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An introduction to the adaptive charging network research portal.
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ILLIONS OF ELECTRIC VEHICLES (EVs) WILL
enter service in the next decade, generat-
ing gigawatthours of additional energy
demand. Charging these EVs cleanly,
affordably, and without excessive stress on
the grid will require advances in charging system design,
hardware, monitoring, and control. Collectively, we refer to
these advances as smart charging.
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While researchers have explored

decade, very few smart-charging
systems have been deployed in
practice, leaving a sizeable gap
between the research literature and
real world. In particular, we find that
research is often based on simplified
theoretical models. These simple
models make analysis tractable but
do not account for the complexities
of physical systems. Moreover,
researchers often lack the data
needed to evaluate the perfor-
mance of their algorithms on real
workloads or apply techniques like
machine learning. Even when
promising algorithms are devel-
oped, they are rarely deployed
since field tests can be costly and
time-consuming.

To address these gaps and accel-
erate research in smart-charging systems, we have devel-
oped the Adaptive Charging Network (ACN) Research Portal,
which is made up of three parts: a public data set of EV
charging sessions; an open source, data-driven simulation
environment; and a platform for field-testing algorithms on
real charging systems. In this article, we introduce these
tools and the research they have enabled.

©SHUTTERSTOCK.COM/BUFFALOBOY

ACNs
To enable smart charging at scale, we first needed a plat-
form that would allow us to take measurements from the
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physical system, compute control actions, and apply those
actions back to the physical system. When we began our
work on smart EV charging, these systems did not exist
for the scale of smart charging we envisioned, so we
decided to build our own, which we called the ACN. Doing
so provided us the platform we needed to run experi-
ments and gather data. It also yielded insights into the
practical challenges of smart EV charging systems.

ACN Architecture

The ACN is best understood in the framework of cyber-
physical systems (Figure 1). Within the physical system,
the local electrical infrastructure supplies power for EVs
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Figure 1. The architecture of ACNs. BMS: battery management sys-
tem; EVSE: EV supply equipment.
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and other loads from a grid connection or local generation
(Figure 2). Sensors within the local infrastructure measure
voltages, currents, and power and feed those measure-
ments into the information system through the commu-
nications interface, which is part of the information
system. The ACN uses several communication protocols,
including a Zigbee mesh network for communicating with
charging stations and TCP/IP over Ethernet to communi-
cate with power meters.

Data storage and control are distributed between an
onsite industrial computer and the cloud. The onsite com-
puter provides robustness to Internet outages, while the
cloud provides long-term data storage and visualization.
Algorithms for prediction, pricing, and control can be run
locally or in the cloud. However, we generally prefer local
control algorithms to ensure reliability.

Once the system has calculated a new control action,
it sends those set points to the EV supply equipment
(EVSE). The EVSE is more commonly known as the charg-
ing port or charger, though the latter is a misnomer
since the vehicle’s onboard charger is used in level 2 ac
charging. This EVSE communicates to the vehicle’s
onboard battery management system (BMS) using a
pilot signal that sets an upper bound on the vehicle’s
current draw from the EVSE. This pilot signal is defined
by the J1772 standard.

Because drivers play an essential role within a
charging system, determining when their vehicle is
available to charge and how much energy it will need,
we provide a mobile app to facilitate communication
between the system and driver. Using this app, the
driver can enter the vehicle’s battery size and maxi-
mum charging rate. We also ask the user to provide
estimates of the departure time and amount of energy
he or she would like delivered to the vehicle. The lat-
ter is important since the J1772 standard does not

(b)

Figure 2. The ACN equipment: (a) from left to right, the constrained transformer, electrical panels, and PowerFlex controller; (b) a Webasto DX

level 2 EV supply equipment; and (c) a Tritium Veefil RT50 dc fast charger.
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allow for bidirectional communication, so our ACN
cannot directly access the vehicle’s state of charge for
level 2 charging.

Lessons Learned From the ACN

The first ACN was built at the California Institute of Tech-
nology (Caltech) in early 2016. Since then, PowerFlex, a
company formed to commercialize the technology, has
deployed ACNs across the United States. As of May 2021,
PowerFlex has deployed more than 4,600 EVSEs at more
than 200 sites. By operating these systems over the last
five years, we have learned important lessons about
large-scale charging systems.

Unbalanced Infrastructure
Within the United States, commercial customers like
schools, hospitals, offices, and stores receive three-phase
power. Level 2 EVSEs are single-phase loads, so they are
connected line to line at these sites. Because of differences
in usage at each EVSE, large-scale charging systems can be
very unbalanced.

Traditionally, most scheduling and control approaches
for EV charging that consider infrastructure limits implic-
itly assume single-phase or balanced operations, so they
only need to consider the power limits of the equipment.
However, because of unbalanced three-phase currents,
these simple constraints can be insufficient to ensure
safe operations.

For example, in Figure 3, we show that a model pre-
dictive control (MPC) algorithm that assumes bal-
anced operations can remain below a transformer’s
aggregate power limit while simultaneously over-
loading individual lines. However, if we introduce
constraints that explicitly model
unbalance, we ensure that all line
limits are respected.

Infrastructure constraints are
expressed as upper bounds on the
magnitudes of currents within the
system. By Kirchhoff’s current law,

Aggregate
Power (kW)
(6)]
o

this pilot signal is only an upper bound on the current
drawn by the vehicle’s BMS. Because the pilot signal is an
upper bound, if the pilot sent to the BMS satisfies infra-
structure constraints, then the actual current draw will as
well. This means that the pilot can ensure safety con-
straints in oversubscribed systems.

However, because the pilot is only an upper bound, the
BMS will sometimes underutilize its allocated pilot signal.
Sometimes, this is because the pilot is above the maximum
charging rate of the vehicle. Other times, this can be a tem-
porary limit.

For example, we find that many BMSs use a constant-
current, constant-voltage charging scheme. Within this
scheme, the vehicle can usually accept its full charging rate
until it reaches about the 80% state of charge. After this, its
maximum charging rate decreases roughly linearly with its
state of charge. Charging systems that do not account for
this BMS behavior can underutilize their infrastructure
capacity and underestimate the time needed to finish
charging a vehicle.

Discrete Set Points

EVSEs also impose limits on the pilot signals that they
support. For example, the J1772 standard does not allow
pilot signals below 6 A (except zero). Also, most commer-
cially available EVSEs support only a discrete set of pilot
signals. The granularity of this control can vary widely. For
instance, some EVSEs support only 16-A increments,
while others have 1-A or even 0.1-A increments. Even at
1-A increments, a simple rounding scheme can leave
a significant amount of capacity unused. A site with
50 EVSEs might result in up to 10 kW of wasted capacity
due to rounding.
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Figure 3. (a) A balanced model is insufficient in large-scale charging systems where unbalance can
be significant. (b) Instead, second-order cone constraints that account for unbalance are necessary.
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ACN Research Portal
Beyond serving as a model for smart-charging systems,
the ACN has led to the creation of the ACN Research Portal
(Figure 4). This portal has three parts:
b ACN-Data: a collection of fine-grained charging data
collected from the Caltech ACN and similar sites
b ACN-Sim: an open source simulator that uses ACN-
Data and realistic models derived from actual ACNs to
provide researchers with an environment to evaluate
their algorithms and test assumptions
b ACN-Live: a framework for safely field-testing algo-
rithms directly on the Caltech ACN.

ACN-Data
The ACNs at Caltech, NASA’s Jet Propulsion Laboratory
(JPL), and elsewhere have produced a vast amount of data
that have enabled new research lines within our lab. How-
ever, most researchers do not have access to data from
systems like the ACN, precluding them from applying
data-driven methods, such as machine learning and trace-
driven simulations, in their work. Instead, most existing
works focus on assumed data distributions or data collect-
ed from internal combustion engine vehicles.

To meet this need in the community, we have collected
and published ACN-Data, which includes data from 207
level 2 EVSEs and six dc fast chargers (DCFCs) from seven
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Figure 4. An overview of the ACN Research Portal.
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Figure 5. The modular architecture of ACN-Sim.
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clusters: five at Caltech (including one at a Laser Interfer-
ometer Gravitational-Wave Observatory facility in Louisi-
ana), one at JPL, and one at an office building in northern
California. These clusters cover common use cases,
including campus/public-use and access-controlled work-
place charging. The smallest of these clusters has only
four level 2 chargers, while the largest has 78 level 2 char-
gers and two DCFCs in a single parking structure.

The data set includes more than 80,000 sessions. Each
session includes the arrival time, departure time, energy
delivered, and user data from a mobile app, including the
vehicle information, estimated departure time, and esti-
mated energy request. The data set also includes time
series data, including the charging current, power, and
voltage, with 4-s resolution.

ACN-Sim

While the ACN has allowed us to identify many interest-
ing challenges in real-world EV charging systems, we rec-
ognize that most researchers will not have access to such
physical testbeds. However, it is still important that they
have a realistic environment in which to evaluate their
algorithms. To this end, we developed ACN-Sim, a modu-
lar, data-driven simulation environment for testing
scheduling algorithms for EV charging systems (Figure 5).

b Models: ACN-Sim includes realistic models of the
many components of a real EV charging system,
such as electrical infrastructure, charging stations,
and EV BMSs. These models incorporate our lessons
from real systems. For example, the charging net-
work constraints include three-phase unbalanced
models, while batteries use the constant-current,
constant-voltage charging scheme discussed previ-
ously. The simulator is also designed to be highly
modular, meaning that users can replace each com-
ponent to model different types of hardware or lev-
els of fidelity.

b Events: The simulator is event driven. To generate
events, users can get real event sequences from ACN-
Data, generate them from statistical models, or manu-
ally create events to investigate edge cases. To make
accessing ACN-Data simpler for users, ACN-Sim pro-
vides direct integration with the ACN-Data application
programming interface (API). This allows the user to
specify a site and date range, and ACN-Sim will gather
the actual workload from that ACN and generate the
appropriate plug-in and unplug events. ACN-Sim also
provides utilities for learning statistical models, such
as Gaussian mixture models (GMMs), directly from
data using tools from scikit-learn.

b Signals: The signals submodule allows ACN-Sim to
integrate with external signal sources, which can be
an important part of EV charging systems such as
utility tariffs, solar-generation curves, and external
loads. These signals are available to the scheduling
algorithm through the simulator’s interface.



b Interface: To make algorithm implementations more
flexible, we introduce an interface that abstracts away
the underlying infrastructure, whether simulated or
real, allowing us to use the same algorithm imple-
mentation with both ACN-Sim and ACN-Live. This
means that users can thoroughly test algorithms with
ACN-Sim before trying on physical hardware.

b Defining algorithms: To define an algorithm in ACN-
Sim, users only need to extend the BaseAlgorithm
class and define the schedule() function. This function
takes in a list of active sessions—meaning that the EV
is plugged in, and its energy demand has not been
met—and returns a charging schedule for each. To
make baselining new algorithms easier, ACN-Sim is
packaged with common scheduling algorithms, such
as round robin (RR) (equal sharing); first come, first
served (FCFS); earliest deadline first (EDF); and least
laxity first (LLF). We also provide the adacharge pack-
age, which includes a flexible MPC framework
designed to work with ACN-Sim.

b Integrations: ACN-Sim is designed to integrate with
other packages, including the OpenAl gym for reinforce-
ment learning and grid simulators, such as OpenDSS,
PandaPower, and MATPOWER.

ACN-Live

Thus far, we have discussed how ACN-Data and ACN-Sim
help researchers apply data-driven methods to EV charg-
ing research. While these tools help bridge the gap
between theoretical work and algorithms that could be
deployed in practice, they are not substitutes for field
tests and pilots. These field tests are important to prove
to stakeholders, like utilities, funding agencies, policy
makers, and consumers, the viability of new technologies.

However, field tests and pilots in the energy space are
rare, as they require vast amounts of time, funding, and
expertise. For example, the ACN system has required more
than five years of work and millions of dollars of funding
to reach its current state. Because of these challenges,
only a handful of researchers have access to systems like
the ACN.

This lack of access hampers research progress and
technology transfer into the marketplace. To bridge this
gap, we have designed ACN-Live, a framework for field-
testing algorithms on the Caltech ACN. ACN-Live allows
researchers who have thoroughly tested their algorithms
with ACN-Sim to deploy them on the physical ACN. By uti-
lizing the same interface as ACN-Sim, we enable research-
ers to perform field tests with no changes to their
algorithm implementation.

This is a unique opportunity that requires the special-
ized hardware of the ACN and close collaboration among
our research group, the Caltech facilities, and PowerFlex.
As such, we are likely the only facility in the world able to
provide this type of hardware-in-the-loop testing to the
research community.

Adaptive Scheduling Algorithms

These tools have allowed us to develop practical algo-
rithms for large-scale, smart EV charging. Though there is
vast literature on charging algorithms, we have found that
most make strong assumptions, which prevents us from
using them in practice. Others lack the flexibility to incor-
porate practical constraints and objectives.

Algorithm Design

To account for these practical needs, we developed an
algorithm based on MPC. We refer to this algorithm as the
adaptive scheduling algorithm (ASA). At each time step, we
form an optimization problem. The objective of this opti-
mization can incorporate many operator objectives, such
as minimizing the cost, charging quickly, or flattening the
load. We also introduce a collection of regularizers that
promote desirable properties in the final schedule, such as
fairness or smoothing.

The constraints of the optimization express limits on
the state and action spaces of the problem. For example,
we introduce limits on the charging rate of the vehicle,
unbalanced three-phase infrastructure constraints, and
constraints on the energy delivered to each vehicle.

Accounting for Discrete Pilots

We do not directly include the discrete pilot signals as
constraints in this optimization. Doing so would make the
problem a discrete optimization, which may be intractable
to solve within the time constraints of MPC. Instead, we
require that the charging rate of each vehicle lie between
zero and the upper limit of the EVSE. We then perform a
rounding and capacity reallocation step in postprocessing.

Ensuring Feasibility

We also do not require that the energy delivered to each
vehicle match the energy requested by the user, which might
lead to infeasibility in the optimization problem. Instead, we
require that the energy delivered to each vehicle is less than
the amount requested by the user. We then add a penalty
term to the objective, ensuring that this inequality is tight
when fully meeting the energy demand is feasible.

Reclaiming Idle Capacity

As we saw previously, an EV's BMS will sometimes limit
the power draw of the battery as it approaches a 100%
state of charge. When this happens, the difference
between the pilot signal and vehicle’s actual charging rate
is wasted capacity. To reclaim this capacity, we use a sim-
ple algorithm that we call ramp down.

When the charge rate of the vehicle is less than a given
threshold below the pilot, we decrement the upper limit
on the pilot signal to reclaim some capacity. Likewise,
when the charging rate is near the pilot, we increment
this upper bound. With this scheme, we can quickly
reclaim capacity as the battery fills up, while still allowing
EVs to throttle back up if this reclamation was premature.
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Importance of Unbalanced Three-Phase Models
Unbalance can be a significant concern in large-scale
charging systems. However, to date, most algorithms pro-
posed in the literature implicitly assume single- or bal-
anced three-phase operation. As we have seen, unbalanced
three-phase constraints are necessary to ensure safety.
These unbalanced models can significantly impact the
performance of an algorithm. To see this, we can use the
ACN Research Portal to evaluate the percentage of user
energy demands met when using balanced and unbal-
anced models.

We compare six algorithms over a range of possible
transformer capacities based on the actual charging work-
load of the ACN at Caltech in September 2018. For this
experiment, we use our ASA with an objective that pro-
motes charging as quickly as possible, which we denote
ASA-QC.

From Figure 6, we can see that in the balanced case,
EDF, LLF, and MPC all perform near optimally, exceeding
the performance of RR and FCFS by up to 8.6%. However,
in the unbalanced case, we see that, while ASA-QC can
match the offline optimal as before, EDF and LLF both
underperform. In the highly constrained regime, RR out-
performs EDF and LLF despite having less information
about the workload. We attribute these results to the
importance of phase balancing in three-phase systems,
which has been historically underappreciated in the man-
aged charging literature.

To understand why ASA performs so much better than
the baselines, we must consider what information each
algorithm uses. RR uses how many EVs are present and
performs the worst. EDF uses only information about
departure time, while LLF also uses the EV’s energy
demand. Only ASA-QC actively optimizes over infrastruc-
ture constraints, allowing it to better balance phases
(increasing throughput) and prioritize EVs, including the
current and anticipated congestion. A key feature of the
ASA framework is its ability to account for all available
information cleanly.

Figure 6 can also be used to evaluate the infrastructure
needs of a site. For example, we can see that, if a host
wants to deliver >99% of charging demand using ASA-QC,
a 70-kW transformer would be sufficient, assuming an
unbalanced three-phase system. Alternatively, if an exist-
ing transformer can only support 40 kW of additional
demand, a host could expect to meet approximately 85%
of energy demands without an upgrade.

Interfacing With the Grid

Charging systems do not operate in a vacuum. In almost
all cases, they draw energy from the power grid. Because
of their enormous power and energy requirements, large-
scale EV charging systems can significantly impact the
power grid.

The ACN Research Portal allows us to expand studies
like this to consider how more advanced smart-charging
approaches can help alleviate strain on the distribution
system, especially for large charging systems like work-
places. To enable studies like this with ACN-Sim, we have
integrated it with several grid simulation packages, includ-
ing MATPOWER, PandaPower, and OpenDSS. In each case,
we can use ACN-Sim and ACN-Data to provide a realistic
load profile, which can then feed into the grid simulation
package that evaluates power flows and alerts us to any
voltage or overloading issues.

For this case study, we use OpenDSS to model a 240-
node distribution system in the midwestern United States
with hourly smart meter data. Our goal is to evaluate the
effect of installing a 52-EVSE charging network at one
node in this distribution system. We use actual data from
the ACN at JPL on 6 September 2018. There are four cases:
a baseline with no EV charging, uncontrolled charging,
ASA with a load-flattening objective, and ASA with load
flattening and onsite solar.

The results of this experiment are shown in Figure 7.
We can see that uncontrolled charging at this scale would
overload the distribution transformer and lead to unac-
ceptably low voltages in the network. However, using ASA

with load flattening, we can stay
below the transformer capacity and

above the voltage limits. Moreover,

100 we see that if 225 kW, of solar
T 801 _ were installed at the site, we
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E 60 - —— ECFS - imum voltage as the baseline case.
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Figure 6. The algorithm performance with constrained infrastructure with the (a) balanced and (b)

unbalanced models.
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ACN Research Portal to develop



statistical models. These models can help us predict user
behavior and evaluate charging system designs before they
are built.

Modeling Workloads With GMMs

There are many approaches to modeling charging work-
loads, including kernel density estimation and normaliz-
ing flow methods. In our case, we consider GMMs to jointly
model the arrival time, session duration, and energy deliv-
ered in each charging session. In this context, the GMM
lends itself to a natural interpretation.

We assume that most EV drivers have a finite set of nor-
mal routines. For example, a driver might typically plan to
arrive at work each morning at 8 a.m. and remain for 9 h,
leaving at 5 p.m. This driver also likely follows a similar
route to work, so his or her energy needs are similar day
to day. However, this driver’s actual arrival time, duration,
and energy request are influenced by noise, such as traf-
fic. It is also natural to assume that these variables are
correlated; i.e., more traffic might mean a later arrival
time and higher energy needs. These intuitions motivate
us to consider modeling the driver’s routines as a multi-
variate Gaussian distribution.

Drivers may also have several routines. For example, a
driver may drop his or her kids off at school on some
mornings but not others. We can model this by consider-
ing a mixture of multivariate Gaussians. We can assume
that drivers may share similar routines, i.e., commuting
to work from similar areas. Therefore, we also consider
population-level models with far fewer components
(Gaussians) than the number of drivers in the population.

Predicting Session Parameters

After fitting a GMM to historical data, session parameters
are estimated by conditioning this distribution on the
vehicle’s arrival time and taking the expectation of the
remaining two variables. We can make this prediction
using models trained on individual data or at the popu-
lation level. To account for changing behavior over
time, the GMMs are periodically refit using data from a
rolling window. Experiments show that a window of
30-60 days provides a good tradeoff between data
quantity and quality.

Even these simple models provide better accuracy than
user inputs through the mobile app, achieving a symmetric
mean absolute percentage error of less than 12.3% for dura-
tion and 12.8% for energy. Meanwhile, user inputs have
errors of 18.6% for duration and 26.9% for energy. However,
there is still considerable work to be done to increase the
prediction accuracy and account for other covariates.

Evaluating Charging System Designs With Data

Smart charging can significantly reduce the capital and
operating costs of charging systems. We can use ACN-Data
and ACN-Sim to quantify these benefits for a particular
use case.

Consider a site host who wants to install an EV charging
solution at an office building. The host estimates that the
system will charge approximately 100 EVs per day. Several
potential designs can be considered, as shown in Table 1.

We assume that the office will have a usage pattern
similar to that of JPL, so we train a GMM based on the data
collected on weekdays at JPL. We assume the site will not
allow usage on weekends. We then use ACN-Sim’s Gauss-
ianMixtureEvents tool to create a queue of events from this
generative model, assuming 100 arrivals on weekdays and
zero on weekends. Since EVs are generated, we use ACN-
Sim’s StocasticNetwork, which randomly assigns EVs to
EVSEs when they arrive, to model each design.

To evaluate costs, we use the Southern California Edi-
son EV TOU-4 tariff, which includes a time-of-use energy
tariff and demand charge on peak power draw. The experi-
ments are repeated for 10 months of generated data, with
the mean results shown in Table 1. Note that the standard
deviations among months were less than 3.5% for each
metric in each case.

From Table 1, we see that, while installing 100 level
1 EVSEs might be the simplest solution, these slow char-
gers can meet only 75.4% of demand because they can-
not support users with large energy needs and short
deadlines. However, the alternative of installing a
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Figure 7. Comparing the effect of (a) controlled and (b) uncontrolled
charging on net power at the bus and system-wide minimum voltage.
LF: load flattening; Mag.: magnitude.
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TABLE 1. The infrastructure solution evaluation at 100 EV/day.

Swaps Demand Cost
EVSEs EVSE Level Algorithm Capacity (kW) (Number/Month) Met (%) (US$/kWh)
102 Level 1 Unctrl 200 0 75.4 0.278
102 Level 2 Unctrl 680 0 991y 0.351
30 Level 2 Unctrl 200 1,103.5 99.6 0.256
102 Level 2 ASA-CM 200 0 99.8 0.234
Unctrl: uncontrolled; CM: cost minimization.

TABLE 2. The infrastructure solution evaluation at 200 EV/day.

Swaps Demand Cost
EVSEs EVSE Level Algorithm Capacity (kW) (Number/Month) Met (%) (US$/kWh)
102 Level 1 Unctrl 200 1,174.5 73.2 0.244
102 Level 2 Unctrl 680 1,081.5 99.8 0.327
30 Level 2 Unctrl 200 2,973.9 91.6 0.233
102 Level 2 ASA-CM 200 1,441.9 87.1 0.223
201 Level 2 ASA-CM 200 0 98.4 0.227

680- kW transformer and the associated service upgrade
would be cost prohibitive for most sites, and installing
only 30 level 2 EVSEs requires more than 1,100 swaps per
month, leading to lost productivity and poor user experi-
ence. In this case, we see that ASA with the objective of
cost minimization (CM) results in reduced capital costs,
higher user satisfaction, and lower operating expenses.

The benefits of smart charging are amplified as EV
adoption grows, and charging infrastructure must
scale accordingly. In this scenario, we consider how the
system will rise to 200 charging sessions per day. The
results are shown in Table 2. Intuitively, the systems
designed for 100 EVs per day require far more swaps
with increased demand, and, similarly, the percentage
of demand met decreases. This is also true for the
smart charging (ASA-CM) case.

However, while scaling the number of EVSEs in tradi-
tional uncontrolled charging systems would require a
corresponding scaling of the transformer capacity to
ensure safety, smart charging enables us to add new
EVSEs without increasing the transformer capacity. This
allows us to meet more than 99.8% of energy demands,
require zero swaps, and maintain low operating costs.

Conclusion

Smart charging will be key to enabling safe and cost-effec-
tive EV charging at scale. However, new research and devel-
opment will be needed to bring the promises of smart
charging to the marketplace. The ACN Research Portal pro-
vides researchers the data and tools they need to develop
these new technologies and deploy them quickly.
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