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Research Tools 
for Smart Electric 
Vehicle Charging

An introduction to the adaptive charging network research portal.
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 By Zachary J. Lee, Sunash Sharma, 
and Steven H. Low

ILLIONS OF ELECTRIC VEHICLES (EVs) WILL 
enter service in the next decade, generat-
ing gigawatthours of additional energy 
demand. Charging these EVs cleanly, 
affordably, and without excessive stress on 

the grid will require advances in charging system design, 
hardware, monitoring, and control. Collectively, we refer to 
these advances as smart charging. 

While researchers have explored 
smart charging for more than a 
decade, very few smart-charging 
systems have been deployed in 
practice, leaving a sizeable gap 
between the research literature and 
real world. In particular, we find that 
research is often based on simplified 
theoretical models. These simple 
models make analysis tractable but 
do not account for the complexities 
of physical systems. Moreover, 
researchers often lack the data 
needed to evaluate the perfor-
mance of their algorithms on real 
workloads or apply techniques like 
machine learning. Even when 
promising algorithms are devel-
oped, they are rarely deployed 
since field tests can be costly and 
time-consuming.

To address these gaps and accel-
erate research in smart-charging systems, we have devel-
oped the Adaptive Charging Network (ACN) Research Portal, 
which is made up of three parts: a public data set of EV 
charging sessions; an open source, data-driven simulation 
environment; and a platform for field-testing algorithms on 
real charging systems. In this article, we introduce these 
tools and the research they have enabled.

ACNs
To enable smart charging at scale, we first needed a plat-
form that would allow us to take measurements from the 
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physical system, compute control actions, and apply those 
actions back to the physical system. When we began our 
work on smart EV charging, these systems did not exist 
for the scale of smart charging we envisioned, so we 
decided to build our own, which we called the ACN. Doing 
so provided us the platform we needed to run experi-
ments and gather data. It also yielded insights into the 
practical challenges of smart EV charging systems.

ACN Architecture
The ACN is best understood in the framework of cyber-
physical systems (Figure 1). Within the physical system, 
the local electrical infrastructure supplies power for EVs 

and other loads from a grid connection or local generation 
(Figure 2). Sensors within the local infrastructure measure 
voltages, currents, and power and feed those measure-
ments into the information system through the commu-
nications interface, which is part of the information 
system. The ACN uses several communication protocols, 
including a Zigbee mesh network for communicating with 
charging stations and TCP/IP over Ethernet to communi-
cate with power meters.

Data storage and control are distributed between an 
onsite industrial computer and the cloud. The onsite com-
puter provides robustness to Internet outages, while the 
cloud provides long-term data storage and visualization. 
Algorithms for prediction, pricing, and control can be run 
locally or in the cloud. However, we generally prefer local 
control algorithms to ensure reliability.

Once the system has calculated a new control action, 
it sends those set points to the EV supply equipment 
(EVSE). The EVSE is more commonly known as the charg-
ing port or charger, though the latter is a misnomer 
since the vehicle’s onboard charger is used in level 2 ac 
charging. This EVSE communicates to the vehicle’s 
onboard battery management system (BMS) using a 
pilot signal that sets an upper bound on the vehicle’s 
current draw from the EVSE. This pilot signal is defined 
by the J1772 standard.

Because drivers play an essential role within a 
charging system, determining when their vehicle is 
available to charge and how much energy it will need, 
we provide a mobile app to facilitate communication 
between the system and driver. Using this app, the 
driver can enter the vehicle’s battery size and maxi-
mum charging rate. We also ask the user to provide 
estimates of the departure time and amount of energy 
he or she would like delivered to the vehicle. The lat-
ter is important since the J1772 standard does not 
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Figure 1. The architecture of ACNs. BMS: battery management sys-
tem; EVSE: EV supply equipment.
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Figure 2. The ACN equipment: (a) from left to right, the constrained transformer, electrical panels, and PowerFlex controller; (b) a Webasto DX 
level 2 EV supply equipment; and (c) a Tritium Veefil RT50 dc fast charger. 
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allow for bidirectional communication, so our ACN 
cannot directly access the vehicle’s state of charge for 
level 2 charging.

Lessons Learned From the ACN
The first ACN was built at the California Institute of Tech-
nology (Caltech) in early 2016. Since then, PowerFlex, a 
company formed to commercialize the technology, has 
deployed ACNs across the United States. As of May 2021, 
PowerFlex has deployed more than 4,600 EVSEs at more 
than 200 sites. By operating these systems over the last 
five years, we have learned important lessons about 
large-scale charging systems.

Unbalanced Infrastructure
Within the United States, commercial customers like 
schools, hospitals, offices, and stores receive three-phase 
power. Level 2 EVSEs are single-phase loads, so they are 
connected line to line at these sites. Because of differences 
in usage at each EVSE, large-scale charging systems can be 
very unbalanced.

Traditionally, most scheduling and control approaches 
for EV charging that consider infrastructure limits implic-
itly assume single-phase or balanced operations, so they 
only need to consider the power limits of the equipment. 
However, because of unbalanced three-phase currents, 
these simple constraints can be insufficient to ensure 
safe operations. 

For example, in Figure 3, we show that a model pre-
dictive control (MPC) algorithm that assumes bal-
anced operations can remain below a transformer’s 
aggregate power limit while simultaneously over-
loading individual lines. However, if we introduce 
constraints that explicitly model 
unbalance, we ensure that all line 
limits are respected.

Infrastructure constraints are 
expressed as upper bounds on the 
magnitudes of currents within the 
system. By Kirchhoff’s current law, 
any line current can be written as a 
linear combination of load currents 
in phasor form. We then require 
that the magnitude of any line cur-
rent is less than its limit. Mathemat-
ically, this can be expressed as a 
second-order cone constraint, which 
is convex and can be incorporated 
into many control algorithms, such 
as MPC.

Pilot Signals and  
Battery Behavior
We use the J1772 pilot signal to 
control the charging rate of each 
vehicle within the ACN. However, 

this pilot signal is only an upper bound on the current 
drawn by the vehicle’s BMS. Because the pilot signal is an 
upper bound, if the pilot sent to the BMS satisfies infra-
structure constraints, then the actual current draw will as 
well. This means that the pilot can ensure safety con-
straints in oversubscribed systems.

However, because the pilot is only an upper bound, the 
BMS will sometimes underutilize its allocated pilot signal. 
Sometimes, this is because the pilot is above the maximum 
charging rate of the vehicle. Other times, this can be a tem-
porary limit. 

For example, we find that many BMSs use a constant-
current, constant-voltage charging scheme. Within this 
scheme, the vehicle can usually accept its full charging rate 
until it reaches about the 80% state of charge. After this, its 
maximum charging rate decreases roughly linearly with its 
state of charge. Charging systems that do not account for 
this BMS behavior can underutilize their infrastructure 
capacity and underestimate the time needed to finish 
charging a vehicle.

Discrete Set Points
EVSEs also impose limits on the pilot signals that they 
support. For example, the J1772 standard does not allow 
pilot signals below 6 A (except zero). Also, most commer-
cially available EVSEs support only a discrete set of pilot 
signals. The granularity of this control can vary widely. For 
instance, some EVSEs support only 16-A increments, 
while others have 1-A or even 0.1-A increments. Even at 
1-A increments, a simple rounding scheme can leave 
a significant amount of capacity unused. A site with 
50 EVSEs might result in up to 10 kW of wasted capacity 
due to rounding.
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Figure 3. (a) A balanced model is insufficient in large-scale charging systems where unbalance can 
be significant. (b) Instead, second-order cone constraints that account for unbalance are necessary. 
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ACN Research Portal
Beyond serving as a model for smart-charging systems, 
the ACN has led to the creation of the ACN Research Portal 
(Figure 4). This portal has three parts: 

xx ACN-Data: a collection of fine-grained charging data 
collected from the Caltech ACN and similar sites
xx ACN-Sim: an open source simulator that uses ACN-
Data and realistic models derived from actual ACNs to 
provide researchers with an environment to evaluate 
their algorithms and test assumptions
xx ACN-Live: a framework for safely field-testing algo-
rithms directly on the Caltech ACN.

ACN-Data
The ACNs at Caltech, NASA’s Jet Propulsion Laboratory 
(JPL), and elsewhere have produced a vast amount of data 
that have enabled new research lines within our lab. How-
ever, most researchers do not have access to data from 
systems like the ACN, precluding them from applying 
data-driven methods, such as machine learning and trace-
driven simulations, in their work. Instead, most existing 
works focus on assumed data distributions or data collect-
ed from internal combustion engine vehicles.

To meet this need in the community, we have collected 
and published ACN-Data, which includes data from 207 
level 2 EVSEs and six dc fast chargers (DCFCs) from seven 

clusters: five at Caltech (including one at a Laser Interfer-
ometer Gravitational-Wave Observatory facility in Louisi-
ana), one at JPL, and one at an office building in northern 
California. These clusters cover common use cases, 
including campus/public-use and access-controlled work-
place charging. The smallest of these clusters has only 
four level 2 chargers, while the largest has 78 level 2 char-
gers and two DCFCs in a single parking structure. 

The data set includes more than 80,000 sessions. Each 
session includes the arrival time, departure time, energy 
delivered, and user data from a mobile app, including the 
vehicle information, estimated departure time, and esti-
mated energy request. The data set also includes time 
series data, including the charging current, power, and 
voltage, with 4-s resolution.

ACN-Sim
While the ACN has allowed us to identify many interest-
ing challenges in real-world EV charging systems, we rec-
ognize that most researchers will not have access to such 
physical testbeds. However, it is still important that they 
have a realistic environment in which to evaluate their 
algorithms. To this end, we developed ACN-Sim, a modu-
lar, data-driven simulation environment for testing 
scheduling algorithms for EV charging systems (Figure 5).

xx Models: ACN-Sim includes realistic models of the 
many components of a real EV charging system, 
such as electrical infrastructure, charging stations, 
and EV BMSs. These models incorporate our lessons 
from real systems. For example, the charging net-
work constraints include three-phase unbalanced 
models, while batteries use the constant-current, 
constant-voltage charging scheme discussed previ-
ously. The simulator is also designed to be highly 
modular, meaning that users can replace each com-
ponent to model different types of hardware or lev-
els of fidelity.
xx Events: The simulator is event driven. To generate 
events, users can get real event sequences from ACN-
Data, generate them from statistical models, or manu-
ally create events to investigate edge cases. To make 
accessing ACN-Data simpler for users, ACN-Sim pro-
vides direct integration with the ACN-Data application 
programming interface (API). This allows the user to 
specify a site and date range, and ACN-Sim will gather 
the actual workload from that ACN and generate the 
appropriate plug-in and unplug events. ACN-Sim also 
provides utilities for learning statistical models, such 
as Gaussian mixture models (GMMs), directly from 
data using tools from scikit-learn.
xx Signals: The signals submodule allows ACN-Sim to 
integrate with external signal sources, which can be 
an important part of EV charging systems such as 
utility tariffs, solar-generation curves, and external 
loads. These signals are available to the scheduling 
algorithm through the simulator’s interface.
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Figure 4. An overview of the ACN Research Portal. 
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xx Interface: To make algorithm implementations more 
flexible, we introduce an interface that abstracts away 
the underlying infrastructure, whether simulated or 
real, allowing us to use the same algorithm imple-
mentation with both ACN-Sim and ACN-Live. This 
means that users can thoroughly test algorithms with 
ACN-Sim before trying on physical hardware.
xx Defining algorithms: To define an algorithm in ACN-
Sim, users only need to extend the BaseAlgorithm 
class and define the schedule() function. This function 
takes in a list of active sessions—meaning that the EV 
is plugged in, and its energy demand has not been 
met—and returns a charging schedule for each. To 
make baselining new algorithms easier, ACN-Sim is 
packaged with common scheduling algorithms, such 
as round robin (RR) (equal sharing); first come, first 
served (FCFS); earliest deadline first (EDF); and least 
laxity first (LLF). We also provide the adacharge pack-
age, which includes a flexible MPC framework 
designed to work with ACN-Sim.
xx Integrations: ACN-Sim is designed to integrate with 
other packages, including the OpenAI gym for reinforce-
ment learning and grid simulators, such as OpenDSS, 
PandaPower, and MATPOWER. 

ACN-Live
Thus far, we have discussed how ACN-Data and ACN-Sim 
help researchers apply data-driven methods to EV charg-
ing research. While these tools help bridge the gap 
between theoretical work and algorithms that could be 
deployed in practice, they are not substitutes for field 
tests and pilots. These field tests are important to prove 
to stakeholders, like utilities, funding agencies, policy 
makers, and consumers, the viability of new technologies. 

However, field tests and pilots in the energy space are 
rare, as they require vast amounts of time, funding, and 
expertise. For example, the ACN system has required more 
than five years of work and millions of dollars of funding 
to reach its current state. Because of these challenges, 
only a handful of researchers have access to systems like 
the ACN.

This lack of access hampers research progress and 
technology transfer into the marketplace. To bridge this 
gap, we have designed ACN-Live, a framework for field-
testing algorithms on the Caltech ACN. ACN-Live allows 
researchers who have thoroughly tested their algorithms 
with ACN-Sim to deploy them on the physical ACN. By uti-
lizing the same interface as ACN-Sim, we enable research-
ers to perform field tests with no changes to their 
algorithm implementation. 

This is a unique opportunity that requires the special-
ized hardware of the ACN and close collaboration among 
our research group, the Caltech facilities, and PowerFlex. 
As such, we are likely the only facility in the world able to 
provide this type of hardware-in-the-loop testing to the 
research community.

Adaptive Scheduling Algorithms
These tools have allowed us to develop practical algo-
rithms for large-scale, smart EV charging. Though there is 
vast literature on charging algorithms, we have found that 
most make strong assumptions, which prevents us from 
using them in practice. Others lack the flexibility to incor-
porate practical constraints and objectives.

Algorithm Design
To account for these practical needs, we developed an 
algorithm based on MPC. We refer to this algorithm as the 
adaptive scheduling algorithm (ASA). At each time step, we 
form an optimization problem. The objective of this opti-
mization can incorporate many operator objectives, such 
as minimizing the cost, charging quickly, or flattening the 
load. We also introduce a collection of regularizers that 
promote desirable properties in the final schedule, such as 
fairness or smoothing.

The constraints of the optimization express limits on 
the state and action spaces of the problem. For example, 
we introduce limits on the charging rate of the vehicle, 
unbalanced three-phase infrastructure constraints, and 
constraints on the energy delivered to each vehicle.

Accounting for Discrete Pilots
We do not directly include the discrete pilot signals as 
constraints in this optimization. Doing so would make the 
problem a discrete optimization, which may be intractable 
to solve within the time constraints of MPC. Instead, we 
require that the charging rate of each vehicle lie between 
zero and the upper limit of the EVSE. We then perform a 
rounding and capacity reallocation step in postprocessing.

Ensuring Feasibility
We also do not require that the energy delivered to each 
vehicle match the energy requested by the user, which might 
lead to infeasibility in the optimization problem. Instead, we 
require that the energy delivered to each vehicle is less than 
the amount requested by the user. We then add a penalty 
term to the objective, ensuring that this inequality is tight 
when fully meeting the energy demand is feasible.

Reclaiming Idle Capacity
As we saw previously, an EV’s BMS will sometimes limit 
the power draw of the battery as it approaches a 100% 
state of charge. When this happens, the difference 
between the pilot signal and vehicle’s actual charging rate 
is wasted capacity. To reclaim this capacity, we use a sim-
ple algorithm that we call ramp down. 

When the charge rate of the vehicle is less than a given 
threshold below the pilot, we decrement the upper limit 
on the pilot signal to reclaim some capacity. Likewise, 
when the charging rate is near the pilot, we increment 
this upper bound. With this scheme, we can quickly 
reclaim capacity as the battery fills up, while still allowing 
EVs to throttle back up if this reclamation was premature.
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Importance of Unbalanced Three-Phase Models
Unbalance can be a significant concern in large-scale 
charging systems. However, to date, most algorithms pro-
posed in the literature implicitly assume single- or bal-
anced three-phase operation. As we have seen, unbalanced 
three-phase constraints are necessary to ensure safety. 
These unbalanced models can significantly impact the 
performance of an algorithm. To see this, we can use the 
ACN Research Portal to evaluate the percentage of user 
energy demands met when using balanced and unbal-
anced models.

We compare six algorithms over a range of possible 
transformer capacities based on the actual charging work-
load of the ACN at Caltech in September 2018. For this 
experiment, we use our ASA with an objective that pro-
motes charging as quickly as possible, which we denote 
ASA-QC.

From Figure 6, we can see that in the balanced case, 
EDF, LLF, and MPC all perform near optimally, exceeding 
the performance of RR and FCFS by up to 8.6%. However, 
in the unbalanced case, we see that, while ASA-QC can 
match the offline optimal as before, EDF and LLF both 
underperform. In the highly constrained regime, RR out-
performs EDF and LLF despite having less information 
about the workload. We attribute these results to the 
importance of phase balancing in three-phase systems, 
which has been historically underappreciated in the man-
aged charging literature.

To understand why ASA performs so much better than 
the baselines, we must consider what information each 
algorithm uses. RR uses how many EVs are present and 
performs the worst. EDF uses only information about 
departure time, while LLF also uses the EV’s energy 
demand. Only ASA-QC actively optimizes over infrastruc-
ture constraints, allowing it to better balance phases 
(increasing throughput) and prioritize EVs, including the 
current and anticipated congestion. A key feature of the 
ASA framework is its ability to account for all available 
information cleanly.

Figure 6 can also be used to evaluate the infrastructure 
needs of a site. For example, we can see that, if a host 
wants to deliver >99% of charging demand using ASA-QC, 
a 70-kW transformer would be sufficient, assuming an 
unbalanced three-phase system. Alternatively, if an exist-
ing transformer can only support 40 kW of additional 
demand, a host could expect to meet approximately 85% 
of energy demands without an upgrade.

Interfacing With the Grid
Charging systems do not operate in a vacuum. In almost 
all cases, they draw energy from the power grid. Because 
of their enormous power and energy requirements, large-
scale EV charging systems can significantly impact the 
power grid. 

The ACN Research Portal allows us to expand studies 
like this to consider how more advanced smart-charging 
approaches can help alleviate strain on the distribution 
system, especially for large charging systems like work-
places. To enable studies like this with ACN-Sim, we have 
integrated it with several grid simulation packages, includ-
ing MATPOWER, PandaPower, and OpenDSS. In each case, 
we can use ACN-Sim and ACN-Data to provide a realistic 
load profile, which can then feed into the grid simulation 
package that evaluates power flows and alerts us to any 
voltage or overloading issues.

For this case study, we use OpenDSS to model a 240-
node distribution system in the midwestern United States 
with hourly smart meter data. Our goal is to evaluate the 
effect of installing a 52-EVSE charging network at one 
node in this distribution system. We use actual data from 
the ACN at JPL on 6 September 2018. There are four cases: 
a baseline with no EV charging, uncontrolled charging, 
ASA with a load-flattening objective, and ASA with load 
flattening and onsite solar. 

The results of this experiment are shown in Figure 7. 
We can see that uncontrolled charging at this scale would 
overload the distribution transformer and lead to unac-
ceptably low voltages in the network. However, using ASA 

with load flattening, we can stay 
below the transformer capacity and 
above the voltage limits. Moreover, 
we see that if 225 kWac of solar 
were installed at the site, we 
achieve the same circuit-wide min-
imum voltage as the baseline case. 
This indicates that onsite solar gen-
eration and smart EV charging 
could enable widespread work-
place EV charging without adverse 
grid impacts.

Data-Driven Modeling
In addition to enabling trace-driven 
simulation, we can also use the 
ACN Research Portal to develop 
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statistical models. These models can help us predict user 
behavior and evaluate charging system designs before they 
are built.

Modeling Workloads With GMMs
There are many approaches to modeling charging work-
loads, including kernel density estimation and normaliz-
ing flow methods. In our case, we consider GMMs to jointly 
model the arrival time, session duration, and energy deliv-
ered in each charging session. In this context, the GMM 
lends itself to a natural interpretation. 

We assume that most EV drivers have a finite set of nor-
mal routines. For example, a driver might typically plan to 
arrive at work each morning at 8 a.m. and remain for 9 h, 
leaving at 5 p.m. This driver also likely follows a similar 
route to work, so his or her energy needs are similar day 
to day. However, this driver’s actual arrival time, duration, 
and energy request are influenced by noise, such as traf-
fic. It is also natural to assume that these variables are 
correlated; i.e., more traffic might mean a later arrival 
time and higher energy needs. These intuitions motivate 
us to consider modeling the driver’s routines as a multi-
variate Gaussian distribution. 

Drivers may also have several routines. For example, a 
driver may drop his or her kids off at school on some 
mornings but not others. We can model this by consider-
ing a mixture of multivariate Gaussians. We can assume 
that drivers may share similar routines, i.e., commuting 
to work from similar areas. Therefore, we also consider 
population-level models with far fewer components 
(Gaussians) than the number of drivers in the population.

Predicting Session Parameters
After fitting a GMM to historical data, session parameters 
are estimated by conditioning this distribution on the 
vehicle’s arrival time and taking the expectation of the 
remaining two variables. We can make this prediction 
using models trained on individual data or at the popu-
lation level. To account for changing behavior over 
time, the GMMs are periodically refit using data from a 
rolling window. Experiments show that a window of 
30–60 days provides a good tradeoff between data 
quantity and quality. 

Even these simple models provide better accuracy than 
user inputs through the mobile app, achieving a symmetric 
mean absolute percentage error of less than 12.3% for dura-
tion and 12.8% for energy. Meanwhile, user inputs have 
errors of 18.6% for duration and 26.9% for energy. However, 
there is still considerable work to be done to increase the 
prediction accuracy and account for other covariates.

Evaluating Charging System Designs With Data
Smart charging can significantly reduce the capital and 
operating costs of charging systems. We can use ACN-Data 
and ACN-Sim to quantify these benefits for a particular 
use case.

Consider a site host who wants to install an EV charging 
solution at an office building. The host estimates that the 
system will charge approximately 100 EVs per day. Several 
potential designs can be considered, as shown in Table 1. 

We assume that the office will have a usage pattern 
similar to that of JPL, so we train a GMM based on the data 
collected on weekdays at JPL. We assume the site will not 
allow usage on weekends. We then use ACN-Sim’s Gauss-
ianMixtureEvents tool to create a queue of events from this 
generative model, assuming 100 arrivals on weekdays and 
zero on weekends. Since EVs are generated, we use ACN-
Sim’s StocasticNetwork, which randomly assigns EVs to 
EVSEs when they arrive, to model each design.

To evaluate costs, we use the Southern California Edi-
son EV TOU-4 tariff, which includes a time-of-use energy 
tariff and demand charge on peak power draw. The experi-
ments are repeated for 10 months of generated data, with 
the mean results shown in Table 1. Note that the standard 
deviations among months were less than 3.5% for each 
metric in each case.

From Table 1, we see that, while installing 100 level 
1 EVSEs might be the simplest solution, these slow char-
gers can meet only 75.4% of demand because they can-
not support users with large energy needs and short 
deadlines. However, the alternative of installing a 
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680- kW transformer and the associated service upgrade 
would be cost prohibitive for most sites, and installing 
only 30 level 2 EVSEs requires more than 1,100 swaps per 
month, leading to lost productivity and poor user experi-
ence. In this case, we see that ASA with the objective of 
cost minimization (CM) results in reduced capital costs, 
higher user satisfaction, and lower operating expenses.

The benefits of smart charging are amplified as EV 
adoption grows, and charging infrastructure must 
scale accordingly. In this scenario, we consider how the 
system will rise to 200 charging sessions per day. The 
results are shown in Table 2. Intuitively, the systems 
designed for 100 EVs per day require far more swaps 
with increased demand, and, similarly, the percentage 
of demand met decreases. This is also true for the 
smart charging (ASA-CM) case. 

However, while scaling the number of EVSEs in tradi-
tional uncontrolled charging systems would require a 
corresponding scaling of the transformer capacity to 
ensure safety, smart charging enables us to add new 
EVSEs without increasing the transformer capacity. This 
allows us to meet more than 99.8% of energy demands, 
require zero swaps, and maintain low operating costs.

Conclusion
Smart charging will be key to enabling safe and cost-effec-
tive EV charging at scale. However, new research and devel-
opment will be needed to bring the promises of smart 
charging to the marketplace. The ACN Research Portal pro-
vides researchers the data and tools they need to develop 
these new technologies and deploy them quickly.
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TABLE 2. The infrastructure solution evaluation at 200 EV/day.

EVSEs EVSE Level Algorithm Capacity (kW)
Swaps  
(Number/Month)

Demand  
Met (%)

Cost  
(US$/kWh)

102 Level 1 Unctrl 200 1,174.5 73.2 0.244

102 Level 2 Unctrl 680 1,081.5 99.8 0.327

30 Level 2 Unctrl 200 2,973.9 91.6 0.233

102 Level 2 ASA-CM 200 1,441.9 87.1 0.223

201 Level 2 ASA-CM 200 0 98.4 0.227

TABLE 1. The infrastructure solution evaluation at 100 EV/day.

EVSEs EVSE Level Algorithm Capacity (kW)
Swaps  
(Number/Month)

Demand  
Met (%)

Cost  
(US$/kWh)

102 Level 1 Unctrl 200 0 75.4 0.278

102 Level 2 Unctrl 680 0 99.9 0.351

30 Level 2 Unctrl 200 1,103.5 99.6 0.256

102 Level 2 ASA-CM 200 0 99.8 0.234

Unctrl: uncontrolled; CM: cost minimization.


