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the machine instructions that actually 
get executed. Unfortunately, such changes 
do affect the computed results to a sig-
nificant (and often worrisome) extent. 
In a majority of cases, there are not easily 
definable a priori answers one can 
check against. A programmer ends up 
comparing the new answer against a 
trusted baseline previously established 
or checks for indirect confirmations 
such as whether physical properties 
such as energy are conserved. However, 
such non-systematic efforts might miss 
underlying issues, and the code may 
keep misbehaving until these are fixed.

In this article, we present real-world 
evidence to show that ignoring numeri-
cal result changes can lead to misleading 
scientific conclusions. We present tech-
niques and tools that can help computa-
tional scientists understand and analyze 
compiler effects on their scientific code. 
These techniques are applicable across a 
wide range of examples to narrow down 
the root-causes to single files, functions 
within files, and even computational ex-
pressions that affect specific variables. 
The developer may then rewrite the code 
selectively and/or suppress the applica-
tion of certain optimizations to regain 
more predictable behavior.

Going forward, the frequency of re-
quired ports of computational software 
will increase, given that performance 
gains can no longer be obtained by mere-
ly scaling up the clock frequency, as used 
to be possible in prior decades. Perfor-
mance gains are now hinged on the use 
of multicore CPUs, GPUs and other ac-
celerators, and above all, advanced com-
pilation methods. While reproducibility 

HIGH PERFORMANCE COMPUTING (HPC) is central to 
solving large problems in science and engineering 
through the deployment of massive amounts of 
computational power. The development of important 
pieces of HPC software spans years or even decades, 
involving dozens of computer and domain scientists. 
During this period, the core functionality of the 
software is made more efficient, new features are 
added, and the software is ported across multiple 
platforms. Porting of software in general involves  
the change of compilers, optimization levels, arithmetic 
libraries, and many other aspects that determine 
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and quality assurance is particularly 
critical for maintaining model credibil-
ity given that output may have policy 
and societal impact as future climate 
scenarios are considered.7,10,23

The popular Community Earth Sys-
tem Model (CESM™)13 is a fully cou-
pled community global climate mod-
el that enjoys widespread use across a 
range of computational platforms, in-
cluding cutting-edge HPC architec-
tures. With a code base of nearly two mil-
lion lines across approximately 13,000 
subroutines and 3,000 functions, it is 

across compilers and platforms in this 
sense is a problem that hasn’t grabbed 
headlines in discussions centered 
around reproducibility, the problem is 
real (see sidebar “Is There a Reproduc-
ibility Problem?”) and threatens to sig-
nificantly affect the trustworthiness of 
critical pieces of software.

It may seem that all the difficulties de-
scribed thus far can be solved by ensur-
ing that compilers adhere to widely ac-
cepted rigorous standards of behavior 
spanning machines and optimization 
levels. Unfortunately, this goal is ex-
tremely difficult to realize in principle as 
well as in practice. Modern compilers 
must exploit not only advanced levels of 
vectorization but also the characteristics 
of heterogeneous computing platforms. 
Their optimizations in this complex 
space are triggered differently—even for 
the same compiler flags—based on the 
compiler’s projection of the benefits of 
heeding the flags. This behavior is very 
difficult to characterize for all cases. 
While vendor compilers are often pre-
ferred for their superior performance—
especially with respect to vectorization—
they also present a challenge in terms of 
intervention in case issues arise.

In this article, we describe the extent 
of this challenge, and what is action-
able in terms of equipping developers 
with practical tools (FLiT, CESM-ECT, 
and CESM-RUANDA). Some of these 
tools are already usable today for im-
portant codes such as hydrodynamics 
simulation codes and finite element li-
braries. We then take up the more chal-
lenging problem of climate simulation 
codes where much more work is need-
ed before an adequate amount of tool-
ing support will be developed. We de-
scribe the progress already made in this 
area by describing our solutions that 
address Earth system models (ESMs) 
that are central to climate simulation.

“Climate-changing” compiler opti-
mizations. Earth system models (ESMs) 
simulate many physical, chemical, and 
biological processes and typically fea-
ture a complex infrastructure that cou-
ples separate modular representations of 
Earth system components (for example, 

atmosphere, ocean, land, river, ice, and 
land ice). ESMs are characterized by ex-
ceedingly large code bases that have re-
sulted from decades of development, 
often containing a mix of both legacy 
code and more modern code units. Fur-
ther, most ESMs are in a state of near 
constant development as advancing 
scientific discovery requires the contin-
ual addition of new features or process-
es, while rapidly evolving HPC technol-
ogy requires new optimizations of the 
code base. Needless to say, software 
engineering for ESMs is challenging, 

A three-dimensional, undirected representation of the example from Figure 6. Nodes are 
colored by community membership and sized based on a threshold centrality value. The 
red nodes represent model variables sensitive to specific CPU instructions. All nodes with 
eigenvector centrality ≤ 0.4 have a constant size, and those above the threshold are scaled 
and highlighted by increased reflectance. Credit: Liam Krauss of LLNL. 
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chines, software upgrades, and modifi-
cations that should not affect the 
climate. In practice, CESM-ECT has 
proven effective in exposing issues in 
the CESM hardware and software 
stacks, including large discrepancies 
caused by fused multiply-add (FMA) op-
timizations, an error in a compiler up-
grade, a random number generator bug 
specific to big-endian machines, and an 
incorrect input parameter in a sea ice 
model release. In addition, by relaxing 
restrictive bit-identical requirements, 
CESM-ECT has allowed greater freedom 
to take advantage of optimizations that 
violate bit reproducibility but result in 
statistically indistinguishable output. 
Note that optimizing performance for 
climate models has long been of inter-
est due to their computational expense. 
For example, a fully coupled “high-reso-
lution” CESM simulation (that is, atmo-
sphere/land at 0.25° grid spacing and 
ocean at 0.1°) can easily cost on the or-
der of 250,000 core hours per simulated 
year.28 While lower resolution simula-
tions consume fewer core hours per 
simulated year (a 1.0° grid costs ≈ 3,500 
core hours), these simulations are often 
run for a large number of years. For ex-
ample, CESM’s contribution to the cur-
rent Coupled Model Comparison Proj-
ect (Phase 6)11 (used by the 
Intergovernmental Panel on Climate 
Change15 for their assessment reports) 
is expected to consume nearly 125 mil-
lion core hours.

Flitting Behaviors
Compiler optimizations do have the 
capability to change the result of float-
ing-point computations. However, it 
is possible, even likely, that these opti-
mizations can generate an answer 
closer to the scientist’s underlying 
model. Unfortunately, in general, it is 
hard to know which of two answers is 
better. Therefore, the best we can do is 
to try to reproduce a trusted imple-
mentation on trusted hardware. 
Thus, we focus on reproducibility and 
consistency of the program’s output 
compared to the baseline generated 
from the trusted configuration. 

It is clear that manual testing to lo-
cate the absence of reproducibility does 
not scale: any subset of the software 
submodules could be responsible for 
the observed result change. Projects 
that maintain rigorous unit testing may 

double-precision) and requires an 
evaluation for quality assurance. While 
the output on a new machine will not 
be bit-identical, one would reasonably 
expect there to be some degree of consis-
tency across platforms, as the act of port-
ing should not be “climate-changing.” 
We would expect the same scientific con-
clusions to be reached when analyzing 
output from model runs that were identi-
cal in all but compute platform.

In the past, such CESM consistency 
checks were costly undertakings that re-
quired climate science expertise and 
multi-century simulations, as there is 
not a simple metric for what defines cli-
mate changing. However, statistical 
testing techniques have recently been 
developed that define consistency in 
terms of statistical distinguishability, 
leading to the creation of the CESM En-
semble Consistency Test (ECT)1,2,21 suite 
of tools (see the sidebar “Statistical En-
semble Consistency Testing”). The sim-
ple and efficient CESM-ECT tools are 
regularly used by CESM software engi-
neers for evaluating ports to new ma-

critical to ensure that changes made 
during the CESM development life 
cycle do not adversely affect the mod-
el results. A CESM simulation output 
is only bit-reproducible when the ex-
act same code is run using the same 
CESM version and parameter set-
tings, initial conditions and forcing 
data, machine, compiler (and flags), 
MPI library, and processor counts, 
among others. Unfortunately, control 
over these quantities to this degree is 
virtually impossible to attain in prac-
tice, and further, because the climate 
system is nonlinear and chaotic, even 
a double-precision roundoff-level 
change will propagate rapidly and re-
sult in output that is no longer bit-
identical to the original.21,a As an ex-
ample, a port of CESM to a new 
architecture is a common occurrence 
that perturbs the model’s calcula-
tions (all of which are carried out in 

a	 Bitwise reproducibility is a coveted goal in 
general (not just for CESM), as it greatly facili-
tates regression testing.

• � In the Community Earth System Model (CESM™) software, the compiler introduced 
fused multiply add (FMA) instructions that resulted in “climate changing” differences 
from the baseline simulations. 3 

• � Compiling Laghos (https://github.com/CEED/Laghos), a hydrodynamics simulation, 
under the IBM compiler xlc with optimization level — O3, there were negative 
densities created and energy was not conserved after just one iteration.5

• � FLiT-based testing of the MFEM finite element library revealed that even reasonable 
compiler optimization levels can change the result by as much as 190%.5

Is There a Reproducibility 
Problem?

When a climate simulation code is ported to a new platform, the output on the new 
platform will not be bit-identical to the original. This difference makes answering  
the question of consistency non-trivial. Instead, we ask a more tangible question:  
Is the new output statistically distinguishable from the original?

The CESM Ensemble Consistency Test (CESM-ECT) was developed to answer this 
new question. Ensemble methods are common in climate studies, as a collection of 
simulations are needed to describe the internal variability in the climate model system. 
(Climate models are inherently chaotic, meaning that even tiny perturbations or 
differences can cause large effects.) CESM-ECT generates a large “baseline” ensemble 
on a trusted machine and software stack and utilizes a testing framework based on the 
popular technique of Principal Component Analysis (PCA) to determine whether a set 
of new simulations (for example, from a new machine, compiler upgrade, optimization, 
and so on) is statistically distinguishable from the baseline ensemble. This ensemble-
based approach to verification serves as a powerful classification tool when bit-identical 
requirements are too restrictive.

Statistical Ensemble 
Consistency Testing 
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already be able to utilize them to locate 
some problems, however many large 
projects have insufficient unit testing. 
Furthermore, floating-point rounding 
is non-compositional: decreased error 
in one component can sometimes in-
crease the overall roundoff error.18,29 It 
violates some of the basic algebraic laws 
such as associativity (See the sidebar 
“Floating-point Arithmetic and IEEE).

Sources of floating-point behavioral 
changes are also too numerous. Some-
times hardware implementations have 
fewer capabilities, such as not support-
ing subnormal numbers in their float-
ing-point arithmetic.14 Some strange 
behaviors can be observed when sub-
normal numbers are abruptly converted 
to zero. Other times, there are addition-
al hardware capabilities the compiler 
may utilize, such as replacing a multiply 
and an add with a single FMA instruc-
tion. While FMA can reduce floating-
point rounding error locally (because 
there is only one rounding step instead 
of two), care must still be taken. A lower 
local error does not necessarily equate 
to lower global error, particularly for a 
code that is sensitive to roundoff.

Under heavy optimizations, compilers 
can change the associativity of arithmetic 
operations such as reductions (especially 
when code is vectorized). For example, an 
arithmetic reduction loop whose trip-
count is not an integral multiple of the 
vector lane width must involve an extra it-
eration, handling the remaining ele-
ments. The manner in which this itera-
tion is incorporated can change overall 
associativity. Given the increasing use of 
GPUs and other accelerators, one must 
take into account how they deviate 
from IEEE floating-point standard in 
an increasing number of ways. The use 
of mixed-precision arithmetic where 
later iterations change precision6,20,27 
can exacerbate all these behaviors.

When a simulation code is affected 
by any one of these reasons and the 
computational results are deemed un-
acceptable, how does a developer pro-
ceed? The first step would typically be 
to find the source(s) of floating-point 
divergence and try to narrow down the 
root-causes based on one’s best guess 
or experience. Next, it seems logical to 
identify the sites and involved vari-
ables that play a part in the numerical 
inconsistency. Once inconsistent config-
urations and the associated code sites 

inconsistent results. We cannot know 
there is only one variability site or that 
errors are not canceled out in strange 
ways. To make any progress, we make 
the assumption that floating-point dif-
ferences are unique (for example, no 
two variability sites exactly cancel out 
each other). Without this assumption, 
to be sure we found all variability sites, 
it would require an exponential search. 
With this assumption, we can utilize 
Delta Debugging30 with complexity O(N 
log N). However, in practice, we have 
found most variability sites to act alone, 
meaning they contribute variability by 
themselves and not in concert with oth-
er components. We then make a fur-
ther assumption that each site acts 
alone in contributing variability (call 
this the singleton assumption). This as-
sumption allows for an efficient loga-
rithmic search as illustrated in Figure 1 
with complexity O(k log N) where k is 
the number of variability sites. Speed-
ometers are also displayed in Figure 1 
to represent performance of our par-
tially optimized executable, demon-

are identified, there may be many ap-
proaches that can be used to mitigate 
the inconsistency. For example, one 
could employ numerical analysis tech-
niques to improve the stability of the 
underlying algorithm; compile the af-
fected units with fewer optimizations; 
or, rewrite the units to behave similarly 
under the two different configurations.

Here, we present a collection of 
techniques that can be used on realis-
tic HPC codes to investigate significant 
differences in calculated results. 

FLiT: Tool for Locating 
Sources of Variability
FLiT is a tool and testing framework 
meant to analyze the effect of compil-
ers and optimizations on user code. It 
allows users to compare the results be-
tween different compilers and optimi-
zations, and even locate the code sites 
to the function level where compila-
tion differences cause results to differ. 

Logarithmic search. Suppose the 
code is contained in a collection of N 
files and a new compilation produces 

Given recent warming trends and increases in extreme events, understanding present, 
past, and future climate scenarios is increasingly a global priority. Models such as CESM 
that perform state-of-the science climate simulations are particularly vital for addressing 
otherwise intractable “what if?” climate questions (for example, “What if all of the ice  
in the Arctic melts?” or “What if ocean temperatures rise by N degrees?”), enabling better 
societal preparation for the future.

CESM 2.0 was released in the summer of 2018, and its popularity is a result of 
collaborations over several decades between scientists at the National Center for 
Atmospheric Research (NCAR) and various universities and research institutions. CESM is 
a true community model that is accompanied by a robust, extensible and portable workflow 
and code base that provides users a standard way to readily create model experiments 
and customize the experimental setup. The infrastructure allows users to easily explore 
and evaluate proposed science changes by creating simplified model configurations (for 
example, via lower resolutions or disabled feedback). Climate models are well known for 
pushing the limit for what is computationally feasible, and CESM’s infrastructure permits 
the extensive testing of the model, thereby ensuring its reliability and efficiency on a broad 
spectrum of modern computational platforms. Establishing the trustworthiness of a code 
like CESM is paramount given its critical role in exploring important climate questions and 
defining consistency separately from bit-reproducibility is a practical necessity.

Climate Models Are Important

Under most circumstances FMA yields more accurate results than a multiplication  
and addition computed separately. However, this need not be the case. For example,  
given the expression a*b + ac, one expects the expression to evaluate to 0 when  
b == −c. However, with FMA, the calculation carried out might be a * c + ac where ac 
represents the result of a * c with rounding. Kahan17 presents another example where 
the multiplication of a complex number by its complex conjugate using FMA might not 
produce a real number.

Floating-Point  
Arithmetic and IEEE
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but the implementation for symbols is 
a bit more complicated, as outlined in 
Bentley et al.5

Verifying the singleton assumption. A 
check is inserted in the search that prov-
ably verifies whether the singleton as-
sumption holds.5 In fact, as shown in this 
illustration, it may be possible to judi-
ciously add back some units in an opti-
mized mode (the last row from Figure 1) 
to finally leave the code highly optimized 
and producing acceptable answers. It 
would also be advantageous to obtain an 
overall speedup profile of one’s simula-
tion code. One such profile can be seen 
in Figure 3. This was obtained for an ex-
ample supplied with a widely used finite 
element library, MFEM. From this pro-
file, one can observe that it is possible to 
attain a speedup of 9.4% (compared with 
gcc —O2) with exact reproducibility, or a 
speedup of 39.6% with a small amount of 
variability.

FLiT workflow. The FLiT workflow is 
shown in Figure 2. A full application or 
a piece of it may be converted into a 

FLiT test. The given FLiT test, sequen-
tial or parallel (OpenMP or MPI), must 
be run-to-run deterministic. One must 
attempt to make their code as deter-
ministic as possible before using FLiT. 
For example, random number genera-
tors can be seeded and MPI applica-
tions can use capture-playback (using 
tools like ReMPI24).  

The FLiT test can now be compiled 
in various ways and run to find the 
compilations that cause significant 
differences. If one of the compilations 
delivers results within tolerance and 
has acceptable performance, the con-
figuration search can end. For example, 
in Figure 3, we obtain a 9% speedup with 
a bitwise equal result on MFEM exam-
ple 9, and if some variability can be tol-
erated, then the compilation with 40% 
speedup can be used. But when signifi-
cant speedups are accompanied with 
unacceptable differences, the FLiT Bi-
sect search can be used to locate the 
sites of variability. The FLiT Bisect 
search proceeds as previously described.

FLiT is a publicly released tool.4 It 
has been applied to production codes 
within the Lawrence Livermore Na-
tional Laboratory (LLNL) and has suc-
cessfully located issues in the MFEM 
library and the Laghos application, as 
described earlier. FLiT Bisect first per-
forms File Bisect, which proceeds as 
follows:

1.	 compile each source file into an 
object file using the trusted baseline 
compilation, and another object file 
using the optimization compilation 
under test. 

2.	 get the next file combination to 
try from the logarithmic search. 

3.	 link together the chosen object 
files from the two compilations to 
make a single executable (see File Bi-
sect in Figure 4). 

4.	 run this generated executable and 

strating that the more files are opti-
mized, the more performance it yields.

The logarithmic search in Figure 1 
proceeds as follows. With all of code 
optimized (all the rectangles shaded), 
the computation runs quite fast (the 
speedometer is at its highest), but the 
results are inconsistent. Even with the 
left half optimized, the result is still in-
consistent. Logarithmic search subdi-
vides the left half, keeping the first two 
files of the left half optimized, which 
results in consistency. We then divide 
the remaining two files from the left 
half to test file 3 by itself. This file opti-
mized by itself causes inconsistency 
and is therefore given blame. Remov-
ing file 3 from the search, we start over. 
In this case, we see optimizing all ex-
cept for file 3 obtains consistency, 
therefore we have found all sites.

We framed this problem in terms of 
files, but after blaming files, we can 
perform this search again over symbols 
in each file (representing individual 
functions). The algorithm is the same 

Figure 1. Example of the Bisect logarithmic search where shaded blocks represent optimized 
files or symbols. Unshaded blocks are from the trusted baseline compilation.
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CESM, statistical consistency between 
a baseline ensemble and a set of new 
runs is determined by the CESM-ECT 
quality assurance framework. Extend-
ing the CESM-ECT to help under-
stand why new runs are inconsistent 
is crucial for comprehensive quality 
assurance for CESM. Retaining in 
mind our long-term goal of impacting 
other large, critical applications, we 
now describe our recent efforts to 
tackle the challenge of root cause 
analysis of inconsistency in CESM.

The CESM-ECT has proven to be 
useful in terms of detecting inconsis-
tencies that were either introduced 
during the process of porting the CESM 
software or by a new machine platform 
itself, both of which are not uncom-
mon. Such sources of inconsistency 
can be true errors (for example, result-
ing from a compiler bug) or new ma-
chine instructions. However, while 
CESM-ECT issues a “fail” when a statis-
tical discrepancy is identified in the 
new output, little useful information is 
provided about the possible cause. 

compare with the baseline run results. 
5.	 return the comparison to the 

search algorithm and repeat from (2).
The runtime of FLiT Bisect is the 

time it takes to run the test code times 
the number of file combinations and 
symbol combinations to be evaluated. 
Notice that compilation into object 
files happens only at the beginning. Af-
ter that, FLiT simply does a link step 
and run for each search step. It is worth 
noting that FLiT Bisect also includes 
the capability to report how much each 
site is estimated to contribute to the 
overall result divergence.

Function-level Bisect. While File Bi-
sect is quite useful in narrowing down 
the reasons for a software’s non-porta-
bility, we often have to locate problems 
at a finer level of resolution—meaning, 
a single function within a file. FLiT sup-
ports this via its Symbol Bisect feature. 
As seen in Figure 4, Symbol Bisect mix-
es compiled functions from two differ-
ent compilations of the same source 
file. This is performed by demoting 
some symbols to be weak symbols. Dur-
ing link-time, if there is a duplicate 
symbol but one is weak, then the strong 
symbol is kept while the weak symbol is 
discarded. This approach allows FLiT 
to search over the symbol space after 
optimizations have been performed. 
However, for this to be effective, the 
-fPIC compilation flag must be used 
(only on the object file to be mixed) to 
ensure no inlining between functions 
that we might want to replace occurs. 
FLiT checks whether using -fPIC inter-
feres with the optimization that causes 
the result difference.

In practice, this modality of search 
has helped us successfully attribute 
root causes down to a small set of func-
tions. For example, in the case of Test-
13 within the MFEM library, FLiT-based 
testing revealed that a compiler opti-
mization level that involved the use of 
AVX2, FMA, and higher precision inter-
mediate floating-point values produced 
a result that had a relative difference of 
193% from the baseline of g++ —O2. The 
L2 norm over the mesh went from ap-
proximately 5 to 15 after the optimiza-
tions. Using Symbol Bisect, the prob-
lem was located to be within one simple 
function that calculates M = M +aAAT, 
with a being a scalar, and M and A being 
dense square matrices. This case wasn’t 
known to the developers of MFEM. 

Conversation with the developers of 
MFEM is under way to resolve this issue. 
This finding may indicate numerical 
instability of the underlying finite ele-
ment method employed, or with its 
implementation.

Addressing the identified and lo-
cated issue is outside of FLiT’s scope. 
It is then the responsibility of the sci-
entific sofware developer to solve the 
issue in order to obtain consistency 
and numerical stability. A designer 
may then choose to solve the identi-
fied non-portability either by tuning 
precision, rewriting the computation 
differently (perhaps employing more 
numerically stable approximations), or 
avoiding the problematic optimiza-
tion for the whole application or the 
affected files.

CESM
FLiT’s tolerance-based approach to 
consistency will work for many code 
bases, but for applications that model 
complex and chaotic systems, a more 
nuanced method may be needed. For 

Figure 3. Performance profile of compilations of Example 9 from MFEM. The compilations 
with the fastest bitwise equal and fastest overall speeds are labeled.

Fastest bitwise equal:
  clang++ –O3
Speedup: 1.094

Fastest variable:
  icpc –O3 –fp-model fast=1
Speedup: 1.396
Variability: 7.78e–14
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Figure 4. File Bisect and Symbol Bisect.
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File Bisect (above) links object files  
from two compilations to make  
a mixed executable.

Symbol Bisect (below) mixes function  
symbols from two different compiled  
versions of the same source file. 

Some function symbols are changed  
into weak symbols (empty small circles)  
and are discarded by the linker. 

This allows mixing of functions from  
two compilations of a single source file. 
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from a number of scientists and engi-
neers to identify FMA instructions as 
giving rise to inconsistency (for exam-
ple, see Baker et al.3). Ideally, a compan-
ion tool to CESM-ECT would identify 
which lines of code or CPU instructions 
were responsible for the failure. While 
tools do exist to find differences at this 
level, we were not aware of any that we 
could directly apply to a code the size 
and complexity of CESM. Approaches 
based on SAT or Satisfiability Modulo 
theories are precise, but often cannot 
handle large code bases.25 Debugging 
and profiling toolkits are capable of de-
tecting divergent values in individual 
variables, but the sampling process can 
be expensive as well. Furthermore, 
identifying which variables to sample is 
a formidable challenge. Therefore, we 
adopted the strategy of reducing the 
search space for the root cause(s) to a 
tractable quantity of code that would fa-
cilitate the use of tools like FLiT or 
KGEN19 or runtime sampling.

We have successfully progressed to-
ward our goal via a series of developed 
techniques that we collectively refer to 
as the CESM Root caUse Analysis of Nu-
merical DiscrepAncy (CESM-RUAN-

DA).22 This toolkit parses the CESM 
source code and creates a directed 
graph of internal CESM variables that 
represents variable assignment paths 
and their properties. Based on its de-
termination of which CESM output 
variables are most affected (using in-
formation from CESM-ECT), it then ex-
tracts a subgraph responsible for cal-
culating the output variables via a form 
of hybrid program slicing. Next, the 
subgraph is partitioned into communi-
ties to facilitate analysis, and nodes are 
ranked by information flow within the 
communities using centrality. The cen-
trality-based ranking enables either 
runtime sampling of critical nodes or 
the identification of critical modules 
that can be individually extracted from 
CESM and run as an independent ker-
nel (for example, via KGEN). See Figure 
5 for a visual depiction of CESM-RUAN-
DA. Translating the CESM source code 
into a directed graph representation 
enables fast, hybrid analysis of infor-
mation flow making it easier for other 
existing tools or techniques to locate 
problematic lines of CESM code. 

As an example, CESM-RUANDA can 
identify internal CESM variables whose 

This lack of fine-grained information 
can be quite frustrating for the user, 
who would like to know why the new 
run failed so that the problem can be 
addressed. And while debugging a 
large and complex code like CESM is 
challenging in general, some hope gen-
erally exists when the code crashes or 
stalls or the numerics blow up. In these 
situations, we often have enough infor-
mation (from a large-scale debugging 
tool or software output) to roughly de-
termine the source of the error. How-
ever, when trying to determine the 
cause of a statistical discrepancy in 
CESM output, it may be far from clear 
where (or even how) to start looking for 
the root cause.

Automating root cause analysis for 
CESM. The need for an automated tool 
that enables developers to trace a prob-
lem detected in CESM output to its 
source was felt acutely shortly after 
CESM-ECT was first put into use for ver-
ifying ports to other platforms (against 
simulations on the NCAR supercom-
puter). Only one of many CESM-sup-
ported platforms failed the CESM-ECT 
and determining the cause of the failure 
took several frustrating months of effort 

Figure 5. The CESM root cause identification workflow. 

In this example, the computation of 
the fictitious CESM output variable 
rain causes CESM-ECT failure 
due to an operation in the notional 
“microphysics” module. To find 
the cause, CESM-RUANDA first 
converts the CESM source code 
(top left) to a directed graph (top 
right). The subgraph responsible for 
computing rain is partitioned into 
communities (bottom left). Then 
nodes within the communities are 
selected for runtime sampling by 
their centrality. The table (bottom 
right) illustrates how runtime 
value comparison between an 
experimental and control case 
at three logged execution points 
(columns) can reveal the cause of 
the CESM-ECT failure.
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reproducible behavior upon changing 
compilers or optimization flags. Our 
second contribution are the CESM-
ECT and CESM-RUANDA tools that 
have approached the problem on a 
very large scale and in the context of 
climate simulation software.

While much more work remains to 
be done on both tools, the anticipated 
usage model is to first use CESM-ECT to 
determine that a discrepancy exists, 
then employ CESM-RUANDA to narrow 
down the scope of the problem (in code-
bases exceeding several million lines of 
code) to specific variables whose values 
differ significantly, and finally attribute 
the root cause to individual files or func-
tions via tools such as FLiT. The efficacy 
of FLiT was demonstrated on the MFEM 
code which occupies over 100K lines of 
code and consists of 2,998 functions 
spread over 97 source files. With such 
non-trivial code sizes already handled 
via FLiT, we believe that a combination 
of these tools will quite naturally lead to 
an overall superior diagnostic process.

Building a community is essential. To 
help increase the list of tools and ap-
proaches in this area, we are eager to en-
gage in collaborations in two primary 
directions. First, the FLiT tool is avail-
able publicly at https://github.com/
PRUNERS. We are open to developing 

values change markedly when comput-
ed with FMA. CESM built by the Intel 17 
compiler with FMA enabled generates 
output on the NCAR supercomputer 
that is flagged as a failure by CESM-ECT. 
After pinpointing the output variables 
most affected by enabling FMA instruc-
tions, CESM-RUANDA narrows the root 
cause search space to a subgraph com-
munity corresponding to the model at-
mosphere microphysics package. Ex-
amining the top nodes ranked by 
centrality yields several of the internal 
variables that take very different values 
with FMA enabled (Figure 6), allowing 
us to reach the same conclusion as the 
manual investigation into the failing 
CESM port in a fraction of the time (less 
than an hour on a single CPU socket). 
The automated identification of the root 
causes of discrepancies detected in 
CESM output provided by CESM-RUAN-
DA will tremendously benefit the CESM 
community and developers. 

It is important to highlight that 
while a CESM-ECT “fail” has a negative 
connotation, it is simply an indicator of 
statistically differentiable output. While 
the negative connotation is warranted for 
bugs, it masks a subtlety in the case of FMA. 
In keeping with the sidebar on floating-
point arithmetic, we note that CESM-ECT 
does not indicate which output (with 

FMA or without) is more “correct” (in 
terms of representing the climate state). 
While domain experts might be able to 
make such a determination, the model 
should ideally return consistent results 
regardless of whether FMA machine in-
structions are executed. In this case, our 
tools seem to indicate an instability or 
sensitivity in portions of the code that ide-
ally could be corrected with a redesign. 

Concluding Remarks
Computational reproducibility has re-
ceived a great deal of (well-deserved) at-
tention, with publications emphasizing 
the reproducibility of experimental 
methods in systems8 through summa-
ries of workshops covering scientific 
and pragmatic aspects of reproducibili-
ty.16 While the problems due to non-re-
producibility are amply clear, there is a 
dearth of tools that help solve day-to-day 
software engineering issues that impact 
software developers as well as users.

In this context, our specific contri-
bution in this paper has been a two-
pronged approach that allows domain 
scientists to act on reproducibility prob-
lems related to porting software across 
machines and compilers. Our first spe-
cific contribution is FLiT—a tool that 
can be applied to real-world libraries 
and applications when they exhibit non-

Figure 6. A schematic representation of CESM-RUANDA applied to the problem of finding variables most affected by FMA instructions.22 

Of the more than 100 atmosphere output variables used in the CESM-ECT, six are related to the failure (left). 
The CESM subgraph that computes these six variables is represented by the center plot, where node color 
designates community membership. Note that we render a smaller subgraph than that produced in Milroy et 
al.22 for illustrative purposes. The large red nodes in the center plot represent five variables most affected by 
FMA instructions. In the rightmost plot the community containing these five variables is isolated and nodes 
are selected for runtime sampling by their centrality. Large green nodes are those chosen for sampling and 
purple nodes are variables sensitive to FMA which are also selected for sampling. All but one red node from 
the center plot would be identified by CESM-RUANDA.
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FLiT with external input, collabora-
tions, and feature requests. Second, 
ideas centered around the CESM-RU-
ANDA are ripe for re-implementation, 
and at NCAR, we are open to supplying 
computational kernels from the public-
ly available CESM code to the commu-
nity. The ideas as well as results behind 
FLiT and CESM-RUANDA are described 
in greater detail in Bentley et al.5 and 
Milroy et al.,22 respectively. To further 
help with community building, we have 
recently contributed a collection of 
open-source tools as well as conference 
tutorials that help pursue many of the 
issues surrounding floating-point preci-
sion analysis, tuning, and exception 
handling; these are available for perusal 
at http://fpanalysistools.org.12

In summary, the integrity of compu-
tational science depends on minimiz-
ing semantic gaps between the source 
level representation of simulation soft-
ware and its executable versions. Such 
gaps arise when hardware platforms 
change, libraries change, and compil-
ers evolve. These changes are necessi-
tated by the need to maintain perfor-
mance in the present post Dennard 
scaling era. Furthermore, the pace of 
these changes is only bound to in-
crease as the designer community is 
highly engaged in squeezing out the 
last drop of performance from current 
generation (as well as upcoming) ma-
chines and runtimes. Therefore, the 
onus of computer science researchers 
is not only to minimize or avoid these 
gaps through formally verified compi-
lation methods (for example, Comp-
cert9), develop tools that discover and 
bridge these gaps, and also make fun-
damental advances that contribute to 
reproducibility (for example, recent 
contributions to the IEEE-754 stan-
dard in support of reproducible arith-
metic operations.26).

Digital content available for inclu-
sion with this article. Sources and 
detailed instructions to install and 
use the FLiT software system on a 
worked-out example of debugging a 
scenario within the MFEM finite ele-
ment library is available from http://
fpanalysistools.org.
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