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Abstract: By definition, the exterior asymptotic energy of a solution to a wave equation
onR!*N is the sum of the limits as  — =00 of the energy in the the exterior {|x| > |¢|} of
the wave cone. In our previous work Duyckaerts et al. (J Eur Math Soc 14(5):1389-1454,
2012), we have proved that the exterior asymptotic energy of a solution of the linear wave
equation in odd space dimension N is bounded from below by the conserved energy of
the solution. In this article, we study the analogous problem for the linear wave equation
with a potential

N+2Wﬁ )
N-2

2u+Lwu=0, Ly:=—A—

obtained by linearizing the energy critical wave equation at the ground-state solution
W, still in odd space dimension. This equation admits nonzero solutions of the form
A+1tB,where Ly A = Lw B = 0 with vanishing asymptotic exterior energy. We prove
that the exterior energy of a solution of (*) is bounded from below by the energy of
the projection of the initial data on the orthogonal complement of the space of initial
data corresponding to these solutions. This will be used in a subsequent paper to prove
soliton resolution for the energy-critical wave equation with radial data in all odd space
dimensions. We also prove analogous results for the linearization of the energy-critical
wave equation around a Lorentz transform of W, and give applications to the dynamics
of the nonlinear equation close to the ground state in space dimensions 3 and 5.
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1. Introduction
Consider the wave equationon RY, N > 3, with an energy-critical focusing nonlinearity:
02U — Au = |u|"2u, (1.1)
and initial data
Up=0 = (ug, u1) € H, (1.2)
where i == (u, d;u), H := H'(RY) x L2(R"), and H' (RN ) is the usual homogeneous

Sobolev space. The equation is locally well-posed in H (see e.g. [5,25,29]): for any
initial data (uq, u) € H, there exists a unique maximal solution # € C 0(T_, Ty), H)

] 2(N+1) .
withu € L™~ (I x RY) for all intervals I € (T, T}). The energy:

R 1 5 N -2 2N
E(u(t)) = 2 Jon [V xu(t, x)|“dx — N Jan lu(z, x)| V-2 dx

and the momentum
Pu(t)) :/ Vu(t, x)o:u(t, x) dx
RN

of a solution are conserved, where

Vu = (0x;u)1<j<n, Vixu = (0u, Vu).
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The Eq. (1.1) has the following scaling invariance: if u is a solution of (1.1) and A > 0,

then
1 r x
— ==
Ay \AT A

is also a solution. Denote for simplicity H' = H'(RV), L? = L>(RN). For f € H',
g € L? and A > 0, we denote

foy(x) = A,Zvl_lf (;) gnx) = L% <;—C)

A
We let:
T ={0eH\(0) : —A0 =070},
and
W= (1+L>l_g. (1.3)
N(N —2)

Then W € %, and, as a consequence of [20,31], the only radial elements of X are
:I:NLl W (). Note that W is the ground state, i.e. it minimizes the energy 5 [ |V Q| —
A2

2
% f |Q|N7§2 among the elements of Q of X (see [1,34]).
If x, y are two vectors in R¥, we denote by x - y their scalar product and |x| the
Euclidean norm of x. Let u be a function on R x R" and ¢ = |£| < 1. Then the Lorentz
transform of u with parameter ¢ is defined as:

Lou(t,x) = uy(t, x)

t—4-x t 1 1
=u|—, - + — —1)€-x)€+x).
(«/1—52 ( Vi=¢2 €2<¢1—£2 ) ) )
(1.4)
We note that

(02 — A) (Lou) = Ly ((3,2 — A)u) . (1.5)

In particular, if u is a C? solution of (1.1), then Lyu is also a solution of (1.1).
If Q € X, Qg is a traveling wave solution of (1.1). Indeed,

Qu(t,x) = 040, x — tL). (1.6)

The soliton resolution conjecture predicts that every solution # of (1.1) such that T, =
+00, or which is bounded in H as t — T, decomposes asympotically ast — T,,uptoa
term which is negligible in H, as a sum of decoupled solitary waves (modulated by the
transformations of the equation) and a radiation term. The radiation term is a solution
of the linear wave equation if 7, = +oo or a fixed element of H if 7T} < oo.

Various results in this direction were recently proved. The dynamics below the energy
of the ground state was studied in [25], exactly at the energy of the ground state in [16]
and just above this energy in [10,26-28] These works are all in accordance with the
soliton resolution conjecture.
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In [11] the complete resolution was obtained in space dimension 3, for spherically
symmetric initial data. In several articles, a weaker version of this conjecture was proved
for solutions that remain bounded in H, namely that the expansion as a sum of solitary
waves and a radiation term holds for a sequence of times going to the maximal time of
existence (that can be finite or infinite):

e for spherically symmetric solutions: see [33] in any odd space dimension, [6] in
space dimension 4, [22] in space dimension 6.
e without symmetry assumption: see [8] in space dimension 3, 4 or 5.

The proofs of most of these results rely on bounds from below of the energy outside
wave cones, for some classes of solutions of (1.1). These inequalities arise from the
observation that for any solution u ¢ of the free wave equation in odd space dimension:

Oup — Aup =0, (1.7)

with u £ (0) = (ug, u1) € H, one has:
}: ﬁnlt/ naJuFa,xnzdxz‘/|Vum2+u%. (1.8)
+ lx|=]7]
In particular, the only solution u of (1.7) such that

}: lim /ﬂ Vi cu(t, x)|>dx =0 (1.9)
t—+o00 Ix|>|7|
:|: =

is the null solution (see [10]). For even dimension, the quantitative estimate (1.8) fails
for solutions of (1.7), even for radial data (see [7]). However, the fact that the property
(1.9) implies u = 0 is still valid (see [13, Proposition 1]).

It turns out that this property fails for some solutions of the nonlinear Eq. (1.1), but
the study of this issue has been fundamental in the proofs of the results mentioned in the
last paragraph. Of course, since solitary waves travel at velocity < 1, (1.9) holds if u is a
solitary wave, and we conjecture that these solutions are the only ones satisfying (1.9).
This conjecture was proved in [11] in space dimension 3, assuming that the solution is
radial (see Propositions 2.1 and 2.2 there), and is the key ingredient in the proof of the
soliton resolution in that article. The proof is specific to the 3-dimensional radial wave
equation and cannot be generalized to a different dimension.

Note that the knowledge, from the articles cited above, that the soliton resolution
conjecture holds along a sequence of times reduces the proof of the soliton resolution
for all times to the understanding of the dynamics of the equation close to a sum of
solitons, that are decoupled by scaling and space translations. It is important in par-
ticular to understand which solutions of (1.1) satisfy (1.9) in a neighborhood of such
a multi-soliton. In this article, we initiate this program by considering the case of the
neighborhood of the ground state soliton W, proving, when N is odd, an analog of (1.8)
for the linearized equation around W:

32u+ Lyu =0, (1.10)
where Ly is the linearized operator around W:

N+2
N_2W#5, (1.11)

Lw=—-A—
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and more generally for the linearized equation around Wy (see equation (1.13) below).
We also give an application to the nonlinear equation (1.1) proving that in space

dimensions 3 and 5, the only solutions satisfying a slightly stronger statement than

(1.9), in a neighborhood of the solitary waves Wy is a solitary wave (see Corollary 2).
Define:

Z={ZEH1 : LWZ=0}.
Let
N
AW =x-VW + 3—1 w.

Since (1.1) is invariant by scaling and space translation, we have
AWeZ, WeZ, je [1, N],

where [1, N] = {1, ..., N}. Furthermore the following nondegeneracy property of W
is known (see e.g. [32])

Z = span {AW, a,W, jell, N]]}.

Note that for all j € [1, N], 9,;W € L?, and that AW € L* if and only if N > 5.
Define "

Z=(Zx2)NH, (1.12)

which s a finite dimensional subspace of H. Indeed, Z is spanned by (AW, 0), (9, ; W, 0),
(0,9, W) if N = 3 and 4, and by (AW, 0), (0, AW), (9x; W, 0), (0, 8y, W) if N > 5.
Note that if u is a solution of (1.10) with initial data (ug, u1) € Z, then u(t,x) =
uo(x) +tug(x).

Let £ € RY such that [¢| < 1. Linearizing the Eq. (1.1) around W, we obtain the
following generalization of (1.10):

N+2 4
i Wi —o. (1.13)

2
3tu—AM—N_2 ;

Note that the linear potential in (1.13) is now time-dependent. Let us mention that the
global well-posedness of Eq. (1.13) is easy to prove. Indeed, the local well-posedness
can be proved by a fixed point argument relying on the Strichartz inequality recalled in
(2.4) below and on the Holder inequality:

4

< WZN -2

LY(1,L%)

_4
H WeN—z u

llull 2041 ,
LZWIJ)(LL%W*”) LN (IxRY)

. . . . . 2(N+1)
where [ is a bounded interval. By linearity of the equation and the fact that the L 3

norm of Wy(¢) is independent of ¢, the time of existence obtained by this argument is
independent of the initial data and of the initial time, and the global well-posedness
follows. Note however that this does not yield a solution which is uniformly bounded in
the energy norm, but in fact can grow exponentially in this norm.
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Consider the finite dimensional subspace of H
Z¢ = {(Le(o(x) +1v1(x)), & Le(o(x) + 1v1(X))) =0 » (v0, V1) € Z}.
The solution of (1.13) with initial data (uq, u1) € 2y is exactly:
u(t,x) =uog(x —t€)+t® - Vug +uy)(x — tf). (1.14)
Indeed, assume £ = £(1, 0, ..., 0) to fix ideas, so that

t—x1f x1—tL

E[(U(l,)«i)):l)( />, x' = (xp,...,xN).

b 1x
V1 =202 J1 =202
Then
Lg(vo(x) + tvy(x))
xy —tl /> L(x) —tL) (xl—té /> \/7 (xl—tﬁ />
= Jx) — v X )+t =020 | —Y—m0—, ) ).
0(«/1—52 Ji—e '\vice "\Vize

This proves that solutions of (1.13) with initial data in Z, are of the form A(x — t€) +
tB(x — tf). Letting t = 0 in this formula (and its time derivative) we see that ug = A
and u; = —£ - VA + B, which yields (1.14).

Using (1.14), one can check that for these solutions (1.9) holds. The main result
of this article proves that the solutions of (1.13) with initial data in Z, are (at least
in odd space dimensions) the only solutions of (1.13) such that (1.9) holds. If V is a
closed subspace of H, we denote by V- its orthogonal complement in 7 and by 7y the
orthogonal projection on V. Then:

Theorem 1. Assume N > 3 is odd, and let ny € (0, 1). Then there exists a constant
C(N, no) > 0 such that for all (ug, u1) € H, for all £ € RN with €] < no,

2 . )
rapwo.w] = covm Y im [ wwaor, s
+ -

t— =00

where u is the solution of (1.13) with initial data (uo, uy).

Theorem 1 will be used in [15] to prove the soliton resolution in general odd space
dimension, in a radial context, for 7{-bounded solutions.
We will also prove, as a consequence of Theorem 1:

Corollary 2. Assume N € {3, 5}. Let ng € (0, 1). There exists a constant g = &o(ng) >
0_}such that, for any £ € RN with |€| < no, for all (ug, u1) € H such that ||(ug, u1) —
We(0)l < &0, the solution u of (1.1) with initial data (ug, u1) satisfies one of the
following:

e u is a traveling wave, i.e. there exists . > 0, £y € RN with |€g| < 1 and X € RN

such that
(t,x) = ! 1% Lx (1.16)
u(t,x) = -, . .
5 X2 ln T
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o There exists X € RV, |X| < &g such that, when N = 5, for all small Tty > 0, the
solution u of (1.1) is well defined for {|x — X| > |t| — v, t € R} and satisfies:

3" lim f |V, cu(t, )| dx > 0. (1.17)
T 1=>£00 J 1y X|>|t]—1o

For N =3, (1.17) holds for 7o = 0

(See Theorems 5.1 and 5.2 for more precise statements, and Sect. 2 for the definition
of a solution of (1.1) outside a wave cone).

Combining the preceding corollary with the soliton resolution up to a sequence of
times proved in [8], we can also prove

Corollary 3. Assume N € {3, 5}. Let (ug, u1) € H be such that E(ug, u1) < 2E(W, 0).
If the solution u of (1.1) with initial data (ug, uy) is global and is not a traveling wave
then there exists tg > 0, such that (1.17) holds.

Since E(ug, u1) < 2E(W, 0) in Corollary 3, the assumption that u is not a traveling
wave is equivalent to the fact that « is not of the form (1.16).

We believe that Corollaries 2 and Corollaries 3 are also true for all N odd, however
our proof of Corollary 2 cannot be carried out in dimension N > 7 because of a technical
difficulty due to the weaker long-time perturbation theory statement available in these
dimensions. Let us mention however that in large odd dimension, Corollary 3 remains
valid, for radial solutions, as a consequence of [33] and Theorem 1:

Proposition 4. Assume N > 7. Let (uo, u1) € 'H, radial and such that E(ug, uy) <
2E (W, 0). If the solution u of (1.1) with initial data (uo, uy) is global and is not a
stationary solution, then there exists to > 0, such that (1.17) holds with X = 0.

We refer to [33, Theorem 1.4] for the proof of the soliton resolution conjecture for all
times, in the odd-dimensional radial setting, with an assumption similar to E (ug, u1) <
2E(W,0),

We will prove Corollary 3 and Proposition 4 in Sect. 5.5. Let us mention that the
conclusion of Proposition 4 remains valid, in a radial setting, without the assumption
E(ugp,u1) < 2E(W,0). In other words, in odd space dimension, there is no pure radial
multisoliton for Eq. (1.1), in sharp contrast with the completely integrable case. We
will obtain this stronger statement, as a byproduct of our proof of the soliton resolution
conjecture, in our subsequent paper [15].

The analog of Theorem 1, in the case of the free wave equation in odd space dimen-
sions was proved by the authors in [10], using the explicit representation formula for
the free wave equation. Note that in the free case, no orthogonal projection is needed,
since the analog of Z, is {(0, 0)}. To treat the linearized operator, we first consider
|x| > Ro, Ro large, so as to treat the linearized operator as a perturbation of the free one.
This makes it necessary to use the version of the “channel” property introduced by the
authors in [9, Lemma 4.2], extended to N = 5 in [24, Proposition 4.1] and to general
odd N in [23]. Here a projection is needed, and it is the orthogonal projection to the
orthogonal complement of specific subspaces, whose dimension increases with N (see
Theorem 4.6 below). For the non-radial free case, more exceptional subspaces can be
seen to arise, each one for each spherical harmonic degree. The main challenge that we
need to overcome, to establish Theorem 1, is to eliminate the redundant counterexamples
that arise from the use of [23], as we take Rg — 0.
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The outline of the paper is as follows. After some preliminaries (Sect. 2), we reduce
in Sect. 3 the proof of Theorem 1 to the proof of a uniqueness result on solutions of the
linearized Eq. (1.10) (Theorem 3.1), which is a weaker, qualitative version of Theorem 1.
This section relies on the Lorentz transformation and the profile decomposition of [2].
In Sect. 4, we prove the uniqueness Theorem 3.1. Projecting on spherical harmonics,
it is sufficient to study a family of radial wave equations with a potential in odd space
dimensions, which we do using the lower energy bound for the free wave equation
obtained in [23]. In Sect. 5 we prove two rigidity theorems, which imply Corollary 2,
for solutions of the nonlinear wave equation in space dimension N = 3 and N = 5. The
main tool is Theorem 1. We also prove Corollary 3 and Proposition 4, using the soliton
resolution for a sequence of times (from [8,33]) and, in the nonradial case, Theorem 1.
In Appendix A we recall some useful facts about the Lorentz transformation for Eq.

(1.1).

2. Preliminaries

2.1. Duhamel formulation and Strichartz estimates. We denote by St (¢) the linear wave
evolution:

sin(t+/—A)
Sr(t)(ug, u1) = cos(tv/—ANug + ———uq, 2.1
L(#)(uo, ur) (v —=A)uo N 1 (2.1
so that the general solution (in the Duhamel sense) of
32 — Au =
E t u=f 2.2)
Up=y = (uo, u1) € H,
where [ is an interval and 79 € [ is
t
u(t) = Sp(t —to)(uo, uy) +/ Sp(t —5)(0, f(s))ds. (2.3)
fo

We note that by finite speed of propagation, for any xo € RY and any R > 0, the
restriction of u to {(t, x)el xRN ¢ |x —xo| > |t — o] + R} depends only on the
restriction of f to {(t, x)el xRN ¢ |x —xo| > |t —tol + R} and the restriction of
(up, up) to {x eRN ¢ |x —xo| > R}.

We need to introduce function spaces adapted to the Cauchy theory in large space

2(N+1)
dimension. Define S(/) := L™¥=2 (I x R") and:

2(N+1) .1 2N+D L1
W(I) := L~ <I, B3y 2(RN)) , W) =L~ <I, B3y 2(]RN))
N—T * ;

N+3

1
(where B;’z are the usual Besov spaces (see e.g. [3, §6.3])). We have the following
Strichartz estimate: if u satisfies (2.3) on I, with f = f] + f>, then

+sup [[u (0|3 + llull 20v+1) + lullw
IL ®Y))  (eR L™N=2" (IxRN) 0

SNE@) ey + I fillweeny + 12l L, z2)- (2.4)

Tiv<ey llull ne2 ,  20v42)
LN=2 ( N—2
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+ 2N+2)
Note that the bound of the LH (I , L1 (RN )) norm is only available in space di-
mension N < 6. We will use it for the proof of Corollary 2 in space dimensions 3 and
5.

We will also need the fact that the spaces W/(I) can be localized in the exterior of
wave cones. Let, for7 > 0, R > 0,

Fr(T) :={(t,x) : 0<t<T, |t| > |x|+R}.

Then there is a constant C > 0 (independent of 7" and R) such that (see [5], [13, Lemma
2.3])

Itrey f oy < € 1w - 2.5)

Furthermore we have the following chain rule for fractional derivatives ([13, Remark
2.4)):

4
IMroer) F @) llwro.7y) < Cllrgmul o,y 1l wio,my)- (2.6)

2.2. Profile decomposition. Let {(uo,,,, uin) }n be a bounded sequence of radial func-
tions in H. We say that it admits a profile decomposition if for all j > 1, there exist a

solution U 1{" to the free wave equation with initial data in H and sequences of parameters
R jadn € 0,00, {tj}n € RN, {xjn}n € ®™)" such that

Ajn N An . [tjn — trnl N [Xjn — Xic,nl _

| #k — lim +00, 2.7
i# n—00 Ak » )&j,n Aj,n )\j,n @7)
and, denoting
; 1 i (t—tin X —Xj .
Up,(t.1) = —— U;( I, f) jz1 (2.8)
32 Jin Jin
J.n
J .
w) (1) = SL(O) o, urn) — Y U] (1), (2.9)
j=1
one has
lim limsup lw; | 20vn =0. (2.10)
J—>00 pn—o0o L N=2 (RN+l)

We recall (see [2,4]) that any bounded sequence in H has a subsequence that admits a
profile decomposition.

2.3. Wave equation with potential outside a wave cone. If R > 0 and (ug, u1) € H, we
will denote
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(a0, 1) I3y ) =/| R(|Vuo(x>|2+u%(x>>dx.

Lemma 2.1. Let N > 3 and M € (0, 00). There exists Cpy > 0 such that for all R > 0,

2(N+1)

forall Ve LS (R, L5 (RY)) with

loc

||n{|x>R+t|}V||L2%V:J)( A ) < <M, @.11)
for all solutions u of
u— Au+Vu=fi+ fr, iiy=o= (uo,ur) € H(R), (2.12)
where Wyjx>r+i} f1 € W (R), Ljjx|>repiy f2 € L (R, L2(RN)), one has:

(v <6) Huﬂ{|x>R+|z|}HLg‘+22(R’Lw>

e rm | 2gep o 59P 1ol e Vi@

<Cu (Il(uo, uD) 1wy + | Ly ey 11| wi®) t |5 R0y f2 ||L1(R’Lz)) .
(2.13)

Proof. Let
A = (w0, ) 3Ry + || Wgix)> Re1e) 1] w® T | 0115 Rete1y 2 ||L1(R,L2) .
By Strichartz inequality, for all T > 0,

||11{\XI>R+|t|}M|| 2v+1)

2 (0.71xRN) ~ ”]l{lx|>R+|t\}Vu||L1((0’T)’L2) +A.

Using Holder inequality in the space variable, we deduce

” ]1{|x|>R+‘t|}uH 2(ﬂf([o T] XRN)

T
< A+/0 ”]1{|x|>R+|t\}VHLM3L1) HH{IXI>R+IH}“”L% dt,

and thus, using a Gronwall type inequality (Lemma 8.1 of [17]) we obtain

||n{lx\>R+|t| ”” 204D 2 (0.71E) < CyA.

Using Strichartz and Holder’s inequalities again we deduce the rest of (2.13). O

As a consequence of Lemma 2.1, one can obtain an asymptotic formula, outside a
wave cone, for solutions of the wave Eq. (2.12). For simplicity, we restrict ourselves to
the linearized Eq. (1.13). However we remark for further use that the same result holds
when W, is replaced by any solitary wave Qy in (1.13).
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Corollary 2.2. Assume N > 3. Then for all £ € RN such that |£| < 1, there exists a
bounded linear map

®:H—> <L2([O, +00) X SN_1)>2
(u07 M]) [ (H+7 H*)

such that, denoting by u the solution of (1.13) with initial data (ugp, u1) att = 0, we

have
o0
lim
t—+o0 It] SN—1

o0 N-1 2
lim / / ‘rTa,u(t,rQ):FHi(r—|t|,€)‘ do(0)dr =0
i Jsv-

t—=+o00

_ 2
P e, r0) — Ho(r — 1], 9)‘ do (@) dr =0

1
lim |Pu(t, X))* + — |u(t, x)|>dx = 0.

1=£00 Jijz 1) lx|?

If one fixes ng € (0, 1), the operator norm of V is bounded uniformly with respect to £
such that €] < no.

We note that a small variant of the proof shows the existence of a linear map W :
(o, u1) — G+ € Ly (R x SV) such that, forall A € R,

loc

o0 N-1 2
lim / /N | ‘rTaru(t,rG) —Gi(r — |r|,9)’ do ) dr =0
ltl+A JSN-

t—=+o00

t—+o00

o0 N-1 2
lim /| A/SN l)rTatu(t,rG):FGi(r—|t|,9)’ do(0)dr =0
1+ -

. 2, | 2
lim |[Jut, x)|”+ —=u(t,x)|"dx =0.

1=%£00 14> |1+A |x|2

By Corollary 2.2, the restriction of G+ to [0, +00) X sh-1 belongs to L2([O, +00) X
SN’l). However, G is not, in general, an element of L2(R X SN’l), as shows the
example of the solution u(z, r) = ¢®')(x), where —w?isthe negative eigenvalue of Ly,
and )(x) the corresponding eigenfunction. In this case it follows from the asymptotics
of Y (see [30], [12, Proposition 3.9]) that G4+(n,0) = e~ "V (0) for some function
Ve L2(SNH\{0} and G_ = 0.

Proof of Corollary 2.2. We focus on the case t — +00 and the construction of H,
to lighten notations. It is known (see e.g. [18,19] and [14, Appendix B]) that for all
(uo, u1) € H, there exists G, € L>(R x S¥~1) such that, denoting by u r the solution
of the free wave equation with initial data (ug, 1) we have

o0 N-1 2
lim / / )rTaruF(z,re)—G+(r—|r|,9)’ d0dr =0
0 SN—l

t—>+00
1

o0
lim / /
—>+00 0 SN—]
lim [Jurt, )* + —lup(t, x)|*dx =0,
N

t—>+00 Jp |x]2

_ 2
P dup(t, r0) — Gao(r — |1, 9)] dodr =0
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and that (ug, u1) — G+ is a one to one isometry from H to LY(R x SN-1y,
To prove the corollary, it is thus sufficient to construct a bounded linear operator

d:H—->H
(ug, u1) = (g, 1),
such that, if &1 is the solution of the free wave equation (1.7) with initial data (g, i1),

and u the solution of (3.15) with initial data (1o, u1), one has

lim |V, it (2, x) — Vi u(t, x)| dx = 0.

1700 Jx|>r|

By Lemma 2.1, there exists C > 0 (depending only on n¢) such that for all (u¢, u1) € H,
one has

[ Wtz 2w (Orsoapey = 01Dt (2.14)

We define u as the solution of

02 — il = N2y |We| 722
Uu—Ail = —— > —2u
1 N — o xizlie
=0 = (uo, u1).
By finite speed of propagation
x| >t >0= u(t,x) =u(,x). (2.15)

Furthermore, letting

. too N+2 4
(g, 1) = (”0»“])"‘/ Sp(=) | 0, ——= M)z sy | Wel V=2 u(s) | ds,
0 N_2
and
up = Sp(t) (i, uy),
we see that
lim 5F(t)—zi(t)” —0. (2.16)
—00 H
Indeed,

. +oo N+2 4
ur(t) = SL(t)(uo,u1)+/O St =)\ 0. T Dxizisn [Wel 72 uls) | ds
. +oo N+2 4
=u(r) +/ SLt =)\ 0, 5 Nixizisn IWel W2 uls) | ds,
) Z

which proves (2.16). Combining (2.15) and (2.16), we have proved the corollary. O
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3. Reduction to a Uniqueness Theorem

In this section we reduce the proof of Theorem 1 to the following uniqueness theorem:

Theorem 3.1. Assume N > 3 is odd. For any solution u of (1.10) with initial data
(uo, u1) € M, if

Z lim / |V; cu(t, x)|>dx =0, (3.1)
T 170 x> 1))

then (ug, uy) € 2.

Note that Theorem 3.1 concerns the linearized equation (1.10) around W and not the
more general linearized equation (1.13) around the Lorentz transform of W.

The proof is divided into two steps. In Sect. 3.1, we use the Lorentz transformation
to reduce the proof of Theorem 1 to the case £ = 0, i.e. to a statement on the linearized
equation (1.10). In Sect. 3.2, we prove, using profile decomposition, that Theorem 3.1
implies Theorem 1.

3.1. Lorentz transformation. In this subsection we prove that the following theorem
implies Theorem 1:

Theorem 3.2. Assume N > 3 is odd. Then there exists a constant C > 0 such that for
all (uo, u1) € H,

1
E/IVMO(X)|2+(M1(X))2dX < llwz o, up)|l?

+ lim/ \Vicu(t, x)>,  (3.2)
x> ]

t—=+o00
+

where u is the solution of (1.10) with initial data (uo, uy).

We first need a trace property related to the Lorentz transformation. Let £ € R" with
|| < 1. Define the map 7¢ as follows. If (uo, u1) € (C§° (]RN))2 and u is the solution

of (1.10) with initial data (uq, u1), then
To(uo, u1) = (Log(u), 8 Lo)) =0 -
Here Lyu is the Lorentz transform of u, defined in (1.4). Note that
2 2
T : (C3° RV )) > (ch RV )) .

Lemma 3.3. The map Ty can be extended to a bounded linear isomorphism from H to
‘H. Furthermore, for all no € (0, 1), there exists a constant C > 0 such that for all
(ug, u1) € H, forall £ RN with |€] < no,

1
Pl I Z¢ (uo, u)llpg = (o, ull = C 11 Zg(uo, u1)lly - (3.3)
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Proof. In all of the proof we fix 19 € (0, 1) and £ € RY with |£| < 1. The letter C will
denote a constant, that may change from line to line, depends on 719 but not on £. We
will assume without loss of generality that

£=1¢(1,0,...,0).

Step 1. (Left-hand bound) In this step we assume (ug, u1) € Cgo (RV) and prove the
left-hand inequality in (3.3). We let & be the solution of

N +2

N =2
=0 = (uo, ut).

2~ ~ _4
oju — Au = WA= x|z o)y

By finite speed of propagation, u(¢, x) = @(t, x) for |x| > |t|. Denoting x" = (x2, ...,
xnN) we have

1 V4
To(uo, ur)(x) = (H (Ye), ﬁazu (Ye) — ﬁaxlu (Yz)> ,

2 2
where Y, = (J%, \/1"17,)/). Since <Jﬁ7> +(x)2 > ( ?ﬂez) , we deduce
To(uo, ur) = (Lout, 9 Loit) 1 -

We recall Lemma 2.2 of [25]: if Btzu — Au = f, then

| (Lo, i Le@))=ol4, = € (||(uo, wp)llp + ||f||L;L;) ,

where the constant C > 0 depends only on 7ng. Note that in [25], the lemma is stated
with no = 4—1‘, but that exactly the same proof works for any ng € (0, 1).
‘We thus obtain:

4
1Z¢ (o, u)llyy < Cll(ug, up)llyy +C Hll{|x|>\t|}WN*2M’

LiLy

_4
< CllGuo 4Dl + € | Ujags iy W

awved 2vah x> eyuell 20vn
L N+4 3 L N-2
t X 1x

L

Using that by Lemma 2.1

Mxsepill 2oven = x> pepull 20ven < Cli(uo, up) i,
L N-=-2 N=-2

t.x tx

we deduce

1 Z¢ (o, un)llz¢ = C ll(uo, un)lly

which concludes this step.
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Step 2. (Right-hand inequality) Note that by the first step, 7, extends to a bounded
linear operator from H to . In this step we construct the inverse 7y of 7, and prove the
right-hand inequality in (3.3). We define 7y as follows.

Let (v, v1) € (CPRY ))2, and consider the solution v of

4
ofv— Av= W, (3.4)

V=0 = (vo, v1).

Then ﬁ(vo, V) = (E,g(v), H,E,g(v)) 1=0" By the same argument as in Step 1,

1Z¢(vo. vD)ll# < C ll(wo, v1)lp¢ - (3.5)

Let (uo, u1) € (CP@RN ))2, and denote by u the solution of (1.10) with initial data
(ug, u1), and by v = Lgu. Then v is the solution of (3.4) with initial data 7y (ug, u1),
which shows that

To(vo, v1) = (L_gLou. 8 L_¢Lou) =0 = (o, u1).
Since v = Lyu, we have proved
To 0 Te(wo. uy) = (o, uy).

Using (3.5) and a density argument, we see that ’Z~'g can be extended to a bounded linear
map from H to H that satisfies 7y o 7y = Idpy. The right-hand side inequality in (3.3)
follows immediately. O

We next prove that Theorem 3.2 implies Theorem 1.
Assume Theorem 3.2. We fix in all the proof 9 € (0, 1), £ such that |[£] < 1. As
before C > 0 denotes a constant that might depend on 7o but not on £.

Step 1 (Lorentz transformation). In this step we prove that there exists a projection Py
on H, whose rank is exactly the dimension of Z,, and such that for all (ug, u;) € H,
the solution u of (1.13) satisfies

1 2 2 2
E/IVMO(X)I (i ()2 dx < [ PeCug, up)

+ lim/ IVicu(t, x)>.  (3.6)
zi:f—’i"o =

Using a density argument, it is sufficient to prove (3.6) for (ug, u1) € (C§°(RY ))2.
Assuming (without loss of generality) that £ = (¢, 0, ..., 0), and letting

U(tyx)Z(ﬁzu)(t,x):u< r+éx x1+ud /)’

, , X
V1—=102 J1-2¢2

we see that v satisfies the Eq. (1.10). By Theorem 3.2, we obtain

. 1
Iz (o, v1) 17, + Y lim / IVicv(t, )P dx = =i, vl G.7)
+ [x[>r]

t—=+00
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We have || (uo, u1)[13, = [ T¢(vo. v1)|3, and thus, by Lemma 3.3,

1o, un)li3; < CllCvo, vi) 13- (3.8)

Lemma 3.3 also implies

2 2
Iz (o, )l = |7z 0 7 wo.un)| = €| Tromz o T o),
(3.9

Note that Py := Tyomrz o ’]?1 is a projection of rank dim Z. In view of (3.8) and (3.9),
we are left with proving that L,, > L,, where

L, := li \Y 2
‘ Zi:t_)lg]oo/xblt' patt(t, %) dx,

and similarly for L,. Note that L, and L, exist by Corollary 2.2.
Let C(T, £) = {(s,y) eR™N . |y| > |s|and — T < S=80 < T} By the change

N
of variable
t+0x)  xy+tl s—=Lyt y1—st
(s,y) = , X, (@ x) = . Y
V1 =02 1 -2 V1 =02 J1—2¢2
we obtain
+T
L, = lim —/ / [V: xv(t, x)l dx dt
T—oo T lx|>1]
1+£2
= lim —// [ ; (asu)2+(8y1u)2)
T—oo T JJory L1 —4
47
g Oy + (Byru) ] dsdy. (3.10)
Hence

L, < —11m sup// [Vs,yu(s, y)| dsdy.
C(T,

T—+00

Since (ug, uy) € (C(C)>o (RN ))2, we know (using finite speed of propagation) thatu(s, y) =
0 for |y| > s + K,,, where K, is a constant depending on u. Thus, in C(7', £), we have

Is| < TV1—02+2L)y| <TvV1—€2+10s|+LK,.
Hence (1 — £)|s| < T+/1 — £2 + £K,,, which implies

1+¢
_gK”’ co = ., > 1

Is| < ceT + 1

Asa consequence,

C CgT+|7eK
L, < —limsup/ / Vs, yu(s, y)|*dyds
[yI=1s]

T—+00 J—cyT—1=Ku
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ceT
= —11msup/ / |Vs.ytt(s, y)|*dyds < CL,. (3.11)
=ls

T—+00 ceT
Combining with (3.8) and (3.9), we deduce (3.6).

Step 2 (Conclusion of the proof). We conclude the proof using elementary linear algebra.
Recalling that

(20,21) € Z2¢ = lim Vix2(t, x)] dx =0, (3.12)

=400 Jix= |
we obtain with (3.6) that

(z0,21) € Z¢ = C || Pe(z0. 20113, = lI(z0, 20113 - (3.13)

Since the dimension of Z; and the rank of P, are equal, we deduce that the restriction
of Py to Zy is an isomorphism between Z, and the image of Py.
Let (g, u1) € H. Let (z0, z1) be the only element of Z, such that

Py(z0, 21) = Pg(ug, uy),

and let (wq, wy) = (ug, u1) — (2o, z1), which is in the kernel of Py. Let w be the solution
of (1.13) with initial data (wg, wy). Then by (3.6),

lwo. w2, < € hm/ IV, aw(t, )2 dx
[x]>¢]

t—=+o00
+

<CY_ lim / |V, cu(t, x)|* dx, (3.14)
x> 1]

t—=+00
+

where we have used (3.12) to obtain the second line.
Since ”Z¢ (ug,uy) = 7TZVLV (wop, wy), we deduce from (3.14):
£ L

2

Tz (o u))| <C lim / |V, cu(t, x)|* dx,
Ve |x|>[t

H T t—=+00
which concludes the proof of Theorem 1.
3.2. Reduction to a qualitative statement. In this subsection, we prove that Theorem 3.1

implies Theorem 3.2 (and thus, according to the preceding subsection, Theorem 1). The
argument is quite general and works around any stationary solution. We will thus fix

. 4
Q € H' such that —AQ = |Q|¥-2 Q and consider the linearized equation
3u+ Lou =0, (3.15)

where Ly := —A — N+2 =310 e . We recall (see [11]) that Q is of class C? and

C
3Co >0, Vx e RV, Q)| < T%H. (3.16)
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Proposition 3.4. Assume that N > 3 is odd. Let A be a finite dimensional subspace
of H, and A+ the orthogonal complement of A in H. We assume that the following
implication is true:

(o, u1) € A and ) lim / |V cu(t, x)> =0
T x| 1]

t—+o0o

= (uo, u1) = (0,0). (3.17)

Then there exists a constant C > 0 such that for all (ug, u1) € 'H,

/ Vo ()1 + (1 (x))? dx

/ |V cu(t, x)|% (3.18)
x> ]

o0

< CllwaCuo, un)lz; +C Y lim
+

where u is the solution of (1.10) with initial data (uo, u1) € 'H.

Remark 3.5. Assume that Theorem 3.1 holds. Then (3.17) holds and so, by Proposi-
tion 3.4, (3.18) holds with Q = W and A = Z. We claim that the conclusion of
Theorem 3.2 is true. Indeed, let (1, u1) € H. Let w be the solution of (1.10) with initial
data 7w =z (1g, u1). We have

lim |V;5xw(t,x)|2dx =0.
t—+o0 ‘X|>|I‘

Using (3.18) with A = Z, we obtain, with w the solution of (1.10) with data Tzl (ug, uy),
sothatu = w + w,

|75 o un |3, < € lim/ IV, i (t, )| dx
Ixl> Il

t—+o00
+

—C lim/ |V cu(t, x)|* dx,

which yields the conclusion of Theorem 3.2.

We now turn to the proof of Proposition 3.4.
We recall the following equirepartition of the energy outside the wave cone for the
free wave equation (1.7) (see [10]).

Theorem 3.6. Assume that N > 3 is odd. Let ur be a solution of (1.7) with initial data
(ug, uy) att = 0. Then

lim / |V; cup(t, X)) dx =/|Vu0(x)|2+u1(x)2dx.
NEl

t—+o00
+

A key ingredient of the proof of Proposition 3.4 is the following lemma:
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Lemma 3.7. Let {1, }, be a sequence of solutions of (3.15), with initial data
ﬁn [t=0 = (uo,n, ul,n) eH,
such that

(u(),m Ml,n) ——0inH.
n—00

Let ur , be the solution of the free wave equation (1.7) with initial data

UF =0 = (o, u1,,) € H.

Then
lim (sup/ [Vix(un(t,x) —ur,(t, x))|dx> =0. (3.19)
700 \reR x|zt
Proof.
Step 1 (Convergence of the potential term to 0). Let
_4
n = Hﬂ{\xehulQlN—zumn MR
We first prove
lim &, = 0. (3.20)
n—od

Using the profile decomposition recalled in Sect. 2.2, it is sufficient to prove (3.20)
assuming one of the following

lim Hup,n “ v+ =0 3.21)
n—00 Lt.ﬁ'v72
or
1 t—t —
Upp = — ]UF< n 2t x”) (3.22)
)‘Zi )m )\n
where UF is a finite energy solution of the free wave equation (1.7) and
+ 1
lim Pl 1 — oo (3.23)
n—00 An An

Indeed, since by the assumptions of the lemma {(u¢ ,, #1,,)}n converges weakly to O in
‘H, there is no nonzero profile U ; in the profile decomposition of {(u¢ ., u1.4)}n such

that the corresponding sequence of parameters (M, 6], x)), satisfies

J J
. |22 | + |73 | 1 j
limsup ———— + — + A; < oo.
n— 00 )JL )Jl

Translating Ur in time and space and extracting subsequences if necessary, we can
assume without loss of generality:

||
An

t
lim — € {—00,0,00}, lim A, € {0, 1,00} and lim € {0, oo}. (3.24)
n—o00 n—oo

n—0o00 A,
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Using (3.16), we have

2N+1)  2(N+1)

4
OVl >y € L, ML (3.25)

By Holder’s inequality,

4
en < Hﬂ{lx\z|z|}|Q|N‘2 ESINTIVRT 1770 TV

LN L3 LN
t X X

This proves that (3.21) implies (3.20). Next, we assume (3.22) and (3.23). By Strichartz

2(N+1)
estimate, Ur € L ,’1}'*2 . By Holder inequality and (3.25), we see that the map

_4
U= Dozl IF2U

2(N+1)
is continuous from Lt”;_z to Lt1 L%. By density, we deduce that to prove (3.20), it is
sufficient to check that

: _4 1 t—1t, X —Xxy,
N-2 _
im0 | Q) ¥ U( o h 0 (3.26)
b LU(R,L2)
whenever U € CSO(RHN)- For R > 1, we let
1 t—t 1 _
Anr = (I’X)GRXRN,—SMSR,_SV xn|§R .

’ R )‘n R )‘n

Note that by (3.23), (3.24), at fixed R, for almost every (¢, x) in R x RN,

lim 14, .(¢,x) =0. (3.27)
n—o0 ’
Denoting by
1 t—1t, Xx—X
Un(tax)z N U( na n>7
)\Z 1 )\n )Ln
we see that

_4
” Wy QIV=2 Uy

LiL

_4_
= Hﬂ{lx\znnﬂAn,RlQlN*Z Un

4
N-=-2
ot Hﬂ{|x|z|t\}ﬂcAn,RIQl Un Py

We have

_4
H11{|x\z\t|}11An.RIQIN—2Un L2

AN+ 2N+D)
JCE R S

4
< Unll 20v+n) HH{|x\zt}|QN’211An_R
L N-2

tx

which goes to 0 as n goes to infinity by dominated convergence and (3.27). Furthermore,
forlarge R, ¢y, Uy = Osince U is compactly supported. This concludes the proof of
(3.20). '
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Step 2. (End of the proof) We let i1,, be the solution of
2~ - N + 2 4
o up — Auy — mﬂ{\xlzltMQM’zun =0 (3.28)

with the same initial data as u,, at t+ = 0. By finite speed of propagation,
x| > [t] = un(t, x) = un(t, x),

and it is sufficient to prove (3.19) with #,, instead of u,,. Let w, = ur , — i,. Then

_4 _4
{ o — A)u?é =O)—,1vv—i2211“x|>t|}|Q|N2uF,n + N3 W= Q172 wn (399
Wy Fl:o = ) .

Hence forall T > 0,

_4_
[tz 20w S en+ HIQI =2 1] 1)) Wi

N=2 ([0,T]1xRN) L1([0,T1,L2)

T 4
§8n+/ HIQIN*ZH{\x|>|z\}
0

’ 2N+ H]l{\x|>|,‘}u)n(t)” an+y dt.
103 LN
X X

Using a Gronwall type inequality (see e.g. Lemma 8.1 in [17]) and (3.25), we obtain
that forall T > 0,

< CQ{;‘,,,

” x> (e wn ||L2%v7+21> ([0, TIxRN)

where C depends only on || Il{\x|>|,‘}Q|| AN+D 2D and ¢, goes to 0 as n goes to
Ly 3

infinity according to Step 1. The arbltrarmess of T > 0 and the same argument for
T < 0imply
”11{\x|>|t\}wn” AN+ <3Cgqén.

Z (R xRY)

Going back to the Eq. (3.29) and using Strichartz estimates again, we deduce

sup lwn ()l S en —> 0,
teR n—00

which concludes the proof of Lemma 3.7. O

Proof of Proposition 3.4. We assume (3.17) and prove (3.18) by contradiction, assuming
that there is a sequence {u,}, of solutions of (3.15) with initial data (u¢ ,, u1,,) such
that

[ Gons urn) |5, =1 (3.30)
A (IIm(uo,n, w3+ ;Aii“oo /|x|>m |v,,xun(r,x)|2) =0. (331)

Extracting subsequences, we assume that (ug ,, 11 ,) has a weak limit (ug, u1) in H as
n — oo. We distinguish between two cases.
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Case 1. We first consider the case where (1o, u1) = (0, 0). Let ur , be the solution of
the free wave equation (1.7) with the same initial data as u,, at + = 0. Then

i Fn )7 =1

and, by (3.30), (3.31) and Lemma 3.7,

lim lim/ |V, xttpn(t, x)|>dx | = 0.
n—>oo \ t—=+oo x> ] ’ ’

This contradicts the equirepartition of the energy (Theorem 3.6) above.

Case 2. Wenextassume that (ug, 1) # (0, 0). Using the weak convergence of (u¢ ., u1.,)
to (ug, u1), we obtain

(o, u1) € A*. (3.32)

We claim

t—=+00

Z lim / |V; cu(t, x)|* dx = 0. (3.33)
T Jx]> 1]

In view of (3.32), (3.33) and since (uq, u1) is nonzero we would obtain a contradiction
from (3.17). To conclude the proof of (3.18), we are thus reduced to proving (3.33).

For all n, we denote by H , the asymptotic states given by Corollary 2.2 (or rather
its analog for the Eq. (3.15)), corresponding to the solution u, of (3.15). By (3.31),
=0.

Jim [ e |20, 400y e5%1)

Using that the linear map ® defined in the corollary is continuous
2 N—1 2
H — (L2(10, +00) x sV

for the strong topologies of these spaces, and thus also for the weak topologies, we
obtain

Hy, — Hy

n—o0

weakly in L2([0, +00) x SV~1). As a consequence, H. = 0. This means exactly that
(3.33) holds, concluding the proof of (3.18). O

4. Proof of the Uniqueness Theorem

In this Section, we prove the uniqueness Theorem 3.1. We will start, in Sect. 4.1 by
projecting the Eq. (1.10) on spherical harmonics, which reduces the proof to the proof of
a similar uniqueness result for a family of radial wave equations in odd space dimensions
D > N. The next four subsections are dedicated to the proof of this result.
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4.1. Reduction to a radial problem. Recall that the eigenfunctions of the Laplace-
Beltrami operator on SV ! are of the form ®(6), where ® is a homogeneous harmonic
polynomial in the variables (xi, ..., x,). If ® is such a polynomial and v € N is its
degree, then —Agnv—1u = v(v + N — 2)u. Consider a Hilbert basis (®y)icy of the
Laplace-Beltrami operator on S N=1 and let (v)ken be the sequence of natural integers,
so that foreach k ¢ N

—Agn-1 P = v (g + N — 2) Dy
Let u be a solution of (1.10) such that (3.1) holds We let, fort € R and r > 0,

up(t,r)y = / O, (Q)u(t,rd)do ().
SN—]

We will identify the function u with the corresponding radial function on R". We have
iix € CO(R, H)

and

ve(vg + N —2) N+2 4
P Mk+N_2WN*2Mk=O~ 4.1)

3,2 up — Auy +
Letting vy = r~"uy, and dropping the suffixes k to lighten notations (so that v = vy,
v = vg), we obtain:

N+2 4

8t2v—ADv— Wr=2p =0, 4.2)

with initial data
Up=0 = (vo, v1) == r "k (0),

where

is the radial part of the Laplace operator in dimension D = N + 2v. Considering v as a
radial function on RP, we see that

jec? (R, (H' x Lz)(RD)> , 4.3)
and using (3.1), and that
1
lim f — (1, x)dx = 0, (4.4)
15200 Jiyp> ey X1
we obtain
+00
lim B, v)rPlar =o0. (4.5)
t—+o00

Il

The limit (4.4) follows from (3.1) and the exterior Hardy’s inequality (or from the
asymptotic behavior of the solutions of (1.10), see Corollary 2.2).
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We note also that, for j € [1, N],

8ij= _l#wv
N (1+—|x‘i )7
N(N-2)
and thus
Lyow=- bi
x| ™

N, L, Y
|x]| 2
(1 + N(Jff—z))

where 0; = x;/|x| € S¥~!. Furthermore, 6 > 6; is a spherical harmonic of degree
1 and (6;) je[1,n] spans the vector space of degree 1 spherical harmonics. As a con-
sequence, we see that the proof of Theorem 3.1 reduces to the proof of the following
proposition:

Proposition 4.1. Let N, D be two odd integers with D > N. Let v be a radial solution
of (4.2) that satisfies (4.3) and (4.5). Then v(0) = (0,0) if D > N + 4. Furthermore,
v(0) is an element of

span {(AW,0)} ifN =D =3,
span {(AW,0), (0, AW)} ifN =D >S5,

) _N ) _N )
span{<(1+N(;§,'_2)) 2,0),(0,(1+%) 2)} ifD=N+2.

We divide the proof of Proposition 4.1 into 4 parts. In Sect. 4.2, we study the differen-
tial equation satisfied by the stationary solutions of the Eq. (4.2). In Sect. 4.3, we prove
that the initial data of a solution of (4.2) satisfying the assumptions of Proposition 4.1
coincide for large r with a stationary solution. In Sect. 4.4, we use a bound from below
of the energy for compactly supported solutions of (4.2) to prove that the initial data
actually coincide with a stationary solution for all » > 0. In Sect. 4.5 we combine the
preceding results to conclude the proof.

4.2. Preliminaries on a differential equation. In this subsection, we fix two odd integers
N, D, with 3 < N < D and study the differential operator:

d D—-1d N+2 4

p= + W,
dr? r dr N-=2

which was introduced in the previous subsection, by projecting the operator Ly on
spherical harmonics. As before, W is the ground state in space dimension N, defined in
(1.3). Denoting by |x] the integer part of a real number x, we prove:

Proposition 4.2. Let N, D and P be as above. Then there exists functions (Zy) ke L D2 J
SK=| 77

with Z, € C*°((0, 00)), with the following properties:

1
r>1 (4.6)

o -
~ rD

1
‘Zl(r)—r[,—_z
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Z(r) + D__Z
1 FD-1

1

rD+1°

r>1 4.7

PZ =0, (4.8)

and, for2 <k < I_DT”J, there exists ¢, € R\{0} such that

Ck logr
‘Zk(r) - rD—Zk‘ S pawe 'z (4.9)
ck(D — 2k) logr
Zi(r) + D |~ b T2 (4.10)
PZ, = Zy_. “4.11)
Furthermore,
2
D=N= Z|(r) = ——— AW, (4.12)
N27I (N -2)2
N
1 r2 2
D=N+2= Zi(r) = <1+ ) . (4.13)
(NN —2)F \ NN -2
Finally, letk e Nwith 1 <k < LDTQJ. Then ifk > 2 and Z € span{Z,, ..., Zy}\{0},
orif D> N+4and Z € span{Zy, ..., Z}\{0}, then
d
dd € R\{0}, 30 € (0,2k]N2N, Z(r) ~ - '~ 0. (4.14)
r

For the proof of the Proposition, we need the following two Lemmas concerning the
homogeneous and inhomogeneous ODE’s

Py=0 (4.15)
and

Py=f (4.16)
on (0, 00).

Lemma 4.3. There exist two basis of solutions of (4.15), (30, 20), (Voo, Zoo), Where
Y0, 20, Yoo, Zoo are smooth on (0, 00), and satisfy:

yor) =11 < 72, Yo <, (4.17)
1 1 1
z0(r) — D2 S+ D=4 lz0(M1 S D1 (4.18)
forO <r <1and
1 1 1 1
|yw(r)_1|§ﬁ+r0_—2’ |}’</>o(”)|§r—3+rD—_l, (4.19)
1 ) D-2 1
Zoo(r) — D3|~ D Zoo(r) + DT | N D (4.20)

forr > 1.
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Lemma 4.4. Leti € {1 oo}and y;, zi be asin Lemma4.3. Let w; be the Wronskian ylz —
ziy;. Then w; = D —5— for some constant w; # 0. Furthermore, if f € CO((O oo))
the general solutlon y of (4.16) is given by

y(r) = ar)yi(r) + B(r)zi(r), y'(r) =a@)y/(r)+pr)z;(r),

where
&' (r) = —wi f(rP i), Br) = wi frrP Ty ().

Lemma 4.4 follows from standard variation of parameters and we omit the proof.
Lemma 4.3 is also very classical. We give a sketch of proof for the sake of completeness.

Sketch of proof of Lemma 4.3. Writing the Eq. (4.15)
i FP-1 d_y = _pD-1 N—+2WN4—2 y,
dr dr N -2

and integrating twice, we see that to construct yy, it is sufficient to find a solution of the
equation

yo = 1 — ®g(y0),

D— lN 2
Do(y)(r) —/ / < ) —2WN 2(s)yo(s)ds dp. 4.21)

This can be done by checking that if ¢ > 0 is small, ®¢ is a contraction mapping on
co ([0, €], || - lloo), and then extending the solution to (0, co) by the linear Cauchy-
Lipschitz theorem. The bounds (4.17) follow easily from (4.21).
We next fix a small € > 0 (such that yp > 0 on (0, €)), and let, forO < r < ¢
r 1
zo(r) = ao(r)yo(r), ao=—(D—=2) | ————ds.
e sP1y2(s)

2y, D—1
a(/)’+a6<ﬁ+—)=0,
Yo r

we see that Pzg = 0. The estimates (4.18) are easy to check.
Using again the Banach fixed point theorem, we define 7, as the unique solution of

Noting that

1
Zoo(r) = D3 Do (z00) (1), (4.22)
where
® S A EAR N L S dsd
0o (2)(r) -—/r /p (;) N 2 ($)zo00(s) ds dp,
on

X4 = {y € CY([A, +09)), IIyllx, == sup y(s)sP?? < ooy,
s>A
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where A is a large constant. Using that W (r) v < 1/r%, itis easy to check that @, is
a contraction mapping on X 4. The estimates (4.20) follow from (4.22) and the fact that
Zoo € XA.

Finally, we let yoo (1) = boo(7)200(r), where

d 1

The equation Py, = 0 and the estimates (4.19) are again easy to check. 0O

‘We next prove Proposition 4.2.
Proof.

Step 1. (Existence and estimates for large r) We let Z1(r) = zoo(r), and see that (4.6),
(4.7) and (4.8) are satisfied. If D € {3, 5}, 2 is larger than L%J and we are done.

If D > 7, we construct Zj for2 < k < LDT+2J satisfying (4.9), (4.10) and (4.11) by
induction.

Letk € Nsuchthat2 < k < |_DT+2J. Assume that Z;_; is known and satisfies the
desired estimates. According to Lemma 4.4, the formula

Zi(r) = ag(r)yoo (r) + i (r)zoo(r),

where

ap(r) = woo/ Zoo(S)Zkfl(s)sD_] ds
. (4.23)

Bi(r) = woo fl Voo($)Zi1 (5521 ds

yields a solution of (4.11). Itis easy to check, using the asymptotic behaviors of Z;_1(s)
(known by the induction hypothesis) and of zx (s), that ax is well defined. It remains to
check that (4.9) and (4.10) are satisfied.

We start with the case k = 2. In view of (4.23), using the asymptotic behaviour of
Zoo = Z1 for large r (see (4.20)), we have

© o) 1
ar(r) = a)OO/ <s3_D +0 (sl_D)) ds = D _:)0er4 + 0 (rD2> ,r>1,

r

and similarly, using also the asymptotic behaviour (4.19) of yeo, B2(r) = a)ooé +

O(log(r)), r > 1. As a consequence,

1 1\ o logr
Z>(r) = (D—4 +§) gy + 0 (rD—Z)'

This yields (4.9) for k = 2, with ¢» = ( - l) weo. Furthermore,

D—4 " 2

Z5(r) = a2(r)y5 (r) + B2 (r)z (r)
_ (D =2wss L0 <logr) _ _(D—4)cz L0 <10gr>.

2,D-3 ;D1 D3 ,D—1



1140 T. Duyckaerts, C. Kenig, F. Merle

We next treat the case k > 3. By (4.20), (4.23) and the induction hypothesis, for
r>1:

Ch—1Woo logr
ak(r) = (D _ 2k)rD—2k +0 (rD—2k+2> .

Using also (4.19), we obtain similarly, for r > 1,

+ 0 <r2k_4 log r) .

Combining the above estimates with the asymptotic formulas (4.19) and (4.20) for y
and 7o, We obtain, for r > 1

1 1 Ck—1Woo logr
atn = (D ok T2k 2) %t O\ )

This yields (4.9) with ¢ = ci—1 (kg + 225 ) @nc- Also:

2k—2

Br(r) = Ch—10o0 52—

Zi(r) = ap(r)ys (r) + BNz (r) = T2k = 2) DT +O\ oo

Ch—1Woo (D — 2) ( logr )

Since (D — 2k)c; = 9=1922L=D his proves (4.10).

Step 2. (Asymptotic behavior at the origin) We note that by Lemma 4.3, Z| = 7, is the
unique solution of PZ; = 0 satisfying (4.6).

In the case N = D, it follows from this uniqueness property, the equation PAW =
Lw (A W) = 0 and the asymptotic behavior of AW(r) as r — oo that Z| =

—— 2 AW, i.e. (4.12) holds.
N7 “TN- 2)2

In the case N = D + 2, the computation before Proposition 4.1 implies, since
Ly (9, W) =0,
r? -3
Pl(14+—i— =0,
N(N —-2)

which yields (4.13).

We next prove (4.14) distinguishing between three cases.

We start by proving (4.14) when Z = Z; and D > N +4. By Lemma 4.3, Z| =
Y10 + 81z¢ for some constants y;, §; € R. We claim that §; # 0. Letting v = DZ;N and
®(0) a spherical harmonic of degree v, we see that

Ly (r'®©)Z,) =

If 61 = 0, the estimates (4.17) on yo and (4.6), (4.7) on Z; imply r’'®O)Z,(r) €
H'(RV). This is impossible since

{Ze H'®RY) : LyZ =0} =span {AW, 3, W, ..., 03, W}.

Thus §; ;éOanleNrg—Lzasr—)O.
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We next prove (4.14) when Z = Z>, D = N or D = N+2. According to Lemma 4.4,
Zo(r) = ya(r)yo(r) +82(Nzo(r),  Zy(r) = y2 () yo(r) + 82(r)zo(r)
where
/ _ D—1 / _ D—1
Vo (r) = —woZ1(r)zo(r)r , 8(r) = woZ1(r)yo(r)r , r>0.

Since Zi(r) is, by (4.12) or (4.13), bounded in the neighborhood of 0, we see that y,
and &), are integrable close to = 0, and thus that y>(r) and 8> (r) have limits y»(0) and
62(0) as r — 0. We next prove 62(0) # 0. We argue by contradiction. If 6,(0) = 0,
then

S(r) = wo/ Zi($)yo(s)sPds = 0 (rD71> asr — 0.
0

As a consequence, Z’2 and Z; are bounded close to r = 0. Since Z,(r) ~ r,)%z;,

Z4(r) ~ f;—g as r — oo and % > 2 (i.e. D > 7), we can integrate by parts:
+00 +00
/ (Z ()P dr = / PZy(1)Zy(r)rP~dr
0 0

+00
=f Zo(r)PZ 1 (r)rP dr = 0.
0

Thus Z1(r) = 0 a.e., a contradiction. Thus 6, (0) # 0, which proves

52(0)
Z(r) ~ 5. 10,

yielding (4.14) with Z = Z».
Let

. span{Zs, ..., Zx} if De{N,N+2}
" \span{Z;, Z5,...,Zx} if D> N +4.

To conclude the proof of Proposition 4.2, we show thatif 2 < k < |_DT+2J ,orifk =1

and D > N +4, then for all Z € Ay \{0}, there exists d € R\{0},0 < 0 < 2k (8 € 2N)
such that
Z(r) —d -0 (4.24)
r) ~ , T . .
D=0
We argue by induction on k. The cases (k =2, D € {N, N+2})and (k =1, D > N +4)
were treated above. Fixingk > 3 (if D € {N, N+2})ork > 2 (if D > N+4), we assume

that for all Z € Ax_1\{0}, there exists d € R\{0}, 6 € 2N suchthat0 <6 < 2(k — 1)
and

Let Z € Ax\{0}. If Z € Aj_1, then we can use the induction hypothesis on Z and we
are done. If not, welet Y = PZ. Then Y € span{Zy, ..., Z;_1}\{0}. By the induction
hypothesis:

d
3d #£0, 30 € (0.2(k — DIN2N, Y(r)~ —5—. r— 0. (4.26)
r
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By Lemma 4.4, we have

Z(r) =y (r)yo(r) +8(r)zo(r),

where
d
y'(r) = —woY (N2 (P~ ~ =2 r 0
S D-1-
d
8'(r) = a)OY(r)yo(r)rD_1 ~ %, r— 0.
r
Since0 <0 <2k -2 < % — 1, we see that
1 1 wod
y(r)~ “’Od/r e (D —6 —2)/b-0-2
and thus
wod
y()yo(r) ~ r — 0.

(D —6 —2)rb=6-2"

Furthermore, §' is integrable at the origin, and thus §(r) has a limit §(0) as r — 0. We
distinguish between two cases.

Case 1. (6(0) # 0) Since 0 > 0, we see that yyg = 0 (6z9) as r — 0. Thus

3(0)
Z(r) ~ 8(r)zo(r) ~ D T — 0,

and (4.24) follows with 8 = 2, d = §(0).
Case 2. (6(0) = 0) Writing §(r) = for 8'(s) ds, we obtain

8(}")2()(}") ~ a)odm

Combining with the estimate on y (r), we deduce

I I I
Z(r) ~wod | =+ ,
(r) ~ o (9 D—9—2) D20

which yields again (4.24), with 6 replaced by 6 +2 € 2NN (0, 2k]. O

4.3. Compact support of the initial data. In this subsection, we prove:

Proposition 4.5. Let N and D be two odd integers such that 3 < N < D. Let v be a
(radial) solution of (4.2), that satisfies (4.3) and (4.5). Then there exist real numbers

ST {LDT”J, Nyonns UL%J such that the essential support of
=
DO — Y a(Zi,0) = Y m(0, Zy) (4.27)
k=1 k=1

is compact.
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Here Z1, ..., Z| 5., | are the functions defined in Proposition 4.2.
T

Until the end of the current section, the underlying space dimension is D and not N,
and we will slightly change the notations, denoting by H the space (H' x L%)(RP).

We will use a result of Kenig, Lawrie, Liu and Schlag [23] on the radial wave equation
in odd dimension that we now describe. If V is a vector space of radial function, we
denote by V (R) the vector space of the restriction to (R, +00) of the elements in V. In
particular H(R) is the Hilbert space of radial functions in (H' x L>»{|x| > R}). In
other words, if H(R) is the set of pairs of radial functions (f, g), defined for r > R,

such that (f, ) € (L% x L2) (r e RP, |x| > R}) and

+00 +00
1C£, &) gy :Z/R (3rf)2rD_1dr+fR grPlar

is finite.

If S is a subspace of H(R), we denote by S+ its orthogonal complement in H(R),
ms the orthogonal projection of S and w1 the orthogonal projection on S L. We denote
by

B= o). (0 -t l<k < |2%2| 1<p<|2
= Span ,TZk]’ , ’rDTkz’ =K1 = 4 , L =K = Z .

Note that B is exactly the space of radial functions (f, g) on R? such that

JkeNst. AFf=Akg=0
and such that for all R > 0, (f, &) }(r,00) € H(R). By [23],

Theorem 4.6. Every radial finite energy solution of

o227l 00 (4.28)
t r r rv — .
satisfies, for all R > 0,
oo 2 D-1 1 2
max lim RHtl(ar,,u(t,r)) roThdr = 5 17 3Ry 5O [ 3y -

To prove Proposition 4.5, we fix a large positive R (to be specified), and let

~ D+2 D
B =span{(zkl,0),(o,zk2), <k = {TJ <k < h”
In view of (4.6),...,(4.10), if R is large, then

B(R) N B(R)* = {(0, 0)}.

T

2] 4
(wo, w1) :=0(0) = Y &(Zk, 0) = > m(0, Zx) € B(R)™.
k=1

k=1

In particular, we can choose (gk)lfkaDTﬂJ’ (nk)lsksLDJ such that
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Let w be the solution of (4.2) with initial data (wg, w;). Let wr be the solution of the
free wave equation (4.28) in dimension D with the same initial data. Note that (4.5)
implies

+00

lim @ w)rPVdr =o0. (4.29)

t— 400 |t|+R
Indeed, the solution of (4.2) for r > |f| + R with initial data (Z, 0) is
k (2k=2j

—.Z"
pr Qk =217

and the solution with initial data (0, Z) is

Xk: (2ht1=2]
_ | Zj,
ot Qk+1—=2j)!
so that it is easy to check that any solution of (4.2) for » > || + R with initial data in

B(R) satisfies (4.29).
By Lemma 2.1, if R > 1,

S lwo, wi) ll3(rys (4.30)

H L= Reeyw “LZBsz” (RI+D)

where the implicit constant is independent of R > 1.
Using Strichartz estimates and finite speed of propagation, we have

+00 1/2
( / O qwr(t, r)? rP! dr)
R+t

<

and thus, by Holder inequality and (4.30),

+00 1/2
( / O wr(t, r))? rP1 dr)
R+|t|

y

where we have used that for R > 1,

+00 1/2 4
/ (@, w(t, 1)) rP! dr) o Lasa e

R+11] L\(R,L2(RP))

+00 , 1/2
/ O qw(t. 1)) r’“dr) + — [ (wo. wi) ()
R+1] R

<

4 1
”W’V’zﬂ{rzRHn} iR

2(D+1) 2(D+1)
L D+ (RL -3 )

which follows from the bound Wﬁ <r 4.
By Theorem 4.6, and using that (wg, w;) € B(R)', and (4.29), we obtain, letting
1] — oo,

1
[(wo, w)llHr) S ﬁll(wo, w) I+ Ry

which implies, choosing R large, (wg, w1)(r) =0forae.r > R. 0O
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4.4. Propagation of the boundary of the support. In this subsection, we consider a radial
time-dependent potential V (¢, r), defined on {|x| > R+|¢|} for some R and that satisfies

C
V>R+|t|=>|V(t,r)|§—2
,

for some constant C. We let v be a radial solution of the equation
32v — Apv— Vo =0, 4.31)

also defined on {|x| > R + |¢|} with compactly supported initial data. We let
p(vo, v1)=inf{n> R / (leo|2+v%) dx=0}.
[x|=n

Note that (4.2) is of the form (4.31) with V =

N+2 v ws
N> w .

Proposition 4.7. Let v be as above and assume that py = p(¥(0)) is finite and greater
than R (i.e. that v(0) is compactly supported and not identically zero). Then there exist
& > 0 such that for all p € (,00 — &, ,oo), the following holds for all t > 0 or for all
t <0:

+00 1 +00
/ @B v(t, PPV dr > g/ (0., v(0, )P dr. (4.32)
P+ P

Remark 4.8. The proposition implies that the support of v grows at velocity one, in at
least one time direction:

Vi >0orVr <0, p((t) =po+lt],
however we will need the stronger, qualitative version (4.32) of this fact.

Proof. Using finite speed of propagation and a standard density argument, we can assume
that v is smooth in the set {r > [¢|}. The idea is to approximate v by the solution of

. D-1 . C.
the equation (3,2 — 8,2)(r 2 vapp) = 0 with the same initial data. We thus let, for
r>t|+po — €.

1
Vapp(1, 1) = —5— (@t +7) — @(t — 1)), (4.33)
r2
where ¢ is chosen so that Uapp (0, ) = (0, r), that is

N

I b1 1 D-1
QO(S)=§|S| 7 (0, |S|)Sgn(S)+§ A Pz 0v(0, p)dp.

In other words, for r > R + |¢],

Vapp(1,7) = —5—
2r 2

x ((r+t)D2_1v((),t+r)
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r+t

D1 D=1
+(r—1t) 2 v0,r —1) +/ o 2 9;v(0, p) dp) . (4.34)

r—t
Then
) D> —4D +3
(97 — AD)vapp = T Vapps (4.35)
and thus
(0F — Ap)(V — vapp) = V(v — Vapp) + V Vapp,
where
~ D*—4D+3
Vi=— — ~“+V. (4.36)
4r2

By Strichartz estimates and finite speed of propagation, for all 7 > 0 and all p €
[ro — €, pol,

SUp | Wgix1= p1e)) Ve,r (W(0) = vapp()) | 12 e
te[0,T]

+ |1 v—v
[ W12 peien € app)||L2;§>j21)([O’TlxRD)

<C <||11{|x|zp+\r|}Vvapp | qo.71.22)
+ ” W= p41e)y V(v — Vapp) ”Ll([o,T],LZ)) : (4.37)

Let

B(&) = || Lipp—esiti<r=poien (V] + |V|)HL2(Z))IJ> ((0,00),L2(D3+1)> ,

By Holder inequality and finite speed of propagation, the right-hand side of (4.37) is
bounded by

B(e) (” L= piey (v = Uapp)”L% + [ L=y vap “f%’i”) '

We claim that B(¢) is finite and that

lim f(e) = 0. (4.38)

Indeed, by direct computation, using that pg —& < p < pp and |V (r)| + |‘7(r)| <r?

3
2(D+1) D+4

. +00 po+lr| 1 3
Be) Bt < / / (—2> PP lar | ar
0 po—e+lt] \T
D P
— e+t
/ (o +0)~" (('OO ) — 1) dt.
po +1
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Noting that there exists a constant C > 0, depending only on D, such that for all

€ < po/2,
AN ¥
— &+ |t E &
()0 T e
po + |£] 00 + || 0
ﬂ(@ieﬁ,

we deduce

(the implicit constant depending only on D and pg), which proves (4.38).
Choosing ¢ small, we deduce from (4.37)

S[gp ” Dypxi=pe)y Vex (0(@#) — Uapp(t))“Lz

+{ 1 (v — Vapp) || 2041
ez @ = vapp) | 2pep 0o

= Cﬂ(g) ” H{\x|2p+|t\}vapp “LZ(DD:-ZI) (0.TIxRP) . (4.39)

Using Strichartz and Holder inequalities in a similar way, we obtain, in view of the Eq.
(4.35) on vypp that for all T > 0,

[vappbizpuin | 2o 0 o | 4112 ple1y Ve vapp (O | 2

< C (Vg vD) =gy 12 - (4.40)

Combining (4.39) and (4.40), we obtain that for all 7 > 0,
W12 10y Ver v @) | 12
= [ Wx1z 16y Vexvapp (0 | 2 = CBe) (I(Vvo, vD) Wz pairyll2) - (4:41)

The same proof works for negative times, showing that (4.41) holds for all + € R. To
conclude the proof of (4.32), we must show that the following holds for all # > 0 or for
allt <O:

+00 1 +00
/ 1 vapp (£, 1) 2P~ dr > -/ ((a,v0)2 + v%) Pl dr (4.42)
P+ 4 P

By the definition (4.33) of v,pp, and since ﬁapp 0, r) = (vg, v1)(r),
+oo D-1 2 1 [t D—1 2 D-1 \2
/ Or.r (rTvapp(t, r))‘ dr > —f <8r (rTvo)> + (rTvl) dr.
p+t| 2 P
D—1

(4.43)
D-1 D=3 D-1 .
Furthermore, 9, (r 2 Ugpp(t, r)) = 551 Z Ugpp + 1 2 0pUgpp, and thus there exists

a constant C > 0 (depending only on D) such that for all # € R,

+00

+00
0.9[ (3 vapp (£, 1) 2rPdr — c/ vt dr
o o

+t] +t|
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+00
E /
ptt|
+00

+00
=Ll / (arvapp(t» r))2rD_1dV + C/ vgpprD_3 dr.
P

-+t pt|

0y (r% Vapp (£, r)) ‘2 dr

Furthermore, since vupp(f, r) = 0 for r > pg + |¢], one has, for p + [t| < r < pg + |1,

potltl g py
/; 35 (s 2 vapp(t,s)) ds

“Af

b3 Pt s s
/ re gt r) dr =/ re T vt r) dr
o 2

+7] +¢]
2 +00

D-1
r?2 vapp(t7 r)

3 (s?vapp(r,s))‘z ds.

Hence

&

D1 2
= 0y (r 2 Uapp(t, r))‘ dr,
P Jp+t|

which yields, for ¢ small enough,

1 +00 +00
5/ |0, vapp (2, 1) PrP " dr 5/
P

+1] pt|

D—1 2
oy (rTvapp(t, r))‘ dr

+00
< 2/ |9, vapp (, 112~ dr.
0

+t]

Combining with (4.43), we obtain (4.42), which concludes the proof. 0O

4.5. Conclusion of the proof. We now conclude the proof of Proposition 4.1 (and thus
of Theorem 3.1).

Let v be a solution as in Proposition 4.1. By Proposition 4.5, there exist real numbers
Clyenns ﬂDTHJ Ny onns HHJ such that the essential support of

2] 1]
(wo, w1) :=0(0) — Y &(Zk, 0) = > m(0, Zx)
k=1 k=1

is compact. We will prove that (wg, w;) = 0 almost everywhere by contradiction. If
not, we let R > 0 be such that

+00
/R (B,w())2 + w%dr > 0,

and consider the solution w of

N+2 4 -
2WN—2w=0, V=0 = (wo, w1),

8,2w —Apw —
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which is well defined for » > R + |t| and satisfies
+00
Z lim @, w(t, 1) rPlar = 0. (4.44)
t—>+00 R+t ’
+
Letting p9 = p(wp, w1) > R, and p < po close to pg, we obtain by Proposition 4.7:

+00 1 +00
/ @ yw(t, M) rPVar > - / (3, w0, )P dr > 0,
pHt] 8Jp

which contradicts (4.44). As a conclusion, (wg, w)(r) = 0 for almost every r > 0, and
thus, denoting by (vo, v1) = 9(0),
%]

2]
W0, v)) = Y Ch(Zhy 00+ Y 1ty (0, Zay) € H.

ko=1 k=1

We will conclude the proof with Proposition 4.2. If D > N +4, we prove by contradiction
that &g, = 0, n,, = O0forall 1 < kg < L%J and 1 < k| < L%J. Assume that one of
the &y, is nonzero. Then by Proposition 4.2,

122
7 do
Vo) = Z {kOZkO’\’rD—_GO, }"—)0
ko=1
for some real number dy # 0 and integer 8y such that 9y < 2 L%J. As a consequence,
fol rizv(% (r)rP~ldr = oo, a contradiction with Hardy’s inequality and the fact that
vo € H'(RP). Similarly, if there exists k1 such that Nk, 7 0, then by Proposition 4.2

5,
v = anleler—_gl, r—0
ki=1

for some real number d; # 0 and integer ) with 6; < 2 L%J, and one checks that

v ¢ L2(RP), a contradiction again.
It remains to treat the cases when D = Nand D = N +2. Assume D = N > 5. We
note that in this case Z; € H'(RP). Thus

2] 4
D o(Zig O+ > iy (0, Zxy) € H,

ko=2 k1=2

and the same argument as before proves that {x, = 0, g, = 0 for2 < kg < L%J,
2 <k <|2]. Thus

(vo, v1) € span ((Zl, 0), (0, Zl)> — span ((AW, 0), (0, AW))

(see (4.12)). The cases D = N =3 and D = N + 2 are similar and we omit the proofs.
O
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5. Channels of Energy for the Nonlinear Equation Close to W

In this section we prove Corollary 2. We start by giving two statements, one in space
dimension 3 and the other in space dimension 5, that imply Corollary 2. Let My be the

set ()f all
)\ NZ ¢ ’ )\, ’ )\’ N} ! ¢ ’ )\. ’

XeRN, >0 £eRY, £ <1.

where

We denote by d the distance between a subset A of H and an element of H:

d (A, (o, un)) = inf { o, u) = (@0, @0l (o9 € A} 5D

Theorem 5.1. Assume N = 3. Let ng € (0, 1). There exist constants g = €9(no) > 0,
C = C(no) > 0 such that, for any £ € R3 with |£] < no, for all (ug, u;) € H\My
such that

| @o. 1) = We() | =& < z0. (5:2)

there exists X € R with |X| < & such that the solution u of (1.1) on {|x — X| > ||} is
global in time and satisfies

1
> lim / Ve cu(t, 0)|* dx > —d (My, (o, 1)) (5.3)
T =X =] c

t—=+o00

In the case N = 5, we have a weaker statement

Theorem 5.2. Assume N = 5. Let no € (0, 1). There exists a constant &g = €9(19) > 0
such that, for any £ € R with |€| < no, for all (ug, uy) € H\My such that (5.2) holds,
then there exists X € R> with |X| < & such that for any small to > 0, the solution u of
(1.1) for {|x — X| > |t| — ©o} is global in time and satisfies:

lim / |V cu(t, x)|* dx > 0. (5.4)
v—X|2]r| 10

t—+00

Recall from (1.12) the definition of Z. Let

Z = span { (AW, 0), (0, W, 0), (0.0, W), j e [1.N]}.

Note that Z C Z (indeed these sets are equal if N € {3, 4}, the inclusion is strict
if N > 5). Thus if (vg, v1) € Z, the corresponding solution of the linearized wave
equation (1.10) is vg + fv;. We denote by:

Zo = {(Lo(o(x) +1tv1 (x)), 8 Le(vo(x) + 101 (X)) =0 . (0. v1) € Z}.
Note again that
Zi=Z, & Ne{34.

We next give preliminaries on local and global well-posedness (Sect. 5.1) and the choice
of the parameters ¢, A and X so that certain orthogonality conditions are satisfied
(Sect. 5.2). In Sect. 5.3 we prove Theorem 5.1 and in Sect. 5.4 we prove Theorem 5.2.
Section 5.5 is dedicated to the proof of Corollary 3.
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5.1. Cauchy theory outside wave cones. In this subsection we assume N € {3, 4, 5}
and recall some standard facts about local and global well-posedness for the nonlinear
equation (1.1). We also extend the Cauchy theory to define solutions of (1.1) outside
wave cones. We refer to [13] for the extension outside wave cones for radial data in the
case N > 6.

Definition 5.3. Let / be an interval with ty € I, (ug, u;) € H. We call a solution of
(1.1) on I x R¥, with initial data

Upi=iy = (U0, u1) (5.5)

a function u € C%(1, Hl) such that 3,u € C°(1, L?) and
t

Viel, u(t)=Sr({t—ty)(uo,uy) +/ Sp(s —to)F(u(s))ds, (5.6)
fo
2(N+)

and such thatu € L v <J Lv2 (RN )) for all compact intervals J C I.

Remark 5.4. The distribution uon I x RN is a solution of (1.1), (5.5) if and only if

N+2
u € Lloc (I, (1, H), (5.5) holds and u satisfies 82u — Au = |u| e N-2y
in the distributional sense on I x RV (see Lemma 2.5 of [12]).

Remark 5.5. If u € C°(I, H) and there exists a sequence {1z} of solutions of (1.1) such
that

lim sup || (t) — iig (2)|l3y = O

0 rel

and

Sip ||Mk||L2§VN;21> (15 < 00,
then u is a solution of (1.1) (see [25, Remark 2.14]).
It is known (see [5,21,25] and [12]), that for all initial data (i, u1), there is a unique

maximal solution u defined on a maximal interval (7_, 7%). Furthermore the following
blow-up criterion is satisfied:

T, <o0o= ||M|| 2v41) =00
2 ([10.Tx) xRN)

or equivalently

T, <00 = |ul 2N+2) ) = 00.

N+2
LN=2 ([IO,T+),L N=2 (RN)

We will also need the notion of a solution of (1.1) outside a wave cone:
Definition 5.6. Let / be an interval with7p € I, R > 0 and xo € RY. Let (ug, u;) € H.
A solution u of (1.1) on {|x — x| > [t — 19|, to € I} with initial data (uo, uy) atr =g

is the restriction to {|x — xo| > [t — to|, fo € I} of a solution &, with i € CO(I, H) to
the equation:

~ ~ ~ i
02t — Al = |it| V21 [y —xo|= Relt—10]) (5.7)

with an initial data

Sl

=ty = (U0, u1), (5.8)
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The Cauchy theory in [12,21,25] adapts easily to the case of solutions outside wave
cones. We give the statements and omit most proofs.

Proposition 5.7 (Small data well-posedness). There exists &g > 0 with the following
property. Let (ug, uy), to, X0, R be as above. Let uy (t) = Sp(t)(uo, u1). Assume

H ﬂ{lexolzltftoHR}ML”L%([ L%) =& =< &p.

Then there exists a unique solution u to (1.1) on {|x —xo| > |t —19|, t € I}. Furthermore

N+2
sup ” I x—xg|> |t —10]+R) Vi,x (U — ML)H 12 Sen-2.
tel

Gluing the preceding local solutions, we obtain, for any initial data (uo, u1), a max-
imal solution defined on a maximal domain {(¢, x) € (T-, T+) x RN |x — xo| >
|t —to| + R}, where Ti = Ti (x0, R), and that satisfies the following blow-up criterion:

T+ < 00 = [[M{jx—xo|>|r— zo|}u|| Ne2 - 2(N+2) = +00
<(0 T,),L N-2~ )

(and similarly in the past). Itis easy to check thatif R > R’then T+ (x0, R) > T+ (x0, R,
and also that for all R > 0, T+(x0, R) > T,, where T, is the maximal time of existence
for the solution on the whole space (see above). We also have:

+2 ~ 2(N+2) ~
Lemma 5.8. If 1Ljx—x|>|r—ro|+R}U € L% ((Oa T,), L N2 (RN))y then T, = +oo and

u scatters to a linear solution on {|x — xg| > R + |t — tg|}, in the sense that there exists
a solution vy, of the linear wave equation on R x RN such that

Jim e gy [ Vi (0 = v) O] 12 = 0.

Lemma 5.9. Let I be an interval with to € I, and f € L'(I, L?). Let u be defined by
(2.3) for t € I, and assume that

4
f = |u|¥2u a.e. for |x —xo| > |t — 1], t € I.

Then I C (T_ﬁ) and the restriction of u to the set {|x — xo| > |t —to| + R, t € I}
coincides with the solution of (1.1) on this set, as defined in Definition 5.6.

5.2. Orthogonality conditions. If ® = (X, A, 4) € RV x (0, 00) x Bpn, where By =

{X e R’ : |X| < 1}, we denote
( ) 1 t x—X
o 1 )\7 A '

We claim:
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Claim 5.10. Assume N > 3. There exists a small constant o, and, for all ng € (0, 1),
a constant 1 € (0, 1) with the following property. Let (u, u1) be such that (5.2) holds
for some £y with [Ly| < ng. Then there exists O, = (X4, Ay, £y) € R x (0, 00) x By,
with [€4| < 11, such that

d ((up. ). M) = |wo.un) = W, )
and
N2 N - ~1
()\* T uo (X + ) Ag up (Xy + k*)) — (W, 0) e Zl*~ (5.9)
Proof. Let
- 2
Sw: O~ HW@(O) — (uo, Ml)HH-
We first claim that there exists a constant 1 € (0, 1), depending only on 79, such that

€] = i = sw(®) = W[5, (5.10)

Indeed, by the triangle inequality and (5.2),

Vo @) = | o]~ |

— £&0.
H

Since

1/2

S N+Q—N)e? /

[Fo@| =(=——==) WWip — +oc,
H N1 — |£)? e]—1

we obtain the existence of 11 such that (5.10) holds.
We next claim that there exists M > 0 (depending on (u¢, #1)) such that

1
IX] +[logM)| = M = dw(O) = NIIWII%.- (5.11)

If not, there exists a sequence (®,), = ((X,,, Ans Z,,))n, such that
lim |X,|+|log(x,)| = +o0
n—o0
and for all n,
Sw(©n) < W2,
N H

By (5.10) we can assume [£,| < 17 and thus, extracting subsequences if necessary, that
there exists £ such that |[£]| < 5 and

lim £, = 4.

n—0o0

Since VT’@H (0) converges weakly to (0, 0) in H, we obtain

> 2
Jim 8w(©,) = l[wo, un)lf + [ We@)|| .
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Using
| “”Hz NQZ MUy Ly
= . > — Sy
L H NJT — |(|2 H! N H!

we deduce a contradiction, concluding the proof of (5.11).

In view of (5.11) and since by the assumptions of the claim there exists ® such that
Sw(®) < g9, we see (taking g9 < % [I W||i.11) that there exists ®, such that dy attains a
global minimum at ®,.. At ® = ©,, the function dy has a critical point. Differentiating,
we obtain that W@* (0) — (up, uy) is orthogonal, in 'H, to

0 0 d
—W(~>(0)> . <—W(~>(0)> . (—W@(O)> .
<3Xj 10=0, o 10=0, 9L 10=0,

Rescaling and translating in space, we obtain (5.9). O

5.3. Proof in space dimension 3.

Proof of Theorem 5.1. In all of the proof ny is fixed in (0, 1), and the constant C > 0
(that may change from line to line) is allowed to depend on 7.

We use Claim 5.10. Without loss of generality (rescaling and translating ), we can
assume A, = 1, X, = 0. We let £ = £, to lighten notations. Let

(ho 1) = (o, u1) — We(0).
Let i be the solution of
{ 02— Ah = ((We+ ) = W) Ui
hyi=0 = (ho, h1).
Then

82h — Ah — 511,,(‘2|,|W§h‘ < C (1A + WER?) Wyagzp.

Since by explicit computation,
and the smallness of ||(ho, /1), that forall T > 0,

W=y We ||L5L10 < C, we deduce, using Lemma 2.1
r=x

sup A, + Whllsq g,y + 1blisqrem g0 < CllGo Dl (5.12)
lt|<T

Let i, be the solution of the linearized equation:

0hy — Ahp = 5W;h
t ML L enL (5.13)
hp=0 = (ho, h1),
and &, be the solution of the truncated linearized equation:
82hy — Ahp = 5Wghi 1l
ot L L LR x| =t (5.14)
hpji=0 = (ho, h1).
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Then by Theorem 1 and (5.9),

t—=+o00

. 2 1
> tim [ Vil dx = it bl
T xl> 1t ¢

Since Ay (t, x) = hy (¢, x) for |x| > |#| by finite speed of propagation, we deduce

> lim /
T t—=+00 lx|>t]

Next, notice that

~ 2 1
Viahp (0| dx = SN, bl

92 (h —hy) — A(h —hy) — 5W2‘(h S 75} N

<C (|h|5 + Wgh2) I >1)-

Using Lemma 2.1 as before, and since (ﬁ — h)(0) = 0, we obtain in view of (5.12),

sup [0 — ke )], = € Vo, I
(S

Hence, taking ¢p smaller if necessary,
. 2 1 2
lim / Vixh(t,x)|” dx = —=||(ho, h1) |- (5.15)
;Hi‘” el [V | c 7t

Letting u = Wy + h, we see that (5.15) implies (5.3), since by the choice of (hg, i),

I(ho, hD) Il = d (Mw, (uo, u1)) .

Furthermore, u satisfies the equation:

it — Aii = Wy + ((Wz +h)? — WE) Lijei> 1

~5 ~r75
= Mg po)y + uWy Lpei<pepys

which concludes the proof. Recall that we have translated u in space in order to assume
X, = 0 in the conclusion of Claim 5.10, hence the necessity of the parameter X in the
conclusion of the Theorem (indeed, one can take X = X,). O

5.4. Proof in space dimension 5. This subsection is dedicated to the proof of Theo-
rem 5.2. The main difficulty compared to the case N = 3 is the existence of an addi-
tional component (0, AW) in Z, so that Z is a strict subspace of Z. To deal with this
additional direction, we apply Theorem 1 not only at r = 0, but for all initial times close
to t = 0. As a drawback, Theorem 5.2 is slightly weaker than Theorem 5.1.

We first prove:
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Lemma 5.11. Assume N = 5. There exists ¢ > O with the following property. Let u, v
be two global solutions of (1.1) on {|x| > |t|} with initial data (ug, u1) and (vo, v1)
respectively, and such that

l(uo, ur) — (W, 0y <&, (o, v1) —(W,0)]n <¢ (5.16)
Z lim (/ |vt,xu|2dx+/ |v,,xv|2dx) =0 (5.17)
7 1700 \J{ix |21} {lx|=1e1}

E(uo, u1) = E(vo, v1) (5.18)
P(ug,u1) = P(vo,v1) =0 (5.19)
/Vuo VAW =/Vvo VAW =0 (5.20)
Vj e 1, N]. /wo Vo, W :/Vvo -V, W =0. (5.21)

Then (ug, u1) = (vo, v1) or (ug, u1) = (vo, —vy).

Proof.
Step 1 (Estimates on u and v).
We let
B ! /AW ! /AW
0 = T Ui, Y0'= "5 v
AWl 2 AWl 2
8 ! /a W ! /a Wi, jell,s]
ji= Wuy, yji=——— W, jel[l,5].
T o Wl ) Y T Wl S Y

Replacing u(t, x) by u(—t, x) or/and v(¢, x) by v(—t, x) if necessary, we assume that
Bo and yy are non-negative. We let

5

Bo Bj
L f1) = (o, up) = (W, 0) = ———(0, AW) = ) " ——L—(0, 9, W
(fo, f1) = (uo, u) — (W, 0) ||AW||L2( ) ]ZIIIZ%C_,-W”LZ( ")
Y0 - Yi
L81) = (o, v1) — (W, 0) = —— (0, AW) = Y ——L (0,8, W).
(80, g1) = (vo, v1) — (W, 0) ||AW||L2( ) Z IIBXjWIILz( W)

j=1

In this step, we prove

5
[ =W Bl g 5 Se 1o Ml S Ao Zl Bj1 S By (5:22)
t Bx j=

5

Seo lgo g0l Svs. Y Iyl Svg- (5:23)

[ =W =]
L s

14
i3

-

The proofs of (5.22) and (5.23) are the same, and we will only prove (5.22).
Leta :=u — W. We have

1 7
102a + Lya| < W3a> +|al3.
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By Lemma 2.1 and Holder estimates, using that ||a(0)]| is small, we obtain

vT > 0, Ha]l{|x|>\t|}” <(( T,4T),L 3)

S @) [l + ||a11ux|>|zu|| (

7
Cromit) + ”a]l{IXI>It|}”Z7(

14\ *
3 <(_r,+r),n)
Since ||a(0) |7 is small, we deduce:

Haﬂ{|x|>m}H e < 1) 13,

which implies the first inequality in (5.22). Let a;, be the solution of
3%ap + Lwap =0, a(0) = (ug, uy) — (W, 0).
We have
’(83+Lw)(a—aL)‘ <1alPWs +al?, x| > 1. (5.24)

By Lemma 2.1, since a(0) — az (0) = (0, 0),

1 7
sup [ty @ = an) | < | (kWS + 101%) D], S 1OV
te

and hence, by assumption (5.17),
5\ 12
lim sup (/ |Vixar | ) < o, ur) — (W, 0)[13, -
t—+o0 \Jx|>r|

Combining with Theorem 1 and the orthogonality assumptions (5.20), (5.21), we deduce

5
1o, SOl S 1o, O+ D B3

j=0

and thus

W

I1Cfo )l S D BT (5.25)

Furthermore since P (uq, u1) = 0 by assumption (5.19),
5

Bo Bj
(VW+V) | i+ ——— AW+§ — Y 5. wW|=o0.
/ 1AW 2 — [0, Wllpe

Since W is radial, we have [ VWAW =0, [ dx; Wy W =0 (j # k) and we obtain
for k € [1, 5] (using that [ 9y, Wf1 = 0),

Billox, Wil ;2 +/8xkf0fl
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P /axkfoAW + Z b faxkfoaxjw —0. (5.26)
”AW”L 1 119, Wil

Thus by (5.25)

25: 25:|,8j| ,

which yields

5
> 1B < B3
k=1

Going back to (5.25), we deduce (5.22).

Step 2. (Estimate on u — v.) We let

h=u—v, (ho,hy):=h(0) = (uo, ur) — (vo, v1),

1 / 1
ap i= ———— | hiAW = By — o, a-::—/hla.Wzﬂ-—y~,
AW 2 T 0 Wl g2 & R

5
(040} o
hi =h———AW=Y — 3. W=fi—g.
i AW 2 ; ENAT

In this step, we prove
5
D el + H (ho. h%)HH < eap. (5.27)
k=1

Let F(u) = |u|3u. We have
92h + Lwh = F(u) — F(v) — F'(W)h. (5.28)
We claim
|F(u) — F(v) — F'(W)h|

S Il (lo = WIS+ (WISl = W+ WIS R+ (A ). (5.29)

Indeed, using elementary estimates on the function F, we obtain, since h = u — v,
|[F@) = Fo) = F'h] < [o]3 A + a5 < W32+ o — WISh? + |h3
S W3R+ v — WI3|A] + I3,

where we have used that by Young’s inequality, |v — W|%h2 < |v-— W|%|h| + |h|%.
Moreover,

|F'(0) = F'(W)| S v — W[[W|3 + v — W|3,
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which yields (5.29).

7 14
By the first inequality in (5.23), and the fact that W Il x|~ sy € L/ Ly’ , we first obtain
from (5.28), (5.29) and Strichartz estimates

[l 7 18 S o, )l -
L;

14
L3
Letting /1 be the solution of

02+ Lw)hy, =0, §h1(0) = (ho, hy),

we deduce, again from (5.28), (5.29) and Lemma 2.1,
2
Sup/ Vi (h —hp)|” dx S &% [|(ho, h) I -
1eR J|x|> 1|

Using the assumption (5.17), we obtain

t—=+o00

> hm/ Vi chp(t, 0P dx < e [l (ho, h) I3 -
+ [x]>z]

By Theorem 1, and the orthogonality conditions (5.20), (5.21),

5
2
T Iholl g1 S ellCho, k)l =& | || (ho, B |5 + E Otjz-- (5.30)
j=0

1
']

Expanding the momentums in the equality P (ug, u1) — P(vg, v1) = 0 as in (5.26), we
obtain that for all k in [1, 5],

0 = (B — 7013, W 2 + / Be, fofi — O 2081

Bo /
+———— | By fOAW —
AW |2 ] ™

5
Bj / Vi /
+ —————— | Oy, foOx W — ————— [ 0y, 8200, W ].
Z(nax,-Wan 00 W W ) Dol

j=1

Y0

_ 0 AW
||AW||L2/ w80

Using that by the assumption (5.16),

5

IV foll 2 + 1V goll g2 + I fill 2 + gl 2 + Y 1Bj1 +Ivil S e,
j=0

we deduce

5 5
D el =Y 1B — vl S ellho. )l g2
k=1 k=1
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Since
5
IGho. hD) I3, = lICho. M 15, + ) a3,
j=0
we obtain

5
> lal s e (1o, i)l +laol)
j=1

Combining with (5.30), we obtain (5.27).

Step 3 (Estimates on the energy and conclusion of the proof.)
We claim:

loto (Bo + v0)| S elool (BF + 7). (5.31)

By the assumption (5.18), E(ug, u1) = E(vo, v1). Noting that

5
1 1 1
Euo,w1) = Euo, 0)+ 563 +5 87 + 5 I fill 2
Jj=1

5
E(wo, v1) = Ewo, 0) + 55 + 5 ; vj+ 5l

and oj = B; — yj, for j € [0, 5], the estimate (5.31) will follow from the following
inequalities:

vielLsl |82 - v}| < elaolBd + 1) (532)
|E (1o, 0) — E(vo,0)| S eleol (BF + %) (5.33)
\nfluiz —llg1l72| < elaol(B5 +v0)- (5.34)

By Step 2, for j € [1, 3]

182 = 72| S lesl (181 + 1vi) S elool (181 + 17,1
and we deduce from Step 1,
‘ﬁ,z- - V,Z‘ < elog| (ﬁé + 7/02) :
This yields (5.32).
To prove (5.33), we expand
E(uo,0) — E(vo, 0) = E(W + fo,0) — E(W + g0, 0),

and see that the linear terms in fy, go are zero (since (W, 0) is a critical point for
E). As a consequence (using the Sobolev inequality to control the terms coming from

f|W+f0|% —f|W+go|%,weobtain

|E (0, 0) — E(vo, 0 < I fo — goll#¢ (1 foll#¢ + lgollz0) < lhollz (Il foll ¢ + llgollae) -
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and (5.33) follows from the estimates of Steps 1 and 2. The proof of (5.34) is similar,
using that hi- = f; — g1 and thus that

A2 = lgillza | < WAt lzz (LAl + lgillz2) -

In view of (5.31), since Bg and yy are non-negative, we obtain g = Oor S = yp =0
(which implies «¢g = 0). By (5.27) (ho, h1) = (0, 0), i.e. (ug, u1) = (vo, v1). Recalling
that we might have changed u; into —u; and v into —v; (see the beginning of Step 1),
we obtain the conclusion of the lemma. O

Proof of Theorem 5.2. Recall that for all £ with |£| < 1, we have

P (VTQ(O)) - EW,0), E (W((O)) — E(W,0),

L 1
NI JT=ep

Since (ug, u1) is close to Wg(O) for some [£] < ng, we deduce that |P(ug, u1)| <
E(ug, uyp). Let

_ P(ug, up)

Ll = .
E(uo, uy)

By Lemma A.1 in the appendix, P (ﬁlo (0)) = 0. By Lemma A.2 and the assumption(5.2),
there exists £ with |[€/| < 1 such that

ity 0) = WO <

ug,(0) ¢ (0) y S

(where the implicit constant depends only on 7g). This yields
|Pie,0) — PO (0)] S e,

and thus, since P (iig,) = 0,

/
e,
1— &2

As a consequence, |£'| < . Using that by direct computation,

W.0 ~ WO <
|€’| for small €', we obtain
lliig, (0) — (W, 0) I Se.

Using the same arguments as in the end of Sect. 3.1 (see in particular (3.11)), one
can also check that the Lorentz transformation preserves the assumption (5.4) (with a
smaller 7g).

We are thus reduced to the case where

P(ug,u1) =0 (5.35)

and || (ug, u1) — (W, 0)|l¢ < e. Since 4 is a H-valued continuous function, we deduce
that for small 7,

i) — (W, 0)ll3 < e.
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We also see that the assumption (5.4) implies that for small #

Z lim f Vi (u(t + 1, x))|> dx = 0.
T t—+o00 |X|Z‘l‘|—‘[0/2

By a standard application of the implicit function theorem, we can find A(¢) > 0 close to
1 and a small x(z) € R’ such that (1)) (- —x(t)) satisfies the orthogonality assumptions
(5.20) and (5.21) of Lemma 5.11. By Lemma 5.11, for small ¢, u(¢) is equal to % (ug, u1)
up to translation and scaling. Using the continuity of the flow, we see that ii(¢) must be
close to (uq, up) for small ¢.

We are thus reduced to proving the following:

Claim 5.12. Let u be a solution of (1.1) defined on a interval I containing 0, such that
P(ug,u1) = 0and (ug, uy) is close to W. Assume

vrel, 3x(r) e RY, In(r) € (0, 00),
i 1 x +x(1) 1 x +x(7)

LX) = : . (536
e <A<r>’¥1”0< A(®) ) m)’!”‘( 1) )) o

>0, 3X eRY, (uo(x), ur(x)) = ( 1 1W(f),o>.
3o

Then

O

Proof of Claim 5.12. By an easy induction, (5.36) holds for all t in the maximal interval
of definition of u#. As a consequence, u has the compactness property and remains close
to W in the energy space, up to translation and scaling. By [12], and since P (1o, u1) = 0,
we deduce (ug, u1) = (W, 0).

Let us mention that it is possible to prove a more general version of the claim,
omitting the assumptions “P (ug, u1) = 0” and “(ug, u1) is close to W”. In this case the
conclusion is that u is a general solitary wave. 0O

5.5. Channels of energy below twice the energy of the ground state. In this subsection
we prove Corollary 3 and Proposition 4.

Proof of Corollary 3. We argue by contradiction. Let u satisfy the assumptions of the
corollary, and assume furthermore:

Vo > 0, lim / |V xu(t, x)|> dx = 0. (5.37)
x| > 11| —70

t—+o00
+

According to [8] if N € {3, 5} there exists a sequence of times {#,},, with

lim ¢, = +o0,
n—+00

an integer J > 0, scales )J; with )\‘,’; > 0 and lim,—, )»f;/t,, = 0, positions x,{ € RY,
j .

with £; = lim,_ oo f—" well defined, and traveling waves Qé,, for 1 < j < J, such that
n J

Lol e
i)=Y ((xﬁrz“ 0}, (" - iy 0) ,

j=1 n
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.
oh¥a0) (x ij”, 0)) +o(1), (5.38)

in H, as n — oo. In addition, the parameters )\,j;, x,{ satisfy the pseudo-orthogonality
condition

x5 — xk

)\J k
1<j<k<J= lim —Z+—’?

— = +00. (5.39)
n=oo A Ay A

We note that by (5.37), one can assume that the linear solution that appears usually in
the expansion (5.38) is identically 0.
By (5.38), (5.39), we have

J J
o 1 .
Euo.u1) = ) E(Qy(0) = ) —=—=——==E(Q’,0).
j=1 =11 —1¢;?
Recall that
QeTand E(Q,0) <2E(W,0) = 31 >0, 0 = £W,

(see e.g. [10] for a proof). Thus the assumption E (ug,u1) < 2E(W, 0) implies that
J < 1,and that Q! = W if J = 1. If J = 0, then by conservation of the energy and
(5.38), u is identically 0 and we are done. We are thus reduced to the case J = 1. If
N € {3, 5}, Corollary 2 immediately yields a contradiction with (5.37), unless « is a
solitary wave. O

Proof of Proposition 4. Let u be a global radial solution of (1.1) with N > 7 odd, such
that E(ug, u1) < 2E(W,0) and

V1o >0, Y lim / |V cu(t, x)>dx = 0. (5.40)
™ Jx|>]l—70

t—+00

By [33], (5.38) holds with for all j, Q7 € (=W}, £; =0and x,{ = 0. By the assumption
E(ug,u1) < 2E(W,0), we obtain that J = 1 (again, J = 0 is excluded since u is
nonzero), and E(ug, u1) = E(W, 0). We are thus reduced to proving:

Claim 5.13. Assume N > 7. There exists g9 > 0 with the following property. Let u be a
global, radial solution of (1.1) such that E(ug, u1) = E(W,0),

VA >0, lim |V, cult, x)|>dx =0

1= %00 Jjx|>|1]-A
and
[ (o, u1) = (W,0)|]| =8 < €.
Then (ug, uy) = (W, 0).

Indeed, Claim 5.13 applied to the solution (¢, x) + u(t, + ¢, x) for some large n
yields the desired result. 0O
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Proof of the Claim. By a standard use of the implicit function theorem, we can assume
/ VugVAW = 0.
Expand (1, u;) as follows:
o) = (W fo. paw s 1), [ fiaw =o.

Let h(t) = u(r) — W. Then ||h(0)||; = & and
82h + Lwh = F(h) + N'(h), (5.41)

where

N(h) = F(W+h) — F(W) — F(h) — g—iiwﬁh.

By finite speed of propagation, & coincides, for |x| > |¢|, with the solution / of
3?2h+ Lwh = (F(h) + N(W) L {jx1=)1) (5.42)

Let T > 0 and denote by I'(T) = {(t, x), |t] < min{|x|, T}}. By the fractional chain
rule (2.6),

| F gz |y 0.0y = HF(E)H“X‘E””

‘ W’((0,T))

- L4
S Mkl rp 1l sy - (5.43)
By the inequality
N+2 4 N+l
F(Y+h)—F(Y)—F(h)—mlﬂ”*zh S Iyl a2, (5.44)
we obtain
N S W= 1|72
Furthermore,
”11 Wﬁ|h|f\%
r@ Lir?
< HHF(T)W e HIIF(T)lhl - ‘L%x S Il srerys

where we have used that since W ¥=2 S 1+1|x\ , W ll{jx|>s isin L? (R, LL(RY)). We
let iy (t) be the solution of

02hy + Lwhy =0, hpj—o = (1o, u1) — (W, 0).



Critical Wave Equation Close to the Ground State 1165

By the perturbation Lemma for the linear wave equation with a potential (Lemma 2.1),
we obtain
N+1

L4
= ne|, S URIE, + URITE, WAl ..

S(Tr)
Using again Strichartz estimates, we deduce

sup 1(t) = R @)l + [ = e |

—T<t<T W((=T,T)HNS((=T.T))

N+1

< ”h”_g([‘T) + ”h”S(FT)”h”W((—T,T)- (5.45)

and thus, since ||hL||W(( T.THNS((-T.T)) S <6,

I2llw(—1.yns(~T,7) S -
Going back to (5.45) we obtain

2 - N+l
sup  [|h(t) —hp @)y S OV-2.
—T<t<T

This estimate is uniform in 7. Hence

2 = N+1
sup [[A(t) —hp(@)n < 8V-2.
teR

Using that u is non-radiative, we deduce

lim / IV chp(t, x)[Fdx < 8V
(el

t—+oo
+
By Theorem 1,

1o FOllzg = [Tzt Cfov )| 5, S 872
Since 82 & ||(fo. f1)I17, + B2, this yields

N+1
I1Cfos SOl S BV2. (5.46)
Expanding the equality E(W, 0) = E(W + fo, BAW + f1), we obtain
2N
B S U foll3y + 1ol 577 + A2
which yields

2(N+1
B S BT

This proves that 8 = 0 and by (5.46), that (fp, f1) = (0,0). We have proved as
announced that (ug, u1) = (W,0). O

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.
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Appendix A: Lorentz Transformation

This appendix concerns the effect of the Lorentz transformations on solutions of (1.1).
If u is a C2 classical solution of (1.1), then by direct computation, uy (¢, x) (defined by
(14)is alsoa C 2 classical solution of (1.1) on its domain of definition. The Lorentz
tranform of a general finite energy solution of (1.1) (as defined in Definition 5.3 above)
is more difficult to understand. If u is global, the formula (1.4) makes sense, and one
can prove that uy has indeed finite energy and is a solution of (1.1) in the sense of
Definition 5.3 (see e.g. [12, Lemma 6.1]).

If u is not globally defined, the formula (1.4) does not make sense anymore. In this
section we prove however that using the Definition 5.6 of solutions of (1.1) outside wave
cones, we can define the Lorentz transformation of a class of nonglobal solutions, that
include a neighborhood of any global solution.

If £ € RN with |€| < 1, we denote by

Let (t, x) € RV, and (s, y) given by the change of variable of the Lorentz transformation:

r—4-x 1 1 1
“’”:(ﬁ’(‘m*e_Z(m‘l)"")“X)'

Then
> =12 = |y —s?
and
Is|+ 1yl < ce(t] +1xD, e+ |x] < cells|+[yD).
This can be checked easily, assuming for example that £ = (¢, 0, ..., 0), so that

( ) (l—ﬁxl x; —tl ) (A])
s, y) = , J X2y e XN ) .
Y N =02 1 =02

Lemma A.1. Letng € (0, 1). There exists T > Qwith the following property. Lett > T,
u be a scattering solution of (1.1)in{|x| > |t|—1}withinitial data (ug, u1) € Hatt =0,

and £ € RN with |€| < no. Then the formula (1.4) makes sense for t € [—ce_lr, ce_lr]
and defines a solution of (1.1) on [—c[] T, c[l 7] x RN, Furthermore,
- E(uo, 1
E(ip(0)) = 240t ¢- Plug,up) (A2)
VI—l? V12
- £ P(uo, uy) 1 E(uo, uy)
P(ug(0)) = P(ug, uy) + —1)e—- ——=¢. (A3
1|2 J1— €2 J1— €2
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Lemma A.2. Let ng, t and u be as in Lemma A.l. There exist constants &g > 0 and
C > 0 (depending on u, Tt and ng) such that if (vo, v1) € H and

| (o, u1) — (o, vl < €0,

then the solution v of (1.1) in {|x| > |t| — t} with initial data (vg, v1) att = 0 is
scattering, and, if |£| < no,

lli¢(0) — Vg (0) I3y < C Il (o, u1) — (vo, v |1 -
Remark A.3. Let u be a global solution of (1.1). Then by [14], we can see that for all
A eR,
N2 2N
u]l\x|z|t|+A e LN-2 (R, L N=2 (R )) .

Thus Lemma A.1 applies and one can define the Lorentz transform u (which is global)
of u for any parameter £, with |£| < 1. Furthermore by Lemma A.2, for all 5, there
exists gg such that if || (uo, u1) — (vo, v1)|l¢ < €0 and |£| < 1o, then one can define the
Lorentz transform vy of the solution v of (1.1) with initial data (vg, vy).

A.I Lorentz transform of a solution. Inthis subsection we prove the first part of LemmaA. 1,
i.e. the fact that uy(¢) is well-defined for t € [—cy7, cgT]. We assume without loss of
generality

L=(,0,...,0).
We recall from [25, Lemma 2.2 and Remark 2.3] the following claim:
Claim A4. Let ng € (0,1), h € LY(R, L2RN)), (wo, wy) € H' x L% £ € RY with
€] < no and

B — sin(tv/—A) sin ((r — s)v/—A)
w(t) = cos(t/—A)wg + —M w1 +[0 N h(s)ds, teR.

(A.4)

Then (wyg, d;wg) € C° (]R, H' x L2) and there is a constant Cy, (depending only on
no) such that

sup (e (), Brwe @l g1y 2 < Coo (I1wos w1y 2 + M2l 1w 12)) -
Step 1. (Smooth compactly-supported initial data) We firstassume (uo, u1) € (C5°(RY ))2,

and denote by R a positive number such that (ug, u1)(y) = 0 for |y| > R. We denote
by & the exterior of the wave cone:

E::{(s,y)eRxRN||y|>|s|_T}’

and & its image:

c {<s+£y1 yi + 58 ) ( )eg}
e:= b 9 27"'9 N 9 S’
V1 =02 1 =22 Y Y Y
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. N t—4x; x1—tL
_{(t,x)eRxR ’(m,m,xz,...,xl\/ eéy.

One can prove
ue ). (A.5)

Indeed, since the nonlinearity F is C 2 we have that for all (so, yo) € &, there exists a
neighborhood J x w of (sg, yo) in £ such that

i e CO (J, (H3 x Hz)(a))>,

and (A.5) follows from Sobolev embedding (recall that N < 5). By (A.5) and the
definition of uy,

ug € CY(&p). (A.6)

We next prove that if ¢ satisfies |f]| < czl randx € RV, then (¢, x) € E¢. Indeed, letting
(s, y) be as in (A.1), we must prove that (s, y) € £. We have

= tst = 2O g I B ]
v+ sl RS 1+
Since I‘fllillill < ¢g, we deduce (s, y) € &, ie. (t,x) € &. Using that 1|y |s|—jcju €

N+2 2(N+2) . .
L¥=2(R, L™¥=2"), we obtain by Claim A.4
- 0 -1 —1
iig € € (I—cg't ey T M), (A7)
Next, we prove
1l < cg't. x| = |t]+ Reg = ug(t,x) =0

Indeed, the left-hand side of this implication implies

x| + ]

Iyl —Is |_| s > R,
and thus ug (¢, x) = u(s, y) = 0.
Since uy is compactly supported in the space variable and continuous on [_J %] X
RY, we deduce
ug € L3 ([ 7't o', LZ(NN?). (A8)

Finally it is easy to see, using that u satisfies (1.1) in the distributional sense on &, that
uy satisfies (1.1) in the distributional sense on &. By Remark 5.4, uy is a solution of
(1.1) on the interval [—ce_lr, ce_lr]. Notice for further use that by a simple change of
variables,

||Me|| 204 Sllull 2oy (A9)
( LN=2 (&)

[—cy rcl t]xRN)

where the implicit constant depends only on 7.
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Step 2. We no longer assume (ug, u1) € (Cgo (RN ))2, and prove again that the Lorentz

transform of u is a solution of (1.1) on [—ce_lr, ce_lr]. Let {(ué, ull‘) }k be a sequence

in (C3°(RM))? such that

0.

lim ’
k—o00

(b)) = wo.un)) |, =

Let u be the solution of (1.1) on £ = {|x| > |f| — t} with initial data (uq, u;) at = 0.
By Definition 5.6, this is the restriction to £ of the solution of

2 4
o u—Au = |u|V2ulg,

with the same initial data (that we will also denote by u). We let u¥ the solution of the
same equation with initial data (u’é, u’f ) By the above computations, the value of uy (7)
(respectively ulz (1)) for |t]| < ce_1 1 depends only on the value of u (respectively u*) on
£. By long-time perturbation theory, we obtain that for large &

[ aep =2l e SNl g e (A10)
L™N=2" (RxRN L™N=2" (RxRN) LV-2(RLN-T)
and
im Hu — H e oy = 0. (A11)
k— 00 LN-2 (R,L N-2 )

By the preceding step, ulz is a solution of (1.1) on [—c[lt, c[lt] x RN Since (A.11)
implies

klgr;o H(F(uk) - F(u)) HSHLI(R,LZ) -

we deduce from Claim A.4

T

Since by (A.10),

k
ug||l 2+n | !
L°N-2 ([—c; T.ep I]XRN)

is uniformly bounded (see (A.9) in the preceding step), we deduce by Remark 5.5 that
uyg is a solution of (1.1) on [—czlr, czlr].
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A.2 Perturbation. In this subsection we prove Lemma A.2. We use the notations of the
previous subsection. Adapting the standard long-time perturbation theory to the exterior
of wave cones, we obtain that there exists &g such that if

l(vo, v1) — (uo, u)ll < €0,
then the solution v of

320 — Av = F(v)lig
V=0 = (vo, v1)

scatters and satisfies

sup [#(t) = D) llpg + =l wag 2w\ S C (o, 1) = (vo, v1) e
teR LN-2 (R,L N=2 (RN))

As a consequence

4 4 A
T T =)
[(o1770 = v=zu) wg| S el o, w) = (o, o)l
(R,L?) LN=2(R,L N-2 )

and the conclusion of the Lemma follows from Claim A.4.

A.3 Energy and momentum. It remains to prove the assertion on the energy and the
momentum. This is classical (see e.g. [26]). We give a proof for the sake of completeness.
We will assume

£=(,0,...,0)

to simplify notations. Let ¢ € R such that

—L 1
sinh{ = ———, cosh¢ = ——.
V1 =02 1 =2
As a consequence,
ug(t,x) = u(tcosh¢ +xysinh ¢, xycosh¢ +¢sinh ¢, xo, ..., xy). (A.12)
Let L u(t, x) be the right-hand side of (A.12). Formally,
Leve = Lo Lg, (A.13)
and, by direct computation,
d —
ik (E;u(O)) =P ((uo, ul)) (A.14)
d —
b (Lgu(())) ™ E((uo, u1)> (A.15)
d — )
b (Lcu) =0 JelNL (A.16)
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where
Pju(t) = / oru(t, x)8xju(t, x)dx.
Combining (A.13)...(A.16), we deduce
H .
E (ﬁ;u(O)) = cosh ¢ E (uo, uy) + sinh ¢ Py (ug, uy)
—
Py (E;u(O)) — cosh ¢ Py (uo, uy) + sinh ¢ E (ug, u1)
—
P; (Lcu®) = P; (wo.un) . j = [2. NI
Thisisexactly (A.2) and (A.3). To make these formal computation rigorous, we smoothen

the nonlinearity and the initial data. Let x € Cg° (RN) such that x(v) = Lif [v] <1
and x (v) = 01if |v| > 2. For ¢ > 0, let

Fo) = (1= () x ) i w2,
and note that F, € C§° (RN). Let (uoe, ui,e) € (C(?O(]RN))2 such that
gi_{r(l) [ uo.e, u1.6) — (o, ur)|4, = 0.
Let u, be the solution of

_4
{ atzua_A”8:|ua|N72M8, (A.17)

U epr=0 = (Uo,e, U1,) € H.
Note that u, is global, C°°, and that for all ¢
suppiie (1) C {|x| < |t + R¢},

where R, is such that supp i1 (0) C {|x| < R.}. Let
v
fo(v) = /0 Fuw) duw.
The energy

1 1
Ee(u;) = Ef|Vu£|2+5/<a,u£)2—ffg<u8)

and the momentum
P(ug) vausatus

are independent of time. The Lorentz transformation of u, L. u, are solutions of (A.17)

with (Cé>o (RN )) initial data. Explicit computations (which are rigorous in this context)
prove that

B — .
Ee (Leu(0)) = cosh ¢ Eu(uo e, ur.e) +sinh ¢ Pr(uo.e, u1,e)
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H .
Py (C;us(0)> = cosh & Py (uo,e, t1,¢) +sinh & Eg(ug ¢, u1,¢)
—
Pj (L)) = Py (oo i), j = [2.N].
It remains to prove that if [£| < g, then
. — — . — —
lim E, (E;MS(O)) —E (E;u(O)) . lim P (ﬁgug(O)) —P (ﬁ;u(O)) (A.18)
We first prove
. —_ —
lim Hﬁg @) (0) — Lz ()(0) H = 0. (A.19)
£—0 H
For this, we start by proving

sup [|(1) = tie ()l + I —u)Ugll nsz 20v —> 0. (A.20)
—r<t<t L[N—Z L. V2 e—0

Denote by F () = |u| V2 u, e (u) = (1 — x (%)) x (eu). Then

atz(u —ug) — A —ue) = Ye(ue) (Fw)lle — Fug)) + (1 — e (ue)) Fu)ll g
—
U —tepr=0 = (U, u1) — (Uo,e, U1e)-

As a consequence, for all #p > 0,

LN=2([0,10),L, V2

l(u —u)lell y,n ( 2(N+2>>

SICF@) = Fue) el (o, .02y + 111 = Ye @) F@) el 10,0, 12)
+ || (o, wr) — (uoe, ure) |4y -
We write
(1= e (ue)) Fu)llg = (lllb,_b,gk%‘,,| + ﬂ‘u_mzw) (1 — e (ue)) F(w)llg.
‘We have
g%n‘u%k%‘ul (1 —Ye(ug)) F)llg =0 ae. (A.21)
Indeed, if x is fixed, then
0 ife < lus(0)] < 3
W<t (= Ve = £ (1420) if Jue ()] < ¢
(1—x (3elu)l)) if ue(x)] = 5,

where we have used that x is decreasing. This obviously implies (A.21). As a conse-
quence of (A.21), by the dominated convergence theorem

tim [, (= e e) F(u)ﬂgHLtzN%sz =0.
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On the other hand,

4
Moty (U= Ve @) F ) S el ¥ e = .

Using Strichartz estimates and the equation satisfied by u — u, we deduce that for all
to > 0,

[0,10),L

I (u — Ms)ﬂgll i < 2<N+2)>

4 1+4
§Hllg|u—ug||u|NH +H|u—u8| NﬂgH +o(l), &—0.

L1([0,19),L2) L'([0,19),L2)

. N+2 2(N+2) . o .
Since ullg € L¥=2(R, L™7-2), we obtain, combining with the same argument for
negative times,

lim ||[(u —ug)llg|l ni2 avsny = 0.
£—>00 LN=3 <R,L7N—2 )

Going back to the equation satisfied by u — u, and using Strichartz estimates, we obtain
(A.20). By Claim A.4, we deduce (A.19).
In view of (A.19), the following property will imply (A.18):

li c 0,0) dx = ~=2 [ 1,0, 0|72 d
Eg%/fs( ¢ () (0, x)) x_W/| ¢ () (0, x)| x.
Denote w(x) = L (u)(0, x), we(x) = L (ue)(0, x), and f(u) = N—N|u|%.Write
/fs (we(x)) dx — / S (w(x)) dx
:/fs (we (x)) dx _/fs (w(x)) dx+/fs (w(x)) dx —/f(w(x)) dx.
We have 0 < f; (w) < f (w) and limg—¢ fe (w(x)) = f (w(x)), a.e., which implies

limO/ fe(wx)) dx = / f (w(x)) dx,

by the dominated convergence theorem.
On the other hand,

| fe (we(x)) = fe (W) =

we (x)
/ F(o)do
w(x)

we (x)
/ F.(o)do

w(x)

< S F (we(x) + F (wx)| [we(x) —w(x)],

where we have used that F is monotonic. By Holder inequality,

/ | fo(we () — fo(w()] dx

N-2

N 2N N+2 N+2
S (/ lwe (x) — w(x)Ide) <|stll Mo+ lwll ™ > — 0.
LN=2 N—2 e—0

This concludes the proof.
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