Matuszek et al., 2012a;
Paul et al., 2017) assume that such information is correct
and sufficient for task execution and, thus, are not robust
to situations in which the declared knowledge is incor-
rectly understood by the robot or factually inaccurate.
Approaches such as those of Walter et al. (2013), Walter
et al. (2014b), Hemachandra et al. (2015), and Duvallet
et al. (2014) incorporate language in semantic mapping in
partially known environments in order to simultaneously
infer a metric map and semantic labels for regions from
visual or range-based observations. Similarly, Daniele et al.
(2017a) used language to learn kinematic models of articu-
lated objects. Our work expands the scope of semantic
properties from region types alone to fine-grained physical
and abstract properties of objects and further incorporates
active interaction and high-level commonsense knowledge
for making predictions.

This article expands significantly on an earlier confer-
ence paper describing this framework (Arkin et al., 2018).
We present a thorough exposition of the proposed model
with additional technical details, an expanded background
and problem formulation, and a more thorough description
of related work. We extend the core technical contribu-
tions in the following ways. First, we incorporate a data-
driven model to estimate an informed prior over object
attributes derived from background commonsense knowl-
edge corpora. Second, we extend the model to provide lin-
guistic feedback to the human in the event that there is
disagreement between the human’s inferred model of the
environment and the robot’s internal estimate derived from
physical interaction. Third, we include new experimental
results and additional field demonstrations.

This article is organized as follows. We present the
background material and problem formulation in Section
2. Section 3 presents the model for representing semantic
knowledge and details the process of fusing multiple mod-
alities into a probabilistic belief over the correctness of
semantic aspects of the world model. Section 4 approaches
the problem of command following in a manner that takes
into account uncertainty in the acquired knowledge of
entities in the scene. In Section 5, we present an approach

for providing feedback to the human operator when discre-
pancies are detected between the human’s inferred model
of the environment and that of the robot. Section 6 tackles
the crucial issue of reducing latency in command under-
standing as well as linguistic feedback generation. The
experimental evaluation and results are described in detail
in Section 7. Section 8 is devoted to reviewing related
efforts. Finally, Section 9 concludes the article and lays
out avenues for future research.

2. Problem formulation

2.1. Robot and workspace model

We consider a robot manipulator operating in a workspace
populated with a set of rigid bodies O. Let Y, denote the
metric state of the world at time 7 that includes the pose of
the robot and other entities in the scene, typically popu-
lated by a perception system. A human operator communi-
cates with the robot through a natural language interface.
Let A; denote the language utterance received by the robot
at time 7. We assume that the human either instructs the
robot to perform high-level tasks, such as “‘clearing,”
“packing,” ““inspection,” etc. or provides factual descrip-
tions, such as “‘the barrel on the left is empty.”

The robot’s goal is to derive a plan that affects the world
state in order to satisfy the human’s command. We model the
plan u, as a sequence of actions that change the state of the
world, such as “grasping,” “moving,” “placing,” “pushing,”
or “poking” an object. We assume that the robot makes pro-
prioceptive measurements of the world through physical inter-
action with its surroundings. Let Z, = {z,,, z,, ...,z } denote
a proprioceptive observation recorded at time ¢ that consists
of a sequence of force/torque measurements and manipulator
poses observed during interaction.

The robot’s decision-making and planning requires
semantic knowledge about the world. We present a repre-
sentation and a framework for estimating semantic aspects
of the world in the next section.

LR RT3 EEINT3

2.2. Semantic attributes and knowledge

Let I' denote the space of concepts or ““groundings” that
express semantic properties of the world. Groundings
model semantic attributes associated with entities (e.g.,
class types and factual knowledge) as well as relationships
between entities (e.g., spatial relations and relative orienta-
tions). We represent concepts as a set of discrete symbols
using the predicate-role representation (Russell and
Norvig, 2016). Each predicate represents a semantic prop-
erty or a relationship o € ¥, that is expressed for a certain
set of entities in the robot’s world model o C O. The
space of grounding symbols I" can be expressed as

I'={(o,0)lc €2,0C O} (1)

A class of grounding symbols models Boolean object
categories such as IsBlock(o), IsBarrel(o), and IsBox(0),
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where o € O is an object instance in the world model. A
second category of symbols expresses physical object
properties, such as IsMovable(o), IsHeavy(o), or
IsPushable(o). A third class of symbols models spatial
relationships, such as Front(o;,0;), Left(0;,0;) or
Inside(o;, 0j), between object instances o; and o; in O. In
this work, we assume the predicates 3 and the class of
grounding symbols are known and fixed ahead of time but
that the object instances O are not known. Finally, we
introduce a symbolic abstraction over the continuous
actions that the robot can take. Following Howard et al.
(2014b), actions are modeled as a set of symbols that rep-
resent the goals or objectives of the robot’s motion. For
example, the symbol Grasp(o) represents motions that
result in a force closure of an object of interest. Similarly,
we introduce other symbolic actions such as picking an
object, Pick(o), or moving an object o to a goal location r,
Move(o, r).

A robot’s ability to follow commands is fundamentally
tied to its knowledge about the world. The robot’s seman-
tic knowledge about the world is typically informed via
sensors that are noisy and error-prone. Hence, we intro-
duce a representation to model the robot’s belief over
semantic knowledge of the world. Let K, denote the
knowledge state that consists of semantic attributes (e.g.,
“pushable,”” “movable,” and ‘‘rigid”’) associated with
individual object instances, and semantic relationships
(e.g., “‘relative strength” and ‘‘relative weight’’) associ-
ated with pairs of objects. Let k, € K, represent a single
semantic attribute or a relationship. We model the uncer-
tainty over semantic knowledge using a probabilistic
belief over the knowledge state p(K,),

pK) =[] ptk:=True) (2)
kekK

Here, we assume that the distributions over each seman-
tic property are independent. For example, if the work-
space contains a ““‘cup’ and a “‘box,”” the knowledge state
K; is represented as a set of independent binary random
variables:  p(IsFull(cup) =True), p(IsMovable(box)
=True), etc. In this work, we focus on estimating the
aforementioned physical properties of objects (restricted to
unary attributes and binary relationships). The robot’s
belief over semantic world knowledge informs the robot’s
decision-making and planning process. Next, we formalize
the task of interpreting and executing an instruction in the
context of acquired knowledge about the world.

2.3. Following instructions under semantic
knowledge uncertainty

The robot’s goal is to interpret and act according to the
human’s instruction in the context of its current knowledge
about the world. A planning model that reasons over which
actions are applicable requires some knowledge about the
objects the robot can potentially interact with. Note that

we consider planning domains that may only be partially
known. In particular, the robot may lack relevant semantic
knowledge that is required for planning manipulation inter-
actions. For example, manipulation tasks may require
knowledge of the intrinsic object attributes that cannot be
determined from visual observations alone. Consider
executing the instruction ‘‘clear away the cups on the
table,” in which empty cups should go in the trash and full
cups should be put aside. This task requires knowledge of
the internal states of the cups (full or empty) to decide how
each cup should be treated. We consider three sources of
non-exteroceptive knowledge for ““filling in” knowledge
about latent aspects of the world model: linguistic commu-
nication from the human, direct physical interaction by the
robot, and commonsense knowledge corpora.

Formally, the robot is assumed to be primed with a
background knowledge corpus By. The robot receives lan-
guage utterances from the human Ag, and acquires inter-
action measurements Zg. At time ¢+ 1, the robot is
provided a language instruction A, ; and must synthesize
a plan w, ; in the context of prior observations
{Ao:, Zo}, the metric world state Y,, and background
knowledge By. The estimation of the most likely plan
;1 as per the human’s instruction in the context of the
world model can be formulated as

By = argmaxp(u, . |Ary1, Yo, Aot Zo, Bo, T) - (3)

it

Equation (3) involves deriving actions from past linguistic
and physical interaction measurements. This inference
problem is intractable due to the large space of language
and intrinsic force measurements. We introduce the explicit
representation of semantic world knowledge K; at time ¢
that factors the estimation task into more tractable learning
tasks:

p(/*l't-i,- 1 |At+ 1s Yt’ AO:ta ZO:t) B09 F)

Instruction following

:/p(p-'[+1|AI+13YtsKhF)p(Kl|A0:taZO:t>B05r) (4)
K;

Knowledge estimation

Here, learning the factor p(K;|Agt, Zo:, Bo,I') involves
acquiring semantic knowledge about the world from obser-
vations and background knowledge.

Section 3 presents a probabilistic model of the belief
over latent semantic properties informed by observations
and prior knowledge. The factor p(u,, {|As41, Y, K;, )
in Equation (4) models plan inference conditioned on the
robot’s cumulative estimate of its world knowledge. We
detail this factor in Section 4 and show how the robot can
maintain this distribution over semantic knowledge by
actively interacting with the world before synthesizing a
plan. Section 6 addresses the task of providing realtime
feedback when a discrepancy is observed between the
robot’s knowledge and the inferred model of the human
operator.
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3. Bayesian multimodal semantic knowledge
estimation

This section addresses the problem of estimating latent
semantic attributes associated with objects in the world
model from multimodal observations and background
knowledge corpora. We first introduce a probabilistic rep-
resentation of semantic knowledge and then present a
Bayesian formulation for incremental online estimation
using past language descriptions, direct physical interac-
tion, and background knowledge corpora.

3.1. Probabilistic knowledge

The knowledge state K; consists of discrete random vari-
ables k;, each modeling a latent object property. We model
semantic attributes &, as Bernoulli random variables with
parameter Hf . We introduce a conjugate beta distribution
prior with hyper-parameter a* over the Bernoulli distribu-
tion parameter Hﬁ‘ as

p(k)~Bernoulli(6*) (5a)

0% ~Beta(a¥) (5b)

The distribution over %, is parameterized by 6 and, in
turn, o and models the current belief over the true likeli-
hood of a symbolic attribute and consists the shape para-
meters (a¥,b¥) characterizing the beta distribution. The
likelihood over the semantic attribute variable &, given the
beta distribution parameter af can be expressed as

P(Ki| Ao, Zo:t, By, T') =

Here, the beta distribution parameter «,_; represents the
belief over the knowledge state K; | at the previous time
step t — 1 as p(K;_i|a,—1). This belief is informed by
observations {Ag_1,Zo—1} until time ¢ — 1 and back-
ground  knowledge  By.  Hence, the  factor
pla—1|Aot-1, Zox—1,Bo, ') can be viewed as the predic-
tive posterior over the knowledge state at r — 1, i.e., the
belief that integrates past evidence until time ¢ — 1, before
incorporating the current set of observations {A;, Z,}. The
second factor p(K;|A,,Z;,a,—1,") updates the predictive
posterior using the current set of observations {A;, Z}.
The result is the posterior over the knowledge state at time
t, which is propagated to the next time step.

Note that the factorization in Equation (7) assumes that,
given the prior and current observation, the knowledge
state is independent of the previous observations and back-
ground knowledge. Formally, the belief over the knowl-
edge state o, at the previous time step f — 1 decouples
the estimation of the belief over the next knowledge state
K; from past observations Agg_1,”Zg.t—1 and the prior
knowledge corpus By given the current set of observations
{A1Z,}.

Now, we turn our attention to initializing the dynamic
Bayesian network at time f#p. The initial prior over the
knowledge state be represented by the beta distribution
with parameter «,. We assume the presence of a back-
ground commonsense corpus By that informs the initial
belief over the knowledge state before the robot acquires
any observations. We model this estimation at time £y by
the factor p(ao|Bo, ). Introducing the parameter o in
Equation (7) leads to the following formulation:

Updated knowledge state at time ¢ Belief over knowledge state at time #—1 Prior from background knowledge (8 )

/ ( p(Kt|Ata Ztaat—lar) p(at—]|A0!t—15Z0:t—17Fa aO)

plkla) = /H Pk |09p(6F 1) (6)

where the beta -distributed random variable 6% is margina-
lized out.” For a detailed exposition on conjugate distribu-
tions, we refer the reader to Bishop (2006).

Our goal is to infer the knowledge state given past
observations that arise from language and physical interac-
tion {Aqt, Zo: }, as well as a priori knowledge from back-
ground sources By, p(Ki|Ao:t, Zot, Bo, ). Following the
treatment above, we assume that the likelihood over the
state K; is Bernoulli distribution with parameter «,. We
use a Bayesian filter to recursively maintain the knowledge
state distribution over time given new observations Z;,

PKi| Aot Zost, Bo, T') =

Updated knowledge state at time ¢ Belief over knowledge state at time 7—1 (7)

PK|ALZ 1, T)  play—1]Aoi-1, Zoi—1,Bo, T)

—N——
P(ag[By, I) )

where the parameters « and «,_; are marginalized out. In
practice, we approximate Equation (8) with a maximum
likelihood estimate over the knowledge prior aj:

P(Ki| Ao, Loy, By, T') =

Knowledge update at time #  Cumulative belief until time /—1 (9)

/ (P& A, Zyy 01, T) ploy—1|Agi—1, Zoi—1, T, @) )

Figure 2 illustrates the overall probabilistic model. The
remainder of this section is organized as follows. Section
3.2 describes the inference procedure at each step in the
temporal model, specifically the updates to the distribution
to account for language utterances and direct physical
interaction. Section 3.3 addresses the problem of learning
an informed prior over semantic knowledge from back-
ground commonsense corpora. Finally, Section 3.4
shows how semantic observations from multiple modal-
ities can be fused into a probabilistic belief over world
knowledge.
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Fig. 2. A probabilistic model for robot command following with learned semantic knowledge about world model entities. The
model estimates a belief over the knowledge state K, from background knowledge By and observations received until time ¢, which
includes language utterances from the human Ay, and proprioceptive measurements from physical interaction Z,. This estimation is
posed as inference on a dynamic Bayesian network that evolves temporally with novel observations. The learned knowledge is used
to follow instructions by generating an appropriate plan of actions. The model consists of three components which are indicated via
gray, blue, and red boxes and are described in Sections 3, 4, and 6. Gray: The likelihood over the knowledge state is initialized as
parameter « learned from background commonsense knowledge sources By. Blue: At each time step, a correspondence ®, is
estimated between percepts {A;,Z,;} and semantic attributes contained in I'. True correspondences indicate semantic observations
that serve as evidence for updating the belief over the latent knowledge state p(K;|a,). Red: At time instant ¢ + 1, the robot interprets
an instruction A, | given its current belief over the knowledge K, state parameterized by a;. The robot synthesizes a plan u, | to
accomplish the stated goal state or takes information gathering actions to resolve uncertainty in the semantic state. Here, Y, denotes
the metric world state. Natural language feedback is generated in case discrepancies are observed between the robot’s and the

human’s mental model. The model shown in the illustration evolves from left to right.

3.2. Estimating semantic observations from
multimodal percepts

This section details the estimation of the knowledge state
K, at time ¢ expressed in the factor p(K;|A;, Z;, a;1,T) in
Equation (8). The knowledge estimate is derived from the
input language utterance A;, the physical interaction mea-
surement Z;, and the cumulative belief over the knowledge
state, represented by «;_;, until time # — 1. This inference
involves learning an association between the set of high-
level semantic attributes and the language and low-level
interaction observations. Learning such an association is
challenging as the joint space of multimodal percepts and
semantic properties can be combinatorially large. The prob-
lem can be factored by first inferring likely semantic attri-
butes from each modality and then fusing the discrete
observations into a cumulative belief over the latent knowl-
edge state.

Following earlier work on probabilistic language
grounding (Howard et al., 2014a,b; Liang et al., 2013; Paul
et al., 2018, 2017; Tellex et al., 2011b), we employ a binary
correspondence variable ®, that models the association
between semantic attributes and the language and interac-
tion measurements. For example, we express the correspon-
dence between the language phrase “‘the empty cup” and
the semantic grounding IsEmpty(cup) as the conditional
likelihood  p(® = True|IsEmpty(cup), the empty cup).
Fundamentally, this turns the problem of learning the joint
distribution between language and percepts into a

discriminative problem of learning true or false associations
between language and candidate meanings. This signifi-
cantly improves the tractability of training and inference.
We extend the use of correspondence variables to asso-
ciate physical interaction-based observations with the
latent semantic object attributes. For example, a slowly
increasing force profile while poking a barrel object is
indicative of the object being pushable. Alternatively, if
the force profile saturates rapidly, the robot can infer that
the object is likely to be less pliable during manipulation.
The introduction of the correspondence variable allows
us to factorize the distribution over the knowledge state as

p(K,\A,, Z, a1, )=
Knowledge belief update

—N—
Z p(K,|(I),, dr_1, F)

(Y

Language & interaction groundings

S0 & Ineption a1 (10)
p(q)l‘|Al‘azfa F)

Here, the factor p(®,|A;, Z, ") models the likelihood
of the correspondences between the semantic attributes
and percepts A,,Z,. We use the term semantic observa-
tions to denote semantic attributes indicated by the most
likely set of true correspondence variables. The factor
p(K | Py, a1, T) fuses the estimated semantic observa-
tions into the belief over the latent semantic attribute.

Note that Equation (10) involves directly fusing obser-
vations derived from multiple modalities into a belief over
semantic attributes. Learning in the joint space of multiple
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modalities is likely to be tractable with a small number of
modes. Further, we observe that language descriptions and
force interactions arise from independent sources and may
arrive at different instances in time. Language descriptions
arrive opportunistically from the human, while force inter-
actions are likely to arise from planned and controlled
interactions by the robot. Hence, we assume conditional
independence between observations arising from differ-
ent modalities, which enables Equation (10) to be
expressed as

P(Kr|At7 Zi, 01, r) =
Knowledge belief update

Language grounding Interaction grounding
—~—

—_—~—
> ApEK PN O} a1, T) p@}ALT)  p(®F|Z.T) '}
[

(11)

where ®} and ®” represent correspondence variables
derived from language A, and force measurements Z,
respectively, at the current time step ¢. Figure 3 presents
the corresponding factor graph representation.

Next, we discuss methods for deriving semantic obser-
vations from language and physical interactions. We then
detail the belief update over the latent object attribute given
the inferred semantic observations from each modality.

3.2.1.  Estimating  groundings  from  declarative
language. We now consider the problem of interpreting
factual knowledge about the world present in natural lan-
guage utterances from the human. As an example, we aim
to ground the declarative language utterance ““the cup on

K‘ Kt+]

™)
(&) @
@)

the table is empty” to the predicate IsEmpty(cup), where
the “cup” object is located on the table.

The factor p(q)[A|A,, I') in Equation (11) models the
factual knowledge inherent in declarative language utter-
ances. Inference involves reasoning over the correspon-
dence @f between a language instruction A, and semantic
aspects of world entities modeled as I'.

We incorporate a contemporary approach to grounding
factual knowledge from natural language utterances
(Howard et al., 2014b; Paul et al., 2017). The approach
exploits the linguistic parse structure of the utterance to fac-
tor the grounding problem into separate terms for each con-
stituent phrase. This factorization permits inference over
individual phrases rather than joint inference over the entire
utterance, improving scalability. For example, the model
learns a grounding for the utterance ‘‘the nearest cup” as
the “cup”-type object nearest to the speaker. We represent
the association between individual linguistic elements and
semantic concepts using a log-linear model that expresses
the likelihood of the linguistic features in each parsed con-
stituent phrase and the corresponding “‘grounded” attri-
butes of the world model. We train the model using an
aligned corpus of utterances and known groundings in the
context of a physical world model. The model leverages
the inherent compositional structure in language and learns
to assign meaning to simpler constituent phrases and struc-
ture them together to infer the meaning of an instruction
received at runtime (Howard et al., 2014b).

Further, the model uses linguistic structure and part-of-
speech information to partition the sentence (Paul et al.,

g

K[+l
b)

(

Fig. 3. Probabilistic model for knowledge acquisition over latent object attributes from descriptive language utterances and physical
interaction measurements instantiated at each time step ¢ in the dynamic Bayesian network. (a) Joint model. Semantic observations
are derived jointly from physical interaction measurement Z;, and factual knowledge from language description A,. The combined
factor estimates true correspondences @, between low-level measurements {Z;, A,} and high-level semantic properties represented
by I'. The semantic property associated with true correspondences serves as a semantic observation. The inferred observation
updates the prior belief over the latent knowledge state p(K;|a,) to a posterior belief p(K; + 1|a;+1) propagated to the next time step
t+ 1. (b) The factored model assumes independence between semantic observations derived from language description and those
derived from physical interaction. Hence, the correspondence variables are factored as <I>,Z and <I>jX associating physical interaction Z;
and language A, with semantic concepts I'. The estimated groundings from both visual and linguistic modalities are fused to inform

a posterior distribution over the latent knowledge state.
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2017) into (i) phrases that can be associated with physical
aspects of the world (e.g., detected objects and spatial rela-
tions) and (ii) phrases that convey facts about the world
(e.g., knowledge about the latent state of objects). The
inferred factual knowledge conveyed in language provides
positive or negative evidence for the underlying knowl-
edge state of the entities described in the utterance. The
ability to infer factual knowledge derived from language
descriptions is particularly useful if the expressed facts
relate to unobserved aspects of the world state. For exam-
ple, the phrase, “‘the nearest cup is empty,” conveys infor-
mation that is otherwise unobservable unless the robot
interacts with the cup, i.e., ISEmpty(cup).

We assume that the user’s utterances convey factual
knowledge that they believe to be true according to their
internal model of the world. In practice, we store each cor-
respondence ®" that we infer to be true along with the
associated semantic properties I (Figure 3(b)) for future
reference. This allows the robot to maintain a model of
what the human believes to be true of the world and engage
in bidirectional communication to correct human beliefs
that are inconsistent with evidence that the robot gathers.

The estimation of semantic attributes from the human’s
utterance can be viewed as a declarative top-down infer-
ence over semantic world knowledge. Next, we address
the problem of deriving semantic observations from pro-
prioceptive measurements that arise as the robot physically
interacts with the world.

3.2.2. Estimating semantic properties from physical
interaction. The estimation of object attributes from phys-
ical interaction is an extensively explored area
(Bhattacharjee et al., 2013; Chitta et al., 2011; Chu et al.,
2015). The ability to infer certain sementic properties of
objects from physical interaction helps to determine an
appropriate plan in visually unobservable environment. In
this work, we perform offline classification of object attri-
butes (e.g., IsFull or IsMovable) given noisy time-series
physical interaction measurements during a stereotyped
motion with a manipulator, such as lifting or poking. To
model the noisy time-series signals, we use a hidden
Markov model (HMM) that is a state-based method in
which a hidden state is a latent representation of current
measurements depending on the previous state. The state
transition enables to model or test time-series data with
variable length. In particular, we use a multivariate
Gaussian HMM' and model the emission distribution
p(Zy|s;) as a Gaussian with a full covariance matrix that
models the correlation between force and pose measure-
ments (Park et al., 2018).

The factor p((I)tZ |Z,, ') in Equation (11) relates seman-
tic properties (i.e., object attributes) to measurements
acquired through physical interaction. Each interaction-
based measurement Z; consists of a sequence of three -axis
end-effector force and arm-pose measurements recorded
during physical interaction with an object. We identify the

correspondence (I),Z via maximum a posteriori inference.
This estimation can be viewed as a bottom-up source of
symbolic knowledge derived from grounding raw posi-
tional and force measurements.

We use HMMs to define an object attribute estimator f;
that is the predictive model of the factor p(CDtZ |Z;,T) given
interaction experience of the semantic attribute k. Let
mh. . and m ., denote the HMM models trained for the
True and False of an object attribute k;. The two HMMs
determine the observation likelihoods p(Z|mk, ) and
p(Z,|mk.,,..) conditioned for the presence or absence of the
object attribute, respectively. The physical interaction
measurement acquired online is associated with an object
state by comparing the model evidence for the presence or
absence of object attributes k; € K, as

fk(Zf’ m/"i"rue’ mll(:alse) :p(Zf|ml{"rue)/p(zf|mll(:alse) (12)

We threshold the above likelihood ratio to arrive at a
binary classification, and thus ®Z.

The HMM model m consists of state transition probabil-
ity, emission probability, and initial state distribution: us
from (4, B, 7), where A € R"*", B € R"*, and 7 € R".
Let n and d denote the number of hidden states (i.e., 20 or
30 in this work) and the number of modalities (i.e., 2),
respectively. In particular, we use a left-to-right HMM that
does not allow backward state transitions from a higher-
numbered state to a lower-numbered state in 4. We also
set the first element of initial state distribution 7 is 1 and
other are zero to make the HMM always starts from the
first state. These 4 and 7 help to model the temporal pro-
cesses of physical measurements during the stereotyped
motions. To use multivariate Gaussian HMMs, we repre-
sents the emission probability B as a set of observation
mean vector and its covariance matrix. We then train each
HMM by iteratively searching its model m* that maxi-
mizes p(Z"|m*) using an expectation—minimization (EM)
algorithm (Rabiner, 1989). Here Z* € R * 4>/ is a set of
pre-processed interaction traces with varied object states
and configurations, where n, and / are the number of train-
ing data (i.e., 20 or 30 per the presence or absence of the
object property) and the length of a trace (i.e., 50-200),
respectively. The pre-processing step includes smoothing,
time-alignment, and scaling. However, after training, the
estimation does not require smoothing and time alignment.

3.3. Learning informed priors over semantic
knowledge from commonsense corpora

In this section, we focus on the problem of inferring an
informed prior over world knowledge derived from a noisy
commonsense corpus. In the absence of any background
domain knowledge, the initial prior of the model introduced
in Section 3.1 can be left uninformed and as more observa-
tions and interactions are received, the model gradually con-
verges to the true object attributes. However, estimating the
latent object attributes can be hastened if we have an
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informed prior that is guided by experience. A source of
experience can be found in commonsense corpora derived
from human judgement tasks (Forbes and Choi, 2017;
Rashkin et al., 2018; Vedantam et al., 2015; Yatskar et al.,
2016). Such corpora contain crowdsourced human annota-
tions indicating whether an attribute or a relationship is true
for certain object types. For example, human judgements
about the relative rigidness of plastic and metal containers
would result in relational facts indicating that containers
made of plastic are less rigid compared with metal
containers.

Learning an informed prior over semantic knowledge
Ky from a commonsense corpus By at time fy can be posed
as estimating the conditional distribution p(Ky|By, o, ).
The model is initialized at time 7, with an uninformed beta
hyper-prior ap. We treat the factual knowledge present in
the commonsense corpus as stochastic observations of the
true latent semantic attributes. Following the approach in
the previous section, we introduce correspondence vari-
ables CDOB that indicate the set of semantic properties asso-
ciated with a true prior found before robot interaction. The
introduction of the correspondence variables allows the
conditional likelihood p(Ky|By, ap, I') to be expressed as

Informed knowledge prior

—_—
P(Ko|Bo, @0, T) =Y p(Ko|®F, a0, T)
@f

Facts from corpus

B
p(Pqg|Bo, T)

(13)

The factor p((I)ég |Bo, I') represents the predictive model
that estimates the likelihood that a semantic attribute is
true in the world given the evidence in the commonsense
corpus. The predicted semantic observations are fused into
the latent belief expressed by the factor p(K0|CDOB ,ap,1),
resulting in the informed prior at the start of the mission.
We now discuss the model for predicting semantic proper-
ties given a background knowledge corpus and delegate
the fusion of the semantic properties into a probabilistic
belief to the next section.

Learning the factor p((DOB | By, I') involves estimating the
correctness of a semantic attribute ky € K relating object
instances in (. The problem of predicting attributes
between semantic entities has received recent attention in
the context of knowledge represented as databases, graphs,
or other structured networks (Socher et al., 2013; Wang
et al., 2015; Yang et al., 2014; Zhang and Chen, 2018).
We adopt a contemporary approach (Yang et al., 2014)
and learn a function fz that models the association between
a semantic attribute k, and the object types 7 associated
with object instances in O. In this work, we restrict our-
selves to binary relations and, hence, estimate the function:

fatrto.wtop b = { T SO g

where 7(0;) and 7(o0;) represent object types for object
instances {0;,0;} € O. We use the above scores to define

the factor p(qJOB |Bo, I') by normalizing it.

The aforementioned function fz is realized using a
neural architecture. We first encode the object types
using Glove word embeddings (Pennington et al., 2014)
that represent semantic or conceptual affinities between
words, resulting in the vector embeddings g:(,,) € R
and g, € R**. We introduce a single-layer feedforward
neural network ¢ with rectified linear unit (ReLU)
activation functions that outputs task-specific word
embeddings y,, € R** and y, € R*®: y, = q(gr(,) and
Yo, = qw(gr(0), Where w are the parameters of the net-
work. We define a function f5(yy,, V0, ko) that models the
association between the task-specific vector and the
object attribute ky under consideration. We explored
the following scoring functions to realize the function

fB(yO,yyO_,a k()):

¢ TransE (Bordes et al., 2013)

T
_ Vk Yo, o T 2
<2<Vk> (yo,) zyo"y"”HW""z) 1)

e Bilinear

(16)

yZ;;Mkyo/

e Bilinear-diag, same as Bilinear with the additional
condition that M; is constrained to be a diagonal
matrix.

In the above definitions, V}, and M} are neural network
parameters learned from data. In this work, we use the
VerbPhysics dataset (Forbes and Choi, 2017) that contains
relative physical knowledge of object pairs encoded as
relational tuples, each consisting of relationship and entity
attributes. The dataset contains approximately 2500 object
pairs annotated with their relative comparisons in terms of
“size,” “‘weight,” “‘strength,” and ‘‘rigidness.” The
model is trained to predict object attributes (e.g., “‘size,”
“weight,” “‘strength,” and “‘rigidity’’) of types (e.g.,
“greater than,” “‘less than,” ‘“‘equal,” and ‘“‘unknown”’).
The training objective minimizes a marking-based ranking
loss that encourages the scores of positively expressed
semantic relationships to be higher than negatively
expressed relationships (Yang et al., 2014).

The learned function provides the prior distribution
over knowledge state incorporated in Equation (8). Note
that the learned relational model predicts the presence of
relative physical properties from abstract object-type data
before fusing observations. Online, the model is condi-
tioned on the world model to obtain a distribution over
semantic attributes that are relevant for the world model.
Next, we turn our attention to the problem of fusing
semantic observations derived from multiple modalities
into a cumulative belief over latent semantic knowledge.
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3.4. Estimating belief over knowledge from
multimodal semantic observations

The set of semantic observations of the world state derived
from language and physical interaction must be fused into
the robot’s belief over semantic knowledge. The current
observation @, allows the robot to update its previous
knowledge estimate parameterized by the beta parameter
a1 to yield the updated belief over K;. This estimation is
represented by the factor p(K,|®;, a;—1,T") in Equation
(11). The application of Bayes’ rule allows the posterior
distribution over K, to be expressed as

Observation likelihood Prior

pK |1, 1) p(@|K1,T)  p(Ki—i|ei—1)

Posterior over knowledge

(17)

As the beta distribution serves as a conjugate prior for
the Bernoulli likelihood, the posterior distribution over
the knowledge state is also beta distributed (Bishop, 2006;
Blei et al., 2003). The posterior distribution parameters are
obtained using closed-form updates to the prior distribu-
tion parameters informed by the current set of observa-
tions. A true correspondence variable serves as a positive
observation of the associated semantic property and incre-
ment to the beta distribution parameter:

p(K;|®y, a1, T) ~ Beta(e,) (18)
~ Beta(a,—; + )

Here, the notation «;_; + ®; indicates an update of the
beta distribution parameter «,_; with the semantic obser-
vation indicated by the correspondence variable ®;. Fusing
a true observation of a semantic property biases the beta
distribution parameters towards favoring a Bernoulli dis-
tribution with a higher true belief over the semantic prop-
erty, and vice versa for a negative observation. Partitioning
the set of semantic properties into those derived from lan-
guage descriptions and those derived from force interac-
tions enables Equation (18) to be factorized as

PR P, D7}, @1, T) ~ Beta(ey,_ 1 +{P}+P7}) (19)

The posterior distribution over the latent knowledge vari-
able evolves incrementally with each observation. The
current beta distribution parameters after fusing current
observation Ag,Z,} with the last estimate «,_; can be
expressed as

a,={a, b}y ={a,_ + (nlA + nlz), bi_1+ (n% + ng)} (20)

Here, {n},n}} and {n},n)} denote the number of
true and false observations derived from language @ﬁ\
and interaction groundings (D,Z , respectively. Parameters
{as, b;} constitute the parameter tuple for the beta para-
meter «, and {a,_,b,—1} denotes the parameter tuple for
the last estimate «;_;. Note that Equation (20) shows that
the true and false observations derived from multiple mod-

alities bias the beta distribution parameters appropriately.

Finally, we turn our attention to representing the
informed prior belief over K from commonsense corpora
initializing the model at time f). Again, leveraging the
conjugacy property of the Beta — Bernoulli distributions
we can represent the belief as

P(Ko| DB, g, T) ~ Beta(arp + DF) (21)

Recall, that prior knowledge derived from commonsense
corpora serve as noisy observations of the latent semantic
knowledge. As indicated in Equation (21), possibly noisy
semantic assertions from background knowledge serve as
pseudo-measurements and bias the beta distribution para-
meters before incorporating physical measurements.
Finally, we make a few remarks on the modeling
choices in our probabilistic model. The model presented
in this section allows the estimation and propagation of
the belief over knowledge states derived from multiple
and diverse sources. The ability to model uncertainty over
latent state and to efficiently fuse multiple modalities pro-
vides robustness to noisy and possibly contradictory mea-
surements. Our approach leverages conjugate priors over
the likelihood over the correctness of semantic properties
in the world model, enabling tractable and efficient poster-
ior updates using observations collected online. The prob-
abilistic formulation can be viewed as a form of semantic
state estimation. Note that we perform inference over a
restricted set of symbolic aspects of the world model. This
approach can be considered a special case of more general
models that represent beliefs over more complex logical
rules (Zettlemoyer et al., 2008). The approach presented is
also closely related to histogram filtering, which has been
employed effectively for robot mapping and tracking
applications (Thrun et al., 2005). The measurement
updates in a histogram filter require empirically estimating
sensor-specific detector rates. On the other hand, the
Bayesian approach wuses less-prescriptive uninformed
priors that are updated with new evidence and is expected
to be more robust to noise and erroneous measurements.

4. Instruction-following by introspecting
knowledge uncertainty

Recall that our goal is to enable a robot to follow instruc-
tions in partially known domains where some object attri-
butes necessary for synthesizing a plan are unobserved.
For example, following the instruction “‘clear the cups on
the table’ requires knowledge of the internal states of the
cups to decide their appropriate destinations in the clear-
ing task (i.e., empty cups should go in the trash and full
cups should be put aside). Given the probabilistic model
laid out in the previous section, the robot can form a belief
over the unobserved semantic properties of the world
model by integrating past observations and any available
prior domain knowledge. We now consider the task of
synthesizing a plan as per the human’s command in the
context of the acquired knowledge about the world.
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Formally, the robot determines a plan u,  to satisfy
the language instruction A, received at time ¢+ 1, tak-
ing into account the metric world state Y;,; and the
robot’s current world knowledge p(K;—1|a;—1):

p(MZ+l|At+laYl+lsat9F):

Current knowledge belief

——
/ p(Ki|ay) Py 1A i1, Y01, K, T)
K

Instruction-following

(22)

The instruction-following task, represented as
Py 1| Ars1,Yer 1,00, T), can be factored as follows.
First, the robot infers the goals or objectives from the natu-
ral language command based on its current knowledge
about the world. This is followed by reasoning about the
sequence of actions resulting in the intended goal state.
This factorization allows Equation (22) to be formulated as

Current knowledge belief

——
p(l‘Lt+]‘At+laYl‘+laalar):/ p(Kt|at)

K;

>

A
q)l+l

Action generation

p(,lLt+1|q>ﬁ\+1,Yt+1,Kt, F)p(¢f+1|At+1,Yt+],F)

Instruction understanding

(23)

Using the maximum likelihood estimates for the knowl-
edge state K, and the grounding for the input instruction
CI),A+1 approximates Equation (23) as

qA)i\H = arggaxp(¢f+ HA 1, Y1, 1) (24a)
K, = argmax p(K,|e,) (24b)
K
By = argmax p(u, ;| Y11, (i)?+1akt) (24c)
"

Here, the maximum likelihood estimate indicating the
presence of a semantic property K, is obtained by sam-
pling the Bernoulli distribution from the current beta prior
p(K;|e;). Further, we use a contemporary language inter-
pretation model for estimating intended manipulation
goals from an input instruction (Paul et al., 2017) in the
context of the robot’s current semantic knowledge.5 In this
work, we use a set of predefined actions such as ‘““clear-
ing,” “‘packing,” ‘‘inspection,”” etc. Each action is a
sequence of motion primitives including grasping,”
“moving,” “‘placing,” “pushing,” or “poking,” etc. Each
primitive is a sequence of joint values or end-effector
poses. We sequence primitives by transforming and scal-
ing each with respect to a goal.

The robot’s action generation takes into account the
degree of uncertainty in the robot’s knowledge about the
semantic properties of objects relevant to the input instruc-
tion. We compute the normalized entropy of the latent
belief over semantic properties as a confidence measure
for quantifying the robot’s uncertainty over semantic
aspects of the world (Grimmett et al., 2016; Paul et al.,

99 <¢

2013; Triebel et al., 2016). The presence of significant
uncertainty in the robot’s knowledge belief (as indicated
by high entropy of the belief distribution) allows the robot
to take information gathering actions such as lifting, push-
ing, poking, or sliding. The new set of observations are
used to update the robot’s belief over the latent object
states. The robot continues to interact until the latent belief
is sufficiently likely that the robot can execute the final
action to complete a task described in the language instruc-
tion A, ; with high confidence of success. The robot halts
plan inference and plan execution when the normalized
entropy of the latent belief over semantic properties is
lower than an empirically determined threshold. Finally,
the estimated high-level plan is handed to a low-level
motion planner that generates joint trajectories to achieve
an assigned action via the decision-making process.

5. Knowledge-state feedback to the human

Humans working in teams often share world knowledge to
help accomplish tasks, such as letting a teammate know
that a box is exceptionally heavy. When a teammate
observes that the shared knowledge is not true, it is useful
to share the corrected information, improving the entire
team’s world model. One limitation of the system pre-
sented in Arkin et al. (2018) is the lack of a mechanism to
provide direct feedback to the human teammate. Providing
robots with the capacity to generate linguistic feedback is
of particular use for cases in which the robot makes pro-
prioceptive observations during object interaction that
contradict world knowledge provided by the human. If we
assume that the human teammate only shares world
knowledge that they believe is true, then the robot has an
opportunity to provide corrective feedback regarding the
contradictory observations that should be useful for the
human. Such feedback can help the human make better
decisions in the future and can help prevent miscommuni-
cations owing to incompatible world models.

One approach to providing such feedback via a lan-
guage interface is to store both the imperative phrase used
by the human to reference the object of interest and the
declarative phrase used to convey the specific world
knowledge. By keeping track of knowledge that was pro-
vided by the human (as opposed to other sources of knowl-
edge, e.g., from a commonsense database), the robot can
trigger a feedback response upon making a contradictory
observation. The linguistic feedback can be composed of
the stored imperative and declarative phrases to indicate
which object and associated semantic property were differ-
ent than expected. This approach has the advantage of
being computationally inexpensive in that the feedback
can be generated by executing a simple lookup for the
phrases stored previously. However, this mechanism is
brittle to changes in the world that invalidate the stored
reference phrase. For example, if the robot has moved
close to an object in order to interact with it, what once
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may have best been described as ‘“‘the barrel on the left”
may now better be referred to as ‘“‘the barrel directly in
front” or ‘‘the nearest barrel.” As such, a declarative
phrase such as ‘“‘the barrel on the left is heavy” might best
be corrected with linguistic feedback such as “the barrel
nearest to me was not heavy.”

In order to address this brittleness, we pursue an alter-
native approach by inverting the learned language under-
standing model to generate phrases associated with the
symbolic representation for both the object and hidden
semantic state of interest as conditioned on the current
spatial configuration of objects in the world. While this
does make the feedback robust to changes in the world, it
trades off the relatively low computational cost of looking
up stored phrases for a significantly higher computational
burden of searching over language phrases for one that
sufficiently expresses the meaning intended by the sym-
bolic representation. This section details the process for
generating linguistic feedback via inverting a language
understanding model.

5.1. Communicating knowledge-dissonance to the
human

Consider a scenario in which a human teammate says,
“the cup on the table is empty.” The robot will ground
this declared knowledge and update its belief over the hid-
den state of the cup’s fullness. Unless the human is inten-
tionally giving false information, the robot can also note
that the human’s model of the world includes the confident
belief that the cup on the table is empty. Suppose the robot
then interacts with the cup and makes an observation indi-
cating that the cup is actually full. In this case, it would be
useful for the robot to be able to express this disagreement
back to the human, thereby providing a correction to the
human’s world model and allowing them to make more
informed decisions in the future.

We are interested in a mechanism that facilitates pro-
viding this kind of feedback via a natural language inter-
face, namely generating sentences to convey observations
that contradict human-provided knowledge. By inverting
the learned language understanding model used to ground
declarative knowledge, the robot can effectively search for
the most likely phrases that map to the set of groundings
representing the object of interest and its semantic state. In
related work (Tellex et al., 2014), this problem has been
referred to as inverse semantics. Here, forward semantics
refers to the process of taking language and finding associ-
ated entities or concepts in the physical world, and while
inverse semantics refers to the process of takings aspects
of the world and finding language to describe them. The
problem formulation and subsequent factorization is
inspired by Tellex et al. (2014). The main difference
between their approach and what is being done in this
work lies in the language understanding model. Tellex
et al. (2014) used generalized grounding graphs (Tellex

et al., 2011a) as the underlying language understanding
model, whereas the work presented here uses distributed
correspondence graphs (Howard et al., 2014b). Using a
different underlying language understanding model has
important implications for the subsequent model formula-
tion and factorization. The main advantage in this case is
the improved runtime performance, the results of which
are presented in Howard et al. (2014b).

The problem of inverse semantics for generating feed-
back can be formulated as search for the most likely sen-
tence corresponding to the intended meaning in the context
of the robot’s knowledge about its world. Formally, we esti-
mate a feedback language utterance A/ " given the known
set of groundings I', the knowledge state K;, and metric
information about entities in the world Y, as follows:

A‘fil = arg max p(A{+1|Kt,F, Y1)

f
A €A

(25)

The space of possible sentences A is generated via a
grammar G that specifies linguistic tokens and production
rules for constructing the associated parse tree. This grammar
is constructed by scraping the language model’s training cor-
pus for both the tokens and rules. In order to prevent recursive
construction of an infinite space of language, the generation
process is constrained by the depth of a parse tree.

As we have done for language understanding, we can
model this inference process as a correspondence problem
wherein the value of a correspondence variable CD,A indi-
cates the association between language and a symbol.
Because the desired groundings are already known, it is
also known which correspondence variables are true.
These true correspondences are indicated by CDf\, and
modify Equation (25) as follows:

A’;i] = ajr\;;mix p(q)f\+l|Atf+l,K,,F, Y,1)  (26)
S

t+1

In practice, the inverse semantics process is a series of
forward semantics evaluations in which the choice of lan-
guage is an element from A. The main concern with this
search process is computational cost and, in turn, its
impact on the real-time performance of the system. If we
could further improve the runtime performance of the for-
ward semantics model, there would necessarily be a corre-
sponding improvement in our inverse semantics
implementation. The next section describes a mechanism
to effectively bootstrap the language grounding process
with solutions computed in advance of an utterance
expressed by a human teammate.

6. Improving runtime performance of
language understanding and generation
When designing language interfaces, it is important to

consider how long the system takes to react or take an
action after receiving an utterance from the human. In the



Arkin et al.

13

proposed system, the runtime performance of the inference
process is the main computational bottleneck that contri-
butes to this latency. Interfaces to robotic systems should
aim to achieve real-time responsiveness in order to main-
tain their effectiveness, as motivated in Section 1 with
respect to mission tempo. While the work presented thus
far leverages prior research on model approximations for
fast inference, language grounding is treated as a reactive
process. We propose further addressing this latency prob-
lem by precomputing language and grounding solutions for
a given environmental context, a process we refer to as
proactive symbol grounding. By instead proactively infer-
ring the meaning of utterances a human teammate might
say (in the context of the current state of the environment),
the system has the possibility of receiving a new utterance

with the solution already in-hand.
I

Py 1A 1, Y0, 1) =
Knowledge belief

Generating actions

“the trash can.” Once the symbols that correspond to a
simple phrase have been found, they can be reused within
more complex phrases as long as changes in the environ-
ment do not alter their meaning. We leverage the hierarchi-
cal and compositional structure of language to construct
proactive grounding sets in a bottom-up manner.

Recall that the command-following task can be formu-
lated as Equation (23) defined in Section 4. Interpreting the
instruction requires computing the groundings for the full
instruction, i.e., for each phrase in the parse tree. A proac-
tive approach precomputes a set of candidate correspon-

dences for likely phrases as denoted as ®!*¥,. Conditioned

on these proactively grounded solutions ®F fl, we reac-
tively only compute correspondences ®;<" for novel

phrases in the instruction A, ; while performing a constant
time retrieval for the precomputed solutions. The proactive
grounding approach reformulates Equation (23) as

Proactive language grounding

/Z pKiler)  pQuy 1 [Yesr, Koo {®
K

(I)mw

(27)
?iwl’(b?fl’r})p((b?iwl|Af+1’Yt+1’ [+1> )
|
Note that the factor p(®)"[A, 41, Y, 1, PPE, T) only

6.1. Proactive symbol grounding for language
understanding

In our model, the language grounding factor acts as a com-
putational bottleneck as it involves a search over a large
space of interpretations for an input instruction. Rather than
reactively interpreting a full instruction, which introduces
an interaction latency as previously described, we instead
proactively compute groundings for phrases that are likely
to be relevant for future instructions. This improves the
inference runtime by boot-strapping a novel utterance with
estimated groundings (true correspondences) from the set
of proactively grounded phrases possessing a similar parse
structure. For example, consider the novel instruction ““put
the empty cup in the trash can.” If the robot has already
proactively grounded the constituent phrase ‘the trash
can” for the current state of the world, then the reactive
inference process can simply insert the solution for “‘the
trash can” and move on to other phrases in the parse tree.
Formally, the set of proactive correspondences ®F* 11118
determined as a function of the current environment state
Y, 1. The space of possible language utterances is gener-
ated via a grammar G that specifies linguistic tokens and
production rules and is determined by scraping the rules
present within a training corpus. As conditional indepen-
dence is assumed across both individual phrases within the
parse tree and individual groundings within the full space
of semantic concepts, any given phrase with the same envi-
ronment state Y, ; will always ground to the same set of
symbols, regardless of parent phrases in the parse tree.
Relating back to the example above, “‘the trash can’ maps
to the same set of symbols whether it appears in the utter-
ance “put the empty cup in the trash can,” “put the full
cup in the trash can,” or even just the simplest form of

estimates the correspondences for new solutions. If we
indicate the set of novel phrases in the instruction as
A}, |, then |A7 |<|A,;1|. The model only reactlvely
computes correspondences for novel phrases @7, which
are fewer than the full set of candidate solutions ®,, | for
the instruction. As a result, the proactive approach leads to

runtime improvements in online instruction interpretation.

6.2. Proactive symbol grounding for feedback
generation

One of the main limitations of the approach introduced in
Section 5 is the runtime performance. Finding the sentence
that maximizes the probability of the known set of ground-
ings can be thought of as a series of forward passes through
the learned language understanding model. As a result, the
time it takes to finish the search process depends on the
runtime of each forward pass. Depending on the size of the
search space, this can be prohibitively long. Fortunately,
the set of proactively grounded phrases AP*® generated for
addressing the latency problem of reactive language under-
standing can similarly bootstrap this inverse semantics pro-
cess by effectively providing solutions for a subset of
sentences at the cost of a constant-time lookup. As a result,
the set of sentences that inverse semantics needs to com-
pute reactively A"V is now smaller than the full set A.
The reformulated model from Equation (26) is

A*

t+1= argmax p(q)t+1‘A

A eAmw UAPse

Kt, F, Yl‘+1) (28)

t+ 1

By effectively bootstrapping the search over language
with a subset of already-grounded sentences, the reactive
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Repeated twice
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Repeated twice
A

Fig. 4. Experiment evaluating knowledge acquisition over latent object attributes from declarative knowledge and physical
interaction. The Baxter robot was instructed to “‘clear away the cups on the table.”” Top: The robot attempts to pick up each cup in
turn and infers the latent attribute of the cups from the time series of interactions. Once the belief is sufficiently confident, the robot
discards the empty cup in the trash bin and puts the filled cup on the tray. Bottom: The human informs the robot that “‘the cups on
the table are empty’’ a fact that is true only for only one of the cups. The robot’s physical interaction results in a posterior belief
correcting the prior that resulted from the incorrectly stated fact. The posterior allows the robot to correctly accomplish the task of

clearing in correct locations.

language generation process has fewer computations. In
the best case, the proactive language grounding process
will have already exhausted A and, thus, the search pro-
cess consists of finding the highest value in a list. In the
worst case, AP is empty and inverse semantics is equiva-
lent to Equation (26). We evaluate the runtime perfor-
mance both with and without the use of proactively
grounded phrases and report those results in Section 7.

7. Experiments and results

In order to validate the performance of the proposed sys-
tem and its components, we designed independent qualita-
tive and quantitative experiments.

7.1. Qualitative evaluation

The first experiment aims to show knowledge acquisition
over latent object attributes from declarative knowledge and
physical interaction. We used a Baxter Research Robot in a
tabletop setup populated with household objects as shown in
Figure 4. In the first scenario, the robot’s workspace con-
tained two coffee cups (with closed lids), a tray and a trash
can; the internal state of the cups was hidden with one cup
being empty and the other full. We assume that the robot
possesses learned background knowledge that empty cups
are to be discarded in the trash and full cups are to be placed
on the tray. As discussed in Section 3.2, the robot also pos-
sesses trained HMMs for classifying signatures from physi-
cal interaction with the cups. A plot of the different z-axis
force measurements for a full and an empty cup can be seen
in Figure 5(a). The robot did not have access to the internal
state of the cups. The robot was instructed to “clear away
the cups on the table” resulting in a grounded solution

referencing the two coffee cups. The grounding model esti-
mated the probable grounding of the sentence as the two
cups on the table. The robot picked up each, updating the
belief over the latent attributes according to force/torque sen-
sing. This knowledge allowed the robot to estimate the cor-
rect location to discard the empty cups in the trash and place
the filled cups on the tray.

In a subsequent scenario, the human declared “‘the cups
on the table are empty” before instructing the robot to
‘“clear away the cups.” Contradictory to the initial state-
ment, the actual state of one of the cups is filled and should
not be discarded. The robot determined the true state of the
cups during interaction, correctly updating its prior belief
from force/torque sensing and choosing the correct actions.

Figure 6 shows the resulting changes to both the beta dis-
tribution and the expected likelihood of the expressed fact as
the robot interacts with one of the cups in the first scenario.
The robot first receives a declarative fact from language
expressed as “‘the cups on the table are empty,” leading to a
posterior update to the Beta hyper-prior for the likelihood
using the estimated grounding IsFull(cup)= True. Upon
engaging in a time-series of physically interactions with the
cup whose hidden attribute is actually IsFull(cup) = False,
the robot successively updates the latent belief over the sym-
bolic state. The robot interacts with the object until the nor-
malized entropy of the latent distribution is sufficiently
informative (set via a likelihood threshold). The estimation of
the correct belief allows the robot to correctly follow the
instruction of clearing the empty cups despite initially receiv-
ing an incorrect fact from the human.

In the second experimental evaluation, we tested an
integrated system that incorporates both the proactive
symbol grounding process for fast inference and the joint
use of declarative knowledge and force sensing for
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Fig. 5. Distribution of physical interaction time-series measurement during manipulation. (a) Lifting distance and z-axis force

measurements over time for both full (red) and empty (blue)

cups in Figure 4. (b) Approaching distance and z-axis force

measurements over time for both full (red) and empty (blue) barrels in Figure 8. The time-series force measurements for the ““full”
and “empty’’ object states. The patterns of force measurements over distances are modeled by two HMMs that are then leveraged

during log-likelihood-based binary classification to infer an object’

updating beliefs about objects’ attributes. The goal of this
qualitative experiment was twofold: (1) to demonstrate a
scenario in which faster task completion can be achieved
by incorporating human-declared knowledge about the
world as compared with relying on physical interaction
observations alone, and (2) to demonstrate robust task exe-
cution when provided incorrect world knowledge by a
human. For this second experiment, we used a Clearpath
Husky A200 mounted with a Universal Robots URS
manipulator in a mobile manipulation setting composed of
two Pelican cases, as shown in Figure 7; the internal state
of the Pelican cases was hidden. The Pelican case on the
robot’s left was full and heavy, and the Pelican case on

s attribute.

the right was empty and light. We executed three different
types of scenarios in this experiment: (i) no declarative
knowledge, (ii) accurate declarative knowledge describing
the state of the two Pelican cases, and (iii) inaccurate
declarative knowledge. In one case of (i), the Husky was
instructed to “‘pick up the heavy case,” resulting in an
ambiguous grounded reference solution. The robot picked
up the left case, updating the belief that it was heavy; a
second interaction made the robot confident enough to
complete the action. In one case of (ii), the human accu-
rately declared ““the case on the left is heavy,” followed
by ““pick up the heavy case.” The robot picked up the left
case, updating its belief, which reinforced the human’s
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Fig. 6. The temporal evolution of belief over factual knowledge informed by language and interaction. The beta distribution at time
t for the Bernoulli likelihood over factual groundings is plotted in the top row. The maximum likelihood for a predicate state appears
below. Temporal evaluation from left to right. The initials “Lang.” and “Obs.” denote estimated groundings obtained from
language and time-series interaction data, respectively. The estimation of the correct belief allows the robot to correctly follow the
instruction of clearing the empty cups to the trash and placing the fill cup on the tray.
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©

Fig. 7. An experiment incorporating both proactive symbol grounding and updates to beliefs about objects’ attributes via declarative
knowledge and force/torque sensing. (a) Initial state of the right case is heavy. (b) Updated belief is uncertain about heavy case. (c)
Interaction with the other case. (d) Updated belief that the left case is heavy. The Husky robot with a mounted robot arm was
inaccurately told “‘the case on the right is heavy’’ before receiving the instruction ‘‘pick up the heavy case.”

provided fact. A single force/torque interaction and the
accurate declared fact made the robot sufficiently confi-
dent to complete the action; the fact reduced the number
of required interactions. In one case of (iii), the human
declared ‘“‘the case on the right is heavy,” followed by
“pick up the heavy case.” The robot picked up the case
on the right, updating its belief in contradiction to the
human’s provided fact. The robot then lifted the left case
twice to be sufficiently confident and complete the action.

The third experiment, illustrated in Figure 8, was a part
of a field test held in a mock village marketplace at an
undisclosed testing facility. Deployed on a separate Husky
with a UR5 manipulator, we demonstrated an integrated

system that incorporated both previously evaluated com-
ponents and declarative knowledge feedback. Similar to
previous experiments, we trained an IsFull semantic prop-
erty estimator from 39 physical interaction data. In the
scenario, the robot first localized itself using multimodal
sensor fusion with Velodyne LiDAR, inertial measurement
unit (IMU), and Intel RealSense camera data. It then con-
structed the world model by recognizing objects using
Mask R-CNN (Massa and Girshick, 2018). Notably, the
internal states of the two barrels were unobservable; in
actuality, the blue barrel was empty and the other barrel
was full. Via a multimodal interface (MMI) described by
Barber et al. (2016), a human teammate initially shared
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Human: “The right most barrel is full.”
Robot: “Understood. The right most barrel is full.”
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R: “Previous ‘the right most barrel is full’ is
inconsistent with the world model.”

H: “The left most barrel is full.”
R: “Understood. The left most barrel is full.”

R: Understood. Push the full barrel.
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H: Push the right most barrel
R: Understood. Push the right most barrel.
R: (Navigating and pushing the barrel)

R: (Navigating and pushing the barrel)

Fig. 8. Experiment demonstrating the declarative knowledge feedback and latent attribute update by declarative language utterance
and physical interaction. The Husky robot with a URS arm is placed in a outdoor test site filled with doors, windows, barrels,
bicycles, among other objects. A user verbally provided wrong and right declarative knowledge for empty and full barrels,
respectively. The robot then estimates and reports the latent attribute to the user by pushing each.

their mental model of the objects by stating declaratively
that both “‘the rightmost barrel is full”” and ‘“‘the leftmost
barrel is full.” As mentioned, the true state of the right-
most barrel was empty, and thus the human’s shared
knowledge contained an inaccuracy. The robot was then
instructed to “‘push the rightmost barrel.”” Upon doing so,
it updated its belief over the internal states according to
observations from force/torque sensing, which were in
contradiction to the human’s shared world knowledge. As
such, the robot reported back a declarative statement in
order to correct the human’s mental model of the barrel.
This was done by populating a template with the stored
phrase that the human used to initially provide world
knowledge about the barrel. With this updated informa-
tion, the user then instructed the robot to “‘push the full
barrel,” an instruction that previously would have been
ambiguous. Owing to the updated shared world model, the
robot was able to navigate to and push the barrel on the
left as per the user’s instruction.

Videos for all qualitative evaluations are submitted as a
multimedia Extensions 1-3.

7.2. Quantitative evaluation

The first statistical evaluation targets the impact of both
the PSG component and use of the commonsense knowl-
edge base informed priors on the latency of generating lin-
guistic knowledge-state feedback. In particular, this
evaluation seeks to quantify the change in feedback gener-
ation time (i.e., from the time the utterance is received to
the time a response is generated) as a result of including
one or both of these system components. The forward

Table 1. Language generation latency from making a
contradictory observation to producing linguistic knowledge-
state feedback. The results show the performance with and
without both the use of proactive symbol grounding (PSG) and
the informed prior. The proactive approach leads to significant
reduction in latency in both cases.

Informed Prior No Prior

PSG
No PSG

2.445 = 2423 s
94.761 = 0.806 s

0.169 = 0.003 s
94.834 = 0.646 s

semantics model was trained on a corpus of 807 annotated
examples composed of a variety of symbolic concepts
including objects in the world, object categories, physical
object properties, spatial relationships, regions, and sym-
bolic actions (see Section 2). By leveraging idle system
time while the robot physically interacted with an object,
the PSG process was able to precompute the solutions for
a subset of 550 different language phrases that could
describe the object. When the robot identifies an incorrect
fact, it searches over six possible fact templates that are
populated using the most likely phrase describing the
object of interest, where this phrase is found via the
inverse semantics process described in Section 5. The
baseline case allowed no time for PSG to run, instead
requiring the process to trigger reactively. In the best case,
it was able to exhaust the full set of language phrases and
provide fast feedback. As can be seen in Table 1, proac-
tive symbol grounding contributed a significant reduction
in the latency of feedback generation. Because the use of
an informed prior can reduce the number of physical
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Table 2. Runtimes showing the impact of incrementally
increasing durations of proactive symbol grounding (PSG) on
natural language symbol grounding (NLSG) for a single
instruction. The leftmost column reports the baseline of NLSG,
which is effectively 0 seconds of PSG duration. The proactive
approach allows a significant reduction in latency.

PSG duration (s) — 2.0 4.0 6.0 8.0
Number of grounded 0 31 62 102 146
phrases

NLSG inference time (s) 021 0.18 0.14 0.13  0.09

interactions necessary for the robot to become sufficiently
confident about a contradictory observation, it conse-
quently limits the idle system time that can be used for
PSG.

A second statistical evaluation targets the proactive
symbol grounding component for natural language symbol
grounding in simulation and quantitatively compares the
inference runtime to a reactive baseline. This experiment
is designed to address the question of how the amount of
idle system time impacts the contribution of PSG on
improved runtime performance of the inference process.
For this experiment, we assumed a sufficiently expressive
symbolic representation (Paul et al., 2018), a grammar,
and a corpus of annotated examples used for training. To
quantify performance, we trialed different durations of
proactive grounding time, increasing from 0 seconds to 8
seconds in 2 second intervals, during which the process
grounded candidate phases, illustrated in Table 2 as “PSG
duration” (proactive symbol grounding duration) and
“Number of grounded phrases,” respectively. The row
“NLSG inference time” (natural language symbol ground-
ing time) reports the runtime for a novel utterance; as
expected, the runtime decreases as a function of the PSG
duration owing to the process generating more matches to
phrases in the novel utterance’s parse tree and, thus, reduc-
ing the number of phrases to be computed at inference
time. We include a trial with 0 seconds of proactive
grounding time to establish a baseline of performance for
the natural language symbol grounding process without
any bootstrapping by the proactive grounding module.

Next, we evaluated the accuracy of predicting semantic
properties using the model trained from commonsense cor-
pora. We evaluated the performance of three scoring func-
tions that were introduced in Section 3.3. We trained the
model using the aforementioned scoring functions with the
VerbPhysics dataset containing 2,500 object pairs anno-
tated with relative physical properties. The goal of the
classifiers is to predict one of the four classes (greater,
less, equal, or unknown) given an object pair and a physi-
cal property as input. The corpus was split into training,
development and test set in the ratio 80 : 10 : 10. The clas-
sifiers were trained to minimize negative log likelihood of
the data. We trained for 50 epochs with Adam optimiza-
tion. The model was tested at the end of each epoch on the

Table 3. A comparison of accuracy (%) in predicting semantic
physical properties from commonsense corpus. The table
compares the TransE, Bilinear, and Bilinear-diag similarity
functions.

Function Size Weight Strength Rigidity
TransE 92.04 92.77 85.96 83.96
Bilinear 92.96 91.97 87.39 84.07
Bilinear-diag 93.78 93.07 89.8 83.52

development set and that with the best average perfor-
mance was selected to get the accuracy on the test set.
Table 3 shows the performance of the models on the test
set. The model based on the Bilinear-diag function outper-
forms other methods.’ For the rest of the experiments, we
use the Bilinear-diag model.

We also quantitatively evaluated the impact of using an
informed prior on the accuracy and rate of convergence of
the belief to the correct estimate of a semantic property as
the robot interacts with an object. We selected six objects
for our environment: a box, a basket, a chair, a case, a
fridge and a cabinet (see the images in Table 4). For each
object, we focus on estimating whether each of the objects
is heavy or light for the purposes of manipulation using a
URS manipulator. The robot interacted with each object
30 times by randomly positioning the object in the manip-
ulation region of the robot, pushing the object with the
end effector and recording the force measurements and
end-effector pose of the URS arm. The resulting physical
interaction dataset was randomly permuted resulting in a
total of 1,000 different manipulator interaction sequences
for each object. Prior probabilities were estimated using
the model laid out in Section 3.3 using the Bilinear-diag
function, which was empirically found to be best perform-
ing (see Table 3).

Next, we estimated the heavy/light semantic property
using the physical interactions alone and subsequently
incorporated the informed priors along with the physical
interactions. In each trial, we recorded the number of
interaction attempts necessary to infer the property of the
object. If we inferred the wrong attribute or we were not
able to infer the correct property even after incorporating
the entire sequence, the number of attempts was set to 30,
the maximum length of the interaction sequence.
Figure 9(b) demonstrates that the informed prior enabled
faster convergence to the true estimate in comparison to
using an uninformed prior represented as no prior (e.g.,
0.5 for both —Heavy and Heavy). The figure empirically
demonstrates the learned priors are informative and hasten
convergence to the true latent attribute. Further, the accu-
racy of predictions at convergence was found to be equiv-
alent for the runs with the informed priors and the
uninformed priors (see Figure 9(a)). As an example, infer-
ring the latent attribute for the basket object required at
least five interaction tries with an uninformed. The
informed prior (i.e., 0.2 for —Heavy) decreased the
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Table 4. Real objects (6) used in the third experimental evaluation for showing how an informed prior from background knowledge
can assist in rapid estimation of latent semantic attributes. We recorded force/torque and end-effector positional information during
180 robot—object interaction sequences.

Object type (true latent semantic attribute)

o> J
Box
(—Heavy) \ (Heavy)
Basket
(—~Heavy) (Heavy)
TS
Chair Cabinet
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Fig. 9. Comparison of latent-attribute estimation results with or without informed prior over three likelihood thresholds,
(0.75,0.8,0.85). (a) The accuracy of estimating the latent semantic attribute. Acc. shows the fraction of sequences in which we could
infer the correct property for the object. (b) The average number of interaction tries (with standard errors) for estimating the latent
semantic attribute. Avg. Tries is the average number of interaction attempts needed to estimate whether an object is heavy or not.
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Fig. 10. Semantic latent-attribute estimation experiment. The
Husky robot with a URS manipulator detects a Pelican case
using a RealSense camera and attempts to touch it to infer a
latent attribute that is not visually observable.

necessary tries by two interactions without decreasing the
accuracy, where the likelihood threshold was 0.85 in this
experiment.

Finally, we evaluated a fully integrated system that
incorporated previously evaluated components, PSG, and
linguistic feedback generation. As shown in Figure 10, we
placed a Husky with a URS manipulator in a partially
observable environment with a “full” semantic attribute
of a Pelican case. In the scenario, the robot first recognized
the Pelican case by using a RealSense camera mounted on
the rear sensor arch. A human operator then provided a
declarative fact, “‘the case is full” or “‘the case is empty.”
Otherwise, the operator did not provide any fact. The robot
was then commanded to infer the Pelican case’s latent
attribute through physical interactions with or without
informed prior. Once the belief over any latent attribute is
higher than a threshold (i.e., 0.9) via Bayesian update, the
robot reported the inference result. The robot performed
five experiments per each scenario (total six scenarios),
correctly estimated the true attribute (i.e., “full”’), and
recorded the number of required physical interactions with
belief changes per each. Figure 11 shows both informed
prior and correct factual knowledge are helpful to mini-
mize the number of required physical interactions. It shows
the Bayesian semantic knowledge estimator successfully
propagated the belief over semantic world properties from
multiple and diverse sources, and also presents the prob-
abilistic model corrected inaccurate knowledge, “empty”
or no prior, online.

Note that the commonsense corpora derived from
human annotations might contain erroneous facts resulting
in incorrectly informed priors. Either incorrect utterance or
incorrectly informed priors may lead to incorrect linguistic
feedback, which is not observed in our experiments.

8. Related work

Significant attention has been paid to the problem of
endowing robots to interpret natural language instructions.
Contemporary statistical approaches to language under-
standing been developed that enable robots to follow

Threshold=0.9

0.8

Informed Prior + Correct Fact
—*— Informed Prior + Incorrect Fact
—+— Informed Prior + No Fact
—#— No Prior + Correct Fact

—&— No Prior + Incorrect Fact
—e— No Prior + No Fact

0.24

0.0

0 1 2 3 4 5
The number of interactions

Fig. 11. Comparison of semantic latent-attribute estimation with
or without informed prior over declarative knowledge. The Husky
robot with a URS manipulator attempted to touch a Pelican case
(see Figure 10) and infers its latent attribute (i.e., full). Once the
belief over any attribute is higher than the 0.9 threshold via
Bayesian update, the manipulator finishes the estimation.

complex free-form instructions that involving object
manipulation (Misra et al., 2016; Paul et al., 2018;
Shridhar and Hsu, 2018; Thomason et al., 2016), naviga-
tion (Howard et al., 2014b; Kollar et al., 2010; Matuszek
et al., 2010, 2012b; Thomason et al., 2015), and mobile
manipulation (Tellex et al., 2011b; Walter et al., 2014a).
Such approaches commonly formulate language under-
standing as a problem of learning a model that associates
(i.e., “grounds”) each word in a free-form utterance to its
corresponding referent in the robot’s model of its state and
action space (Harnad, 1990; Howard et al.,, 2014a,b;
Tellex et al., 2011b). Most existing methods assume that
the robot’s model of the environment (the “world
model’’) is known a priori, typically in the form of a map
that expresses the semantic and metric properties of
objects and locations necessary to interpret the command.
Instead, we have proposed and evaluated a probabilistic
framework that enables robots to exploit multimodal
observations, including linguistic, visual, and haptic mea-
surements, to infer latent properties of its environment
necessary for human-robot collaboration in partially
observed settings. Earlier work in this area includes that of
Duvallet et al. (2013), which learns to follow navigational
instructions in unknown environments based upon human
demonstrations, as well as recent work on language-based
visual navigation in novel environments (Anderson et al.,
2018; Mei et al., 2016a). More closely related to our
framework are methods that leverage metric and semantic
information implicit or explicit in the command to learn a
distribution over world models that facilitates natural lan-
guage understanding in a priori unknown environments
(Duvallet et al., 2014; Hemachandra et al., 2015; Oh et al.,
2016; Walter et al., 2014b). We address a different ele-
ment of ‘““partial observability”” by inferring the state of
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object attributes as opposed to hypothesized locations of
objects or landmarks that exist beyond the robot’s field of
view or its internal map of the explored world. We also
incorporate a novel knowledge state variable in our gra-
phical model and incrementally update a distribution over
that knowledge state rather than reason over a distribution
of maps.

Meanwhile, recent methods similarly exploit multimo-
dal observations to learn object attributes. Of this body of
work, some approaches incorporate human gestures as an
input modality to learn object and relation classifiers, as
well as attributes such as color (Kollar et al., 2013a;
Matuszek et al., 2014; Whitney et al., 2016). Others incor-
porate audio and haptic measurements as sensing modal-
ities to learn attributes that are not visually observable
(Chu et al., 2015), such as whether a container is full or
not based on the sounds produced while picking up and
shaking (Sinapov and Stoytchev, 2009). Related, some
methods directly learn behavior- or sensorimotor-grounded
classifications (Hogman et al., 2013), such as the work of
Sinapov et al. (2014) that uses vision, proprioception, and
audio to learn semantic labels for objects while the robot
interactions with them.

Relevant to the goals of this work are methods that con-
sider the problem of understanding instructions that are
ambiguous in the context of the robot’s model of its state
and action space. Among these methods are those that
employ inverse groundings (Gong and Zhang, 2018;
Tellex et al., 2014) as a means of asking targeted questions
that are believed to be most informative in an estimation-
theoretic sense (Tellex et al., 2012). Related, a number of
techniques have been proposed to learn a priori unknown
grounding models by exploring models that relate novel
linguistic predicates to the robot’s world model or directly
to its percepts (She and Chai, 2017; Thomason et al., 2018,
2016; Tucker et al., 2017). Our work differs in that we
assume that the concepts are known, but that the instantia-
tion of these concepts in the robot’s environment are
unknown.

Our contribution leverages language as a source of
information about latent object states by grounding
declarative statements from user utterances. Other natural
language symbol grounding approaches that incorporate
declarative knowledge (Kollar et al., 2013b; Matuszek
et al., 2012a; Paul et al., 2017; Perera and Allen, 2013;
Thomason et al., 2016) assume that such information is
correct and sufficient for task execution. In contrast, our
model incrementally fuses information from language and
force/torque interactions, making task execution more
robust to inaccurate or incorrectly understood declarations.

In the event that the robot identifies discrepancies
between the declared knowledge and its observation of the
environment, our framework conveys this disagreement to
the user via generated language. Our approach is related
to recent work on inverse symbol grounding (Tellex et al.,
2014), which is typically considered in the context of
engaging the user in dialog to resolve ambiguities in the

task (Deits et al., 2013; Hemachandra and Walter, 2015;
Raman et al, 2013; Tellex et al., 2012). With this
approach, we invert our learned language understanding
model to identify the set of phrases that are most likely to
correspond to the particular properties of the environment
of interest. Unlike Tellex et al. (2014), who used general-
ized grounding graphs (Tellex et al., 2011b), we use the
distributed correspondence graph language model
(Howard et al., 2014a), which affords more efficient infer-
ence. We also identify phrases by explicitly optimizing
over their likelihood rather than maximizing over a scor-
ing function.

Highly relevant is work on referring expression genera-
tion, which is concerned with producing a textual descrip-
tion that allows a human to correctly identify a target
object or other entity that is known only to the generator.
In the computer vision and natural language processing
communities, the task typically involves conveying infor-
mation about objects or locations within an image
(Kazemzadeh et al., 2014; Luo and Shakhnarovich, 2017
Mao et al, 2016; Yu et al., 2016). Contemporary
approaches to this problem employ neural network archi-
tectures for language generation, and thus require access
to large datasets for training, which are typically not avail-
able for robotics or other embodied domains. In robotic
applications, referring expression problems often involve
reasoning over spatially extended 3D environments (e.g.,
at the room, floor, or building level). Consequently, gener-
ation algorithms (Fang et al., 2015; Kelleher and Kruijff,
2006; Zender et al., 2009) must provide enough informa-
tion for the listener, whose context will often be limited.

Related, other researchers have endowed robots with
language generation capabilities as a means of conveying
task information to their human partners (Andrist et al.,
2013; Dzindolet et al., 2003; Wang et al., 2016). Among
these are methods that consider the problem of producing
free-form instructions that allow humans to perform a
task, such as navigation (Curry et al., 2015; Goeddel and
Olson, 2012; Oswald et al., 2014). Traditionally, solutions
to this problem have relied upon hand-crafted rules that
are designed to mimic the way in which humans generate
instructions (e.g., via a set of composition rules and lan-
guage templates). Much like language understanding,
recent work employs statistical and learned models
(Cuayahuitl et al., 2010; Daniele et al., 2017b; Oswald
et al., 2014) that can be trained from natural language cor-
pora, and are thus able to produce utterances that are eas-
ier for people to follow.

Significant effort in the natural language processing
community has focused on the problem of generation.
This includes work on selective generation, which consid-
ers the problem of producing a natural language utterance
that effectively expresses the content of a rich database.
Selective generation has traditionally been formulated as
two separate problems: content selection (Barzilay and
Lapata, 2005; Barzilay and Lee, 2004), which reasons
over what to talk about, and surface realization (Liang
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et al., 2009; Walker et al., 2001), which decides how to
convey the selected content via natural language. Relevant
to our inverse semantics approach, Wong and Mooney
(2007) effectively inverted a semantic parser to generate
natural language text from formal meaning representations
using synchronous context-free grammars.

Recent work performs selective generation via a single
framework (Angeli et al., 2010; Chen and Mooney, 2008;
Kim and Mooney, 2010; Konstas and Lapata, 2012; Mei
et al., 2016b), rather than treating it as two separate sub-
problems. Angeli et al. (2010) formulate content selection
and surface realization as local decision problems via log-
linear models, and employ templates for generation. Mei
et al. (2016b) proposed a recurrent neural network enco-
der—aligner—decoder model that jointly learns to perform
content selection and surface realization from database—
text pairs, thereby treating the selective generation as an
end-to-end learning problem.

9. Discussion and conclusion

We have introduced a probabilistic model for inferring the
latent semantic properties of the world to correctly follow
high-level human instructions in partially observable
environments. We have demonstrated how both linguistic
descriptions from a human and signatures derived from
the robot’s physical interaction can be used to infer the
latent semantic properties of the environment required for
task execution. Further, we have leveraged background
commonsense knowledge corpora to learn an informed
prior when initializing the model for efficient subsequent
inference.

We have also presented an approach for generating lin-
guistic feedback to the human in the case where discrepan-
cies are observed between the robot’s and the human’s
semantic knowledge about the world. Finally, we have
addressed the issue of reducing latency in both instruction
interpretation and feedback generation that stems from the
computation complexity of associating language with
semantic entities in the world. We have introduced a
proactive grounding approach that predicts future utter-
ances and selectively computes candidate interpretations
from incremental observations of the world. We have
demonstrated the approach on fixed and mobile manipula-
tors executing high-level tasks by “filling in” semantic
knowledge about world entities from both declarative
knowledge sources as well as physical interactions.

The experiments in this work contribute towards brid-
ging the gap between higher-order inputs such as language
from the human and low-level representation such as
interaction forces for the robot via grounded learning of
semantic concepts by fusing acquired semantic knowl-
edge. The experimental evaluations on multiple platforms
and the field deployment test contribute toward validating
the reproducibility and robustness in the presence of
uncertain environment conditions. Further, the ability to

provide online linguistic feedback for resolving differ-
ences in the robot’s and the human’s mental models con-
tributes to addressing the transparency and op-tempo
communication requirements of real-world human-robot
teaming scenarios.

There are several avenues for future work that emerge
from the current investigation. Our current approach for
deciding and taking information gathering actions is myo-
pic because we only utilize a one-step look ahead. The
decision is also based on the entropy of the underlying dis-
tribution but does not explicitly compute the information
gain associated with actions. There is scope to integrate
multistep planning to gain information about uncertain
semantic properties. Further, we considered semantic attri-
butes associated with an object to be independent while
fusing knowledge from multiple sources. Often, physical
properties are correlated. For example, heavy objects are
often difficult to slide. Hence, future work will explore
Bayesian priors that preserve correlations. There is scope
to leveraging similar work in correlated topics modeling
(Blei and Lafferty, 2006).7 Similarly, there is scope to use
a correlated measurement model that accounts for corre-
lated observations. For example, observing items such as
cups and tables are highly predictive of the presence of
humans in a building.

The current model assumes that the space of semantic
concepts is fixed a priori, thereby making the overall sys-
tem less robust for situations in which the plan execution
requires knowledge of a novel semantic property that was
not seen during training. This limitation can be addressed
in two ways. First, we can incorporate non-parametric
Bayesian models that expand with data complexity (Blei
and Jordan, 2006). Second, we may explore ways to detect
the presence of a new concept and acquire new recogni-
tion models online with limited interaction (Tucker et al.,
2017), thereby allowing our model to grow its space of
semantic concepts in an online fashion. Our experiments
so far have focused on the robot interacting with the world
to improve its understanding. There is further scope to
acquire semantic knowledge by observing the behavior of
other agents, either during an intentional demonstration or
via happenstance while executing a collaborative task. As
an example, if the robot observes a person struggle to lift
a box, it can incorporate that observation as evidence
about the box’s heaviness.

The present formulation incorporated binary predicate sym-
bols to represent symbolic states. The model can be extended
in case of ternary or multi-ary properties as well by incorporat-
ing a multi-dimensional conjugate distribution. For example,
we can extend the Beta-Bernoulli prior to a Dirichlet-multino-
mial prior to incorporate multi-ary properties.

This work has explored the use of natural language to
inform the latent properties of objects in the robot’s world
model that were corroborated or corrected by the haptic
modality. However, unlike touch, language utterances are
often ambiguous and may only implicitly communicate
information. For example, the a language instruction may
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be ambiguous in terms of which objects are referenced.
Consider the utterance, ‘“‘the barrel on the left is empty”
when there are two barrels on the left side of the robot.
Such ambiguity can be addressed by engaging in dialog
with the operator. The natural language generation system
presented in this work can be extended and used to gener-
ate disambiguation queries to resolve the ambiguity. Now,
we turn our attention to the problem of implicit knowledge
that we did not consider in this work. Consider the sce-
nario where the operator informs the robot that ““all the oil
in the barrel was removed today.”” Common sense reason-
ing informs us that the barrel is now empty. However, the
presented system would not use such knowledge as it can-
not reason about implicit knowledge. The problem can be
addressed by incorporating (learning) common sense
knowledge and performing a form of logical inference or
logical state estimation to determine the implicit states
from the explicitly stated knowledge. Exploration in this
direction remains part of future extensions.

Further, the current model assumes that the linguistic,
haptic, and knowledge-based priors are equally weighted.
In practical contexts, one modality may be more informa-
tive than others. Learning per-modality sensor models and
context-specific weightings remains part of future work.

Finally, we seek to expand the scope of language feedback
to also include explanations (Parkash and Parikh, 2012;
Selvaraju et al., 2017). We envision that the robot should be
able to communicate not only that a piece of factual knowl-
edge is incorrect, but describe how it arrived at such a conclu-
sion, for example, by interacting with it. We intend to explore
richer multimodal communication as part of future research.
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Notes

1. Our technical exposition uses two time scales. The subscript
t denotes the time scale at which the language utterances,

visual observations, and interaction measurements are used
to update the robot’s world model We assume a finer discre-
tization of this update time instant ¢ into n time steps
to, ...,t, in which the robot executes a low-level motion
plan and receives measurements that are collectively used to
update knowledge about the world.

2. Note that the beta distribution models the distribution over
the true likelihood of the Bernoulli distribution. Each sample
from the beta distribution forms a histogram over truth value
of a semantic property.

3. We implement the HMMs using the general hidden Markov
model library (GHMM) (Schliep et al., 2004).

4. Weused ag =(2,2) to initialize a symmetric beta distribution
acting as a diffuse uninformed prior over K, at model initiali-
zation at time f.

5. Note that the same language understanding model (Paul
et al., 2017) was used in Section 3 to infer declarative facts
from language utterances. In this section, we use the model
to infer grounded actions based on knowledge acquired from
past observations and prior knowledge.

6. The higher performance of the Bilinear-diag similarity func-
tion corroborates findings by Yang et al. (2014) in link pre-
diction tasks.

7. Correlated topic models (Blei and Lafferty, 2006) use a logis-
tic normal prior instead of Dirichlet priors to model correla-
tions between discrete word expression.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014 all
videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media Description

type

1 Video Demonstration of physical interaction
with closed cases for inferring hidden
states via a Clearpath Husky A200
with a Universal Robotics URS
manipulator.

2 Video Demonstration of physical interaction
with barrels to estimate their pliability/
pushability via a Husky with a URS
manipulator.

3 Video Demonstration of physical interaction

with cups in a tabletop domain to
estimate their internal state as empty
or full on a Rethink Robotics Baxter
Research Platform. The determination
of latent states allows completion of a
tabletop clearing task.
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