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Abstract—Transmission line failure in power systems prop-agate
non-locally, making the control of the resulting outages extremely
difficult. In Part II of this paper, we continue the study of line failure
localizability in transmission networks and characterize the impact
of cut set outages. We establish a Simple Path Criterion, showing
that the propagation pattern due to bridge outages, a special case of
cut set failures, are fully determined by the positions in the network
of the buses that participate in load balancing. We then extend our
results to general cut set outages. In contrast to non-cut outages
discussed in Part I whose subsequent line failures are contained
within the original blocks, cut set outages typically impact the
whole network, affecting the power flows on all remaining lines.
We corroborate our analytical results in both parts using the IEEE
118-bus test system, in which the failure propagation patterns
exhibit a clear block-diagonal structure predicted by our theory,
even when using full AC power flow equations.

Index Terms—Cascading failure, Laplacian matrix, contingency
analysis, spanning forests.

I. INTRODUCTION

IN PART I of this paper [1] we establish a spectral repre-sentation of power redistribution that precisely captures the
Kirchhoff’s Laws in terms of the distribution of different families
of subtrees in the transmission network. This new representation
enables us to precisely characterize how non-cut line outages
propagate. In particular, a non-cut outage in a block will only
impact the branch power flows on the transmission lines within
that block, regardless of whether the outage involves a single line
or multiple lines simultaneously. Moreover, a non-cut outage
will almost surely impact flows on every remaining line within
its block.
Contributions of Part II of this paper: We study cut set out-

ages and analytically characterize how such failures impact the
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Fig. 1. Non-zero entries of theKl̂lmatrix (depicted as the dark blocks) for a
graph with non-bridge blocks{E1,E2,...,Eb}and bridge setEbri.

remaining lines.Our results demonstrate how the impact of cut
set outages propagate globally in a way that depends on both
the design of power balancing rules and the network topological
structure. This characterization, together with our results from
Part I, can be visualized in Fig. 1, where it becomes clear how
the block decomposition of a network is linked to the sparsity of
the LODF matrixKl̂l. This new theory builds on recent work on
line outage distribution factors, e.g., [2], [3], and shows that the
block decomposition yields an extremely useful representation
of these factors.
The formal characterization of single bridge outage is given by

a Simple Path Criterion as Theorem 1 in Section III, which shows
that the relative positions of the buses participating in load bal-
ancing fully determines how such failures propagate. This result
applies to the scenario in which the post-contingency network is
disconnected into two or more connected components, known as
islands, and the original power injections need to be balanced in
each island. We then formulate the concept ofparticipating block
and show that bridge outages typically propagate globally across
the network and impact the branch flows on all transmission
lines. In Section IV, we extend Theorem 1 to the case of a
general cut set outage, and show that the aggregate impact of
such failures can be decomposed into two terms: (a) a first term
that captures the effect of power redistribution, which can be
decomposed in accordance to the blocks where the failures occur
and is fully characterized by our study in Part I; and (b) a second
term that describes the impact of the power balancing rule and
generalizes the case of a single bridge failure, capturing how the
system handles disconnected components.
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Results in Parts I and II of this paper provide a complete
characterization of line failure propagation and is illustrated in
Section V using IEEE 118-bus test network. In particular, we
show that the LODF matrix has a clear block-diagonal structure
predicted by our theory, even when using full AC power flow
equations.

II. ISLANDINGMODEL

In contrast to Part I where we focus on simultaneous line
outages that do not disconnect the network, we consider now
the case in which the set of initial line outages disconnects
the network into two or more connected sub-networks, called
islands. We refer to such contingency as acut set outageand,
in the special case in which the cut set consists of a single
line, as abridge outage. We remark that, in practice, such
islands can be created accidentally by line outages, but also
deliberately as a defensive action to prevent a disturbance/attack
from propagating across the entire network infrastructure [4].

A. Islands and Cut Set Outages

In this section we present a detailed model for a single island
that is necessary for our analysis of cut set outages in the later
sections. More specifically, we fully characterize the impact of
a bridge outage in Section III and of a general cut set outage in
Section IV.
We adopt the same notations as in Part I, which we now sum-

marize. LetG=(N,E)denote the pre-contingency network
and consider a subset of linesF ⊂E that is a cut set ofG
and denote byG1,...,Gkthe multiple islands created by the
removal of lines inF. Let us focus on one of these islands, say
G=(N,E), whereN⊆N is the set of buses that belong to
the island andE⊆Eis the set of lines that,pre-contingency,
have both endpoints inside the island. From the viewpoint of the
islandG, the lines in the cut setF can then be classified into
three types,F =Fexternal∪Ftie∪F, as follows:

Fexternal:={̂l=(̂i,̂j)∈F :̂i/∈N,̂j/∈N}is the set of
trippedexternal lineswith neither endpoints in the island
G;
Ftie:={̂l=(̂i,̂j)∈F :̂i/∈N,̂j∈N} is the set of
trippedtie lineswith exactly one endpoint (denoted by as
j(̂l)) in the islandG;

F:={̂l=(̂i,̂j)∈F :̂i∈N,̂j∈N} is the set of
trippedinternal lineswith both endpoints inside the island
G.

Note that external line outages do not have a direct impact on
the islandGsince the post-contingency operations and power
flow equations are decoupled in each island and thus can be
ignored. Therefore, without loss of generality, we henceforth as-
sumeF =Ftie∪F. Since the graphG=(N,E)describes the
pre-contingency topology of the island, its edge setEincludes
the tripped internal linesF, but not the tie linesFtie. We refer
to the lines that are still active in the island post-contingency
assurviving linesand denote their collection as−F:=E\F.
The post-contingency island is thus fully described by the graph
(N,E\F), which is connected by construction. In particular,
the tripped internal linesFis a non-cut set outage of islandG.

Designate any bus inN to be the reference bus forGand,
without loss of generality, assume it is busn.LetBdenote the
susceptance matrix associated with the islandG,Cits incidence
matrix,L:=CBCTits Laplacian matrix, and defineAin terms
of the reduced Laplacian matrixLas in Part I of this paper:

A=
L
−1
0

0 0
.

Letf:= (f̂l,̂l∈E)andf
tie:= (f̂l,̂l∈Ftie)be the pre-

contingency branch flows on the lines inside the islandGand on
the tie lines respectively. We adopt the convention thatf̂l>0

for a linêl=(̂i,̂j)if power flows from buŝito buŝjover

linêl. In particular, for a tie linêl∈Ftie,f̂l>0implies that

pre-contingency the island imports power over linêlandf̂l<0

if it exports power over̂l.
If the pre-contingency branch flowf̂l=0on any tie line

or internal linêl∈F, then its tripping has no impact on the
post-contingency branch flows in this island, as modeled by the
DC power flow equations. We therefore assume without loss
of generality that the pre-contingency branch flowsf̂l=0for

all tripped lineŝl∈F (otherwise, removêlfromF and the
surviving islandG).

B. Pre-Contingency Injections and Branch Flows

Letp:= (pk,k∈N)denote the pre-contingency injections
in the buses of islandG. The effect of pre-contingency tie line
branch flows on the islandGcan be modeled by additional
injectionsf̂lat busesj(̂l):

Δptie:=

l̂∈Ftie

f̂lej(̂l), (1)

whereej(̂l)is the standard unit vector of sizen:=|N |. Hence,
for the purpose of computing pre-contingency branch flows in
islandG, the injections can be taken to bep+Δptie.LetfF:=
(fl,l∈F)denote the pre-contingency branch flows on lines in
F,f−F:= (fl,l∈E\F)those on the surviving lines inG, and
f:= (f−F,fF). Partition the matrices(B, C)according to the
two sets of lines,Fand−F=E\F, as follows:

B=:
B−F 0

0 BF
, C=: C−F, CF .

From (1) it follows that(f, θ)satisfies the DC power flow
equations on the pre-contingency islandG=(N,E):

p+Δptie=Cf=C−Ff−F+CFfF, (2a)

f=BCTθ, (2b)

whereθare the pre-contingency voltage angles.

C. Post-Contingency Injections and Branch Flows

The effect of tie line outagesFtieon islandGcan be modeled
as the loss of the injectionsΔptieat the endpoints of the tie
lines. The pre-contingency injections are then unbalanced over
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the islandGwith a total imbalance equal to

k∈N

pk=−

l̂∈Ftie

f̂l.

Post contingency, there is a surplus if the island net exports
power pre contingency and a shortage otherwise, depending on
the sign of this total imbalance. A balancing ruleGis invoked
to rebalance power in the island by adjusting injections (gen-
erators and/or loads) in response to the contingency. A popular
balancing rule, which we nameproportional control, prescribes
how to share the imbalance proportionally among a set of
participating buses. More specifically. a proportional controlGα
is defined by a nonnegative vectorα:= (αk,k∈N)such that

k∈Nαk=1, with the interpretation that, post contingency,
each busk∈Nadjusts its injection by the amount:

Gα: Δpk:=−αk
k∈N

pk=αk
l̂∈Ftie

f̂l, k∈N. (3)

We call a buskparticipatingifαk>0. By design, all partic-
ipating buses adjust their injections in the same direction. Ex-
amples of proportional controlGαinclude participation factors
used in automatic generation control or economic dispatch [5,
Chapter 3.8], or equal sharing of total imbalance among par-
ticipating buses [2], [6]; see also [7]–[10]. In this paper we
focus solely on proportional controlGα. For a different class
of balancing rules in which the post-contingency injections are
determined as a solution of an optimization problem to minimize
the number of buses involved, see [11].
UnderGα, the vector of injection adjustments are then

Δpα:= (Δpk,k∈N):=

l̂∈Ftie

f̂l
k∈N

αkek, (4)

whereekis the standard unit vector inR
n. The post-contingency

injections are thusp+Δpα. Since k∈Nαk=1, the identity

k∈N(pk+Δpk)=0holds for any initial injection vectorp,
which means that post-contingency power injections are always
rebalanced under the proportional controlGα.
Let(̃f−F,̃θ)denote the post-contingency branch flows and
voltage angles, which satisfy the DC power flow equations on
the post-contingency network(N,E\F):

p+Δpα=C−Ff̃−F, (5a)

f̃−F=B−FC
T
−Fθ̃. (5b)

For post-contingency network, we denote the Laplacian ma-
trix byL−F:=C−FB−FC

T
−Fand define the matrixA−Fcor-

respondingly in terms of the reduced Laplacian matrixL−F.
In the next two sections we use this island model to analyze

line outage localization within the islandGunder the propor-
tional controlGα.

III. BRIDGEOUTAGE

In this section we focus on the case of a single bridgêloutage,
i.e.,Ftie:={̂l}, and no internal line outages, i.e.,F:=∅.In
the next section we will then extend the results to a cut set
outage where the post-contingency branch flows in islandGare
impacted by both internal line outages inF⊂Eand by tie line

outages inFtie. SinceFis not a cut set inGwe study this impact
by combining the analysis of a non-cut outage in Part I of the
paper and that of a bridge outage.
Consider a single bridgêloutage with pre-contingency branch

flowf̂lthat disconnects the network into two islands. Focus on

one of them, sayG.Let̂j:=j(̂l)be the endpoint of̂lin island
G. In this case,

Δptie=f̂lêj. (6)

Post contingency, the injections are changed fromp+Δptie
top+Δpαunder the proportional controlGαas defined in (4).
Note that sinceF=∅,wehave−F=E,C−F=C,B−F=B
andA−F=A. Therefore, the post-contingency branch flows̃f
in the islandGare given by

f̃=BCTA(p+Δpα)

=BCTA(p+Δptie+Δpα−Δptie)

=f+BCTA(Δpα−Δptie). (7)

Using (4), (6), and the fact that k∈Nαk=1, we get

Δpα−Δptie=f̂l
k∈N

αkek−f̂lêj
k∈N

αk

=f̂l
k∈N

αk ek−êj . (8)

Substituting this expression in (7) gives

f̃−f= f̂l
k∈N

αkBC
TA ek−êj .

Recalling thatf̂l=0by assumption, for any linel=(i, j)∈E
we obtain

f̃l−fl
f̂l

=
k∈N

αkBl Aik+Aĵj−Aîj−Ajk

=
k:αk>0

αkDl,k̂j,

whereDl,k̂jis the power transfer distribution factor (PTDF) for
islandGdiscussed in Part I of the paper. Therefore, the branch
flow change on linelis the superposition of impacts due to
injectingαkf̂lat participating busesk∈Nand withdrawing

them at buŝj. We can thus extend the definition of line outage
distribution factor (LODF)Kl̂lto allow bridge outages as fol-

lows: given a bridge outagêl, under the proportional controlGα
for alll∈Ewe have

Kl̂l:=
f̃l−fl
f̂l

=
k:αk>0

αkDl,k̂j. (9)

Remember thatl̂∈Ein the island model that we consider here.
The next result is analogous to the Simple Cycle Criterion
(see Theorem 8 in Part I of this paper) for non-bridge outages.
It states that all (μ-almost surely), and only, lines on a simple
path1between buŝjand a participating busk∈Nwithαk>0
will be impacted by the bridgel̂outage.

1A simple path is a path that visits each node at most once.
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Theorem 1 (Simple Path Criterion: bridge outage):For a
single bridgêloutage, under the proportional controlGα,for
every linelin the islandG,Kl̂l=0“if” and only if there exists

a simple path inGthat containslfrom̂jto a participating bus
k∈N.
See Appendix A for a proof. Note that if̂j(the endpoint of̂l

inG) is the only participating bus, thenKl̂l=0for alll∈E.
Denote byE1,...,Ebthe unique block decomposition ofG.

2

Wesayablock Ekison a simple path between busĵand a
participating busi∈Nif there is a simple path between buŝj
and busiwithαi>0that contains a linel∈Ek. From Theorem
1 we can deduce the following localization property after a single
bridgêloutage in terms of the block structure of the islandG.
Corollary 2 (Bridge outage):Under the proportional control
Gα(4), for any blockEkof the islandGthe following statement
hold:
1)f̃l=flfor all lineslin blockEkifEkis not on a simple
path between buŝjand a participating bus.

2) Conversely,f̃l=flfor all lineslinEk“if”Ekis on a
simple path between buŝjand a participating bus.

Corollary 2 shows that the positions of participating buses
play an important role in distributing the power imbalance across
the network. In particular, the proportional controlGαalmost
surely changes the branch flow on every line that lies in a path
from the failure endpoint̂jto the set of participating buses.
As a result, iflis a bridge connecting two sub-networksG1
andG2post contingency (each of which contains one or more
blocks), assuminĝj∈G1, thenΔfl=0“if” and only if there
is a participating bus inG2since a path from̂jto any node inG2
must pass through the bridgel.Iflis not a bridge, i.e.lbelong
to a non-bridge block, then we can devise a simple sufficient
condition forΔfl=0usingparticipating blocks, defined as
follows:
Definition 3:Consider an islandGwith block decomposition

E1,E2,...,Eboperating under proportional controlGα with
asetNα:={i∈N:αi>0}of participating buses. A non-
bridge block is said to be aparticipating blockif there is a
non-cut vertex in this block that is a participating bus.
If all generators participate in AGC and load-side participation

is implemented at all load buses, then every node in the network
is a participating bus and, hence, every block is participating.
The following result, whose proof is presented in Appendix

B, shows that if a non-bridge block is participating, then all lines
inside it are impacted when the original bridgêlis disconnected.
Corollary 4:Consider a bridge outagêlwith non-zero branch

flowf̂l=0and let the block decomposition of islandGbe
E1,...,Eb.IfEkis a participating block, thenΔfl=0μ-almost
surely for anyl∈Ek, i.e.,μ(Δfl=0)=1.

IV. CUTSETOUTAGE

We now extend our results to a cut set outageF. Consider
an islandG=(N,E)and, as before, partition the tripped lines
into tie lines and internal lines, i.e.F =F∪Ftie.
The impact on post-contingency branch flows is a superpo-

sition of the impact of internal line outages inF, weighted

2See Part I of the paper for more details on block decomposition.

by generalized line outage distribution factor (GLODF) with
multiple tripped linesKF, and the impact of tie line outages
inFtie, weighted by the proportional controlαkas well as
PTDF of the post-contingency network, as stated in the following
theorem.
Theorem 5:GivenanislandG=(N,E)with a cut set outage
F, under the proportional controlGα (4) the branch flow
changes on the surviving lines in−F=E\Fare given by

Δf−F=K
FfF+

l̂∈Ftie

f̂l
k∈N

αkD̂
F ek−ej(̂l) , (10)

where KF:=B−FC
T
−FACF(I−BFC

T
FACF)

−1 is the

GLODF3of islandGwith a non-cut outageF, and̂DF is the
PTDF for the post-contingency network(N,E\F)defined as

D̂F:=B−FC−FA−F, (11a)

which can equivalently be expressed in terms of the pre-
contingency islandGas

D̂F= B−FC
T
−F+K

FBFC
T
F A. (11b)

The theorem reduces to (9) for a single bridgel̂outage, that
is whenF=∅andFtie={̂l}. When the cut set outage contains
both internal line outages inFand tie line outages inFtie,
the post-contingency branch flows depend in an intricate way
on both types of outages. Our theorem makes this relationship
explicit and precise:
1) The first term on the right-hand side of (10) represents the
impact of the outage of a non-cut setFof internal lines
inGthrough the GLODFKFof islandG. If there are no
tie line outagesFtie=∅, then the formula reduces to the
GLODF for a non-cutset outage as discussed in Part I.

2) The second term on the right-hand side of (10) represents
the impact of the proportional controlGαin response to
tie line outages inFtie. If there are no internal line outages
F=∅then the formula reduces to

Δf−F=

l̂∈Ftie

f̂l
k∈N

αkD̂
F ek−ej(̂l) ,

which generalizes (9) from a single bridgel̂outage to a cut
setFtieoutage with multiple tripped tie lines. In this case
the impact of simultaneous outage of a setFtieof tie lines is
simply the sum of the impacts of single-bridge outagesas
if̂lis a bridge incident onG. The expressions for̂DF(11a)
and (11b) in terms of pre- and post-contingency network
trivially coincide whenF=∅.

3) When bothF=∅andFtie=∅, the effect of their outages
on post-contingency branch flows can be interpreted in
terms of either the pre-contingency networkAor the
post-contingency networkA−F, through the expressions
for bothKF andD̂F. In particular the expression for
D̂F in terms of the pre-contingency networkAhas two
components. The first componentB−FC

T
−FAsays that the

injection adjustments due to the proportional controlαk
will change the branch flows on the surviving lines in−F
according to PTDF. The second componentKFBFC

T
FA

3See Part I of the paper for more details on GLODFs.
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says that the injection adjustments are first mapped to flow
changes on lines inFthrough PTDFBFC

T
FA(ek−ej(̂l))

in thepre-contingencynetwork and they are then mapped
to flow changes on surviving lines in−FthroughKF

when lines in the non-cut setFare disconnected.
4) According to the expression (11a) forD̂F, the post-
contingency network integrates both effects: changes to
post-contingency branch flows are the sum of the impact
of injection adjustments under proportional controlαk
through PTDFB−FC

T
−FA−F(ek−ej(̂l))on thepost-

contingencynetwork.
Considering a surviving linel∈−F, the flow change is given

by, in terms of pre-contingency islandG:

Δfl=

l̃∈F

KF
l̃l
f̃l

+

l̂∈Ftie

f̂l
k∈N

αk

⎛

⎝Dl,kj(̂l)+

l̃∈F

KF
l̃l
D̃l,kj(̂l)

⎞

⎠

=

l̃∈F

KF
l̃l

⎛

⎝f̃l+

l̂∈Ftiek∈N

αkD̃l,kj(̂l)f̂l

⎞

⎠

+

l̂∈Ftie

f̂l
k∈N

αkDl,kj(̂l). (12)

From Theorem 12 in Part I (which covers the case of a non-
cut outage) it follows that the first term is zero iflis not in
the same block as any disconnected internal linêl∈F(since
KF
l̂l
=0). Applying the Simple Path Criterion in Theorem 1

implies that the second term is zero if, for every tie linêl∈Ftie
and every participating busk∈Nwithαk>0,ldoes not lie
on any simple path inGconnectingj(̂l)andk. We can thus
derive the following localization property in terms of the block
decomposition ofG.
Corollary 6 (Cut set outage):For a cut setFoutage, under

the proportional controlGα(4), for any surviving linel∈−F
in the islandG,Δfl=0if the unique blockEkcontainingl
satisfies both the following conditions:

Ekcontains no disconnected internal linêl∈F; and
For every tie linêl∈Ftieand every participating busi∈N
withαi>0,Ekis not on a simple path inGbetweenj(̂l)
andk.

The converse in general is false because, even when both terms
in (12) are nonzero, they may cancel with each other, resulting
inΔfl=0.

V. CASESTUDIES

Theorem 7 in Part I and Theorem 5 in Part II summarize
the mathematical theory that characterizes the patterns of line
failure propagation in power systems. More specifically, the
failure localizability depends critically on the block decompo-
sition of a power network. In this section, we demonstrate these
localizability properties through simulations using the IEEE
118-bus test network.

Fig. 2. The LODF matrix (reporting the absolute values of the distribution
factors) of IEEE 118-bus network calculated under (a) DC and (b) AC power flow
model. The four yellow solid line in (b) represent four transmission lines whose
failure lead to non-convergent AC power flow equations. The red rectangles
indicate blocks of the network.

A. IEEE 118-Bus Network

This IEEE test network consists of 118 nodes and 186 edges
and has a block decomposition with two non-bridge blocks: one
giant block with 164 edges, and a smaller one with 13 edges.
There are trivial “dangling” appendages each of which connects
a single node to the giant block.4For a clearer demonstration,
we remove these dangling bridges and replace them by power
injections at the corresponding endpoints in the giant block that
equal the power flows on these bridges. In addition, we switch
off three transmission lines to create more non-bridge blocks to
better illustrate the block diagonal structure of the LODF matrix.
The resulting network is composed of 4 non-bridge blocks with
4, 13, 45 and 110 edges, connected by one bridge block and two
cut vertices.
In [11], [12] we explore ways to judiciously switch off a small
number of transmission lines to create more blocks for localizing

4It should be mentioned that many detailed models of transmission networks
have a meshed core with “dangling” appendages like IEEE 118-bus system.
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Fig. 3. Influence graphs on the IEEE 118-bus test network after switching off linese1,e2,ande3. Blue edges represent physical transmission lines and grey
edges represent connections in the influence graph. The black dashed line and the red solid points indicate the failure propagation boundary defined bythe blocks.

failures. In this paper, however, we focus on characterizing the
intrinsic properties of a power network itself rather than the
design for network reconfiguration and dynamic controller.

B. LODF Matrix

In our experiments, the system parameters are taken from the
Matpower Package [13] and we calculate the LODF matrixK=
(Kl̂l,l∈E,̂l∈E)that describes the impact on other lines of a
single line outage. For non-bridge outages, we directly calculate
the LODF as defined in equation (4) in Part I of this paper. For
bridge outages that create islands, we adopt the proportional
control and assume all nodes are participating withαk=αfor
allk.
We visualize the magnitude of LODF matrix in Fig. 2(a) by

means of a heatmap, in which we reorder the lines based on the
block they belong to. Specifically, we stack bridge blocks first,
followed by non-bridge blocks in nondecreasing order of the
block size. In addition, we set a color limit for better visualization
so that|Kl̂l|≤0.005maps to dark blue and|Kl̂l|≥1maps
to yellow. In Fig. 2(b), we plot the same heatmap under the
AC power flow equations (the four yellow solid line represent
four transmission lines whose failure lead to non-convergent AC
power flow equations), where the LODF is computed directly
from its definitionKl̂l=

Δfl
f̂l
.

In both the DC and AC case, the global effect of a bridge
failure is clearly visible in the first column (since only one line
is a bridge) of the LODF matrices in Fig. 3(a) and (b). Since
almost all the entries of that column are non-zero, almost all
surviving lines will be impacted by the failure of that bridge. For
non-bridge failures, the LODF matrix in the DC case exhibits
a clear block diagonal structure. In the AC case, however, the
cross-block entries are not necessary zero, but they are relatively

small. Moreover, the LODF within a block are similar for both
cases, indicating that the LODF computed from DC model can
be a good approximation for AC model. We further remark that
the LODFs within a block can be small, but they are strictly
nonzero in all cases, confirming our result in Theorem 7 from
Part I.

C. Influence Graph

We further visualize the transmission line failure propagation
patterns using aninfluence graph. Despite being similar in
concept to that of [14], [15], unlike these influence graphs, which
are based on a probabilistic failure models, our influence graph
is simply a visualization of the LODFsKl̂lthat we superimpose
on the original network topology. The IEEE 118-bus network
topology is depicted in blue in Fig. 3. The corresponding in-
fluence graph has these transmission lines (in blue) as nodes
and connect any two transmission linesland̂lin the influence
graph (with a grey edge) if the corresponding LODF satisfies
|Kl̂l|≥0.005. As Fig. 3 shows, the impact a non-bridge outages
are “blocked” by cut-vertices or bridges. Specifically, there are
no edges connecting transmission lines that belong to different
blocks, as predicted by our theory.

VI. CONCLUSION

In Part II of this work, we make use of the spectral repre-
sentation of power redistribution developed in Part I to provide
a characterization of line failure localizability when the initial
failure disconnects the original network. This, together with our
results in Part I, establishes a mathematical theory that covers all
initial failure scenarios and reveals how a general power system
responds to such disturbances. A case study on the IEEE 118-bus
test network corroborates the block-diagonal structure predicted
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by our theory, even when the system is under full AC power flow
equations.
This work can be built upon in several ways: (a) Some

practical power systems have been operating in partitioned
mode. However, their tie-lines are high voltage DC (HVDC)
transmission lines. One major feature of HVDC lines is that
they are sensitive to voltage disturbances [16] so outages inside
a block can cause HVDC outages, and further triggering outages
in other blocks. More study is needed to fully understand line
failure localizability for such systems. (b) The network block
decomposition has potential application in power systems plan-
ning. It can also be used as a corrective action immediately after
a contingency, similar to controlled islanding, to prevent failure
propagation. It would be interesting to understand the tradeoffs
of post-contingency corrective block configuration and con-
trolled islanding and how they can be synergistically integrated
for failure mitigation. (c) Our model builds upon DC power flow
dynamics, which are accurate for small deviations but less so
under large disruptions. Yet, our preliminary simulations suggest
a strong underlying structure that connects the gap between
DC and AC models in the context of line failures. It would be
interesting to understand this structure and develop bounds on
the distance between DC and AC predictions. (d) It is possible
to integrate fast-timescale frequency control into our framework
to provide a control strategy with provably optimal localization
and mitigation properties. It would be useful to see what the
best way to deploy such a strategy in practical systems would
be (see [11], [12] for more details).

APPENDIX:PROOFS

A. Proof of Theorem 1

The proof is similar to that for the Simple Loop Criterion in
Part I. Recall from Part I that the PTDFDl,k̂jat participating
buses in (9) is given by:

Bl

H∈TE
β(H)

⎛

⎝

H∈T(ik,ĵj)

β(H)−

H∈T(îj,jk)

β(H)

⎞

⎠

Note that the spanning forestsHinTE,T(ik, ĵj)andT(îj, jk)
are spanning forests of the pre-contingency network, not just the
post-contingency island.
SupposeDl,k̂j=0. Then eitherT(ik, ĵj)orT(îj, jk)or

both is nonempty. Suppose without loss of generality that there
is a spanning forestH∈T(ik, ĵj). Then there is a path inH
from buseŝjtojand another vertex-disjoint path from buses
itok. Joining these two paths with the linel=(i, j)creates a
simple path from̂jtokthat contains linel, as desired.
Conversely suppose there is a simple path inGfrom̂jto a
participating busk∈Nthat containsl=(i, j). We will show
thatg(B):= kDl,k̂j(B)αkin (9) as a polynomial in the
susceptancesBofalllines in the pre-contingency network is
not identically zero, and henceμ(g(B+ω)=0)=0. Since
the pre-contingency network is connected the simple path in
the islandGfrom buseŝjtokthat containsl=(i, j)can be
extended into a spanning tree of the pre-contingency network.
Suppose without loss of generality that, on this spanning tree,

the path from̂jtoicontainsj, i.e., the path fromktôjis
of the formk i→j ĵ. Then removing the edgelfrom
this spanning tree creates a spanning forestHinT(ik,ĵj)that
contains exactly two trees, denoted byHikconnecting buses
i, kandHĵjconnecting busesj,̂j. Following a similar argument

in our proof for the Simple Cycle Criterion, forH∈T(îj, jk)
the termβ(H)is not canceled by a negative term inDl,k̂j.

Moreover we claim thatH∈T(îj, jk)for all other participating
buseskand thereforeβ(H)is not canceled by negative terms
from otherDl,k̂jing(B)either. To see this, ifH∈T(îj, jk)for
a participating buskthen there must be a path inHconnecting
busesitôj, but this path then connects treeHikto treeHĵj
into a spanning tree. This contradicts that the spanning forest
H∈T(ik,ĵj)consists of two distinct trees. Henceg(B)is not
a zero polynomial andKl̂l=0μ-almost surely.

B. Proof of Lemma 4

LetCbe the block that containsl. SinceEkis a participating
region, we know there exists a bus withinC,sayn1, that
participates the power balance and is not a cut vertex. Recall
that any path fromj(̂l)toCmust go through a common cut
vertex inC[17], sayne. Now by adding an edge betweenneand
n1(if such edge did not originally exist), the resulting blockC
is still 2-connected. Thus there exists a simple cycle inCthat
contains the edge(ne,n1)andl:= (i, j), which implies we can
find two disjoint pathsP1andP2connecting the endpoints of
these two edges. Without loss of generality, assumeP1connects
netoiandP2connectsn1toj. By concatenating the path from
j(̂l)tone, we can extendP1to a path̃P1fromj(̂l)toi, which
is still disjoint fromP2. Now, by adjoininĝetõP1andP2,we
can construct a path fromj(̂l)ton1that passes throughl.The
Simple Path Criterion then impliesμ(Δf̂e=0)=1.

C. Proof of Theorem 5

The first part of Theorem 5 is proved by analyzing the post-
contingency network(N,E\F)using the matrixA−F, while
the second part leverages the relation between the matricesAfor
the pre- and post-contingency networks. Similar to our analysis
of GLODF, taking the difference between (5b) and (2b) shows
that the branch flow changesΔf−F:=̃f−F−f−F satisfy the
post-contingency DC power flow equations:

CFfF+(Δpα−Δptie)= C−FΔf−F,

Δf−F= B−FC
T
−F θ̃−θ.

Recall thatA−F is defined in terms of the inverse of the
reduced Laplacian matrixL−F=C−FB−FC

T
−F for the post-

contingency network. The branch flow changes are given by

Δf−F= B−FC
T
−FA−F(CFfF+Δpα−Δptie)

= B−FC
T
−FA−FCF

KF

fF

+B−FC
T
−FA−F

D̂F

(Δpα−Δptie),
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where the GLODFKF=B−FC
T
−FA−FCF is defined by

Theorem 8 in Part I andD̂F is defined in (11a). From (4) and
(1) it follows that

Δpα−Δptie=

l̂∈Ftie

f̂l
k∈N

αk ek−ej(̂l) . (13)

Hence the branch flow changes are the sum of the impacts of
internal line outages inFand tie line outages inFtie:

Δf−F= KFfF

int. lineFoutage

+

l̂∈Ftie

f̂l
k∈N

αkD̂
F ek−ej(̂l)

tie lineFtieoutage

This proves identity (10) of Theorem 5.
We now show that (11b) is an alternative representation of

(11a). To do so, we express the matrixD̂F in terms of the
matrices of the pre-contingency network. In particular, we relate
A−FwithAusing matrix inversion lemma as follows:

D̂F = B−FC
T
−FA−F

= B−FC
T
−FA

+B−FC
T
−FACF I−BFC

T
FACF

−1
BFCFA

= B−FC
T
−FA+K

FBFCFA.
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