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Abstract: By definition, the exterior asymptotic energy of a solution to a wave equation
onR1+N is the sumof the limits as t →±∞ of the energy in the the exterior {|x | > |t |} of
the wave cone. In our previous workDuyckaerts et al. (J EurMath Soc 14(5):1389–1454,
2012), we have proved that the exterior asymptotic energy of a solution of the linear wave
equation in odd space dimension N is bounded from below by the conserved energy of
the solution. In this article, we study the analogous problem for the linear wave equation
with a potential

∂2t u + LWu = 0, LW := −�− N + 2

N − 2
W

4
N−2 (*)

obtained by linearizing the energy critical wave equation at the ground-state solution
W , still in odd space dimension. This equation admits nonzero solutions of the form
A + t B, where LW A = LW B = 0 with vanishing asymptotic exterior energy. We prove
that the exterior energy of a solution of (*) is bounded from below by the energy of
the projection of the initial data on the orthogonal complement of the space of initial
data corresponding to these solutions. This will be used in a subsequent paper to prove
soliton resolution for the energy-critical wave equation with radial data in all odd space
dimensions. We also prove analogous results for the linearization of the energy-critical
wave equation around a Lorentz transform of W , and give applications to the dynamics
of the nonlinear equation close to the ground state in space dimensions 3 and 5.
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1. Introduction

Consider thewave equationonRN , N ≥ 3,with an energy-critical focusingnonlinearity:

∂2t u −�u = |u| 4
N−2 u, (1.1)

and initial data

�u�t=0 = (u0, u1) ∈ H, (1.2)

where �u := (u, ∂t u),H := Ḣ1(RN )× L2(RN ), and Ḣ1(RN ) is the usual homogeneous
Sobolev space. The equation is locally well-posed in H (see e.g. [5,25,29]): for any
initial data (u0, u1) ∈ H, there exists a unique maximal solution �u ∈ C0((T−, T+),H)

with u ∈ L
2(N+1)
N−2

(
I × R

N
)
for all intervals I � (T−, T+). The energy:

E(�u(t)) = 1

2

∫

RN
|∇t,xu(t, x)|2 dx − N − 2

2N

∫

RN
|u(t, x)| 2N

N−2 dx

and the momentum

P(�u(t)) =
∫

RN
∇u(t, x)∂t u(t, x) dx

of a solution are conserved, where

∇u = (∂x j u)1≤ j≤N , ∇t,xu = (∂t u,∇u).
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The Eq. (1.1) has the following scaling invariance: if u is a solution of (1.1) and λ > 0,
then

1

λ
N
2 −1

u

(
t

λ
,
x

λ

)

is also a solution. Denote for simplicity Ḣ1 = Ḣ1(RN ), L2 = L2(RN ). For f ∈ Ḣ1,
g ∈ L2 and λ > 0, we denote

f(λ)(x) = 1

λ
N
2 −1

f
( x

λ

)
, g[λ](x) = 1

λ
N
2

( x
λ

)
.

We let:

� = {Q ∈ Ḣ1\{0} : −�Q = |Q| 4
N−2 Q},

and

W :=
(
1 +

|x |2
N (N − 2)

)1− N
2

. (1.3)

Then W ∈ �, and, as a consequence of [20,31], the only radial elements of � are
± 1

λ
N
2 −1

W
( ·

λ

)
. Note thatW is the ground state, i.e. it minimizes the energy 1

2

∫ |∇Q|2−
N−2
2N

∫ |Q| 2N
N−2 among the elements of Q of � (see [1,34]).

If x, y are two vectors in R
N , we denote by x · y their scalar product and |x | the

Euclidean norm of x . Let u be a function on R×R
N and � = |�| < 1. Then the Lorentz

transform of u with parameter � is defined as:

L�u(t, x) = u�(t, x)

= u

(
t − � · x√
1− �2

,

(
− t√

1− �2
+

1

�2

(
1√

1− �2
− 1

)
� · x

)
� + x

)
.

(1.4)

We note that

(∂2t −�) (L�u) = L�

(
(∂2t −�)u

)
. (1.5)

In particular, if u is a C2 solution of (1.1), then L�u is also a solution of (1.1).
If Q ∈ �, Q� is a traveling wave solution of (1.1). Indeed,

Q�(t, x) = Q�(0, x − t�). (1.6)

The soliton resolution conjecture predicts that every solution �u of (1.1) such that T+ =
+∞, or which is bounded inH as t → T+ decomposes asympotically as t → T+, up to a
term which is negligible in H, as a sum of decoupled solitary waves (modulated by the
transformations of the equation) and a radiation term. The radiation term is a solution
of the linear wave equation if T+ = +∞ or a fixed element of H if T+ <∞.

Various results in this directionwere recently proved. The dynamics below the energy
of the ground state was studied in [25], exactly at the energy of the ground state in [16]
and just above this energy in [10,26–28] These works are all in accordance with the
soliton resolution conjecture.
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In [11] the complete resolution was obtained in space dimension 3, for spherically
symmetric initial data. In several articles, a weaker version of this conjecture was proved
for solutions that remain bounded in H, namely that the expansion as a sum of solitary
waves and a radiation term holds for a sequence of times going to the maximal time of
existence (that can be finite or infinite):

• for spherically symmetric solutions: see [33] in any odd space dimension, [6] in
space dimension 4, [22] in space dimension 6.
• without symmetry assumption: see [8] in space dimension 3, 4 or 5.

The proofs of most of these results rely on bounds from below of the energy outside
wave cones, for some classes of solutions of (1.1). These inequalities arise from the
observation that for any solution uF of the free wave equation in odd space dimension:

∂2t uF −�uF = 0, (1.7)

with �uF (0) = (u0, u1) ∈ H, one has:

∑

±
lim

t→±∞

∫

|x |≥|t |
|∇t,xuF (t, x)|2 dx ≥

∫
|∇u0|2 + u21. (1.8)

In particular, the only solution u of (1.7) such that

∑

±
lim

t→±∞

∫

|x |≥|t |
|∇t,xu(t, x)|2 dx = 0 (1.9)

is the null solution (see [10]). For even dimension, the quantitative estimate (1.8) fails
for solutions of (1.7), even for radial data (see [7]). However, the fact that the property
(1.9) implies u ≡ 0 is still valid (see [13, Proposition 1]).

It turns out that this property fails for some solutions of the nonlinear Eq. (1.1), but
the study of this issue has been fundamental in the proofs of the results mentioned in the
last paragraph. Of course, since solitary waves travel at velocity< 1, (1.9) holds if u is a
solitary wave, and we conjecture that these solutions are the only ones satisfying (1.9).
This conjecture was proved in [11] in space dimension 3, assuming that the solution is
radial (see Propositions 2.1 and 2.2 there), and is the key ingredient in the proof of the
soliton resolution in that article. The proof is specific to the 3-dimensional radial wave
equation and cannot be generalized to a different dimension.

Note that the knowledge, from the articles cited above, that the soliton resolution
conjecture holds along a sequence of times reduces the proof of the soliton resolution
for all times to the understanding of the dynamics of the equation close to a sum of
solitons, that are decoupled by scaling and space translations. It is important in par-
ticular to understand which solutions of (1.1) satisfy (1.9) in a neighborhood of such
a multi-soliton. In this article, we initiate this program by considering the case of the
neighborhood of the ground state solitonW , proving, when N is odd, an analog of (1.8)
for the linearized equation around W :

∂2t u + LWu = 0, (1.10)

where LW is the linearized operator around W :

LW = −�− N + 2

N − 2
W

4
N−2 , (1.11)
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and more generally for the linearized equation around W� (see equation (1.13) below).
We also give an application to the nonlinear equation (1.1) proving that in space

dimensions 3 and 5, the only solutions satisfying a slightly stronger statement than
(1.9), in a neighborhood of the solitary waves W� is a solitary wave (see Corollary 2).

Define:

Z =
{
Z ∈ Ḣ1 : LW Z = 0

}
.

Let

�W := x · ∇W +

(
N

2
− 1

)
W.

Since (1.1) is invariant by scaling and space translation, we have

�W ∈ Z, ∂x j W ∈ Z, j ∈ �1, N�,

where �1, N� = {1, . . . , N }. Furthermore the following nondegeneracy property of W
is known (see e.g. [32])

Z = span
{
�W, ∂x j W, j ∈ �1, N�

}
.

Note that for all j ∈ �1, N�, ∂x j W ∈ L2, and that �W ∈ L2 if and only if N ≥ 5.
Define

Z = (Z × Z) ∩H, (1.12)

which is afinite dimensional subspaceofH. Indeed,Z is spannedby (�W, 0), (∂x j W, 0),
(0, ∂x j W ) if N = 3 and 4, and by (�W, 0), (0,�W ), (∂x j W, 0), (0, ∂x j W ) if N ≥ 5.
Note that if u is a solution of (1.10) with initial data (u0, u1) ∈ Z , then u(t, x) =
u0(x) + tu1(x).

Let � ∈ R
N such that |�| < 1. Linearizing the Eq. (1.1) around W� we obtain the

following generalization of (1.10):

∂2t u −�u − N + 2

N − 2
W

4
N−2

� u = 0. (1.13)

Note that the linear potential in (1.13) is now time-dependent. Let us mention that the
global well-posedness of Eq. (1.13) is easy to prove. Indeed, the local well-posedness
can be proved by a fixed point argument relying on the Strichartz inequality recalled in
(2.4) below and on the Hölder inequality:

∥∥∥∥W
4

N−2
� u

∥∥∥∥
L1(I,L2)

≤
∥∥∥∥W

4
N−2

�

∥∥∥∥
L

2(N+1)
N+4

(
I,L

2(N+1)
3

) ‖u‖
L

2(N+1)
N−2 (I×RN )

,

where I is a bounded interval. By linearity of the equation and the fact that the L
2(N+1)

3

norm of W�(t) is independent of t , the time of existence obtained by this argument is
independent of the initial data and of the initial time, and the global well-posedness
follows. Note however that this does not yield a solution which is uniformly bounded in
the energy norm, but in fact can grow exponentially in this norm.
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Consider the finite dimensional subspace of H

Z� =
{
(L�(v0(x) + tv1(x)), ∂tL�(v0(x) + tv1(x)))�t=0 , (v0, v1) ∈ Z}

.

The solution of (1.13) with initial data (u0, u1) ∈ Z� is exactly:

u(t, x) = u0(x − t�) + t (� · ∇u0 + u1)(x − t�). (1.14)

Indeed, assume � = �(1, 0, . . . , 0) to fix ideas, so that

L�(v(t, x)) = v

(
t − x1�√
1− �2

,
x1 − t�√
1− �2

, x ′
)

, x ′ := (x2, . . . , xN ).

Then

L�(v0(x) + tv1(x))

= v0

(
x1 − t�√
1− �2

, x ′
)
− �(x1 − t�)√

1− �2
v1

(
x1 − t�√
1− �2

, x ′
)
+ t

√
1− �2 v1

(
x1 − t�√
1− �2

, x ′
)

.

This proves that solutions of (1.13) with initial data in Z� are of the form A(x − t�) +
t B(x − t�). Letting t = 0 in this formula (and its time derivative) we see that u0 = A
and u1 = −� · ∇A + B, which yields (1.14).

Using (1.14), one can check that for these solutions (1.9) holds. The main result
of this article proves that the solutions of (1.13) with initial data in Z� are (at least
in odd space dimensions) the only solutions of (1.13) such that (1.9) holds. If V is a
closed subspace ofH, we denote by V⊥ its orthogonal complement inH and by πV the
orthogonal projection on V . Then:

Theorem 1. Assume N ≥ 3 is odd, and let η0 ∈ (0, 1). Then there exists a constant
C(N , η0) > 0 such that for all (u0, u1) ∈ H, for all � ∈ R

N with |�| ≤ η0,

∥∥∥πZ⊥� (u0, u1)
∥∥∥
2 ≤ C(N , η0)

∑

±
lim

t→±∞

∫

|x |≥|t |
|∇t,xu(t, x)|2, (1.15)

where u is the solution of (1.13) with initial data (u0, u1).

Theorem 1 will be used in [15] to prove the soliton resolution in general odd space
dimension, in a radial context, for H-bounded solutions.

We will also prove, as a consequence of Theorem 1:

Corollary 2. Assume N ∈ {3, 5}. Let η0 ∈ (0, 1). There exists a constant ε0 = ε0(η0) >

0 such that, for any � ∈ R
N with |�| ≤ η0, for all (u0, u1) ∈ H such that ‖(u0, u1) −�W�(0)‖H ≤ ε0, the solution u of (1.1) with initial data (u0, u1) satisfies one of the

following:

• u is a traveling wave, i.e. there exists λ > 0, �0 ∈ R
N with |�0| < 1 and X ∈ R

N

such that

u(t, x) = 1

λ
N−2
2

W�0

(
t

λ
,
x − X

λ

)
. (1.16)
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• There exists X ∈ R
N , |X | � ε0 such that, when N = 5, for all small τ0 > 0, the

solution u of (1.1) is well defined for {|x − X | > |t | − τ0, t ∈ R} and satisfies:

∑

±
lim

t→±∞

∫

|x−X |≥|t |−τ0

∣∣∇t,xu(t, x)
∣∣2 dx > 0. (1.17)

For N = 3, (1.17) holds for τ0 = 0

(See Theorems 5.1 and 5.2 for more precise statements, and Sect. 2 for the definition
of a solution of (1.1) outside a wave cone).

Combining the preceding corollary with the soliton resolution up to a sequence of
times proved in [8], we can also prove

Corollary 3. Assume N ∈ {3, 5}. Let (u0, u1) ∈ H be such that E(u0, u1) < 2E(W, 0).
If the solution u of (1.1) with initial data (u0, u1) is global and is not a traveling wave
then there exists τ0 > 0, such that (1.17) holds.

Since E(u0, u1) < 2E(W, 0) in Corollary 3, the assumption that u is not a traveling
wave is equivalent to the fact that u is not of the form (1.16).

We believe that Corollaries 2 and Corollaries 3 are also true for all N odd, however
our proof of Corollary 2 cannot be carried out in dimension N ≥ 7 because of a technical
difficulty due to the weaker long-time perturbation theory statement available in these
dimensions. Let us mention however that in large odd dimension, Corollary 3 remains
valid, for radial solutions, as a consequence of [33] and Theorem 1:

Proposition 4. Assume N ≥ 7. Let (u0, u1) ∈ H, radial and such that E(u0, u1) <

2E(W, 0). If the solution u of (1.1) with initial data (u0, u1) is global and is not a
stationary solution, then there exists τ0 > 0, such that (1.17) holds with X = 0.

We refer to [33, Theorem 1.4] for the proof of the soliton resolution conjecture for all
times, in the odd-dimensional radial setting, with an assumption similar to E(u0, u1) <

2E(W, 0),
We will prove Corollary 3 and Proposition 4 in Sect. 5.5. Let us mention that the

conclusion of Proposition 4 remains valid, in a radial setting, without the assumption
E(u0, u1) < 2E(W, 0). In other words, in odd space dimension, there is no pure radial
multisoliton for Eq. (1.1), in sharp contrast with the completely integrable case. We
will obtain this stronger statement, as a byproduct of our proof of the soliton resolution
conjecture, in our subsequent paper [15].

The analog of Theorem 1, in the case of the free wave equation in odd space dimen-
sions was proved by the authors in [10], using the explicit representation formula for
the free wave equation. Note that in the free case, no orthogonal projection is needed,
since the analog of Z� is {(0, 0)}. To treat the linearized operator, we first consider
|x | > R0, R0 large, so as to treat the linearized operator as a perturbation of the free one.
This makes it necessary to use the version of the “channel” property introduced by the
authors in [9, Lemma 4.2], extended to N = 5 in [24, Proposition 4.1] and to general
odd N in [23]. Here a projection is needed, and it is the orthogonal projection to the
orthogonal complement of specific subspaces, whose dimension increases with N (see
Theorem 4.6 below). For the non-radial free case, more exceptional subspaces can be
seen to arise, each one for each spherical harmonic degree. The main challenge that we
need to overcome, to establish Theorem 1, is to eliminate the redundant counterexamples
that arise from the use of [23], as we take R0 → 0.
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The outline of the paper is as follows. After some preliminaries (Sect. 2), we reduce
in Sect. 3 the proof of Theorem 1 to the proof of a uniqueness result on solutions of the
linearized Eq. (1.10) (Theorem 3.1), which is a weaker, qualitative version of Theorem 1.
This section relies on the Lorentz transformation and the profile decomposition of [2].
In Sect. 4, we prove the uniqueness Theorem 3.1. Projecting on spherical harmonics,
it is sufficient to study a family of radial wave equations with a potential in odd space
dimensions, which we do using the lower energy bound for the free wave equation
obtained in [23]. In Sect. 5 we prove two rigidity theorems, which imply Corollary 2,
for solutions of the nonlinear wave equation in space dimension N = 3 and N = 5. The
main tool is Theorem 1. We also prove Corollary 3 and Proposition 4, using the soliton
resolution for a sequence of times (from [8,33]) and, in the nonradial case, Theorem 1.
In Appendix A we recall some useful facts about the Lorentz transformation for Eq.
(1.1).

2. Preliminaries

2.1. Duhamel formulation and Strichartz estimates. Wedenote by SL(t) the linear wave
evolution:

SL(t)(u0, u1) = cos(t
√−�)u0 +

sin(t
√−�)√−�

u1, (2.1)

so that the general solution (in the Duhamel sense) of
{

(∂2t −�)u = f

�u�t=t0 = (u0, u1) ∈ H,
(2.2)

where I is an interval and t0 ∈ I is

u(t) = SL(t − t0)(u0, u1) +
∫ t

t0
SL(t − s)(0, f (s)) ds. (2.3)

We note that by finite speed of propagation, for any x0 ∈ R
N and any R ≥ 0, the

restriction of u to
{
(t, x) ∈ I × R

N : |x − x0| > |t − t0| + R
}
depends only on the

restriction of f to
{
(t, x) ∈ I × R

N : |x − x0| > |t − t0| + R
}
and the restriction of

(u0, u1) to
{
x ∈ R

N : |x − x0| > R
}
.

We need to introduce function spaces adapted to the Cauchy theory in large space

dimension. Define S(I ) := L
2(N+1)
N−2

(
I × R

N
)
and:

W (I ) := L
2(N+1)
N−1

(
I, Ḃ

1
2
2(N+1)
N−1 ,2

(RN )

)
, W ′(I ) := L

2(N+1)
N+3

(
I, Ḃ

1
2
2(N+1)
N+3 ,2

(RN )

)

(where B
1
2
p,2 are the usual Besov spaces (see e.g. [3, §6.3])). We have the following

Strichartz estimate: if u satisfies (2.3) on I , with f = f1 + f2, then

11{N≤6} ‖u‖
L

N+2
N−2

(
I,L

2(N+2)
N−2 (RN )

) + sup
t∈R
‖�u(t)‖H + ‖u‖

L
2(N+1)
N−2 (I×RN )

+ ‖u‖W (I )

� ‖�u(0)‖H(I ) + ‖ f1‖W ′(I ) + ‖ f2‖L1(I,L2). (2.4)
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Note that the bound of the L
N+2
N−2

(
I, L

2(N+2)
N−2 (RN )

)
norm is only available in space di-

mension N ≤ 6. We will use it for the proof of Corollary 2 in space dimensions 3 and
5.

We will also need the fact that the spaces W ′(I ) can be localized in the exterior of
wave cones. Let, for T > 0, R ≥ 0,

�R(T ) := {(t, x) : 0 ≤ t ≤ T, |t | > |x | + R} .

Then there is a constant C > 0 (independent of T and R) such that (see [5], [13, Lemma
2.3])

∥∥11�R(T ) f
∥∥
W ′((0,T ))

≤ C ‖ f ‖W ′(0,T ) . (2.5)

Furthermore we have the following chain rule for fractional derivatives ([13, Remark
2.4]):

‖11�0(T )F(u)‖W ′((0,T )) ≤ C‖11�0(T )u‖
4

N−2
S((0,T ))‖u‖W ((0,T )). (2.6)

2.2. Profile decomposition. Let
{
(u0,n, u1,n)

}
n be a bounded sequence of radial func-

tions in H. We say that it admits a profile decomposition if for all j ≥ 1, there exist a
solutionU j

F to the free wave equation with initial data inH and sequences of parameters
{λ j,n}n ∈ (0,∞)N, {t j,n}n ∈ R

N, {x j,n}n ∈ (RN )N such that

j �= k �⇒ lim
n→∞

λ j,n

λk,n
+

λk,n

λ j,n
+
|t j,n − tk,n|

λ j,n
+
|x j,n − xk,n|

λ j,n
= +∞, (2.7)

and, denoting

U j
F,n(t, r) =

1

λ
N
2 −1
j,n

U j
F

(
t − t j,n
λ j,n

,
x − x j,n

λ j,n

)
, j ≥ 1 (2.8)

w J
n (t) = SL(t)(u0,n, u1,n)−

J∑

j=1
U j

L ,n(t), (2.9)

one has

lim
J→∞ lim sup

n→∞
‖w J

n ‖
L

2(N+1)
N−2 (RN+1)

= 0. (2.10)

We recall (see [2,4]) that any bounded sequence in H has a subsequence that admits a
profile decomposition.

2.3. Wave equation with potential outside a wave cone. If R ≥ 0 and (u0, u1) ∈ H, we
will denote
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‖(u0, u1)‖2H(R) =
∫

|x |≥R
(|∇u0(x)|2 + u21(x)) dx .

Lemma 2.1. Let N ≥ 3 and M ∈ (0,∞). There exists CM > 0 such that for all R ≥ 0,

for all V ∈ L
2(N+1)
N+4

loc

(
R, L

2(N+1)
3

(
R

N
))

with

∥
∥11{|x |>R+|t |}V

∥
∥
L

2(N+1)
N+4

(
R,L

2(N+1)
3 (RN )

) ≤ M, (2.11)

for all solutions u of

∂2t u −�u + Vu = f1 + f2, �u�t=0 = (u0, u1) ∈ H(R), (2.12)

where 11{|x |>R+|t |} f1 ∈ W ′(R), 11{|x |>R+|t |} f2 ∈ L1
(
R, L2(RN )

)
, one has:

11{N≤6}
∥∥u11{|x |>R+|t |}

∥∥
L

N+2
N−2

(
R,L

2(N+2)
N−2

)

+
∥∥u11{|x |>R+|t |}

∥∥
L

2(N+1)
N−2 (R×RN )

+ sup
t∈R

∥∥11{|x |>R+|t |}∇t,xu(t)
∥∥
L2

≤ CM

(
‖(u0, u1)‖H(R) +

∥
∥11{|x |>R+|t |} f1

∥
∥
W ′(R)

+
∥
∥11{|x |>R+|t |} f2

∥
∥
L1(R,L2)

)
.

(2.13)

Proof. Let

A := ‖(u0, u1)‖H(R) +
∥∥11{|x |>R+|t |} f1

∥∥
W ′(R)

+
∥∥11{|x |>R+|t |} f2

∥∥
L1(R,L2)

.

By Strichartz inequality, for all T > 0,
∥∥11{|x |>R+|t |}u

∥∥
L

2(N+1)
N−2 ([0,T ]×RN )

�
∥∥11{|x |>R+|t |}Vu

∥∥
L1((0,T ),L2)

+ A.

Using Hölder inequality in the space variable, we deduce
∥∥11{|x |>R+|t |}u

∥∥
L

2(N+1)
N−2 ([0,T ]×RN )

� A +
∫ T

0

∥∥11{|x |>R+|t |}V
∥∥
L

2(N+1)
3

∥∥11{|x |>R+|t |}u
∥∥
L

2(N+1)
N−2

dt,

and thus, using a Grönwall type inequality (Lemma 8.1 of [17]) we obtain
∥∥11{|x |>R+|t |}u

∥∥
L

2(N+1)
N−2 ([0,T ]×RN )

≤ CM A.

Using Strichartz and Hölder’s inequalities again we deduce the rest of (2.13). ��
As a consequence of Lemma 2.1, one can obtain an asymptotic formula, outside a

wave cone, for solutions of the wave Eq. (2.12). For simplicity, we restrict ourselves to
the linearized Eq. (1.13). However we remark for further use that the same result holds
when W� is replaced by any solitary wave Q� in (1.13).
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Corollary 2.2. Assume N ≥ 3. Then for all � ∈ R
N such that |�| < 1, there exists a

bounded linear map


 : H −→
(
L2([0,+∞)× SN−1)

)2

(u0, u1) �−→ (H+, H−)

such that, denoting by u the solution of (1.13) with initial data (u0, u1) at t = 0, we
have

lim
t→±∞

∫ ∞

|t |

∫

SN−1

∣∣∣r
N−1
2 ∂r u(t, rθ)− H±(r − |t |, θ)

∣∣∣
2
dσ(θ) dr = 0

lim
t→±∞

∫ ∞

|t |

∫

SN−1

∣∣∣r
N−1
2 ∂t u(t, rθ)∓ H±(r − |t |, θ)

∣∣∣
2
dσ(θ) dr = 0

lim
t→±∞

∫

|x |≥|t |
|/∂u(t, x)|2 + 1

|x |2 |u(t, x)|2 dx = 0.

If one fixes η0 ∈ (0, 1), the operator norm of � is bounded uniformly with respect to �
such that |�| ≤ η0.

We note that a small variant of the proof shows the existence of a linear map � :
(u0, u1) �→ G± ∈ L2

loc

(
R× SN

)
such that, for all A ∈ R,

lim
t→±∞

∫ ∞

|t |+A

∫

SN−1

∣
∣∣r

N−1
2 ∂r u(t, rθ)− G±(r − |t |, θ)

∣
∣∣
2
dσ(θ) dr = 0

lim
t→±∞

∫ ∞

|t |+A

∫

SN−1

∣∣∣r
N−1
2 ∂t u(t, rθ)∓ G±(r − |t |, θ)

∣∣∣
2
dσ(θ) dr = 0

lim
t→±∞

∫

|x |≥|t |+A
|/∂u(t, x)|2 + 1

|x |2 |u(t, x)|2 dx = 0.

By Corollary 2.2, the restriction of G± to [0,+∞) × SN−1 belongs to L2([0,+∞) ×
SN−1). However, G± is not, in general, an element of L2(R × SN−1), as shows the
example of the solution u(t, r) = eωtY(x), where−ω2 is the negative eigenvalue of LW ,
and Y(x) the corresponding eigenfunction. In this case it follows from the asymptotics
of Y (see [30], [12, Proposition 3.9]) that G+(η, θ) = e−ωηV (θ) for some function
V ∈ L2(SN−1)\{0} and G− ≡ 0.

Proof of Corollary 2.2. We focus on the case t → +∞ and the construction of H+
to lighten notations. It is known (see e.g. [18,19] and [14, Appendix B]) that for all
(u0, u1) ∈ H, there exists G+ ∈ L2(R× SN−1) such that, denoting by uF the solution
of the free wave equation with initial data (u0, u1) we have

lim
t→+∞

∫ ∞

0

∫

SN−1

∣∣
∣r

N−1
2 ∂r uF (t, rθ)− G+(r − |t |, θ)

∣∣
∣
2
dθ dr = 0

lim
t→+∞

∫ ∞

0

∫

SN−1

∣
∣∣r

N−1
2 ∂t uF (t, rθ)− G+(r − |t |, θ)

∣
∣∣
2
dθ dr = 0

lim
t→+∞

∫

RN
|/∂uF (t, x)|2 + 1

|x |2 |uF (t, x)|2 dx = 0,
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and that (u0, u1) �→ G+ is a one to one isometry fromH to L2(R× SN−1).
To prove the corollary, it is thus sufficient to construct a bounded linear operator


 : H→ H
(u0, u1) �→ (ũ0, ũ1),

such that, if ũF is the solution of the free wave equation (1.7) with initial data (ũ0, ũ1),
and u the solution of (3.15) with initial data (u0, u1), one has

lim
t→∞

∫

|x |≥|t |
∣∣∇t,x ũF (t, x)− ∇t,xu(t, x)

∣∣2 dx = 0.

By Lemma 2.1, there existsC > 0 (depending only on η0) such that for all (u0, u1) ∈ H,
one has

∥∥11{|x |≥|t |}u
∥∥
L

2(N+1)
N−2 ([0,+∞)×RN )

≤ C‖(u0, u1)‖H. (2.14)

We define ũ as the solution of
⎧
⎨

⎩
∂2t ũ −�ũ = N + 2

N − 2
11{|x |≥|t |}|W�| 4

N−2 u

�u�t=0 = (u0, u1).

By finite speed of propagation

|x | > t > 0 �⇒ u(t, x) = ũ(t, x). (2.15)

Furthermore, letting

(ũ0, ũ1) = (u0, u1) +
∫ +∞

0

�SL(−s)
(
0,

N + 2

N − 2
11{|x |≥|s|}|W�| 4

N−2 u(s)

)
ds,

and

ũF = SL(t)(ũ0, ũ1),

we see that

lim
t→∞

∥∥∥�̃uF (t)− �̃u(t)
∥∥∥H = 0. (2.16)

Indeed,

ũF (t) = SL(t)(u0, u1) +
∫ +∞

0
SL(t − s)

(
0,

N + 2

N − 2
11{|x |≥|s|}|W�| 4

N−2 u(s)

)
ds

= ũ(t) +
∫ +∞

t
SL(t − s)

(
0,

N + 2

N − 2
11{|x |≥|s|}|W�| 4

N−2 u(s)

)
ds,

which proves (2.16). Combining (2.15) and (2.16), we have proved the corollary. ��
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3. Reduction to a Uniqueness Theorem

In this section we reduce the proof of Theorem 1 to the following uniqueness theorem:

Theorem 3.1. Assume N ≥ 3 is odd. For any solution u of (1.10) with initial data
(u0, u1) ∈ H, if

∑

±
lim

t→±∞

∫

{|x |>|t |}
|∇t,xu(t, x)|2 dx = 0, (3.1)

then (u0, u1) ∈ Z .

Note that Theorem 3.1 concerns the linearized equation (1.10) aroundW and not the
more general linearized equation (1.13) around the Lorentz transform of W .

The proof is divided into two steps. In Sect. 3.1, we use the Lorentz transformation
to reduce the proof of Theorem 1 to the case � = 0, i.e. to a statement on the linearized
equation (1.10). In Sect. 3.2, we prove, using profile decomposition, that Theorem 3.1
implies Theorem 1.

3.1. Lorentz transformation. In this subsection we prove that the following theorem
implies Theorem 1:

Theorem 3.2. Assume N ≥ 3 is odd. Then there exists a constant C > 0 such that for
all (u0, u1) ∈ H,

1

C

∫
|∇u0(x)|2 + (u1(x))

2 dx ≤ ‖πZ (u0, u1)‖2

+
∑

±
lim

t→±∞

∫

|x |≥|t |
|∇t,xu(t, x)|2, (3.2)

where u is the solution of (1.10) with initial data (u0, u1).

We first need a trace property related to the Lorentz transformation. Let � ∈ R
N with

|�| < 1. Define the map T� as follows. If (u0, u1) ∈
(
C∞0 (RN )

)2
and u is the solution

of (1.10) with initial data (u0, u1), then

T�(u0, u1) = (L�(u), ∂tL�(u))�t=0 .

Here L�u is the Lorentz transform of u, defined in (1.4). Note that

T� :
(
C∞0 (RN )

)2 →
(
C∞0 (RN )

)2
.

Lemma 3.3. The map T� can be extended to a bounded linear isomorphism from H to
H. Furthermore, for all η0 ∈ (0, 1), there exists a constant C > 0 such that for all
(u0, u1) ∈ H, for all � ∈ R

N with |�| ≤ η0,

1

C
‖T�(u0, u1)‖H ≤ ‖(u0, u1)‖H ≤ C ‖T�(u0, u1)‖H . (3.3)
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Proof. In all of the proof we fix η0 ∈ (0, 1) and � ∈ R
N with |�| ≤ η0. The letter C will

denote a constant, that may change from line to line, depends on η0 but not on �. We
will assume without loss of generality that

� = �(1, 0, . . . , 0).

Step 1. (Left-hand bound) In this step we assume (u0, u1) ∈ C∞0 (RN ) and prove the
left-hand inequality in (3.3). We let ũ be the solution of

⎧
⎨

⎩
∂2t ũ −�ũ = N + 2

N − 2
W

4
N−2 11{|x |≥|t |}u

�u�t=0 = (u0, u1).

By finite speed of propagation, u(t, x) = ũ(t, x) for |x | > |t |. Denoting x ′ = (x2, . . . ,
xN ) we have

T�(u0, u1)(x) =
(
u (Y�) ,

1√
1− �2

∂t u (Y�)− �√
1− �2

∂x1u (Y�)

)
,

where Y� =
( −�x1√

1−�2
, x1√

1−�2
, x ′

)
. Since

(
x1√
1−�2

)2
+ (x ′)2 ≥

(
�x1√
1−�2

)2
, we deduce

T�(u0, u1) = (L�ũ, ∂tL�ũ)�t=0 .

We recall Lemma 2.2 of [25]: if ∂2t u −�u = f , then

∥∥(L�(u), ∂tL�(u))�t=0
∥∥H ≤ C

(
‖(u0, u1)‖H + ‖ f ‖L1

t L2
x

)
,

where the constant C > 0 depends only on η0. Note that in [25], the lemma is stated
with η0 = 1

4 , but that exactly the same proof works for any η0 ∈ (0, 1).
We thus obtain:

‖T�(u0, u1)‖H ≤ C ‖(u0, u1)‖H + C
∥∥∥11{|x |>|t |}W

4
N−2 u

∥∥∥
L1
t L2

x

≤ C‖(u0, u1)‖H + C
∥∥
∥11{|x |>|t |}W

4
N−2

∥∥
∥
L

2(N+1)
N+4

t L
2(N+1)

3
x

‖11{|x |>|t |}u‖
L

2(N+1)
N−2

t,x

.

Using that by Lemma 2.1

‖11{|x |>|t |}ũ‖
L

2(N+1)
N−2

t,x

= ‖11{|x |>|t |}u‖
L

2(N+1)
N−2

t,x

≤ C‖(u0, u1)‖H,

we deduce

‖T�(u0, u1)‖H ≤ C ‖(u0, u1)‖H
which concludes this step.
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Step 2. (Right-hand inequality) Note that by the first step, T� extends to a bounded
linear operator fromH toH. In this step we construct the inverse T̃� of T� and prove the
right-hand inequality in (3.3). We define T̃� as follows.

Let (v0, v1) ∈
(
C∞0 (RN )

)2
, and consider the solution v of

{
∂2t v −�v = N+2

N−2W
4

N−2
� v

�v�t=0 = (v0, v1).
(3.4)

Then T̃�(v0, v1) :=
(
L−�(v), ∂tL−�(v)

)
�t=0. By the same argument as in Step 1,

‖T̃�(v0, v1)‖H ≤ C ‖(v0, v1)‖H . (3.5)

Let (u0, u1) ∈
(
C∞0 (RN )

)2
, and denote by u the solution of (1.10) with initial data

(u0, u1), and by v = L�u. Then v is the solution of (3.4) with initial data T�(u0, u1),
which shows that

T̃�(v0, v1) =
(
L−�L�u, ∂tL−�L�u

)
�t=0 = (u0, u1).

Since v = L�u, we have proved

T̃� ◦ T�(u0, u1) = (u0, u1).

Using (3.5) and a density argument, we see that T̃� can be extended to a bounded linear
map from H to H that satisfies T̃� ◦ T� = IdH. The right-hand side inequality in (3.3)
follows immediately. ��

We next prove that Theorem 3.2 implies Theorem 1.
Assume Theorem 3.2. We fix in all the proof η0 ∈ (0, 1), � such that |�| ≤ η0. As

before C > 0 denotes a constant that might depend on η0 but not on �.

Step 1 (Lorentz transformation). In this step we prove that there exists a projection P�

on H, whose rank is exactly the dimension of Z�, and such that for all (u0, u1) ∈ H,
the solution u of (1.13) satisfies

1

C

∫
|∇u0(x)|2 + (u1(x))

2 dx ≤ ‖P�(u0, u1)‖2

+
∑

±
lim

t→±∞

∫

|x |≥|t |
|∇t,xu(t, x)|2. (3.6)

Using a density argument, it is sufficient to prove (3.6) for (u0, u1) ∈
(
C∞0 (RN )

)2
.

Assuming (without loss of generality) that � = (�, 0, . . . , 0), and letting

v(t, x) = (L�u) (t, x) = u

(
t + �x1√
1− �2

,
x1 + t�√
1− �2

, x ′
)

,

we see that v satisfies the Eq. (1.10). By Theorem 3.2, we obtain

‖πZ (v0, v1)‖2H +
∑

±
lim

t→±∞

∫

|x |>|t |
|∇t,xv(t, x)|2 dx ≥ 1

C
‖(v0, v1)‖2H . (3.7)
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We have ‖(u0, u1)‖2H = ‖T�(v0, v1)‖2H and thus, by Lemma 3.3,

‖(u0, u1)‖2H ≤ C‖(v0, v1)‖2H. (3.8)

Lemma 3.3 also implies

‖πZ (v0, v1)‖2H =
∥∥∥πZ ◦ T −1� (u0, u1)

∥∥∥
2

H ≤ C
∥∥∥T� ◦ πZ ◦ T −1� (u0, u1)

∥∥∥
2

H .

(3.9)

Note that P� := T� ◦πZ ◦T −1� is a projection of rank dimZ . In view of (3.8) and (3.9),
we are left with proving that Lu ≥ Lv , where

Lu :=
∑

±
lim

t→±∞

∫

|x |>|t |
|∇t,xu(t, x)|2 dx,

and similarly for Lv . Note that Lu and Lv exist by Corollary 2.2.

Let C(T, �) =
{
(s, y) ∈ R

1+N : |y| > |s| and − T ≤ s−�y1√
1−�2
≤ T

}
. By the change

of variable

(s, y) =
(

t + �x1√
1− �2

,
x1 + t�√
1− �2

, x ′
)

, (t, x) =
(

s − �y1√
1− �2

,
y1 − s�√
1− �2

, y′
)

we obtain

Lv = lim
T→∞

1

T

∫ +T

−T

∫

|x |>|t |
|∇t,xv(t, x)|2 dx dt

= lim
T→∞

1

T

∫∫

C(T,�)

[
1 + �2

1− �2

(
(∂su)2 + (∂y1u)2

)

+
4�

1− �2
∂su∂y1u + (∂y′u)2

]
ds dy. (3.10)

Hence

Lv ≤ C

T
lim sup
T→+∞

∫∫

C(T,�)

|∇s,yu(s, y)|2 ds dy.

Since (u0, u1) ∈
(
C∞0 (RN )

)2
,weknow(usingfinite speedof propagation) thatu(s, y) =

0 for |y| ≥ s + Ku , where Ku is a constant depending on u. Thus, in C(T, �), we have

|s| ≤ T
√
1− �2 + �|y| ≤ T

√
1− �2 + �|s| + �Ku .

Hence (1− �)|s| ≤ T
√
1− �2 + �Ku , which implies

|s| ≤ c�T +
�

1− �
Ku, c� :=

√
1 + �

1− �
> 1.

As a consequence,

Lv ≤ C

T
lim sup
T→+∞

∫ c�T+
�

1−�
Ku

−c�T− �
1−�

Ku

∫

|y|≥|s|
|∇s,yu(s, y)|2dyds
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= C

T
lim sup
T→+∞

∫ c�T

−c�T

∫

|y|≥|s|
|∇s,yu(s, y)|2dy ds ≤ CLu . (3.11)

Combining with (3.8) and (3.9), we deduce (3.6).

Step 2 (Conclusion of the proof).We conclude the proof using elementary linear algebra.
Recalling that

(z0, z1) ∈ Z� �⇒ lim
t→+∞

∫

|x |≥|t |
|∇t,x z(t, x)|2 dx = 0, (3.12)

we obtain with (3.6) that

(z0, z1) ∈ Z� �⇒ C ‖P�(z0, z1)‖2H ≥ ‖(z0, z1)‖2H . (3.13)

Since the dimension of Z� and the rank of P� are equal, we deduce that the restriction
of P� to Z� is an isomorphism between Z� and the image of P�.

Let (u0, u1) ∈ H. Let (z0, z1) be the only element of Z� such that

P�(z0, z1) = P�(u0, u1),

and let (w0, w1) = (u0, u1)−(z0, z1), which is in the kernel of P�. Letw be the solution
of (1.13) with initial data (w0, w1). Then by (3.6),

‖(w0, w1)‖2H ≤ C
∑

±
lim

t→±∞

∫

|x |>|t |
|∇t,xw(t, x)|2 dx

≤ C
∑

±
lim

t→±∞

∫

|x |>[t |
|∇t,xu(t, x)|2 dx, (3.14)

where we have used (3.12) to obtain the second line.
Since πZ⊥W�

(u0, u1) = πZ⊥W�

(w0, w1), we deduce from (3.14):

∥∥∥
∥πZ⊥W�

(u0, u1)

∥∥∥
∥

2

H
≤ C

∑

±
lim

t→±∞

∫

|x |>[t |
|∇t,xu(t, x)|2 dx,

which concludes the proof of Theorem 1.

3.2. Reduction to a qualitative statement. In this subsection, we prove that Theorem 3.1
implies Theorem 3.2 (and thus, according to the preceding subsection, Theorem 1). The
argument is quite general and works around any stationary solution. We will thus fix

Q ∈ Ḣ1 such that −�Q = |Q| 4
N−2 Q and consider the linearized equation

∂2t u + LQu = 0, (3.15)

where LQ := −�− N+2
N−2 |Q|

4
N−2 . We recall (see [11]) that Q is of class C2 and

∃CQ > 0, ∀x ∈ R
N , |Q(x)| ≤ CQ

1 + |x |N−2 . (3.16)
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Proposition 3.4. Assume that N ≥ 3 is odd. Let A be a finite dimensional subspace
of H, and A⊥ the orthogonal complement of A in H. We assume that the following
implication is true:

(u0, u1) ∈ A⊥ and
∑

±
lim

t→±∞

∫

|x |≥|t |
|∇t,xu(t, x)|2 = 0

�⇒ (u0, u1) ≡ (0, 0). (3.17)

Then there exists a constant C > 0 such that for all (u0, u1) ∈ H,

∫
|∇u0(x)|2 + (u1(x))

2 dx

≤ C‖πA(u0, u1)‖2H + C
∑

±
lim

t→±∞

∫

|x |≥|t |
|∇t,xu(t, x)|2, (3.18)

where u is the solution of (1.10) with initial data (u0, u1) ∈ H.

Remark 3.5. Assume that Theorem 3.1 holds. Then (3.17) holds and so, by Proposi-
tion 3.4, (3.18) holds with Q = W and A = Z . We claim that the conclusion of
Theorem 3.2 is true. Indeed, let (u0, u1) ∈ H. Letw be the solution of (1.10) with initial
data πZ (u0, u1). We have

lim
t→±∞

∫

|x |>|t |
|∇t,xw(t, x)|2 dx = 0.

Using (3.18)with A = Z ,weobtain,with w̃ the solutionof (1.10)with dataπZ⊥(u0, u1),
so that u = w + w̃,

∥∥πZ⊥(u0, u1)
∥∥2H ≤ C

∑

±
lim

t→±∞

∫

|x |>|t |
|∇t,x w̃(t, x)|2 dx

= C
∑

±
lim

t→±∞

∫

|x |>|t |
|∇t,xu(t, x)|2 dx,

which yields the conclusion of Theorem 3.2.

We now turn to the proof of Proposition 3.4.
We recall the following equirepartition of the energy outside the wave cone for the

free wave equation (1.7) (see [10]).

Theorem 3.6. Assume that N ≥ 3 is odd. Let uF be a solution of (1.7) with initial data
(u0, u1) at t = 0. Then

∑

±
lim

t→±∞

∫

|x |≥|t |
|∇t,xuF (t, x)|2 dx =

∫
|∇u0(x)|2 + u1(x)

2 dx .

A key ingredient of the proof of Proposition 3.4 is the following lemma:
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Lemma 3.7. Let {un}n be a sequence of solutions of (3.15), with initial data
�un�t=0 = (u0,n, u1,n) ∈ H,

such that

(u0,n, u1,n) −−−⇀
n→∞ 0 inH.

Let uF,n be the solution of the free wave equation (1.7) with initial data

�uF,n�t=0 = (u0,n, u1,n) ∈ H.

Then

lim
n→∞

(
sup
t∈R

∫

|x |≥|t |
|∇t,x (un(t, x)− uF,n(t, x))| dx

)
= 0. (3.19)

Proof.

Step 1 (Convergence of the potential term to 0). Let

εn =
∥∥∥11{|x |≥|t |}|Q| 4

N−2 uF,n

∥∥∥
L1(R,L2)

.

We first prove

lim
n→∞ εn = 0. (3.20)

Using the profile decomposition recalled in Sect. 2.2, it is sufficient to prove (3.20)
assuming one of the following

lim
n→∞

∥∥uF,n
∥∥
L

2(N+1)
N−2

t,x

= 0 (3.21)

or

uF,n = 1

λ
N
2 −1
n

UF

(
t − tn
λn

,
x − xn

λn

)
(3.22)

where UF is a finite energy solution of the free wave equation (1.7) and

lim
n→∞

|xn| + |tn|
λn

+
1

λn
+ λn = +∞. (3.23)

Indeed, since by the assumptions of the lemma {(u0,n, u1,n)}n converges weakly to 0 in
H, there is no nonzero profile U j

F in the profile decomposition of {(u0,n, u1,n)}n such

that the corresponding sequence of parameters {λ j
n, t

j
n , x j

n }n satisfies

lim sup
n→∞

|x j
n | + |t jn |

λ
j
n

+
1

λ
j
n

+ λ
j
n <∞.

Translating UF in time and space and extracting subsequences if necessary, we can
assume without loss of generality:

lim
n→∞

tn
λn
∈ {−∞, 0,∞}, lim

n→∞ λn ∈ {0, 1,∞} and lim
n→∞

|xn|
λn
∈ {0,∞}. (3.24)
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Using (3.16), we have

Q
4

N−2 11{|x |≥|t |} ∈ L
2(N+1)
N+4

t L
2(N+1)

3
x . (3.25)

By Hölder’s inequality,

εn ≤
∥∥∥11{|x |≥|t |}|Q| 4

N−2
∥∥∥
L

2(N+1)
N+4

t L
2(N+1)

3
x

∥∥uF,n
∥∥
L

2(N+1)
N−2

t,x

.

This proves that (3.21) implies (3.20). Next, we assume (3.22) and (3.23). By Strichartz

estimate, UF ∈ L
2(N+1)
N−2

t,x . By Hölder inequality and (3.25), we see that the map

U �→ 11{|x |≥|t |}|Q| 4
N−2U

is continuous from L
2(N+1)
N−2

t,x to L1
t L

2
x . By density, we deduce that to prove (3.20), it is

sufficient to check that

lim
n→∞

∥
∥∥∥∥∥
11{|x |≥|t |}|Q| 4

N−2 1

λ
N
2 −1
n

U

(
t − tn
λn

,
x − xn

λn

)
∥
∥∥∥∥∥
L1(R,L2)

= 0 (3.26)

whenever U ∈ C∞0 (R1+N ). For R � 1, we let

An,R =
{
(t, x) ∈ R× R

N ,
1

R
≤ |t − tn|

λn
≤ R,

1

R
≤ |x − xn|

λn
≤ R

}
.

Note that by (3.23), (3.24), at fixed R, for almost every (t, x) in R× R
N ,

lim
n→∞ 11An,R (t, x) = 0. (3.27)

Denoting by

Un(t, x) = 1

λ
N
2 −1
n

U

(
t − tn
λn

,
x − xn

λn

)
,

we see that
∥∥∥11{|x |≥|t |}|Q| 4

N−2Un

∥∥∥
L1
t L2

x

≤
∥∥∥11{|x |≥|t |}11An,R |Q|

4
N−2Un

∥∥∥
L1
t L2

x

+
∥∥∥11{|x |≥|t |}11C An,R

|Q| 4
N−2Un

∥∥∥
L1
t L2

x

.

We have
∥∥∥11{|x |≥|t |}11An,R |Q|

4
N−2Un

∥∥∥
L1
t L2

x

≤ ‖Un‖
L

2(N+1)
N−2

t,x

∥∥∥11{|x |≥t}|Q 4
N−2 11An,R

∥∥∥
L

2(N+1)
N+4

t L
2(N+1)

3
x

,

which goes to 0 as n goes to infinity by dominated convergence and (3.27). Furthermore,
for large R, 11C An,R

Un = 0 sinceU is compactly supported. This concludes the proof of
(3.20).
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Step 2. (End of the proof) We let ũn be the solution of

∂2t ũn −�ũn − N + 2

N − 2
11{|x |≥|t |}|Q| 4

N−2 ũn = 0 (3.28)

with the same initial data as un at t = 0. By finite speed of propagation,

|x | > |t | �⇒ ũn(t, x) = un(t, x),

and it is sufficient to prove (3.19) with ũn instead of un . Let wn = uF,n − ũn . Then
{

(∂2t −�)wn = − N+2
N−211{|x |>|t |}|Q|

4
N−2 uF,n + N+2

N−211{|x |>|t |}|Q|
4

N−2 wn

�wn�t=0 = (0, 0).
(3.29)

Hence for all T > 0,

∥∥11{|x |>|t |}wn
∥∥
L

2(N+1)
N−2 ([0,T ]×RN )

� εn +
∥∥∥|Q| 4

N−2 11{|x |>|t |}wn

∥∥∥
L1
t ([0,T ],L2

x )

� εn +
∫ T

0

∥
∥∥|Q| 4

N−2 11{|x |>|t |}
∥
∥∥
L

2(N+1)
3

x

∥∥11{|x |>|t |}wn(t)
∥∥
L

2(N+1)
N−2

x

dt.

Using a Grönwall type inequality (see e.g. Lemma 8.1 in [17]) and (3.25), we obtain
that for all T ≥ 0,

∥∥11{|x |>|t |}wn
∥∥
L

2(N+1)
N−2 ([0,T ]×RN )

≤ CQεn,

where CQ depends only on
∥∥11{|x |>|t |}Q

∥∥
L

2(N+1)
N+4

t L
2(N+1)

3
x

, and εn goes to 0 as n goes to

infinity according to Step 1. The arbitrariness of T > 0 and the same argument for
T < 0 imply

∥∥11{|x |>|t |}wn
∥∥
L

2(N+1)
N−2 (Rt×RN

x )
≤ 3CQεn .

Going back to the Eq. (3.29) and using Strichartz estimates again, we deduce

sup
t∈R
‖ �wn(t)‖H � εn −→

n→∞ 0,

which concludes the proof of Lemma 3.7. ��
Proof of Proposition 3.4. Weassume (3.17) andprove (3.18) by contradiction, assuming
that there is a sequence {un}n of solutions of (3.15) with initial data (u0,n, u1,n) such
that

∥
∥(u0,n, u1,n)

∥
∥H = 1 (3.30)

lim
n→∞

(
∥∥πA(u0,n, u1,n)

∥∥2H +
∑

±
lim

t→±∞

∫

|x |>|t |
|∇t,xun(t, x)|2

)

= 0. (3.31)

Extracting subsequences, we assume that (u0,n, u1,n) has a weak limit (u0, u1) inH as
n→∞. We distinguish between two cases.
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Case 1. We first consider the case where (u0, u1) ≡ (0, 0). Let uF,n be the solution of
the free wave equation (1.7) with the same initial data as un at t = 0. Then

‖�uF,n(0)‖H = 1

and, by (3.30), (3.31) and Lemma 3.7,

lim
n→∞

(
lim

t→±∞

∫

|x |>|t |
|∇t,xuF,n(t, x)|2 dx

)
= 0.

This contradicts the equirepartition of the energy (Theorem 3.6) above.

Case 2. Wenext assume that (u0, u1) �≡ (0, 0).Using theweakconvergenceof (u0,n, u1,n)
to (u0, u1), we obtain

(u0, u1) ∈ A⊥. (3.32)

We claim

∑

±
lim

t→±∞

∫

|x |>|t |
|∇t,xu(t, x)|2 dx = 0. (3.33)

In view of (3.32), (3.33) and since (u0, u1) is nonzero we would obtain a contradiction
from (3.17). To conclude the proof of (3.18), we are thus reduced to proving (3.33).

For all n, we denote by H±,n the asymptotic states given by Corollary 2.2 (or rather
its analog for the Eq. (3.15)), corresponding to the solution un of (3.15). By (3.31),

lim
n→∞

∥
∥H±,n

∥
∥
L2([0,+∞)×SN−1) = 0.

Using that the linear map 
 defined in the corollary is continuous

H→
(
L2([0,+∞)× SN−1)

)2

for the strong topologies of these spaces, and thus also for the weak topologies, we
obtain

H±,n −−−⇀
n→∞ H±

weakly in L2([0,+∞) × SN−1). As a consequence, H± ≡ 0. This means exactly that
(3.33) holds, concluding the proof of (3.18). ��

4. Proof of the Uniqueness Theorem

In this Section, we prove the uniqueness Theorem 3.1. We will start, in Sect. 4.1 by
projecting the Eq. (1.10) on spherical harmonics, which reduces the proof to the proof of
a similar uniqueness result for a family of radial wave equations in odd space dimensions
D ≥ N . The next four subsections are dedicated to the proof of this result.
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4.1. Reduction to a radial problem. Recall that the eigenfunctions of the Laplace-
Beltrami operator on SN−1 are of the form 
(θ), where 
 is a homogeneous harmonic
polynomial in the variables (x1, . . . , xn). If 
 is such a polynomial and ν ∈ N is its
degree, then −�SN−1u = ν(ν + N − 2)u. Consider a Hilbert basis (
k)k∈N of the
Laplace-Beltrami operator on SN−1, and let (νk)k∈N be the sequence of natural integers,
so that for each k ∈ N

−�SN−1
k = νk(νk + N − 2)
k .

Let u be a solution of (1.10) such that (3.1) holds We let, for t ∈ R and r > 0,

uk(t, r) =
∫

SN−1

k(θ)u(t, rθ) dσ(θ).

We will identify the function u with the corresponding radial function on RN . We have

�uk ∈ C0(R,H)

and

∂2t uk −�uk +
νk(νk + N − 2)

r2
uk +

N + 2

N − 2
W

4
N−2 uk = 0. (4.1)

Letting vk = r−νk uk , and dropping the suffixes k to lighten notations (so that ν = νk ,
v = vk), we obtain:

∂2t v −�Dv − N + 2

N − 2
W

4
N−2 v = 0, (4.2)

with initial data

�v�t=0 = (v0, v1) := r−νk �uk(0),
where

�D = ∂2r +
D − 1

r
∂r

is the radial part of the Laplace operator in dimension D = N + 2ν. Considering v as a
radial function on R

D , we see that

�v ∈ C0
(
R, (Ḣ1 × L2)(RD)

)
, (4.3)

and using (3.1), and that

lim
t→±∞

∫

|x |≥|t |
1

|x |2 v2(t, x) dx = 0, (4.4)

we obtain

lim
t→±∞

∫ +∞

|t |
(∂t,rv)2r D−1 dr = 0. (4.5)

The limit (4.4) follows from (3.1) and the exterior Hardy’s inequality (or from the
asymptotic behavior of the solutions of (1.10), see Corollary 2.2).
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We note also that, for j ∈ �1, N�,

∂x j W = −
1

N

x j
(
1 + |x |2

N (N−2)
) N

2

,

and thus

1

|x |∂x j W = −
1

N

θ j
(
1 + |x |2

N (N−2)
) N

2

,

where θ j = x j/|x | ∈ SN−1. Furthermore, θ �→ θ j is a spherical harmonic of degree
1 and (θ j ) j∈�1,N� spans the vector space of degree 1 spherical harmonics. As a con-
sequence, we see that the proof of Theorem 3.1 reduces to the proof of the following
proposition:

Proposition 4.1. Let N , D be two odd integers with D ≥ N. Let v be a radial solution
of (4.2) that satisfies (4.3) and (4.5). Then �v(0) = (0, 0) if D ≥ N + 4. Furthermore,
�v(0) is an element of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

span
{
(�W, 0)

}
if N = D = 3,

span
{
(�W, 0), (0,�W )

}
if N = D ≥ 5,

span

{((
1 + |x |2

N (N−2)
)− N

2
, 0

)
,

(
0,
(
1 + |x |2

N (N−2)
)− N

2
)}

if D = N + 2.

We divide the proof of Proposition 4.1 into 4 parts. In Sect. 4.2, we study the differen-
tial equation satisfied by the stationary solutions of the Eq. (4.2). In Sect. 4.3, we prove
that the initial data of a solution of (4.2) satisfying the assumptions of Proposition 4.1
coincide for large r with a stationary solution. In Sect. 4.4, we use a bound from below
of the energy for compactly supported solutions of (4.2) to prove that the initial data
actually coincide with a stationary solution for all r > 0. In Sect. 4.5 we combine the
preceding results to conclude the proof.

4.2. Preliminaries on a differential equation. In this subsection, we fix two odd integers
N , D, with 3 ≤ N ≤ D and study the differential operator:

P = d2

dr2
+
D − 1

r

d

dr
+

N + 2

N − 2
W

4
N−2 ,

which was introduced in the previous subsection, by projecting the operator LW on
spherical harmonics. As before, W is the ground state in space dimension N , defined in
(1.3). Denoting by �x� the integer part of a real number x , we prove:

Proposition 4.2. Let N, D and P be as above. Then there exists functions (Zk)1≤k≤
⌊
D+2
4

⌋

with Zk ∈ C∞((0,∞)), with the following properties:
∣∣∣∣Z1(r)− 1

r D−2

∣∣∣∣ � 1

r D
, r ≥ 1 (4.6)
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∣∣∣∣Z
′
1(r) +

D − 2

r D−1

∣∣∣∣ � 1

r D+1 , r ≥ 1 (4.7)

PZ1 = 0, (4.8)

and, for 2 ≤ k ≤ ⌊ D+2
4

⌋
, there exists ck ∈ R\{0} such that

∣∣∣Zk(r)− ck
r D−2k

∣∣∣ � log r

r D+2−2k , r ≥ 1 (4.9)
∣∣∣∣Z
′
k(r) +

ck(D − 2k)

r D−2k+1

∣∣∣∣ � log r

r D+3−2k , r ≥ 1 (4.10)

PZk = Zk−1. (4.11)

Furthermore,

D = N �⇒ Z1(r) = − 2

N
N
2 −1(N − 2)

N
2

�W, (4.12)

D = N + 2 �⇒ Z1(r) = 1

(N (N − 2))
N
2

(
1 +

r2

N (N − 2)

)− N
2

. (4.13)

Finally, let k ∈ N with 1 ≤ k ≤ ⌊ D+2
4

⌋
. Then if k ≥ 2 and Z ∈ span{Z2, . . . , Zk}\{0},

or if D ≥ N + 4 and Z ∈ span{Z1, . . . , Zk}\{0}, then

∃d ∈ R\{0}, ∃θ ∈ (0, 2k] ∩ 2N, Z(r) ∼ d

r D−θ
, r → 0. (4.14)

For the proof of the Proposition, we need the following two Lemmas concerning the
homogeneous and inhomogeneous ODE’s

Py = 0 (4.15)

and

Py = f (4.16)

on (0,∞).

Lemma 4.3. There exist two basis of solutions of (4.15), (y0, z0), (y∞, z∞), where
y0, z0, y∞, z∞ are smooth on (0,∞), and satisfy:

|y0(r)− 1| � r2, |y′0(r)| � r, (4.17)
∣∣∣∣z0(r)−

1

r D−2

∣∣∣∣ � 1 +
1

r D−4
, |z′0(r)| �

1

r D−1
, (4.18)

for 0 < r ≤ 1 and

|y∞(r)− 1| � 1

r2
+

1

r D−2
, |y′∞(r)| � 1

r3
+

1

r D−1
, (4.19)

∣∣∣∣z∞(r)− 1

r D−2

∣∣∣∣ � 1

r D
,

∣∣∣∣z
′∞(r) +

D − 2

r D−1

∣∣∣∣ � 1

r D+1 , (4.20)

for r ≥ 1.
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Lemma 4.4. Let i ∈ {1,∞}and yi , zi be as inLemma4.3. Letwi be theWronskian yi z′i−
zi y′i . Then wi = 1

ωi r D−1
for some constant ωi �= 0. Furthermore, if f ∈ C0

(
(0,∞)

)
,

the general solution y of (4.16) is given by

y(r) = α(r)yi (r) + β(r)zi (r), y′(r) = α(r)y′i (r) + β(r)z′i (r),

where

α′(r) = −ωi f (r)r
D−1zi (r), β ′(r) = ωi f (r)r

D−1yi (r).

Lemma 4.4 follows from standard variation of parameters and we omit the proof.
Lemma 4.3 is also very classical. We give a sketch of proof for the sake of completeness.

Sketch of proof of Lemma 4.3. Writing the Eq. (4.15)

d

dr

(
r D−1 dy

dr

)
= −r D−1 N + 2

N − 2
W

4
N−2 y,

and integrating twice, we see that to construct y0, it is sufficient to find a solution of the
equation

y0 = 1−
0(y0),


0(y)(r) :=
∫ r

0

∫ ρ

0

(
s

ρ

)D−1 N + 2

N − 2
W

4
N−2 (s)y0(s) ds dρ. (4.21)

This can be done by checking that if ε > 0 is small, 
0 is a contraction mapping on
C0 ([0, ε], ‖ · ‖∞), and then extending the solution to (0,∞) by the linear Cauchy-
Lipschitz theorem. The bounds (4.17) follow easily from (4.21).

We next fix a small ε > 0 (such that y0 > 0 on (0, ε)), and let, for 0 < r < ε

z0(r) = a0(r)y0(r), a0 = −(D − 2)
∫ r

ε

1

sD−1y20 (s)
ds.

Noting that

a′′0 + a′0
(
2y′0
y0

+
D − 1

r

)
= 0,

we see that Pz0 = 0. The estimates (4.18) are easy to check.
Using again the Banach fixed point theorem, we define z∞ as the unique solution of

z∞(r) = 1

r D−2
−
∞(z∞)(r), (4.22)

where


∞(z)(r) :=
∫ +∞

r

∫ +∞

ρ

(
s

ρ

)D−1 N + 2

N − 2
W

4
N−2 (s)z∞(s) ds dρ,

on

XA =
{

y ∈ C0 ([A,+∞)) , ‖y‖XA := sup
s≥A
|y(s)|sD−2 <∞

}

,
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where A is a large constant. Using that W (r)
4

N−2 � 1/r4, it is easy to check that 
∞ is
a contraction mapping on XA. The estimates (4.20) follow from (4.22) and the fact that
z∞ ∈ XA.

Finally, we let y∞(r) = b∞(r)z∞(r), where

b∞(r) = (D − 2)
∫ r

A

1

sD−1z2∞(s)
ds.

The equation Py∞ = 0 and the estimates (4.19) are again easy to check. ��
We next prove Proposition 4.2.

Proof.

Step 1. (Existence and estimates for large r ) We let Z1(r) = z∞(r), and see that (4.6),
(4.7) and (4.8) are satisfied. If D ∈ {3, 5}, 2 is larger than

⌊ D+2
4

⌋
and we are done.

If D ≥ 7, we construct Zk for 2 ≤ k ≤ ⌊ D+2
4

⌋
satisfying (4.9), (4.10) and (4.11) by

induction.
Let k ∈ N such that 2 ≤ k ≤ ⌊ D+2

4

⌋
. Assume that Zk−1 is known and satisfies the

desired estimates. According to Lemma 4.4, the formula

Zk(r) = αk(r)y∞(r) + βk(r)z∞(r),

where
⎧
⎪⎪⎨

⎪⎪⎩

αk(r) = ω∞
∫ ∞

r
z∞(s)Zk−1(s)sD−1 ds

βk(r) = ω∞
∫ r

1
y∞(s)Zk−1(s)sD−1 ds

(4.23)

yields a solution of (4.11). It is easy to check, using the asymptotic behaviors of Zk−1(s)
(known by the induction hypothesis) and of z∞(s), that αk is well defined. It remains to
check that (4.9) and (4.10) are satisfied.

We start with the case k = 2. In view of (4.23), using the asymptotic behaviour of
z∞ = Z1 for large r (see (4.20)), we have

α2(r) = ω∞
∫ ∞

r

(
s3−D + O

(
s1−D

))
ds = ω∞

(D − 4)r D−4
+ O

(
1

r D−2

)
, r ≥ 1,

and similarly, using also the asymptotic behaviour (4.19) of y∞, β2(r) = ω∞ r2
2 +

O(log(r)), r ≥ 1. As a consequence,

Z2(r) =
(

1

D − 4
+
1

2

)
ω∞
r D−4

+ O

(
log r

r D−2

)
.

This yields (4.9) for k = 2, with c2 =
(

1
D−4 + 1

2

)
ω∞. Furthermore,

Z ′2(r) = α2(r)y
′∞(r) + β2(r)z

′∞(r)

= − (D − 2)ω∞
2r D−3

+ O

(
log r

r D−1

)
= − (D − 4)c2

r D−3
+ O

(
log r

r D−1

)
.
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We next treat the case k ≥ 3. By (4.20), (4.23) and the induction hypothesis, for
r ≥ 1:

αk(r) = ck−1ω∞
(D − 2k)r D−2k

+ O

(
log r

r D−2k+2

)
.

Using also (4.19), we obtain similarly, for r ≥ 1,

βk(r) = ck−1ω∞
r2k−2

2k − 2
+ O

(
r2k−4 log r

)
.

Combining the above estimates with the asymptotic formulas (4.19) and (4.20) for y∞
and z∞, we obtain, for r ≥ 1

Zk(r) =
(

1

D − 2k
+

1

2k − 2

)
ck−1ω∞
r D−2k

+ O

(
log r

r D−2k+2

)
.

This yields (4.9) with ck = ck−1
(

1
D−2k + 1

2k−2
)

ω∞. Also:

Z ′k(r) = ak(r)y
′∞(r) + βk(r)z

′∞(r) = − ck−1ω∞(D − 2)

(2k − 2)r D−2k+1
+ O

(
log r

r D−2k+3

)
.

Since (D − 2k)ck = ck−1ω∞(D−2)
2k−2 , this proves (4.10).

Step 2. (Asymptotic behavior at the origin) We note that by Lemma 4.3, Z1 = z∞ is the
unique solution of PZ1 = 0 satisfying (4.6).

In the case N = D, it follows from this uniqueness property, the equation P�W =
LW (�W ) = 0 and the asymptotic behavior of �W (r) as r → ∞ that Z1 =
− 2

N
N
2 −1(N−2) N

2
�W , i.e. (4.12) holds.

In the case N = D + 2, the computation before Proposition 4.1 implies, since
LW (∂x j W ) = 0,

P

⎛

⎝
(
1 +

r2

N (N − 2)

)− N
2

⎞

⎠ = 0,

which yields (4.13).
We next prove (4.14) distinguishing between three cases.
We start by proving (4.14) when Z = Z1 and D ≥ N + 4. By Lemma 4.3, Z1 =

γ1y0 + δ1z0 for some constants γ1, δ1 ∈ R. We claim that δ1 �= 0. Letting ν = D−N
2 and


(θ) a spherical harmonic of degree ν, we see that

LW
(
rν
(θ)Z1

) = 0.

If δ1 = 0, the estimates (4.17) on y0 and (4.6), (4.7) on Z1 imply rν
(θ)Z1(r) ∈
Ḣ1(RN ). This is impossible since

{Z ∈ Ḣ1(RN ) : LW Z = 0} = span
{
�W, ∂x1W, . . . , ∂xN W

}
.

Thus δ1 �= 0 and Z1 ∼ δ1
r D−2 as r → 0.



Critical Wave Equation Close to the Ground State 1141

We next prove (4.14) when Z = Z2, D = N or D = N +2. According to Lemma 4.4,

Z2(r) = γ2(r)y0(r) + δ2(r)z0(r), Z ′2(r) = γ2(r)y
′
0(r) + δ2(r)z

′
0(r)

where

γ ′2(r) = −ω0Z1(r)z0(r)r
D−1, δ′2(r) = ω0Z1(r)y0(r)r

D−1, r > 0.

Since Z1(r) is, by (4.12) or (4.13), bounded in the neighborhood of 0, we see that γ ′2
and δ′2 are integrable close to r = 0, and thus that γ2(r) and δ2(r) have limits γ2(0) and
δ2(0) as r → 0. We next prove δ2(0) �= 0. We argue by contradiction. If δ2(0) = 0,
then

δ2(r) = ω0

∫ r

0
Z1(s)y0(s)s

D−1 ds = O
(
r D−1

)
as r → 0.

As a consequence, Z ′2 and Z2 are bounded close to r = 0. Since Z2(r) ∼ 1
r D−4 ,

Z ′2(r) ∼ 4−D
rD−3 as r →∞ and D+2

4 > 2 (i.e. D ≥ 7), we can integrate by parts:
∫ +∞

0
(Z1(r))

2r D−1dr =
∫ +∞

0
PZ2(r)Z1(r)r

D−1dr

=
∫ +∞

0
Z2(r)PZ1(r)r

D−1dr = 0.

Thus Z1(r) = 0 a.e., a contradiction. Thus δ2(0) �= 0, which proves

Z2(r) ∼ δ2(0)

r D−2
, r → 0,

yielding (4.14) with Z = Z2.
Let

Ak :=
{
span{Z2, . . . , Zk} if D ∈ {N , N + 2}
span{Z1, Z2, . . . , Zk} if D ≥ N + 4.

To conclude the proof of Proposition 4.2, we show that if 2 ≤ k ≤ ⌊ D+2
4

⌋
, or if k = 1

and D ≥ N + 4, then for all Z ∈ Ak\{0}, there exists d ∈ R\{0}, 0 < θ ≤ 2k (θ ∈ 2N)
such that

Z(r) ∼ d

r D−θ
, r → 0. (4.24)

We argue by induction on k. The cases (k = 2, D ∈ {N , N +2}) and (k = 1, D ≥ N +4)
were treated above. Fixing k ≥ 3 (if D ∈ {N , N +2}) or k ≥ 2 (if D ≥ N +4), we assume
that for all Z ∈ Ak−1\{0}, there exists d ∈ R\{0}, θ ∈ 2N such that 0 < θ ≤ 2(k − 1)
and

Z(r) ∼ d

r D−θ
, r → 0. (4.25)

Let Z ∈ Ak\{0}. If Z ∈ Ak−1, then we can use the induction hypothesis on Z and we
are done. If not, we let Y = PZ . Then Y ∈ span{Z1, . . . , Zk−1}\{0}. By the induction
hypothesis:

∃d �= 0, ∃θ ∈ (0, 2(k − 1)] ∩ 2N, Y (r) ∼ d

r D−θ
, r → 0. (4.26)
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By Lemma 4.4, we have

Z(r) = γ (r)y0(r) + δ(r)z0(r),

where

γ ′(r) = −ω0Y (r)z0(r)r
D−1 ∼ − ω0d

r D−1−θ
, r → 0

δ′(r) = ω0Y (r)y0(r)r
D−1 ∼ ω0d

r1−θ
, r → 0.

Since 0 < θ ≤ 2k − 2 < D
2 − 1, we see that

γ (r) ∼ ω0d
∫ 1

r

1

σ D−1−θ
dσ ∼ ω0d

(D − θ − 2)r D−θ−2

and thus

γ (r)y0(r) ∼ ω0d

(D − θ − 2)r D−θ−2 , r → 0.

Furthermore, δ′ is integrable at the origin, and thus δ(r) has a limit δ(0) as r → 0. We
distinguish between two cases.

Case 1. (δ(0) �= 0) Since θ > 0, we see that γ y0 = o (δz0) as r → 0. Thus

Z(r) ∼ δ(r)z0(r) ∼ δ(0)

r D−2
, r → 0,

and (4.24) follows with θ = 2, d = δ(0).

Case 2. (δ(0) = 0) Writing δ(r) = ∫ r
0 δ′(s) ds, we obtain

δ(r)z0(r) ∼ ω0d
1

θr D−2−θ
.

Combining with the estimate on γ (r), we deduce

Z(r) ∼ ω0d

(
1

θ
+

1

D − θ − 2

)
1

r D−2−θ
,

which yields again (4.24), with θ replaced by θ + 2 ∈ 2N ∩ (0, 2k]. ��

4.3. Compact support of the initial data. In this subsection, we prove:

Proposition 4.5. Let N and D be two odd integers such that 3 ≤ N ≤ D. Let v be a
(radial) solution of (4.2), that satisfies (4.3) and (4.5). Then there exist real numbers
ζ1, . . . , ζ

⌊
D+2
4

⌋, η1, . . . , η
⌊
D
4

⌋ such that the essential support of

�v(0)−

⌊
D+2
4

⌋

∑

k=1
ζk(Zk, 0)−

⌊
D
4

⌋

∑

k=1
ηk(0, Zk) (4.27)

is compact.
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Here Z1, . . . , Z⌊ D+2
4

⌋ are the functions defined in Proposition 4.2.

Until the end of the current section, the underlying space dimension is D and not N ,
and we will slightly change the notations, denoting byH the space (Ḣ1 × L2)(RD).

Wewill use a result of Kenig, Lawrie, Liu and Schlag [23] on the radial wave equation
in odd dimension that we now describe. If V is a vector space of radial function, we
denote by V (R) the vector space of the restriction to (R,+∞) of the elements in V . In
particular H(R) is the Hilbert space of radial functions in (Ḣ1 × L2)({|x | > R}). In
other words, if H(R) is the set of pairs of radial functions ( f, g), defined for r > R,

such that ( f, g) ∈
(
L

2D
D−2 × L2

) ({x ∈ R
D, |x | > R}) and

‖( f, g)‖2H(R) :=
∫ +∞

R
(∂r f )

2r D−1dr +
∫ +∞

R
g2r D−1dr

is finite.
If S is a subspace of H(R), we denote by S⊥ its orthogonal complement in H(R),

πS the orthogonal projection of S and πS⊥ the orthogonal projection on S⊥. We denote
by

B = span

{(
1

r D−2k1
, 0

)
,

(
0,

1

r D−2k2

)
, 1 ≤ k1 ≤

⌊
D + 2

4

⌋
, 1 ≤ k2 ≤

⌊
D

4

⌋}
.

Note that B is exactly the space of radial functions ( f, g) on RD such that

∃k ∈ N s.t. �k f = �kg = 0

and such that for all R > 0, ( f, g)�(R,∞) ∈ H(R). By [23],

Theorem 4.6. Every radial finite energy solution of

∂2t v − ∂2r v − D − 1

r
∂rv = 0 (4.28)

satisfies, for all R > 0,

max± lim
t→±∞

∫ +∞

R+|t |
(∂r,tv(t, r))2 r D−1 dr ≥ 1

2

∥∥πB(R)⊥ �v(0))
∥∥2H(R)

.

To prove Proposition 4.5, we fix a large positive R (to be specified), and let

B̃ = span

{(
Zk1 , 0

)
,
(
0, Zk2

)
, 1 ≤ k1 ≤

⌊
D + 2

4

⌋
, 1 ≤ k2 ≤

⌊
D

4

⌋}
.

In view of (4.6),…,(4.10), if R is large, then

B̃(R) ∩ B(R)⊥ = {(0, 0)}.
In particular, we can choose (ζk)1≤k≤

⌊
D+2
4

⌋, (ηk)1≤k≤
⌊
D
4

⌋ such that

(w0, w1) := �v(0)−

⌊
D+2
4

⌋

∑

k=1
ζk(Zk, 0)−

⌊
D
4

⌋

∑

k=1
ηk(0, Zk) ∈ B(R)⊥.
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Let w be the solution of (4.2) with initial data (w0, w1). Let wF be the solution of the
free wave equation (4.28) in dimension D with the same initial data. Note that (4.5)
implies

lim
t→±∞

∫ +∞

|t |+R
(∂t,rw)2r D−1 dr = 0. (4.29)

Indeed, the solution of (4.2) for r ≥ |t | + R with initial data (Zk, 0) is

k∑

j=1

t2k−2 j

(2k − 2 j)! Z j ,

and the solution with initial data (0, Zk) is

k∑

j=1

t2k+1−2 j

(2k + 1− 2 j)! Z j ,

so that it is easy to check that any solution of (4.2) for r ≥ |t | + R with initial data in
B̃(R) satisfies (4.29).

By Lemma 2.1, if R ≥ 1,
∥∥11{r≥R+|t |}w

∥∥
L

2(D+1)
D−2 (R1+D)

� ‖(w0, w1)‖H(R), (4.30)

where the implicit constant is independent of R � 1.
Using Strichartz estimates and finite speed of propagation, we have

(∫ +∞

R+|t |
(∂r,twF (t, r))2 r D−1 dr

)1/2

�
(∫ +∞

R+|t |
(∂r,tw(t, r))2 r D−1 dr

)1/2

+
∥
∥∥W

4
N−2 11{r≥R+|t |}w

∥
∥∥
L1(R,L2(RD))

,

and thus, by Hölder inequality and (4.30),
(∫ +∞

R+|t |
(∂r,twF (t, r))2 r D−1 dr

)1/2

�
(∫ +∞

R+|t |
(∂r,tw(t, r))2 r D−1 dr

)1/2

+
1

R2 ‖(w0, w1)‖H(R),

where we have used that for R � 1,
∥∥∥W

4
N−2 11{r≥R+|t |}

∥∥∥
L

2(D+1)
D+4

(
R,L

2(D+1)
3

) � 1

R2 ,

which follows from the bound W
4

N−2 � r−4.
By Theorem 4.6, and using that (w0, w1) ∈ B(R)⊥, and (4.29), we obtain, letting

|t | → ∞,

‖(w0, w1)‖H(R) � 1

R2 ‖(w0, w1)‖H(R),

which implies, choosing R large, (w0, w1)(r) = 0 for a.e. r ≥ R. ��
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4.4. Propagation of the boundary of the support. In this subsection, we consider a radial
time-dependent potential V (t, r), defined on {|x | > R+|t |} for some R and that satisfies

r > R + |t | �⇒ |V (t, r)| ≤ C

r2

for some constant C . We let v be a radial solution of the equation

∂2t v −�Dv − V v = 0, (4.31)

also defined on {|x | > R + |t |} with compactly supported initial data. We let

ρ(v0, v1) = inf

{
η > R :

∫

|x |≥η

(
|∇v0|2 + v21

)
dx = 0

}
.

Note that (4.2) is of the form (4.31) with V = N+2
N−2W

4
N−2 .

Proposition 4.7. Let v be as above and assume that ρ0 = ρ(�v(0)) is finite and greater
than R (i.e. that �v(0) is compactly supported and not identically zero). Then there exist
ε > 0 such that for all ρ ∈ (

ρ0 − ε, ρ0
)
, the following holds for all t ≥ 0 or for all

t ≤ 0:
∫ +∞

ρ+|t |
(∂t,rv(t, r))2r D−1 dr ≥ 1

8

∫ +∞

ρ

(∂t,rv(0, r))2r D−1 dr. (4.32)

Remark 4.8. The proposition implies that the support of v grows at velocity one, in at
least one time direction:

∀t ≥ 0 or ∀t ≤ 0, ρ(�v(t)) = ρ0 + |t |,
however we will need the stronger, qualitative version (4.32) of this fact.

Proof. Usingfinite speedof propagation and a standard density argument,we can assume
that v is smooth in the set {r > |t |}. The idea is to approximate v by the solution of

the equation (∂2t − ∂2r )(r
D−1
2 vapp) = 0 with the same initial data. We thus let, for

r ≥ |t | + ρ0 − ε.

vapp(t, r) = 1

r
D−1
2

(ϕ(t + r)− ϕ(t − r)) , (4.33)

where ϕ is chosen so that �vapp(0, r) = �v(0, r), that is

ϕ(s) = 1

2
|s| D−12 v(0, |s|) sgn(s) + 1

2

∫ |s|

0
ρ

D−1
2 ∂tv(0, ρ) dρ.

In other words, for r ≥ R + |t |,

vapp(t, r) = 1

2r
D−1
2

×
(

(r + t)
D−1
2 v(0, t + r)
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+(r − t)
D−1
2 v(0, r − t) +

∫ r+t

r−t
ρ

D−1
2 ∂tv(0, ρ) dρ

)
. (4.34)

Then

(∂2t −�D)vapp =
(
D2 − 4D + 3

4r2

)
vapp, (4.35)

and thus

(∂2t −�D)(v − vapp) = V (v − vapp) + Ṽ vapp,

where

Ṽ := D2 − 4D + 3

4r2
+ V . (4.36)

By Strichartz estimates and finite speed of propagation, for all T ≥ 0 and all ρ ∈
[ρ0 − ε, ρ0],

sup
t∈[0,T ]

∥∥11{|x |≥ρ+|t |}∇t,x (v(t)− vapp(t))
∥∥
L2(RD)

+
∥
∥11{|x |≥ρ+|t |}(v − vapp)

∥
∥
L

2(D+1)
D−2 ([0,T ]×RD)

≤ C
(∥
∥11{|x |≥ρ+|t |}Ṽ vapp

∥
∥
L1([0,T ],L2)

+
∥∥11{r≥ρ+|t |}V (v − vapp)

∥∥
L1([0,T ],L2)

)
. (4.37)

Let

β(ε) = ∥
∥11{ρ0−ε+|t |≤r≤ρ0+|t |}(|V | + |Ṽ |)

∥
∥
L

2(D+1)
D+4

(
(0,∞),L

2(D+1)
3

) ,

By Hölder inequality and finite speed of propagation, the right-hand side of (4.37) is
bounded by

β(ε)

(∥∥11{r≥ρ+|t |}(v − vapp)
∥∥
L

2(D+1)
D−2

+
∥∥11{r≥ρ+|t |}vapp

∥∥
L

2(D+1)
D−2

)
.

We claim that β(ε) is finite and that

lim
ε→0

β(ε) = 0. (4.38)

Indeed, by direct computation, using that ρ0 − ε ≤ ρ ≤ ρ0 and |V (r)| + |Ṽ (r)| � r−2,

β(ε)
2(D+1)
D+4 �

∫ +∞

0

⎛

⎝
∫ ρ0+|t |

ρ0−ε+|t |

(
1

r2

) 2(D+1)
3

r D−1 dr

⎞

⎠

3
D+4

dt

�
∫ ∞

0
(ρ0 + t)−1

((
ρ0 − ε + t

ρ0 + t

)− D+4
3 − 1

) 3
D+4

dt.
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Noting that there exists a constant C > 0, depending only on D, such that for all
ε ≤ ρ0/2,

∣∣
∣∣∣

(
ρ0 − ε + |t |

ρ0 + |t |
)− D+4

3 − 1

∣∣
∣∣∣
=
∣∣
∣∣∣

(
1− ε

ρ0 + |t |
)− D+4

3 − 1

∣∣
∣∣∣
≤ C

ε

ρ0 + |t | ,

we deduce

β(ε) � ε
3

2(D+1) ,

(the implicit constant depending only on D and ρ0), which proves (4.38).
Choosing ε small, we deduce from (4.37)

sup
t∈[0,T ]

∥∥11{|x |≥ρ+|t |}∇t,x (v(t)− vapp(t))
∥∥
L2

+
∥
∥11{|x |≥ρ+|t |}(v − vapp)

∥
∥
L

2(D+1)
D−2 ([0,T ]×RD)

≤ Cβ(ε)
∥
∥11{|x |≥ρ+|t |}vapp

∥
∥
L

2(D+1)
D−2 ([0,T ]×RD)

. (4.39)

Using Strichartz and Hölder inequalities in a similar way, we obtain, in view of the Eq.
(4.35) on vapp that for all T > 0,

∥∥vapp11{r≥ρ+|t |}
∥∥
L

2(D+1)
D−2 ([0,T ]×RD)

+ sup
t∈[0,T ]

∥∥11{|x |≥ρ+|t |}∇t,xvapp(t)
∥∥
L2

≤ C
∥∥(∇v0, v1)11{r≥ρ}

∥∥
L2 . (4.40)

Combining (4.39) and (4.40), we obtain that for all t ≥ 0,
∥∥11{|x |≥ρ+|t |}∇t,xv(t)

∥∥
L2

≥ ∥∥11{|x |≥ρ+|t |}∇t,xvapp(t)
∥∥
L2 − Cβ(ε)

(‖(∇v0, v1)11{r≥ρ+|t |}‖L2
)
. (4.41)

The same proof works for negative times, showing that (4.41) holds for all t ∈ R. To
conclude the proof of (4.32), we must show that the following holds for all t ≥ 0 or for
all t ≤ 0:

∫ +∞

ρ+|t |
|∂t,rvapp(t, r)|2r D−1 dr ≥ 1

4

∫ +∞

ρ

(
(∂rv0)

2 + v21

)
r D−1 dr. (4.42)

By the definition (4.33) of vapp, and since �vapp(0, r) = (v0, v1)(r),

∫ +∞

ρ+|t |

∣
∣∣∂t,r

(
r

D−1
2 vapp(t, r)

)∣∣∣
2
dr ≥ 1

2

∫ +∞

ρ

(
∂r

(
r

D−1
2 v0

))2
+
(
r

D−1
2 v1

)2
dr.

(4.43)

Furthermore, ∂r
(
r

D−1
2 vapp(t, r)

)
= D−1

2 r
D−3
2 vapp + r

D−1
2 ∂rvapp, and thus there exists

a constant C > 0 (depending only on D) such that for all t ∈ R,

0.9
∫ +∞

ρ+|t |
(∂rvapp(t, r))

2r D−1dr − C
∫ +∞

ρ+|t |
v2appr

D−3 dr
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≤
∫ +∞

ρ+|t |

∣∣∣∂r
(
r

D−1
2 vapp(t, r)

)∣∣∣
2
dr

≤ 1.1
∫ +∞

ρ+|t |
(∂rvapp(t, r))

2r D−1dr + C
∫ +∞

ρ+|t |
v2appr

D−3 dr.

Furthermore, since vapp(t, r) = 0 for r ≥ ρ0 + |t |, one has, for ρ + |t | ≤ r ≤ ρ0 + |t |,
∣∣∣r

D−1
2 vapp(t, r)

∣∣∣ =
∣∣∣∣

∫ ρ0+|t |

r

∂

∂s

(
s

D−1
2 vapp(t, s)

)
ds

∣∣∣∣

≤ √ε

√∫ +∞

ρ+|t |

∣∣
∣∂s

(
s

D−1
2 vapp(t, s)

)∣∣
∣
2
ds.

Hence
∫ +∞

ρ+|t |
r D−3v2app(t, r) dr =

∫ ρ0+|t |

ρ+|t |
r D−3v2app(t, r) dr

≤ ε2

ρ

∫ +∞

ρ+|t |

∣∣∣∂r
(
r

D−1
2 vapp(t, r)

)∣∣∣
2
dr,

which yields, for ε small enough,

1

2

∫ +∞

ρ+|t |
|∂rvapp(t, r)|2r D−1 dr ≤

∫ +∞

ρ+|t |

∣
∣∣∂r

(
r

D−1
2 vapp(t, r)

)∣∣∣
2
dr

≤ 2
∫ +∞

ρ+|t |
|∂rvapp(t, r)|2r D−1 dr.

Combining with (4.43), we obtain (4.42), which concludes the proof. ��

4.5. Conclusion of the proof. We now conclude the proof of Proposition 4.1 (and thus
of Theorem 3.1).

Let v be a solution as in Proposition 4.1. By Proposition 4.5, there exist real numbers
ζ1, . . . , ζ

⌊
D+2
4

⌋, η1, . . . , η
⌊
D
4

⌋ such that the essential support of

(w0, w1) := �v(0)−

⌊
D+2
4

⌋

∑

k=1
ζk(Zk, 0)−

⌊
D
4

⌋

∑

k=1
ηk(0, Zk)

is compact. We will prove that (w0, w1) ≡ 0 almost everywhere by contradiction. If
not, we let R > 0 be such that

∫ +∞

R
(∂rw0)

2 + w2
1dr > 0,

and consider the solution w of

∂2t w −�Dw − N + 2

N − 2
W

4
N−2 w = 0, �v�t=0 = (w0, w1),
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which is well defined for r > R + |t | and satisfies

∑

±
lim

t→±∞

∫ +∞

R+|t |
(∂t,rw(t, r))2r D−1 dr = 0. (4.44)

Letting ρ0 = ρ(w0, w1) > R, and ρ < ρ0 close to ρ0, we obtain by Proposition 4.7:
∫ +∞

ρ+|t |
(∂t,rw(t, r))2r D−1 dr ≥ 1

8

∫ +∞

ρ

(∂t,rw(0, r))2r D−1 dr > 0,

which contradicts (4.44). As a conclusion, (w0, w1)(r) = 0 for almost every r > 0, and
thus, denoting by (v0, v1) = �v(0),

(v0, v1) =

⌊
D+2
4

⌋

∑

k0=1
ζk0(Zk0 , 0) +

⌊
D
4

⌋

∑

k1=1
ηk1(0, Zk1) ∈ H.

Wewill conclude the proofwith Proposition 4.2. If D ≥ N +4, we prove by contradiction
that ζk0 = 0, ηk1 = 0 for all 1 ≤ k0 ≤

⌊ D+2
4

⌋
and 1 ≤ k1 ≤

⌊ D
4

⌋
. Assume that one of

the ζk0 is nonzero. Then by Proposition 4.2,

v0 =

⌊
D+2
4

⌋

∑

k0=1
ζk0 Zk0 ∼

d0
r D−θ0

, r → 0

for some real number d0 �= 0 and integer θ0 such that θ0 ≤ 2
⌊ D+2

4

⌋
. As a consequence,

∫ 1
0

1
r2

v20(r) r
D−1dr = ∞, a contradiction with Hardy’s inequality and the fact that

v0 ∈ Ḣ1(RD). Similarly, if there exists k1 such that ηk1 �= 0, then by Proposition 4.2

v1 =

⌊
D
4

⌋

∑

k1=1
ηk1 Zk1 ∼

d1
r D−θ1

, r → 0

for some real number d1 �= 0 and integer θ1 with θ1 ≤ 2
⌊ D
4

⌋
, and one checks that

v1 /∈ L2(RD), a contradiction again.
It remains to treat the cases when D = N and D = N + 2. Assume D = N ≥ 5. We

note that in this case Z1 ∈ H1(RD). Thus
⌊
D+2
4

⌋

∑

k0=2
ζk0(Zk0 , 0) +

⌊
D
4

⌋

∑

k1=2
ηk1(0, Zk1) ∈ H,

and the same argument as before proves that ζk0 = 0, ηk1 = 0 for 2 ≤ k0 ≤
⌊ D+2

4

⌋
,

2 ≤ k1 ≤
⌊ D
4

⌋
. Thus

(v0, v1) ∈ span
(
(Z1, 0), (0, Z1)

)
= span

(
(�W, 0), (0,�W )

)

(see (4.12)). The cases D = N = 3 and D = N + 2 are similar and we omit the proofs.
��
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5. Channels of Energy for the Nonlinear Equation Close to W

In this section we prove Corollary 2. We start by giving two statements, one in space
dimension 3 and the other in space dimension 5, that imply Corollary 2. LetMW be the
set of all

(
1

λ
N−2
2

W�

(
0,
· − X

λ

)
,

1

λ
N
2

∂tW�

(
0,
· − X

λ

))
,

where

X ∈ R
N , λ > 0, � ∈ R

N , |�| < 1.

We denote by d the distance between a subset A of H and an element of H:

d (A, (u0, u1)) = inf
{
‖(u0, u1)− (ϕ0, ϕ1)‖H , (ϕ0, ϕ1) ∈ A

}
. (5.1)

Theorem 5.1. Assume N = 3. Let η0 ∈ (0, 1). There exist constants ε0 = ε0(η0) > 0,
C = C(η0) > 0 such that, for any � ∈ R

3 with |�| ≤ η0, for all (u0, u1) ∈ H\MW
such that

∥∥∥(u0, u1)− �W�(0)
∥∥∥H = ε ≤ ε0, (5.2)

there exists X ∈ R
3 with |X | � ε such that the solution u of (1.1) on {|x − X | > |t |} is

global in time and satisfies
∑

±
lim

t→±∞

∫

|x−X |≥|t |
∣∣∇t,xu(t, x)

∣∣2 dx ≥ 1

C
d (MW , (u0, u1))

2 . (5.3)

In the case N = 5, we have a weaker statement

Theorem 5.2. Assume N = 5. Let η0 ∈ (0, 1). There exists a constant ε0 = ε0(η0) > 0
such that, for any � ∈ R

5 with |�| ≤ η0, for all (u0, u1) ∈ H\MW such that (5.2) holds,
then there exists X ∈ R

5 with |X | � ε such that for any small τ0 > 0, the solution u of
(1.1) for {|x − X | > |t | − τ0} is global in time and satisfies:

∑

±
lim

t→±∞

∫

|x−X |≥|t |−τ0

∣∣∇t,xu(t, x)
∣∣2 dx > 0. (5.4)

Recall from (1.12) the definition of Z . Let

Z̃ = span
{
(�W, 0), (∂x j W, 0), (0, ∂x j W ), j ∈ �1, N�

}
.

Note that Z̃ ⊂ Z (indeed these sets are equal if N ∈ {3, 4}, the inclusion is strict
if N ≥ 5). Thus if (v0, v1) ∈ Z̃ , the corresponding solution of the linearized wave
equation (1.10) is v0 + tv1. We denote by:

Z̃� =
{
(L�(v0(x) + tv1(x)), ∂tL�(v0(x) + tv1(x)))�t=0 , (v0, v1) ∈ Z̃}

.

Note again that

Z̃� = Z� ⇐⇒ N ∈ {3, 4}.
We next give preliminaries on local and global well-posedness (Sect. 5.1) and the choice
of the parameters �, λ and X so that certain orthogonality conditions are satisfied
(Sect. 5.2). In Sect. 5.3 we prove Theorem 5.1 and in Sect. 5.4 we prove Theorem 5.2.
Section 5.5 is dedicated to the proof of Corollary 3.
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5.1. Cauchy theory outside wave cones. In this subsection we assume N ∈ {3, 4, 5}
and recall some standard facts about local and global well-posedness for the nonlinear
equation (1.1). We also extend the Cauchy theory to define solutions of (1.1) outside
wave cones. We refer to [13] for the extension outside wave cones for radial data in the
case N ≥ 6.

Definition 5.3. Let I be an interval with t0 ∈ I , (u0, u1) ∈ H. We call a solution of
(1.1) on I × R

N , with initial data

�u�t=t0 = (u0, u1) (5.5)

a function u ∈ C0(I, Ḣ1) such that ∂t u ∈ C0(I, L2) and

∀t ∈ I, u(t) = SL(t − t0)(u0, u1) +
∫ t

t0
SL(s − t0)F(u(s)) ds, (5.6)

and such that u ∈ L
N+2
N−2

(
J, L

2(N+2)
N−2 (RN )

)
for all compact intervals J ⊂ I .

Remark 5.4. The distribution u on I × R
N is a solution of (1.1), (5.5) if and only if

u ∈ L
N+2
N−2
loc (I, L

2(N+2)
N−2 ), �u ∈ C0(I,H), (5.5) holds and u satisfies ∂2t u −�u = |u| 4

N−2 u
in the distributional sense on I × R

N (see Lemma 2.5 of [12]).

Remark 5.5. If �u ∈ C0(I,H) and there exists a sequence {�uk}k of solutions of (1.1) such
that

lim
k→∞ sup

t∈I
‖�u(t)− �uk(t)‖H = 0

and

sup
k
‖uk‖

L
2(N+1)
N−2

(
I×RN

) <∞,

then u is a solution of (1.1) (see [25, Remark 2.14]).

It is known (see [5,21,25] and [12]), that for all initial data (u0, u1), there is a unique
maximal solution u defined on a maximal interval (T−, T+). Furthermore the following
blow-up criterion is satisfied:

T+ <∞ �⇒ ‖u‖
L

2(N+1)
N−2 ([t0,T+)×RN )

= ∞,

or equivalently

T+ <∞ �⇒ ‖u‖
L

N+2
N−2

(
[t0,T+),L

2(N+2)
N−2 (RN )

) = ∞.

We will also need the notion of a solution of (1.1) outside a wave cone:

Definition 5.6. Let I be an interval with t0 ∈ I , R ≥ 0 and x0 ∈ R
N . Let (u0, u1) ∈ H.

A solution u of (1.1) on {|x − x0| > [t − t0|, t0 ∈ I } with initial data (u0, u1) at t = t0
is the restriction to {|x − x0| > [t − t0|, t0 ∈ I } of a solution ũ, with �̃u ∈ C0(I,H) to
the equation:

∂2t ũ −�ũ = |ũ| 4
N−2 ũ11{|x−x0|>R+|t−t0|}, (5.7)

with an initial data

�̃u�t=t0 = (u0, u1), (5.8)
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The Cauchy theory in [12,21,25] adapts easily to the case of solutions outside wave
cones. We give the statements and omit most proofs.

Proposition 5.7 (Small data well-posedness). There exists ε0 > 0 with the following
property. Let (u0, u1), t0, x0, R be as above. Let uL(t) = SL(t)(u0, u1). Assume

∥∥11{|x−x0|≥|t−t0|+R}uL
∥∥
L

N+2
N−2

(
I,L

2(N+2)
N−2

) = ε ≤ ε0.

Then there exists a unique solution u to (1.1) on {|x−x0| > |t−t0|, t ∈ I }. Furthermore

sup
t∈I

∥∥11{|x−x0|>|t−t0|+R}∇t,x (u − uL)
∥∥
L2 � ε

N+2
N−2 .

Gluing the preceding local solutions, we obtain, for any initial data (u0, u1), a max-
imal solution defined on a maximal domain {(t, x) ∈ (T̃−, T̃+) × R

N |x − x0| ≥
|t − t0|+ R}, where T̃± = T̃±(x0, R), and that satisfies the following blow-up criterion:

T̃+ <∞ �⇒ ‖11{|x−x0|>|t−t0|}u‖
L

N+2
N−2

(
(0,T̃+),L

2(N+2)
N−2

) = +∞

(and similarly in the past). It is easy to check that if R > R′ then T̃+(x0, R) ≥ T̃+(x0, R′),
and also that for all R ≥ 0, T̃+(x0, R) ≥ T+, where T+ is the maximal time of existence
for the solution on the whole space (see above). We also have:

Lemma 5.8. If 11{|x−x0|≥|t−t0|+R}u ∈ L
N+2
N−2

(
(0, T̃+), L

2(N+2)
N−2 (RN )

)
, then T̃+ = +∞ and

u scatters to a linear solution on {|x − x0| > R + |t − t0|}, in the sense that there exists
a solution vL of the linear wave equation on R× R

N such that

lim
t→+∞

∥∥11{|x−x0|>|t−t0|+R}|∇t,x (u − vL)(t)|∥∥L2 = 0.

Lemma 5.9. Let I be an interval with t0 ∈ I , and f ∈ L1(I, L2). Let u be defined by
(2.3) for t ∈ I , and assume that

f = |u| 4
N−2 u a.e. for |x − x0| > |t − t0|, t ∈ I.

Then I ⊂ (T̃−T̃+) and the restriction of u to the set {|x − x0| > |t − t0| + R, t ∈ I }
coincides with the solution of (1.1) on this set, as defined in Definition 5.6.

5.2. Orthogonality conditions. If � = (X, λ, �) ∈ R
N × (0,∞)× BRN , where BRN ={

X ∈ R
3 : |X | < 1

}
, we denote

W�(t, x) = 1

λ
N
2 −1

W�

(
t

λ
,
x − X

λ

)
.

We claim:
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Claim 5.10. Assume N ≥ 3. There exists a small constant ε0, and, for all η0 ∈ (0, 1),
a constant η1 ∈ (0, 1) with the following property. Let (u0, u1) be such that (5.2) holds
for some �0 with |�0| ≤ η0. Then there exists�∗ = (X∗, λ∗, �∗) ∈ R

N × (0,∞)× BRN ,
with |�∗| < η1, such that

d ((u0, u1),MW ) =
∥∥∥(u0, u1)− �W�∗(0)

∥∥∥H
and

(
λ

N−2
2∗ u0 (X∗ + λ∗·) , λ

N
2∗ u1 (X∗ + λ∗·)

)
− ( �W�∗ , 0) ∈ Z̃⊥�∗ . (5.9)

Proof. Let

δW : � �→
∥∥∥ �W�(0)− (u0, u1)

∥∥∥
2

H .

We first claim that there exists a constant η1 ∈ (0, 1), depending only on η0, such that

|�| ≥ η1 �⇒ δW (�) ≥ ‖W‖2
Ḣ1 . (5.10)

Indeed, by the triangle inequality and (5.2),
√

δW (�) ≥
∥∥∥ �W�(0)

∥∥∥H −
∥∥∥ �W�0

∥∥∥H − ε0.

Since

∥∥∥ �W�(0)
∥∥∥H =

(
N + (2− N )|�|2
N
√
1− |�|2

)1/2

‖W‖Ḣ1 −→|�|→1
+∞,

we obtain the existence of η1 such that (5.10) holds.
We next claim that there exists M > 0 (depending on (u0, u1)) such that

|X | + | log(λ)| ≥ M �⇒ δW (�) ≥ 1

N
‖W‖2

Ḣ1 . (5.11)

If not, there exists a sequence (�n)n =
(
(Xn, λn, �n)

)

n
, such that

lim
n→∞ |Xn| + | log(λn)| = +∞

and for all n,

δW (�n) ≤ 1

N
‖W‖2

Ḣ1 .

By (5.10) we can assume |�n| ≤ η1 and thus, extracting subsequences if necessary, that
there exists � such that |�| ≤ η1 and

lim
n→∞ �n = �.

Since �W�n (0) converges weakly to (0, 0) inH, we obtain

lim
n→∞ δW (�n) = ‖(u0, u1)‖2H +

∥∥∥ �W�(0)
∥∥∥
2

H .
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Using

∥∥∥ �W�(0)
∥∥∥
2

H =
N + (2− N )|�|2
N
√
1− |�|2 ‖W‖2

Ḣ1 >
1

N
‖W‖2

Ḣ1 ,

we deduce a contradiction, concluding the proof of (5.11).
In view of (5.11) and since by the assumptions of the claim there exists � such that

δW (�) ≤ ε0, we see (taking ε0 < 1
N ‖W‖2Ḣ1 ) that there exists �∗ such that δW attains a

global minimum at�∗. At� = �∗, the function δW has a critical point. Differentiating,
we obtain that �W�∗(0)− (u0, u1) is orthogonal, inH, to

(
∂

∂X j
W�(0)

)

��=�∗
,

(
∂

∂λ
W�(0)

)

��=�∗
,

(
∂

∂� j
W�(0)

)

��=�∗
.

Rescaling and translating in space, we obtain (5.9). ��

5.3. Proof in space dimension 3.

Proof of Theorem 5.1. In all of the proof η0 is fixed in (0, 1), and the constant C > 0
(that may change from line to line) is allowed to depend on η0.

We use Claim 5.10. Without loss of generality (rescaling and translating u), we can
assume λ∗ = 1, X∗ = 0. We let � = �∗ to lighten notations. Let

(h0, h1) = (u0, u1)− �W�(0).

Let h be the solution of
{

∂2t h −�h =
(
(W� + h)5 −W 5

�

)
11|x |≥|t |

h�t=0 = (h0, h1).

Then
∣∣∣∂2t h −�h − 511|x |≥|t |W 4

� h
∣∣∣ ≤ C

(
|h|5 +W 3

� h
2
)
11|x |≥|t |.

Since by explicit computation,
∥∥11{|x |≥|t |}W�

∥∥
L5
t L10

x
≤ C, we deduce, using Lemma 2.1

and the smallness of ‖(h0, h1)‖H, that for all T > 0,

sup
|t |≤T

∥
∥∥�h(t)

∥
∥∥H + ‖h‖L8([−T,T ],L8

x )
+ ‖h‖L5([−T,+T ],L10

x ) ≤ C‖(h0, h1)‖H. (5.12)

Let hL be the solution of the linearized equation:
{

∂2t hL −�hL = 5W 4
� hL

hL�t=0 = (h0, h1),
(5.13)

and h̃L be the solution of the truncated linearized equation:
{

∂2t h̃L −�h̃L = 5W 4
� h̃L11|x |≥|t |

h̃L�t=0 = (h0, h1).
(5.14)
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Then by Theorem 1 and (5.9),

∑

±
lim

t→±∞

∫

|x |>|t |
∣∣∇t,xhL(t, x)

∥∥2 dx ≥ 1

C
‖(h0, h1)‖2H.

Since h̃L(t, x) = hL(t, x) for |x | > |t | by finite speed of propagation, we deduce

∑

±
lim

t→±∞

∫

|x |>|t |

∣∣∣∇t,x h̃L(t, x)
∣∣∣
2
dx ≥ 1

C
‖(h0, h1)‖2H.

Next, notice that

∣
∣∣∂2t (h − h̃L)−�(h − h̃L)− 5W 4

� (h − h̃L)11{|x |>|t |}
∣
∣∣ ≤ C

(
|h|5 +W 3

� h
2
)
11|x |≥|t |.

Using Lemma 2.1 as before, and since (�h − �̃hL)(0) = 0, we obtain in view of (5.12),

sup
t∈R

∥∥∥�h(t)− �̃hL(t)
∥∥∥H ≤ C ‖(h0, h1)‖2H .

Hence, taking ε0 smaller if necessary,

∑

±
lim

t→±∞

∫

|x |>|t |
∣
∣∇t,xh(t, x)

∣
∣2 dx ≥ 1

C
‖(h0, h1)‖2H. (5.15)

Letting ũ = W� + h, we see that (5.15) implies (5.3), since by the choice of (h0, h1),

‖(h0, h1)‖H = d (MW , (u0, u1)) .

Furthermore, ũ satisfies the equation:

∂2t ũ −�ũ = W 5
� +

(
(W� + h)5 −W 5

�

)
11{|x |>|t |}

= ũ511{|x |>|t |} + ũW 5
� 11{|x |<|t |},

which concludes the proof. Recall that we have translated u in space in order to assume
X∗ = 0 in the conclusion of Claim 5.10, hence the necessity of the parameter X in the
conclusion of the Theorem (indeed, one can take X = X∗). ��

5.4. Proof in space dimension 5. This subsection is dedicated to the proof of Theo-
rem 5.2. The main difficulty compared to the case N = 3 is the existence of an addi-
tional component (0,�W ) in Z , so that Z̃ is a strict subspace of Z . To deal with this
additional direction, we apply Theorem 1 not only at t = 0, but for all initial times close
to t = 0. As a drawback, Theorem 5.2 is slightly weaker than Theorem 5.1.

We first prove:
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Lemma 5.11. Assume N = 5. There exists ε > 0 with the following property. Let u, v

be two global solutions of (1.1) on {|x | > |t |} with initial data (u0, u1) and (v0, v1)

respectively, and such that

‖(u0, u1)− (W, 0)‖H ≤ ε, ‖(v0, v1)− (W, 0)‖H ≤ ε (5.16)
∑

±
lim

t→±∞

(∫

{|x |≥|t |}
|∇t,xu|2 dx +

∫

{|x |≥|t |}
|∇t,xv|2 dx

)
= 0 (5.17)

E(u0, u1) = E(v0, v1) (5.18)

P(u0, u1) = P(v0, v1) = 0 (5.19)∫
∇u0 · ∇�W =

∫
∇v0 · ∇�W = 0 (5.20)

∀ j ∈ �1, N�,

∫
∇u0 · ∇∂x j W =

∫
∇v0 · ∇∂x j W = 0. (5.21)

Then (u0, u1) = (v0, v1) or (u0, u1) = (v0,−v1).

Proof.

Step 1 (Estimates on u and v).
We let

β0 := 1

‖�W‖L2

∫
�W u1, γ0 := 1

‖�W‖L2

∫
�W v1

β j := 1

‖∂x j W‖L2

∫
∂x j W u1, γ j := 1

‖∂x j W‖L2

∫
∂x j W v1, j ∈ �1, 5�.

Replacing u(t, x) by u(−t, x) or/and v(t, x) by v(−t, x) if necessary, we assume that
β0 and γ0 are non-negative. We let

( f0, f1) = (u0, u1)− (W, 0)− β0

‖�W‖L2
(0,�W )−

5∑

j=1

β j

‖∂x j W‖L2
(0, ∂x j W )

(g0, g1) = (v0, v1)− (W, 0)− γ0

‖�W‖L2
(0,�W )−

5∑

j=1

γ j

‖∂x j W‖L2
(0, ∂x j W ).

In this step, we prove

∥
∥(u −W )11{|x |>|t |}

∥
∥
L

7
3
t L

14
3
x

� ε, ‖( f0, f1)‖H � β2
0 ,

5∑

j=1
|β j | � β3

0 (5.22)

∥∥(v −W )11{|x |>|t |}
∥∥
L

7
3
t L

14
3
x

� ε, ‖(g0, g1)‖H � γ 2
0 ,

5∑

j=1
|γ j | � γ 3

0 . (5.23)

The proofs of (5.22) and (5.23) are the same, and we will only prove (5.22).
Let a := u −W . We have

|∂2t a + LWa| � W
1
3 a2 + |a| 73 .
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By Lemma 2.1 and Hölder estimates, using that ‖a(0)‖H is small, we obtain

∀T > 0,
∥∥a11{|x |>|t |}

∥∥
L

7
3

(
((−T,+T ),L

14
3

)

� ‖�a(0)‖H +
∥∥a11{|x |>|t |}

∥∥2
L

7
3

(
((−T,+T ),L

14
3

) +
∥∥a11{|x |>|t |}

∥∥
7
3

L
7
3

(
((−T,+T ),L

14
3

) .

Since ‖a(0)‖H is small, we deduce:
∥∥a11{|x |>|t |}

∥∥
L

7
3
t L

14
3
x

� ‖�a(0)‖H,

which implies the first inequality in (5.22). Let aL be the solution of

∂2t aL + LWaL = 0, �aL(0) = (u0, u1)− (W, 0).

We have
∣∣∣(∂2t + LW )(a − aL)

∣∣∣ � |a|2W 1
3 + |a| 73 , |x | > |t |. (5.24)

By Lemma 2.1, since �a(0)− �aL(0) = (0, 0),

sup
t∈R

∥∥11{|x |>|t |}(a − aL)
∥∥H �

∥∥∥
(
|a|2W 1

3 + |a| 73
)
11{|x |>|t |}

∥∥∥
L1
t L2

x

� ‖�a(0)‖2H,

and hence, by assumption (5.17),

lim sup
t→±∞

(∫

|x |>|t |
∣∣∇t,xaL

∣∣2
)1/2

� ‖(u0, u1)− (W, 0)‖2H .

Combiningwith Theorem1 and the orthogonality assumptions (5.20), (5.21), we deduce

‖( f0, f1)‖H � ‖( f0, f1)‖2H +
5∑

j=0
β2
j ,

and thus

‖( f0, f1)‖H �
5∑

j=0
β2
j . (5.25)

Furthermore since P(u0, u1) = 0 by assumption (5.19),

∫
(∇W + ∇ f0)

⎛

⎝ f1 +
β0

‖�W‖L2
�W +

5∑

j=1

β j

‖∂x j W‖L2
∂x j W

⎞

⎠ = 0.

Since W is radial, we have
∫ ∇W�W = 0,

∫
∂x j W∂xkW = 0 ( j �= k) and we obtain

for k ∈ �1, 5� (using that
∫

∂xkW f1 = 0),

βk‖∂xkW‖L2 +
∫

∂xk f0 f1
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+
β0

‖�W‖L2

∫
∂xk f0�W +

5∑

j=1

β j

‖∂x j W‖L2

∫
∂xk f0∂x j W = 0. (5.26)

Thus by (5.25)

5∑

k=1
|βk | �

⎛

⎝
5∑

j=0
|β j |

⎞

⎠

3

,

which yields

5∑

k=1
|βk | � β3

0 .

Going back to (5.25), we deduce (5.22).

Step 2. (Estimate on u − v.) We let

h := u − v, (h0, h1) := �h(0) = (u0, u1)− (v0, v1),

α0 := 1

‖�W‖L2

∫
h1�W = β0 − γ0, α j := 1

‖∂x j W‖L2

∫
h1∂x j W = β j − γ j ,

h⊥1 = h1 − α0

‖�W‖L2
�W −

5∑

j=1

α j

‖∂x j W‖L2
∂x j W = f1 − g1.

In this step, we prove

5∑

k=1
|αk | +

∥∥∥(h0, h⊥1 )

∥∥∥H � εα0. (5.27)

Let F(u) = |u| 43 u. We have

∂2t h + LWh = F(u)− F(v)− F ′(W )h. (5.28)

We claim
∣∣F(u)− F(v)− F ′(W )h

∣∣

� |h|
(
|v −W | 43 + |W | 13 |v −W | + |W | 13 |h| + |h| 43

)
. (5.29)

Indeed, using elementary estimates on the function F , we obtain, since h = u − v,

|F(u)− F(v)− F ′(v)h| � |v| 13 |h|2 + |h| 73 � W
1
3 h2 + |v −W | 13 h2 + |h| 73

� W
1
3 h2 + |v −W | 43 |h| + |h| 73 ,

where we have used that by Young’s inequality, |v − W | 13 h2 � |v − W | 43 |h| + |h| 73 .
Moreover,

|F ′(v)− F ′(W )| � |v −W | |W | 13 + |v −W | 43 ,
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which yields (5.29).

By the first inequality in (5.23), and the fact thatW11{|x |>|t |} ∈ L
7
3
t L

14
3
x , we first obtain

from (5.28), (5.29) and Strichartz estimates
∥∥h11{|x |>|t |}

∥∥
L

7
3
t L

14
3
x

� ‖(h0, h1)‖H .

Letting hL be the solution of

(∂2t + LW )hL = 0, �hL(0) = (h0, h1),

we deduce, again from (5.28), (5.29) and Lemma 2.1,

sup
t∈R

∫

|x |>|t |
∣∣∇t,x (h − hL)

∣∣2 dx � ε2 ‖(h0, h1)‖2H .

Using the assumption (5.17), we obtain

∑

±
lim

t→±∞

∫

|x |>|t |
|∇t,xhL(t, x)|2 dx � ε2 ‖(h0, h1)‖2H .

By Theorem 1, and the orthogonality conditions (5.20), (5.21),

∥∥∥h⊥1
∥∥∥
L2

+ ‖h0‖Ḣ1 � ε‖(h0, h1)‖H = ε

√√√√√
∥∥(h0, h⊥1 )

∥∥2H +
5∑

j=0
α2
j . (5.30)

Expanding the momentums in the equality P(u0, u1)− P(v0, v1) = 0 as in (5.26), we
obtain that for all k in �1, 5�,

0 = (βk − γk)‖∂xkW‖L2 +
∫

∂xk f0 f1 − ∂xk g0g1

+
β0

‖�W‖L2

∫
∂xk f0�W − γ0

‖�W‖L2

∫
∂xk g0�W

+
5∑

j=1

(
β j

‖∂x j W‖L2

∫
∂xk f0∂x j W −

γ j

‖∂x j W‖L2

∫
∂xk g0∂x j W

)

.

Using that by the assumption (5.16),

‖∇ f0‖L2 + ‖∇g0‖L2 + ‖ f1‖L2 + ‖g1‖L2 +
5∑

j=0
|β j | + |γ j | � ε,

we deduce

5∑

k=1
|αk | =

5∑

k=1
|βk − γk | � ε‖(h0, h1)‖L2 .
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Since

‖(h0, h1)‖2H = ‖(h0, h⊥1 ‖2H +
5∑

j=0
α2
j ,

we obtain

5∑

j=1
|α j | � ε

(
‖(h0, h⊥1 )‖H + |α0|

)
.

Combining with (5.30), we obtain (5.27).

Step 3 (Estimates on the energy and conclusion of the proof.)
We claim:

|α0(β0 + γ0)| � ε|α0|(β2
0 + γ 2

0 ). (5.31)

By the assumption (5.18), E(u0, u1) = E(v0, v1). Noting that

E(u0, u1) = E(u0, 0) +
1

2
β2
0 +

1

2

5∑

j=1
β2
j +

1

2
‖ f1‖2L2

E(v0, v1) = E(v0, 0) +
1

2
γ 2
0 +

1

2

5∑

j=1
γ 2
j +

1

2
‖g1‖2L2 ,

and α j = β j − γ j , for j ∈ �0, 5�, the estimate (5.31) will follow from the following
inequalities:

∀ j ∈ �1, 5�,
∣∣∣β2

j − γ 2
j

∣∣∣ � ε|α0|(β2
0 + γ 2

0 ) (5.32)

|E(u0, 0)− E(v0, 0)| � ε|α0|(β2
0 + γ 2

0 ) (5.33)
∣
∣∣‖ f1‖2L2 − ‖g1‖2L2

∣
∣∣ � ε|α0|(β2

0 + γ 2
0 ). (5.34)

By Step 2, for j ∈ �1, 5�
∣∣
∣β2

j − γ 2
j

∣∣
∣ � |α j |

(|β j | + |γ j |
)

� ε|α0|
(|β j | + |γ j |

)
,

and we deduce from Step 1,
∣∣
∣β2

j − γ 2
j

∣∣
∣ � ε|α0|

(
β2
0 + γ 2

0

)
.

This yields (5.32).
To prove (5.33), we expand

E(u0, 0)− E(v0, 0) = E(W + f0, 0)− E(W + g0, 0),

and see that the linear terms in f0, g0 are zero (since (W, 0) is a critical point for
E). As a consequence (using the Sobolev inequality to control the terms coming from
∫ |W + f0| 103 −

∫ |W + g0| 103 , we obtain
|E(u0, 0)− E(v0, 0)| � ‖ f0 − g0‖H (‖ f0‖H + ‖g0‖H) � ‖h0‖H

(‖ f0‖H + ‖g0‖H
)
,
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and (5.33) follows from the estimates of Steps 1 and 2. The proof of (5.34) is similar,
using that h⊥1 = f1 − g1 and thus that

∣∣∣‖ f1‖2L2 − ‖g1‖2L2

∥∥∥ ≤ ‖h⊥1 ‖L2
(‖ f1‖L2 + ‖g1‖L2

)
.

In view of (5.31), since β0 and γ0 are non-negative, we obtain α0 = 0 or β0 = γ0 = 0
(which implies α0 = 0). By (5.27) (h0, h1) = (0, 0), i.e. (u0, u1) = (v0, v1). Recalling
that we might have changed u1 into −u1 and v1 into −v1 (see the beginning of Step 1),
we obtain the conclusion of the lemma. ��
Proof of Theorem 5.2. Recall that for all � with |�| < 1, we have

P
( �W�(0)

)
= − �

√
1− |�|2 E(W, 0), E

( �W�(0)
)
= 1

√
1− |�|2 E(W, 0),

Since (u0, u1) is close to �W�(0) for some |�| ≤ η0, we deduce that |P(u0, u1)| <

E(u0, u1). Let

�0 = P(u0, u1)

E(u0, u1)
.

ByLemmaA.1 in the appendix, P(�u�0(0)) = 0.ByLemmaA.2 and the assumption(5.2),
there exists �′ with |�′| < 1 such that

∥
∥∥�u�0(0)− �W�′(0)

∥
∥∥H � ε

(where the implicit constant depends only on η0). This yields
∣∣∣P(�u�0(0))− P( �W�′(0)

∣∣∣ � ε,

and thus, since P(�u�0) = 0,

|�′|
√
1− |�′|2 � ε.

As a consequence, |�′| � ε. Using that by direct computation,
∥∥∥(W, 0)− �W�′(0)

∥∥∥H �
|�′| for small �′, we obtain

‖�u�0(0)− (W, 0))‖H � ε.

Using the same arguments as in the end of Sect. 3.1 (see in particular (3.11)), one
can also check that the Lorentz transformation preserves the assumption (5.4) (with a
smaller τ0).

We are thus reduced to the case where

P(u0, u1) = 0 (5.35)

and ‖(u0, u1)− (W, 0)‖H � ε. Since �u is a H-valued continuous function, we deduce
that for small t ,

‖�u(t)− (W, 0)‖H � ε.
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We also see that the assumption (5.4) implies that for small t0
∑

±
lim

t→±∞

∫

|x |≥|t |−τ0/2
|∇t,x (u(t + t0, x))|2 dx = 0.

By a standard application of the implicit function theorem, we can find λ(t) > 0 close to
1 and a small x(t) ∈ R

5 such that u(λ(t))(·−x(t)) satisfies the orthogonality assumptions
(5.20) and (5.21) of Lemma 5.11. By Lemma 5.11, for small t , �u(t) is equal to±(u0, u1)
up to translation and scaling. Using the continuity of the flow, we see that �u(t) must be
close to (u0, u1) for small t .

We are thus reduced to proving the following:

Claim 5.12. Let u be a solution of (1.1) defined on a interval I containing 0, such that
P(u0, u1) = 0 and (u0, u1) is close to W. Assume

∀τ ∈ I, ∃x(τ ) ∈ R
N , ∃λ(τ) ∈ (0,∞),

�u(τ, x) =
(

1

λ(τ)
N
2 −1

u0

(
x + x(τ )

λ(τ)

)
,

1

λ(τ)
N
2

u1

(
x + x(τ )

λ(τ)

))

. (5.36)

Then

∃λ > 0, ∃X ∈ R
N , (u0(x), u1(x)) =

(
1

λ
N
2 −1

W
( x

λ

)
, 0

)
.

��
Proof of Claim 5.12. By an easy induction, (5.36) holds for all τ in the maximal interval
of definition of u. As a consequence, u has the compactness property and remains close
toW in the energy space, up to translation and scaling. By [12], and since P(u0, u1) = 0,
we deduce (u0, u1) = (W, 0).

Let us mention that it is possible to prove a more general version of the claim,
omitting the assumptions “P(u0, u1) = 0” and “(u0, u1) is close toW”. In this case the
conclusion is that u is a general solitary wave. ��

5.5. Channels of energy below twice the energy of the ground state. In this subsection
we prove Corollary 3 and Proposition 4.

Proof of Corollary 3. We argue by contradiction. Let u satisfy the assumptions of the
corollary, and assume furthermore:

∀τ0 > 0,
∑

±
lim

t→±∞

∫

|x |>|t |−τ0

|∇t,xu(t, x)|2 dx = 0. (5.37)

According to [8] if N ∈ {3, 5} there exists a sequence of times {tn}n with
lim

n→+∞ tn = +∞,

an integer J ≥ 0, scales λ
j
n with λ

j
n > 0 and limn→∞ λ

j
n/tn = 0, positions x j

n ∈ R
d ,

with � j = limn→∞ x j
n
tn

well defined, and traveling waves Q j
� j
, for 1 ≤ j ≤ J , such that

�u(tn) =
J∑

j=1

(

(λ
j
n)
− N

2 +1 Q j
� j

(
x − x j

n

λ
j
n

, 0

)

,



Critical Wave Equation Close to the Ground State 1163

(λ
j
x )
− N

2 ∂t Q
j
� j

(
x − x j

n

λ
j
n

, 0

))

+ o(1), (5.38)

in H, as n → ∞. In addition, the parameters λ
j
n, x

j
n satisfy the pseudo-orthogonality

condition

1 ≤ j < k ≤ J �⇒ lim
n→∞

λ
j
n

λkn
+

λkn

λ
j
n

+

∣∣∣x j
n − xkn

∣∣∣

λ
j
n

= +∞. (5.39)

We note that by (5.37), one can assume that the linear solution that appears usually in
the expansion (5.38) is identically 0.

By (5.38), (5.39), we have

E(u0, u1) =
J∑

j=1
E( �Q j

� j
(0) =

J∑

j=1

1
√
1− |� j |2

E(Q j , 0).

Recall that

Q ∈ � and E(Q, 0) < 2E(W, 0) �⇒ ∃λ > 0, Q = ±W(λ)

(see e.g. [10] for a proof). Thus the assumption E(u0, u1) < 2E(W, 0) implies that
J ≤ 1, and that Q1 = W if J = 1. If J = 0, then by conservation of the energy and
(5.38), u is identically 0 and we are done. We are thus reduced to the case J = 1. If
N ∈ {3, 5}, Corollary 2 immediately yields a contradiction with (5.37), unless u is a
solitary wave. ��
Proof of Proposition 4. Let u be a global radial solution of (1.1) with N ≥ 7 odd, such
that E(u0, u1) < 2E(W, 0) and

∀τ0 > 0,
∑

±
lim

t→±∞

∫

|x |>|t |−τ0

|∇t,xu(t, x)|2 dx = 0. (5.40)

By [33], (5.38) holds with for all j , Q j ∈ {±W }, � j = 0 and x j
n = 0. By the assumption

E(u0, u1) < 2E(W, 0), we obtain that J = 1 (again, J = 0 is excluded since u is
nonzero), and E(u0, u1) = E(W, 0). We are thus reduced to proving:

Claim 5.13. Assume N ≥ 7. There exists ε0 > 0 with the following property. Let u be a
global, radial solution of (1.1) such that E(u0, u1) = E(W, 0),

∀A ≥ 0, lim
t→±∞

∫

|x |>|t |−A
|∇t,xu(t, x)|2 dx = 0

and

‖(u0, u1)− (W, 0)‖ = δ < ε0.

Then (u0, u1) = (W, 0).

Indeed, Claim 5.13 applied to the solution (t, x) �→ u(tn + t, x) for some large n
yields the desired result. ��
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Proof of the Claim. By a standard use of the implicit function theorem, we can assume
∫
∇u0∇�W = 0.

Expand (u0, u1) as follows:

(u0, u1) =
(
W + f0, β�W + f1

)
,

∫
f1�W = 0.

Let h(t) = u(t)−W . Then ‖�h(0)‖H = δ and

∂2t h + LWh = F(h) +N (h), (5.41)

where

N (h) = F (W + h)− F(W )− F(h)− N + 2

N − 2
W

4
N−2 h.

By finite speed of propagation, h coincides, for |x | > |t |, with the solution h̃ of

∂2t h̃ + LW h̃ = (F(h) +N (h))11{|x |≥|t |}, (5.42)

Let T > 0 and denote by �(T ) =
{
(t, x), |t | ≤ min{|x |, T }

}
. By the fractional chain

rule (2.6),

∥∥F(h)11{|x |≥|t |}
∥∥
W ′((0,T ))

=
∥∥∥F(h̃)11{|x |≥|t |}

∥∥∥
W ′((0,T ))

� ‖h̃‖W ((0,T ))‖h̃‖
4

N−2
S(�(T )). (5.43)

By the inequality
∣∣
∣∣F (y + h)− F(y)− F(h)− N + 2

N − 2
|y| 4

N−2 h

∣∣
∣∣ � |y| |h| N+1

N−2 , (5.44)

we obtain

|N (h)| � W
1

N−2 |h| N+1
N−2 .

Furthermore,
∥∥∥11�(T )W

1
N−2 |h| N+1

N−2
∥∥∥
L1
t L2

≤
∥
∥∥11�(T )W

1
N−2

∥
∥∥
L2
t L∞x

∥
∥∥11�(T )|h| N+1

N−2
∥
∥∥
L2
t,x

� ‖h̃‖
N+1
N−2
S(�(T ),

where we have used that sinceW
1

N−2 � 1
1+|x | ,W

1
N−2 11{|x |≥t} is in L2

t

(
R, L∞x (RN )

)
. We

let hL(t) be the solution of

∂2t hL + LWhL = 0, �hL�t=0 = (u0, u1)− (W, 0).
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By the perturbation Lemma for the linear wave equation with a potential (Lemma 2.1),
we obtain

∥∥∥h̃ − hL
∥∥∥
S(�T )

� ‖h̃‖
N+1
N−2
S(�T ) + ‖h̃‖

4
N−2
S(�T )‖h̃‖W ((−T,T ).

Using again Strichartz estimates, we deduce

sup
−T≤t≤T

‖�̃h(t)− �hL(t)‖H +
∥∥∥h̃ − hL

∥∥∥
W ((−T,T ))∩S((−T,T ))

� ‖h̃‖
N+1
N−2
S(�T ) + ‖h̃‖

4
N−2
S(�T )‖h̃‖W ((−T,T ). (5.45)

and thus, since ‖hL‖W ((−T,T ))∩S((−T,T )) � δ,

‖h̃‖W ((−T,T ))∩S((−T,T )) � δ.

Going back to (5.45) we obtain

sup
−T≤t≤T

‖�̃h(t)− �hL(t)‖H � δ
N+1
N−2 .

This estimate is uniform in T . Hence

sup
t∈R
‖�̃h(t)− �hL(t)‖H � δ

N+1
N−2 .

Using that u is non-radiative, we deduce

∑

±
lim

t→±∞

∫

{|x |>|t |}
|∇t,xhL(t, x)|2 dx � δ

N+1
N−2 .

By Theorem 1,

‖( f0, f1)‖H =
∥∥�Z⊥( f0, u1)

∥∥H � δ
N+1
N−2 .

Since δ2 ≈ ‖( f0, f1)‖2H + β2, this yields

‖( f0, f1)‖H � β
N+1
N−2 . (5.46)

Expanding the equality E(W, 0) = E(W + f0, β�W + f1), we obtain

β2 � ‖ f0‖2Ḣ1 + ‖ f0‖
2N
N−2
Ḣ1 + ‖ f1‖2L2 ,

which yields

β2 � β
2(N+1)
N−2 .

This proves that β = 0 and by (5.46), that ( f0, f1) = (0, 0). We have proved as
announced that (u0, u1) = (W, 0). ��

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.
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Appendix A: Lorentz Transformation

This appendix concerns the effect of the Lorentz transformations on solutions of (1.1).
If u is a C2 classical solution of (1.1), then by direct computation, u�(t, x) (defined by
(1.4) is also a C2 classical solution of (1.1) on its domain of definition. The Lorentz
tranform of a general finite energy solution of (1.1) (as defined in Definition 5.3 above)
is more difficult to understand. If u is global, the formula (1.4) makes sense, and one
can prove that u� has indeed finite energy and is a solution of (1.1) in the sense of
Definition 5.3 (see e.g. [12, Lemma 6.1]).

If u is not globally defined, the formula (1.4) does not make sense anymore. In this
section we prove however that using the Definition 5.6 of solutions of (1.1) outside wave
cones, we can define the Lorentz transformation of a class of nonglobal solutions, that
include a neighborhood of any global solution.

If � ∈ R
N with |�| < 1, we denote by

c� :=
√

1 + |�|
1− |�| > 1.

Let (t, x) ∈ R
N , and (s, y)given by the change of variable of theLorentz transformation:

(s, y) =
(
t − � · x√
1− �2

,

(
− t√

1− �2
+

1

�2

(
1√

1− �2
− 1

)
� · x

)
� + x

)
.

Then

|x |2 − t2 = |y|2 − s2

and

|s| + |y| ≤ c�(|t | + |x |), |t | + |x | ≤ c�(|s| + |y|).

This can be checked easily, assuming for example that � = (�, 0, . . . , 0), so that

(s, y) =
(

t − �x1√
1− �2

,
x1 − t�√
1− �2

, x2, . . . , xN

)
. (A.1)

Lemma A.1. Let η0 ∈ (0, 1). There exists T > 0with the following property. Let τ ≥ T ,
u bea scattering solutionof (1.1) in {|x | > |t |−τ }with initial data (u0, u1) ∈ Hat t = 0,
and � ∈ R

N with |�| ≤ η0. Then the formula (1.4) makes sense for t ∈ [−c−1� τ, c−1� τ ]
and defines a solution of (1.1) on [−c−1� τ, c−1� τ ] × R

N . Furthermore,

E(�u�(0)) = E(u0, u1)√
1− |�|2 −

1
√
1− |�|2 � · P(u0, u1) (A.2)

P(�u�(0)) = P(u0, u1) +
� · P(u0, u1)

|�|2
(

1
√
1− |�|2 − 1

)

�− E(u0, u1)√
1− |�|2 �. (A.3)
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Lemma A.2. Let η0, τ and u be as in Lemma A.1. There exist constants ε0 > 0 and
C > 0 (depending on u, τ and η0) such that if (v0, v1) ∈ H and

‖(u0, u1)− (v0, v1)‖H < ε0,

then the solution v of (1.1) in {|x | > |t | − τ } with initial data (v0, v1) at t = 0 is
scattering, and, if |�| ≤ η0,

‖�u�(0)− �v�(0)‖H ≤ C ‖(u0, u1)− (v0, v1)‖H .

Remark A.3. Let u be a global solution of (1.1). Then by [14], we can see that for all
A ∈ R,

u11|x |≥|t |+A ∈ L
N+2
N−2

(
R, L

2(N+2)
N−2 (RN )

)
.

Thus Lemma A.1 applies and one can define the Lorentz transform u� (which is global)
of u for any parameter �, with |�| < 1. Furthermore by Lemma A.2, for all η0, there
exists ε0 such that if ‖(u0, u1)− (v0, v1)‖H < ε0 and |�| ≤ η0, then one can define the
Lorentz transform v� of the solution v of (1.1) with initial data (v0, v1).

A.1Lorentz transformof a solution. In this subsectionweprove thefirst part ofLemmaA.1,
i.e. the fact that u�(t) is well-defined for t ∈ [−c�τ, c�τ ]. We assume without loss of
generality

� = (�, 0, . . . , 0).

We recall from [25, Lemma 2.2 and Remark 2.3] the following claim:

Claim A.4. Let η0 ∈ (0, 1), h ∈ L1(R, L2(RN )), (w0, w1) ∈ Ḣ1 × L2, � ∈ R
N with

|�| ≤ η0 and

w(t) = cos(t
√−�)w0 +

sin(t
√−�)√−�

w1 +
∫ t

0

sin
(
(t − s)

√−�
)

√−�
h(s) ds, t ∈ R.

(A.4)

Then (w�, ∂tw�) ∈ C0
(
R, Ḣ1 × L2

)
and there is a constant Cη0 (depending only on

η0) such that

sup
t
‖(w�(t), ∂tw�(t)‖Ḣ1×L2 ≤ Cη0

(‖(w0, w1)‖Ḣ1×L2 + ‖h‖L1(R,L2)

)
.

Step 1. (Smooth compactly-supported initial data)Wefirst assume (u0, u1) ∈
(
C∞0 (RN )

)2
,

and denote by R a positive number such that (u0, u1)(y) = 0 for |y| ≥ R. We denote
by E the exterior of the wave cone:

E :=
{
(s, y) ∈ R× R

N | |y| > |s| − τ
}

,

and E� its image:

E� :=
{(

s + �y1√
1− �2

,
y1 + s�√
1− �2

, y2, . . . , yN

)
, (s, y) ∈ E

}
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=
{
(t, x) ∈ R× R

N
∣∣∣
(

t − �x1√
1− �2

,
x1 − t�√
1− �2

, x2, . . . , xN

)
∈ E

}
.

One can prove

u ∈ C0(E). (A.5)

Indeed, since the nonlinearity F is C2, we have that for all (s0, y0) ∈ E , there exists a
neighborhood J × ω of (s0, y0) in E such that

�u ∈ C0
(
J, (H3 × H2)(ω)

)
,

and (A.5) follows from Sobolev embedding (recall that N ≤ 5). By (A.5) and the
definition of u�,

u� ∈ C0(E�). (A.6)

We next prove that if t satisfies |t | ≤ c−1� τ and x ∈ R
N , then (t, x) ∈ E�. Indeed, letting

(s, y) be as in (A.1), we must prove that (s, y) ∈ E . We have

|y| − |s| = |y|
2 − s2

|y| + |s| = (|x | − |t |) |x | + |t ||y| + |s| ≥ −|t |
|x | + |t |
|y| + |s| ≥ −c

−1
� |τ |

|x | + |t |
|y| + |s| .

Since |x |+|t ||y|+|s| ≤ c�, we deduce (s, y) ∈ E , i.e. (t, x) ∈ E�. Using that 11|y|≥|s|−|τ |u ∈
L

N+2
N−2 (R, L

2(N+2)
N−2 ), we obtain by Claim A.4

�u� ∈ C0
(
[−c−1� τ, c−1� τ ],H

)
. (A.7)

Next, we prove

|t | ≤ c−1� τ, |x | ≥ |t | + R c� �⇒ u�(t, x) = 0

Indeed, the left-hand side of this implication implies

|y| − |s| ≥ |x | + |t ||y| + |s|c� R ≥ R,

and thus u�(t, x) = u(s, y) = 0.

Since u� is compactly supported in the space variable and continuous on
[
− τ

c�
, τ
c�

]
×

R
N , we deduce

u� ∈ L
N+2
N−2

(
[−c−1� τ, c−1� τ ], L 2(N+2)

N−2
)

. (A.8)

Finally it is easy to see, using that u satisfies (1.1) in the distributional sense on E , that
u� satisfies (1.1) in the distributional sense on E�. By Remark 5.4, u� is a solution of
(1.1) on the interval [−c−1� τ, c−1� τ ]. Notice for further use that by a simple change of
variables,

‖u�‖
L

2(N+1)
N−2

(
[−c−1� τ,c−1� τ ]×RN

) � ‖u‖
L

2(N+1)
N−2 (E)

, (A.9)

where the implicit constant depends only on η0.
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Step 2. We no longer assume (u0, u1) ∈
(
C∞0 (RN )

)2
, and prove again that the Lorentz

transform of u is a solution of (1.1) on
[
−c−1� τ, c−1� τ

]
. Let

{(
uk0, u

k
1

)}
k be a sequence

in
(
C∞0 (RN )

)2
such that

lim
k→∞

∥∥
∥
(
uk0, u

k
1)− (u0, u1)

)∥∥
∥H = 0.

Let u be the solution of (1.1) on E = {|x | > |t | − τ } with initial data (u0, u1) at t = 0.
By Definition 5.6, this is the restriction to E of the solution of

∂2t u −�u = |u| 4
N−2 u11E ,

with the same initial data (that we will also denote by u). We let uk the solution of the
same equation with initial data

(
uk0, u

k
1

)
. By the above computations, the value of u�(t)

(respectively uk�(t)) for |t | ≤ c−1� τ depends only on the value of u (respectively uk) on
E . By long-time perturbation theory, we obtain that for large k

∥∥∥uk
∥∥∥
L

2(N+1)
N−2 (R×RN )

≤ 2‖u‖
L

2(N+1)
N−2 (R×RN )

� ‖11Eu‖
L

N+2
N−2

(
R,L

2(N+2)
N−2

) , (A.10)

and

lim
k→∞

∥∥∥u − uk
∥∥∥
L

N+2
N−2

(
R,L

2(N+2)
N−2

) = 0. (A.11)

By the preceding step, uk� is a solution of (1.1) on
[
−c−1� τ, c−1� τ

]
× R

N . Since (A.11)

implies

lim
k→∞

∥∥∥
(
F(uk)− F(u)

)
11E

∥∥∥
L1(R,L2)

= 0,

we deduce from Claim A.4

sup
t∈[−c−1� τ,c−1� τ ]

∥
∥∥�u�(t)− �uk�(t)

∥
∥∥H −→k→∞ 0.

Since by (A.10),

∥∥∥uk�
∥∥∥
L

2(N+1)
N−2

(
[−c−1� τ,c−1� τ ]×RN

)

is uniformly bounded (see (A.9) in the preceding step), we deduce by Remark 5.5 that

u� is a solution of (1.1) on
[
−c−1� τ, c−1� τ

]
.
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A.2 Perturbation. In this subsection we prove Lemma A.2. We use the notations of the
previous subsection. Adapting the standard long-time perturbation theory to the exterior
of wave cones, we obtain that there exists ε0 such that if

‖(v0, v1)− (u0, u1)‖H ≤ ε0,

then the solution v of
{

∂2t v −�v = F(v)11E
�v�t=0 = (v0, v1)

scatters and satisfies

sup
t∈R
‖�u(t)− �v(t)‖H + ‖u − v‖

L
N+2
N−2

(
R,L

2(N+2)
N−2 (RN )

) � C ‖(u0, u1)− (v0, v1)‖H .

As a consequence

∥∥
∥
(
|v| 4

N−2 v − |u| 4
N−2 u

)
11E

∥∥
∥
L1(R,L2)

� ‖11Eu‖
4

N−2
L

N+2
N−2 (R,L

2(N+2)
N−2 )

‖(u0, u1)− (v0, v1)‖H ,

and the conclusion of the Lemma follows from Claim A.4.

A.3 Energy and momentum. It remains to prove the assertion on the energy and the
momentum. This is classical (see e.g. [26]).We give a proof for the sake of completeness.
We will assume

� = (�, 0, . . . , 0)

to simplify notations. Let ζ ∈ R such that

sinh ζ = −�√
1− �2

, cosh ζ = 1√
1− �2

.

As a consequence,

u�(t, x) = u(t cosh ζ + x1 sinh ζ, x1 cosh ζ + t sinh ζ, x2, . . . , xN ). (A.12)

Let Lζu(t, x) be the right-hand side of (A.12). Formally,

Lζ+ξ = Lζ ◦ Lξ , (A.13)

and, by direct computation,

d

dζ
E
(−−→Lζu(0)

)

�ζ=0 = P1
(
(u0, u1)

)
(A.14)

d

dζ
P1

(−−→Lζu(0)
)

�ζ=0 = E
(
(u0, u1)

)
(A.15)

d

dζ
Pj

(−−→Lζu(0)
)

�ζ=0 = 0, j ∈ �2, N�. (A.16)
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where

Pju(t) =
∫

∂t u(t, x)∂x j u(t, x) dx .

Combining (A.13)…(A.16), we deduce

E
(−−→Lζu(0)

)
= cosh ζ E(u0, u1) + sinh ζ P1(u0, u1)

P1
(−−→Lζu(0)

)
= cosh ζ P1(u0, u1) + sinh ζ E(u0, u1)

Pj

(−−→Lζu(0)
)
= Pj ((u0, u1)) , j = �2, N�.

This is exactly (A.2) and (A.3). Tomake these formal computation rigorous,we smoothen
the nonlinearity and the initial data. Let χ ∈ C∞0 (RN ) such that χ(v) = 1 if |v| ≤ 1
and χ(v) = 0 if |v| ≥ 2. For ε > 0, let

Fε(v) =
(
1− χ

(v

ε

))
)χ (εv) |v| 4

N−2 v,

and note that Fε ∈ C∞0
(
R

N
)
. Let

(
u0,ε, u1,ε

) ∈ (C∞0 (RN )
)2

such that

lim
ε→0

∥∥(u0,ε, u1,ε)− (u0, u1)
∥∥H = 0.

Let uε be the solution of
{

∂2t uε −�uε = |uε| 4
N−2 uε,

−→u ε�t=0 = (u0,ε, u1,ε) ∈ H.
(A.17)

Note that uε is global, C∞, and that for all t

supp �uε(t) ⊂ {|x | ≤ |t | + Rε},
where Rε is such that supp �uε(0) ⊂ {|x | ≤ Rε}. Let

fε(v) =
∫ v

0
Fε(w) dw.

The energy

Eε(uε) = 1

2

∫
|∇uε|2 + 1

2

∫
(∂t uε)

2 −
∫

fε(uε)

and the momentum

P(uε) =
∫
∇uε∂t uε

are independent of time. The Lorentz transformation of uε,Lζuε are solutions of (A.17)

with
(
C∞0 (RN )

)2
initial data. Explicit computations (which are rigorous in this context)

prove that

Eε

(−−→Lζuε(0)
)
= cosh ζ Eε(u0,ε, u1,ε) + sinh ζ P1(u0,ε, u1,ε)
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P1
(−−→Lζuε(0)

)
= cosh ζ P1(u0,ε, u1,ε) + sinh ζ Eε(u0,ε, u1,ε)

Pj

(−−→Lζuε(0)
)
= Pj

(
(u0,ε, u1,ε

)
, j = �2, N�.

It remains to prove that if |�| ≤ η0, then

lim
ε→0

Eε

(−−→Lζuε(0)
)
= E

(−−→Lζu(0)
)

, lim
ε→0

P
(−−→Lζuε(0)

)
= P

(−−→Lζu(0)
)

. (A.18)

We first prove

lim
ε→0

∥∥∥
−−−−→Lζ (uε)(0)−−−−→Lζ (u)(0)

∥∥∥H = 0. (A.19)

For this, we start by proving

sup
−τ≤t≤τ

‖�u(t)− �uε(t)‖H + ‖(u − uε)11E‖
L

N+2
N−2
t L

2(N+2)
N−2

x

−→
ε→0

0. (A.20)

Denote by F(u) = |u| 4
N−2 u, ψε(u) = (

1− χ
( u

ε

))
χ(εu). Then

∂2t (u − uε)−�(u − uε) = ψε(uε) (F(u)11E − F(uε)) + (1− ψε(uε)) F(u)11E
−−−→
u − uε�t=0 = (u0, u1)− (u0,ε, u1,ε).

As a consequence, for all t0 ≥ 0,

‖(u − uε)11E‖
L

N+2
N−2

(

[0,t0),L
2(N+2)
N−2

x

)

� ‖(F(u)− F(uε))11E‖L1([0,t0),L2
x)

+ ‖(1− ψε(uε))F(u)11E‖L1([0,t0),L2
x)

+
∥
∥(u0, u1)− (u0,ε, u1,ε)

∥
∥H .

We write

(1− ψε(uε)) F(u)11E =
(
11|u−uε |< 1

2 |u| + 11|u−uε |≥ 1
2 |u|

)
(1− ψε(uε)) F(u)11E .

We have

lim
ε→0

11|u−uε |< 1
2 |u| (1− ψε(uε)) F(u)11E = 0 a.e. (A.21)

Indeed, if x is fixed, then

11|u−uε |< 1
2 |u| (1− ψε(uε)) ≤

⎧
⎪⎨

⎪⎩

0 if ε ≤ |uε(x)| ≤ 1
ε

χ
( |u(x)|

2ε

)
if |uε(x)| ≤ ε

(
1− χ

( 3
2ε|u(x)|)) if |uε(x)| ≥ 1

ε
,

where we have used that χ is decreasing. This obviously implies (A.21). As a conse-
quence of (A.21), by the dominated convergence theorem

lim
ε→0

∥∥∥11|u−uε |< 1
2 |u| (1− ψε(uε)) F(u)11E

∥∥∥
L

N+2
N−2
t L

2(N+2)
N−2
= 0.
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On the other hand,

11|u−uε |≥ 1
2 |u| (1− ψε(uε)) F(u) � |u| 4N |u − uε|.

Using Strichartz estimates and the equation satisfied by u − uε we deduce that for all
t0 > 0,

‖(u − uε)11E‖
L

N+2
N−2

(

[0,t0),L
2(N+2)
N−2

x

)

�
∥∥
∥11E |u − uε||u| 4N

∥∥
∥
L1([0,t0),L2

x)
+
∥∥
∥|u − uε|1+ 4

N 11E
∥∥
∥
L1([0,t0),L2

x)
+ o(1), ε→ 0.

Since u11E ∈ L
N+2
N−2 (R, L

2(N+2)
N−2 ), we obtain, combining with the same argument for

negative times,

lim
ε→∞‖(u − uε)11E‖

L
N+2
N−2

(
R,L

2(N+2)
N−2

) = 0.

Going back to the equation satisfied by u− uε and using Strichartz estimates, we obtain
(A.20). By Claim A.4, we deduce (A.19).

In view of (A.19), the following property will imply (A.18):

lim
ε→0

∫
fε
(
Lζ (uε)(0, x)

)
dx = N − 2

2N

∫ ∣∣Lζ (u)(0, x)
∣∣

2N
N−2 dx .

Denote w(x) = Lζ (u)(0, x), wε(x) = Lζ (uε)(0, x), and f (u) = N−2
2N |u|

2N
N−2 . Write

∫
fε (wε(x)) dx −

∫
f (w(x)) dx

=
∫

fε (wε(x)) dx −
∫

fε (w(x)) dx +
∫

fε (w(x)) dx −
∫

f (w(x)) dx .

We have 0 ≤ fε (w) ≤ f (w) and limε→0 fε (w(x)) = f (w(x)) , a.e., which implies

lim
ε→0

∫
fε (w(x)) dx =

∫
f (w(x)) dx,

by the dominated convergence theorem.
On the other hand,

| fε (wε(x))− fε (w(x))| =
∣
∣∣∣∣

∫ wε(x)

w(x)
Fε(σ ) dσ

∣
∣∣∣∣

≤
∣∣∣
∣∣

∫ wε(x)

w(x)
F(σ ) dσ

∣∣∣
∣∣
≤ |F (wε(x)) + F (w(x))| |wε(x)− w(x)|,

where we have used that F is monotonic. By Hölder inequality,
∫
| fε(wε(x))− fε(w(x))| dx

�
(∫
|wε(x)− w(x)| 2N

N−2 dx

) N−2
2N

(
‖wε‖

N+2
N−2
L

2N
N−2

+ ‖w‖
N+2
N−2
L

2N
N−2

)
−→
ε→0

0.

This concludes the proof.
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