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— such non-systematic efforts might miss

I n underlying issues, and the code may

keep misbehaving until these are fixed.

In this article, we present real-world

u evidence to show that ignoring numeri-

cal result changes can lead to misleading

scientific conclusions. We present tech-

niques and tools that can help computa-

tional scientists understand and analyze
compiler effects on their scientific code.
These techniques are applicable across a
wide range of examples to narrow down
the root-causes to single files, functions
within files, and even computational ex-
pressions that affect specific variables.
The developer may then rewrite the code
selectively and/or suppress the applica-
tion of certain optimizations to regain
more predictable behavior.

Going forward, the frequency of re-
quired ports of computational software
will increase, given that performance
gains can no longer be obtained by mere-
ly scaling up the clock frequency, as used
to be possible in prior decades. Perfor-
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platforms. Porting of software in general involves ® Combining statistical consistency testing

with graph-based code analysis provides
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libraries, and many other aspects that determine Earth System Model (CESM™).
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across compilers and platforms in this
sense is a problem that hasn’t grabbed
headlines in discussions centered
around reproducibility, the problem is
real (see sidebar “Is There a Reproduc-
ibility Problem?”) and threatens to sig-
nificantly affect the trustworthiness of
critical pieces of software.

It may seem that all the difficulties de-
scribed thus far can be solved by ensur-
ing that compilers adhere to widely ac-
cepted rigorous standards of behavior
spanning machines and optimization
levels. Unfortunately, this goal is ex-
tremely difficult to realize in principle as
well as in practice. Modern compilers
must exploit not only advanced levels of
vectorization but also the characteristics
of heterogeneous computing platforms.
Their optimizations in this complex
space are triggered differently—even for
the same compiler flags—based on the
compiler’s projection of the benefits of
heeding the flags. This behavior is very
difficult to characterize for all cases.
While vendor compilers are often pre-
ferred for their superior performance—
especially with respect to vectorization—
they also present a challenge in terms of
intervention in case issues arise.

In this article, we describe the extent
of this challenge, and what is action-
able in terms of equipping developers
with practical tools (FLiT, CESM-ECT,
and CESM-RUANDA). Some of these
tools are already usable today for im-
portant codes such as hydrodynamics
simulation codes and finite element li-
braries. We then take up the more chal-
lenging problem of climate simulation
codes where much more work is need-
ed before an adequate amount of tool-
ing support will be developed. We de-
scribe the progress already made in this
area by describing our solutions that
address Earth system models (ESMs)
that are central to climate simulation.

“Climate-changing” compiler opti-
mizations. Earth system models (ESMs)
simulate many physical, chemical, and
biological processes and typically fea-
ture a complex infrastructure that cou-
ples separate modular representations of
Earth system components (for example,

A three-dimensional, undirected representation of the example from Figure 6. Nodes are
colored by community membership and sized based on a threshold centrality value. The
red nodes represent model variables sensitive to specific CPU instructions. All nodes with
eigenvector centrality < 0.4 have a constant size, and those above the threshold are scaled
and highlighted by increased reflectance. Credit: Liam Krauss of LLNL.

atmosphere, ocean, land, river, ice, and
land ice). ESMs are characterized by ex-
ceedingly large code bases that have re-
sulted from decades of development,
often containing a mix of both legacy
code and more modern code units. Fur-
ther, most ESMs are in a state of near
constant development as advancing
scientific discovery requires the contin-
ual addition of new features or process-
es, while rapidly evolving HPC technol-
ogy requires new optimizations of the
code base. Needless to say, software
engineering for ESMs is challenging,

and quality assurance is particularly
critical for maintaining model credibil-
ity given that output may have policy
and societal impact as future climate
scenarios are considered.”'*

The popular Community Earth Sys-
tem Model (CESM™)" is a fully cou-
pled community global climate mod-
el that enjoys widespread use across a
range of computational platforms, in-
cluding cutting-edge HPC architec-
tures. With a code base of nearly two mil-
lion lines across approximately 13,000
subroutines and 3,000 functions, it is
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Is There a Reproducibility

Problem?

» In the Community Earth System Model (CESM™) software, the compiler introduced
fused multiply add (FMA) instructions that resulted in “climate changing” differences

from the baseline simulations. ?

» Compiling Laghos (https://github.com/CEED/Laghos), a hydrodynamics simulation,
under the IBM compiler x1c with optimization level —03, there were negative
densities created and energy was not conserved after just one iteration.’

» FLiT-based testing of the MFEM finite element library revealed that even reasonable
compiler optimization levels can change the result by as much as 190%.°

Statistical Ensemble
Consistency Testing

When a climate simulation code is ported to a new platform, the output on the new
platform will not be bit-identical to the original. This difference makes answering
the question of consistency non-trivial. Instead, we ask a more tangible question:
Is the new output statistically distinguishable from the original?

The CESM Ensemble Consistency Test (CESM-ECT) was developed to answer this
new question. Ensemble methods are common in climate studies, as a collection of
simulations are needed to describe the internal variability in the climate model system.
(Climate models are inherently chaotic, meaning that even tiny perturbations or
differences can cause large effects.) CESM-ECT generates a large “baseline” ensemble
on a trusted machine and software stack and utilizes a testing framework based on the
popular technique of Principal Component Analysis (PCA) to determine whether a set
of new simulations (for example, from a new machine, compiler upgrade, optimization,
and so on) is statistically distinguishable from the baseline ensemble. This ensemble-
based approach to verification serves as a powerful classification tool when bit-identical

requirements are too restrictive.

critical to ensure that changes made
during the CESM development life
cycle do not adversely affect the mod-
el results. A CESM simulation output
is only bit-reproducible when the ex-
act same code is run using the same
CESM version and parameter set-
tings, initial conditions and forcing
data, machine, compiler (and flags),
MPI library, and processor counts,
among others. Unfortunately, control
over these quantities to this degree is
virtually impossible to attain in prac-
tice, and further, because the climate
system is nonlinear and chaotic, even
a double-precision roundoff-level
change will propagate rapidly and re-
sult in output that is no longer bit-
identical to the original.*’* As an ex-
ample, a port of CESM to a new
architecture is a common occurrence
that perturbs the model’s calcula-
tions (all of which are carried out in

a Bitwise reproducibility is a coveted goal in
general (not just for CESM), as it greatly facili-
tates regression testing.

double-precision) and requires an
evaluation for quality assurance. While
the output on a new machine will not
be bit-identical, one would reasonably
expect there to be some degree of consis-
tency across platforms, as the act of port-
ing should not be “climate-changing.”
We would expect the same scientific con-
clusions to be reached when analyzing
output from model runs that were identi-
cal in all but compute platform.

In the past, such CESM consistency
checks were costly undertakings that re-
quired climate science expertise and
multi-century simulations, as there is
not a simple metric for what defines cli-
mate changing. However, statistical
testing techniques have recently been
developed that define consistency in
terms of statistical distinguishability,
leading to the creation of the CESM En-
semble Consistency Test (ECT)"*** suite
of tools (see the sidebar “Statistical En-
semble Consistency Testing”). The sim-
ple and efficient CESM-ECT tools are
regularly used by CESM software engi-
neers for evaluating ports to new ma-
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chines, software upgrades, and modifi-
cations that should not affect the
climate. In practice, CESM-ECT has
proven effective in exposing issues in
the CESM hardware and software
stacks, including large discrepancies
caused by fused multiply-add (FMA) op-
timizations, an error in a compiler up-
grade, a random number generator bug
specific to big-endian machines, and an
incorrect input parameter in a sea ice
model release. In addition, by relaxing
restrictive bit-identical requirements,
CESM-ECT has allowed greater freedom
to take advantage of optimizations that
violate bit reproducibility but result in
statistically indistinguishable output.
Note that optimizing performance for
climate models has long been of inter-
est due to their computational expense.
For example, a fully coupled “high-reso-
lution” CESM simulation (that is, atmo-
sphere/land at 0.25° grid spacing and
ocean at 0.1°) can easily cost on the or-
der of 250,000 core hours per simulated
year.”® While lower resolution simula-
tions consume fewer core hours per
simulated year (a 1.0° grid costs = 3,500
core hours), these simulations are often
run for a large number of years. For ex-
ample, CESM’s contribution to the cur-
rent Coupled Model Comparison Proj-
ect (Phase 6)" (used by the
Intergovernmental Panel on Climate
Change® for their assessment reports)
is expected to consume nearly 125 mil-
lion core hours.

Flitting Behaviors

Compiler optimizations do have the
capability to change the result of float-
ing-point computations. However, it
is possible, even likely, that these opti-
mizations can generate an answer
closer to the scientist’s underlying
model. Unfortunately, in general, it is
hard to know which of two answers is
better. Therefore, the best we can do is
to try to reproduce a trusted imple-
mentation on trusted hardware.
Thus, we focus on reproducibility and
consistency of the program’s output
compared to the baseline generated
from the trusted configuration.

It is clear that manual testing to lo-
cate the absence of reproducibility does
not scale: any subset of the software
submodules could be responsible for
the observed result change. Projects
that maintain rigorous unit testing may



already be able to utilize them to locate
some problems, however many large
projects have insufficient unit testing.
Furthermore, floating-point rounding
is non-compositional: decreased error
in one component can sometimes in-
crease the overall roundoff error.’®* It
violates some of the basic algebraic laws
such as associativity (See the sidebar
“Floating-point Arithmetic and IEEE).
Sources of floating-point behavioral
changes are also too numerous. Some-
times hardware implementations have
fewer capabilities, such as not support-
ing subnormal numbers in their float-
ing-point arithmetic." Some strange
behaviors can be observed when sub-
normal numbers are abruptly converted
to zero. Other times, there are addition-
al hardware capabilities the compiler
may utilize, such as replacing a multiply
and an add with a single FMA instruc-
tion. While FMA can reduce floating-
point rounding error locally (because
there is only one rounding step instead
of two), care must still be taken. A lower
local error does not necessarily equate
to lower global error, particularly for a
code that is sensitive to roundoff.
Under heavy optimizations, compilers
can change the associativity of arithmetic
operations such as reductions (especially
when code is vectorized). For example, an
arithmetic reduction loop whose trip-
count is not an integral multiple of the
vector lane width must involve an extra it-
eration, handling the remaining ele-
ments. The manner in which this itera-
tion is incorporated can change overall
associativity. Given the increasing use of
GPUs and other accelerators, one must
take into account how they deviate
from IEEE floating-point standard in
an increasing number of ways. The use
of mixed-precision arithmetic where
later iterations change precision®2°?’
can exacerbate all these behaviors.
When a simulation code is affected
by any one of these reasons and the
computational results are deemed un-
acceptable, how does a developer pro-
ceed? The first step would typically be
to find the source(s) of floating-point
divergence and try to narrow down the
root-causes based on one’s best guess
or experience. Next, it seems logical to
identify the sites and involved vari-
ables that play a part in the numerical
inconsistency. Once inconsistent config-
urations and the associated code sites

are identified, there may be many ap-
proaches that can be used to mitigate
the inconsistency. For example, one
could employ numerical analysis tech-
niques to improve the stability of the
underlying algorithm; compile the af-
fected units with fewer optimizations;
or, rewrite the units to behave similarly
under the two different configurations.
Here, we present a collection of
techniques that can be used on realis-
tic HPC codes to investigate significant
differences in calculated results.

FLiT: Tool for Locating
Sources of Variability
FLiT is a tool and testing framework
meant to analyze the effect of compil-
ers and optimizations on user code. It
allows users to compare the results be-
tween different compilers and optimi-
zations, and even locate the code sites
to the function level where compila-
tion differences cause results to differ.
Logarithmic search. Suppose the
code is contained in a collection of N
files and a new compilation produces
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inconsistent results. We cannot know
there is only one variability site or that
errors are not canceled out in strange
ways. To make any progress, we make
the assumption that floating-point dif-
ferences are unique (for example, no
two variability sites exactly cancel out
each other). Without this assumption,
to be sure we found all variability sites,
it would require an exponential search.
With this assumption, we can utilize
Delta Debugging?® with complexity O(N
log N). However, in practice, we have
found mostvariability sites to act alone,
meaning they contribute variability by
themselves and not in concert with oth-
er components. We then make a fur-
ther assumption that each site acts
alone in contributing variability (call
this the singleton assumption). This as-
sumption allows for an efficient loga-
rithmic search as illustrated in Figure 1
with complexity O(k log N) where & is
the number of variability sites. Speed-
ometers are also displayed in Figure 1
to represent performance of our par-
tially optimized executable, demon-

Floating-Point

Arithmetic and IEEE

Under most circumstances FMA yields more accurate results than a multiplication
and addition computed separately. However, this need not be the case. For example,
given the expression a*b + ac, one expects the expression to evaluate to 0 when

== —c. However, with FMA, the calculation carried out might be a ¢ + acwhere ac
represents the result of a x cwith rounding. Kahan'’” presents another example where
the multiplication of a complex number by its complex conjugate using FMA might not

produce a real number.

Climate Models Are Important

Given recent warming trends and increases in extreme events, understanding present,
past, and future climate scenarios is increasingly a global priority. Models such as CESM
that perform state-of-the science climate simulations are particularly vital for addressing
otherwise intractable “what if?” climate questions (for example, “What if all of the ice

in the Arctic melts?” or “What if ocean temperatures rise by N degrees?”), enabling better

societal preparation for the future.

CESM 2.0 was released in the summer of 2018, and its popularity is a result of
collaborations over several decades between scientists at the National Center for
Atmospheric Research (NCAR) and various universities and research institutions. CESM is
a true community model that is accompanied by a robust, extensible and portable workflow
and code base that provides users a standard way to readily create model experiments
and customize the experimental setup. The infrastructure allows users to easily explore
and evaluate proposed science changes by creating simplified model configurations (for
example, via lower resolutions or disabled feedback). Climate models are well known for
pushing the limit for what is computationally feasible, and CESM’s infrastructure permits
the extensive testing of the model, thereby ensuring its reliability and efficiency on a broad
spectrum of modern computational platforms. Establishing the trustworthiness of a code
like CESM is paramount given its critical role in exploring important climate questions and
defining consistency separately from bit-reproducibility is a practical necessity.
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Figure 1. Example of the Bisect logarithmic search where shaded blocks represent optimized

files or symbols. Unshaded blocks are from the trusted baseline compilation.

Speed

File/Symbol Search

Consistency

o T

[ ]

sl

S

.«“

wllg,

N

< N
o I

s

ally,

N

strating that the more files are opti-
mized, the more performance it yields.

The logarithmic search in Figure 1
proceeds as follows. With all of code
optimized (all the rectangles shaded),
the computation runs quite fast (the
speedometer is at its highest), but the
results are inconsistent. Even with the
left half optimized, the result is still in-
consistent. Logarithmic search subdi-
vides the left half, keeping the first two
files of the left half optimized, which
results in consistency. We then divide
the remaining two files from the left
half to test file 3 by itself. This file opti-
mized by itself causes inconsistency
and is therefore given blame. Remov-
ing file 3 from the search, we start over.
In this case, we see optimizing all ex-
cept for file 3 obtains consistency,
therefore we have found all sites.

We framed this problem in terms of
files, but after blaming files, we can
perform this search again over symbols
in each file (representing individual
functions). The algorithm is the same
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but the implementation for symbols is
a bit more complicated, as outlined in
Bentley et al.’

Verifying the singleton assumption. A
check is inserted in the search that prov-
ably verifies whether the singleton as-
sumption holds.’ In fact, as shown in this
illustration, it may be possible to judi-
ciously add back some units in an opti-
mized mode (the last row from Figure 1)
to finally leave the code highly optimized
and producing acceptable answers. It
would also be advantageous to obtain an
overall speedup profile of one’s simula-
tion code. One such profile can be seen
in Figure 3. This was obtained for an ex-
ample supplied with a widely used finite
element library, MFEM. From this pro-
file, one can observe that it is possible to
attain a speedup of 9.4% (compared with
gcc —02) with exact reproducibility, or a
speedup of 39.6% with a small amount of
variability.

FLiT workflow. The FLiT workflow is
shown in Figure 2. A full application or

a piece of it may be converted into a

FLiT test. The given FLiT test, sequen-
tial or parallel (OpenMP or MPI), must
be run-to-run deterministic. One must
attempt to make their code as deter-
ministic as possible before using FLiT.
For example, random number genera-
tors can be seeded and MPI applica-
tions can use capture-playback (using
tools like ReMPI*).

The FLiT test can now be compiled
in various ways and run to find the
compilations that cause significant
differences. If one of the compilations
delivers results within tolerance and
has acceptable performance, the con-
figuration search can end. For example,
in Figure 3, we obtain a 9% speedup with
a bitwise equal result on MFEM exam-
ple 9, and if some variability can be tol-
erated, then the compilation with 40%
speedup can be used. But when signifi-
cant speedups are accompanied with
unacceptable differences, the FLIiT Bi-
sect search can be used to locate the
sites of variability. The FLiT Bisect
search proceeds as previously described.

FLiT is a publicly released tool.* It
has been applied to production codes
within the Lawrence Livermore Na-
tional Laboratory (LLNL) and has suc-
cessfully located issues in the MFEM
library and the Laghos application, as
described earlier. FLiT Bisect first per-
forms File Bisect, which proceeds as
follows:

1. compile each source file into an
object file using the trusted baseline
compilation, and another object file
using the optimization compilation
under test.

2. get the next file combination to
try from the logarithmic search.

3. link together the chosen object
files from the two compilations to
make a single executable (see File Bi-
sectin Figure 4).

4. run this generated executable and

Figure 2. FLiT workflow.
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compare with the baseline run results.

5. return the comparison to the
search algorithm and repeat from (2).

The runtime of FLiT Bisect is the
time it takes to run the test code times
the number of file combinations and
symbol combinations to be evaluated.
Notice that compilation into object
files happens only at the beginning. Af-
ter that, FLiT simply does a link step
and run for each search step. It is worth
noting that FLiT Bisect also includes
the capability to report how much each
site is estimated to contribute to the
overall result divergence.

Function-level Bisect. While File Bi-
sect is quite useful in narrowing down
the reasons for a software’s non-porta-
bility, we often have to locate problems
at a finer level of resolution—meaning,
a single function within a file. FLiT sup-
ports this via its Symbol Bisect feature.
As seen in Figure 4, Symbol Bisect mix-
es compiled functions from two differ-
ent compilations of the same source
file. This is performed by demoting
some symbols to be weak symbols. Dur-
ing link-time, if there is a duplicate
symbol but one is weak, then the strong
symbol is kept while the weak symbol is
discarded. This approach allows FLiT
to search over the symbol space after
optimizations have been performed.
However, for this to be effective, the
-fPIC compilation flag must be used
(only on the object file to be mixed) to
ensure no inlining between functions
that we might want to replace occurs.
FLiT checks whether using -fPIC inter-
feres with the optimization that causes
the result difference.

In practice, this modality of search
has helped us successfully attribute
root causes down to a small set of func-
tions. For example, in the case of Test-
13 within the MFEM library, FLiT-based
testing revealed that a compiler opti-
mization level that involved the use of
AVX2, FMA, and higher precision inter-
mediate floating-point values produced
aresult that had a relative difference of
193% from the baseline of g++—02. The
L, norm over the mesh went from ap-
proximately 5 to 15 after the optimiza-
tions. Using Symbol Bisect, the prob-
lemwas located to be within one simple
function that calculates M = M +adA",
with a being a scalar, and M and A being
dense square matrices. This case wasn’t
known to the developers of MFEM.
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Figure 3. Performance profile of compilations of Example 9 from MFEM. The compilations

with the fastest bitwise equal and fastest overall speeds are labeled.
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Figure 4. File Bisect and Symbol Bisect.

File Bisect (above) links object files
from two compilations to make
a mixed executable.

Symbol Bisect (below) mixes function
symbols from two different compiled
versions of the same source file.

Some function symbols are changed
into weak symbols (empty small circles)
and are discarded by the linker.

This allows mixing of functions from
two compilations of a single source file.

Conversation with the developers of
MFEM is under way to resolve this issue.
This finding may indicate numerical
instability of the underlying finite ele-
ment method employed, or with its
implementation.

Addressing the identified and lo-
cated issue is outside of FLiT’s scope.
It is then the responsibility of the sci-
entific sofware developer to solve the
issue in order to obtain consistency
and numerical stability. A designer
may then choose to solve the identi-
fied non-portability either by tuning
precision, rewriting the computation
differently (perhaps employing more
numerically stable approximations), or
avoiding the problematic optimiza-
tion for the whole application or the
affected files.

CESM

FLiT’s tolerance-based approach to
consistency will work for many code
bases, but for applications that model
complex and chaotic systems, a more
nuanced method may be needed. For
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File Bisect
O baseline (e.g., g++-00)
)@ under test (e.g., g++-03)
9020000 final executable (mixed)

000e®

Symbol Bisect
®(©cc000®®® hascline (e.g., g++-00)
O O under test (e.g., g++-03)
0 9®0®0® 00 final executable (mixed)

CESM, statistical consistency between
a baseline ensemble and a set of new
runs is determined by the CESM-ECT
quality assurance framework. Extend-
ing the CESM-ECT to help under-
stand why new runs are inconsistent
is crucial for comprehensive quality
assurance for CESM. Retaining in
mind our long-term goal of impacting
other large, critical applications, we
now describe our recent efforts to
tackle the challenge of root cause
analysis of inconsistency in CESM.
The CESM-ECT has proven to be
useful in terms of detecting inconsis-
tencies that were either introduced
during the process of porting the CESM
software or by a new machine platform
itself, both of which are not uncom-
mon. Such sources of inconsistency
can be true errors (for example, result-
ing from a compiler bug) or new ma-
chine instructions. However, while
CESM-ECT issues a “fail” when a statis-
tical discrepancy is identified in the
new output, little useful information is
provided about the possible cause.
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Figure 5. The CESM root cause identification workflow.

In this example, the computation of
the fictitious CESM output variable
rain causes CESM-ECT failure

due to an operation in the notional
“microphysics” module. To find

the cause, CESM-RUANDA first
converts the CESM source code
(top Left) to a directed graph (top
right). The subgraph responsible for
computing rain is partitioned into
communities (bottom left). Then
nodes within the communities are
selected for runtime sampling by
their centrality. The table (bottom
right) illustrates how runtime

value comparison between an
experimental and control case

at three logged execution points
(columns) can reveal the cause of
the CESM-ECT failure.

1000 Lines of Code

This lack of fine-grained information
can be quite frustrating for the user,
who would like to know why the new
run failed so that the problem can be
addressed. And while debugging a
large and complex code like CESM is
challenging in general, some hope gen-
erally exists when the code crashes or
stalls or the numerics blow up. In these
situations, we often have enough infor-
mation (from a large-scale debugging
tool or software output) to roughly de-
termine the source of the error. How-
ever, when trying to determine the
cause of a statistical discrepancy in
CESM output, it may be far from clear
where (or even how) to start looking for
the root cause.

Automating root cause analysis for
CESM. The need for an automated tool
that enables developers to trace a prob-
lem detected in CESM output to its
source was felt acutely shortly after
CESM-ECT was first put into use for ver-
ifying ports to other platforms (against
simulations on the NCAR supercom-
puter). Only one of many CESM-sup-
ported platforms failed the CESM-ECT
and determining the cause of the failure
took several frustrating months of effort
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module microphysics

use physics_types
use error_messages

implicit none

rain = a * b + c
rain = rain / d (I
snow = e + f * g

mix = rain + snow ||,

I Values logged
experimental 2.0 1.0 0.5
sSnow
. control 2.0 1.0 0.5
' . experimental  10.0 15.0 9.5
: rain
. control ALt 15 0.9
. <
)
- o
ol o0 . experimental  12.0 16.0 10.0
Zad mix
NGTAY control 3.1 25 14

from a number of scientists and engi-
neers to identify FMA instructions as
giving rise to inconsistency (for exam-
ple, see Baker et al.®). Ideally, a compan-
ion tool to CESM-ECT would identify
which lines of code or CPU instructions
were responsible for the failure. While
tools do exist to find differences at this
level, we were not aware of any that we
could directly apply to a code the size
and complexity of CESM. Approaches
based on SAT or Satisfiability Modulo
theories are precise, but often cannot
handle large code bases.” Debugging
and profiling toolkits are capable of de-
tecting divergent values in individual
variables, but the sampling process can
be expensive as well. Furthermore,
identifying which variables to sample is
a formidable challenge. Therefore, we
adopted the strategy of reducing the
search space for the root cause(s) to a
tractable quantity of code that would fa-
cilitate the use of tools like FLiT or
KGEN™ or runtime sampling.

We have successfully progressed to-
ward our goal via a series of developed
techniques that we collectively refer to
as the CESM Root caUse Analysis of Nu-
merical DiscrepAncy (CESM-RUAN-
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DA).?* This toolkit parses the CESM
source code and creates a directed
graph of internal CESM variables that
represents variable assignment paths
and their properties. Based on its de-
termination of which CESM output
variables are most affected (using in-
formation from CESM-ECT), it then ex-
tracts a subgraph responsible for cal-
culating the output variables via a form
of hybrid program slicing. Next, the
subgraph is partitioned into communi-
ties to facilitate analysis, and nodes are
ranked by information flow within the
communities using centrality. The cen-
trality-based ranking enables either
runtime sampling of critical nodes or
the identification of critical modules
that can be individually extracted from
CESM and run as an independent ker-
nel (for example, via KGEN). See Figure
5 for a visual depiction of CESM-RUAN-
DA. Translating the CESM source code
into a directed graph representation
enables fast, hybrid analysis of infor-
mation flow making it easier for other
existing tools or techniques to locate
problematic lines of CESM code.

As an example, CESM-RUANDA can
identify internal CESM variables whose



values change markedly when comput-
ed with FMA. CESM built by the Intel 17
compiler with FMA enabled generates
output on the NCAR supercomputer
thatis flagged as a failure by CESM-ECT.
After pinpointing the output variables
most affected by enabling FMA instruc-
tions, CESM-RUANDA narrows the root
cause search space to a subgraph com-
munity corresponding to the model at-
mosphere microphysics package. Ex-
amining the top nodes ranked by
centrality yields several of the internal
variables that take very different values
with FMA enabled (Figure 6), allowing
us to reach the same conclusion as the
manual investigation into the failing
CESM port in a fraction of the time (less
than an hour on a single CPU socket).
The automated identification of the root
causes of discrepancies detected in
CESM output provided by CESM-RUAN-
DA will tremendously benefit the CESM
community and developers.

It is important to highlight that
while a CESM-ECT “fail” has a negative
connotation, it is simply an indicator of
statistically differentiable output. While
the negative connotation is warranted for
bugs, it masksa subtletyin the case of FMA.
In keeping with the sidebar on floating-
point arithmetic, we note that CESM-ECT
does not indicate which output (with

FMA or without) is more “correct” (in
terms of representing the climate state).
While domain experts might be able to
make such a determination, the model
should ideally return consistent results
regardless of whether FMA machine in-
structions are executed. In this case, our
tools seem to indicate an instability or
sensitivity in portions of the code thatide-
ally could be corrected with a redesign.

Concluding Remarks

Computational reproducibility has re-
ceived a great deal of (well-deserved) at-
tention, with publications emphasizing
the reproducibility of experimental
methods in systems® through summa-
ries of workshops covering scientific
and pragmatic aspects of reproducibili-
ty.!® While the problems due to non-re-
producibility are amply clear, there is a
dearth of tools that help solve day-to-day
software engineering issues that impact
software developers as well as users.

In this context, our specific contri-
bution in this paper has been a two-
pronged approach that allows domain
scientists to act on reproducibility prob-
lems related to porting software across
machines and compilers. Our first spe-
cific contribution is FLiT—a tool that
can be applied to real-world libraries
and applications when they exhibit non-
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reproducible behavior upon changing
compilers or optimization flags. Our
second contribution are the CESM-
ECT and CESM-RUANDA tools that
have approached the problem on a
very large scale and in the context of
climate simulation software.

While much more work remains to
be done on both tools, the anticipated
usage model is to first use CESM-ECT to
determine that a discrepancy exists,
then employ CESM-RUANDA to narrow
down the scope of the problem (in code-
bases exceeding several million lines of
code) to specific variables whose values
differ significantly, and finally attribute
the root cause to individual files or func-
tions via tools such as FLiT. The efficacy
of FLiT was demonstrated on the MFEM
code which occupies over 100K lines of
code and consists of 2,998 functions
spread over 97 source files. With such
non-trivial code sizes already handled
via FLiT, we believe that a combination
of these tools will quite naturally lead to
an overall superior diagnostic process.

Building a community is essential. To
help increase the list of tools and ap-
proaches in this area, we are eager to en-
gage in collaborations in two primary
directions. First, the FLiT tool is avail-
able publicly at https://github.com/
PRUNERS. We are open to developing

Figure 6. A schematic representation of CESM-RUANDA applied to the problem of finding variables most affected by FMA instructions.??

Of the more than 100 atmosphere output variables used in the CESM-ECT, six are related to the failure (left).
The CESM subgraph that computes these six variables is represented by the center plot, where node color
designates community membership. Note that we render a smaller subgraph than that produced in Milroy et
al.?? for illustrative purposes. The large red nodes in the center plot represent five variables most affected by
FMA instructions. In the rightmost plot the community containing these five variables is isolated and nodes
are selected for runtime sampling by their centrality. Large green nodes are those chosen for sampling and
purple nodes are variables sensitive to FMA which are also selected for sampling. All but one red node from
the center plot would be identified by CESM-RUANDA.
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FLiT with external input, collabora-
tions, and feature requests. Second,
ideas centered around the CESM-RU-
ANDA are ripe for re-implementation,
and at NCAR, we are open to supplying
computational kernels from the public-
ly available CESM code to the commu-
nity. The ideas as well as results behind
FLiT and CESM-RUANDA are described
in greater detail in Bentley et al.> and
Milroy et al.,** respectively. To further
help with community building, we have
recently contributed a collection of
open-source tools as well as conference
tutorials that help pursue many of the
issues surrounding floating-point preci-
sion analysis, tuning, and exception
handling; these are available for perusal
at http://fpanalysistools.org.'*

In summary, the integrity of compu-
tational science depends on minimiz-
ing semantic gaps between the source
level representation of simulation soft-
ware and its executable versions. Such
gaps arise when hardware platforms
change, libraries change, and compil-
ers evolve. These changes are necessi-
tated by the need to maintain perfor-
mance in the present post Dennard
scaling era. Furthermore, the pace of
these changes is only bound to in-
crease as the designer community is
highly engaged in squeezing out the
last drop of performance from current
generation (as well as upcoming) ma-
chines and runtimes. Therefore, the
onus of computer science researchers
is not only to minimize or avoid these
gaps through formally verified compi-
lation methods (for example, Comp-
cert’), develop tools that discover and
bridge these gaps, and also make fun-
damental advances that contribute to
reproducibility (for example, recent
contributions to the IEEE-754 stan-
dard in support of reproducible arith-
metic operations.®).

Digital content available for inclu-
sion with this article. Sources and
detailed instructions to install and
use the FLiT software system on a
worked-out example of debugging a
scenario within the MFEM finite ele-
ment library is available from http://
fpanalysistools.org.
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