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Abstract—Optimal power flow (OPF) problems are mathemati-
cal programs to determine how to distribute power over networks
subject to power flow and operational constraints. In this paper,
we treat an OPF problem as an operator that maps user
demand to generated power, and allow the problem parameters
to take values in some admissible set. We formalize this operator
theoretic approach, define and characterize restricted parameter
sets under which the mapping has a singleton output, independent
binding constraints, and is differentiable. We show that for any
power network, these analytical properties hold under almost all
operating conditions and can thus be relied upon in applications.
We further provide a closed-form expression for the Jacobian
matrix of the OPF operator and describe how various derivatives
can be computed using a recently proposed scheme based on
homogenous self-dual embedding. In contrast to related work
in the optimization literature, our results have a clear physical
interpretation.

Index Terms—Analysis, optimal power flow, linear program-
ming.

I. INTRODUCTION

IVEN a power network, the optimal power flow (OPF)
G problem seeks to find an operating point that minimizes
an appropriate cost function subject to power flow and op-
erational constraints such as Kirchhoff’s laws, voltage and
capacity limits, e.g. [1], [2], [3], [4], [5]. The decision variables
in an OPF problem are typically voltages and generation
power. Cost function choices include minimizing power loss,
generation cost, and user disutility.

A. Summary

We consider the direct current (DC) model [6], [7], [8]
of the power flow equations. The DC-OPF problem is widely
used in industry and takes the form of a linear program (LP).
Consider a power network with Ng generators and Ny, loads,
the problem is formulated as

minimize fTs? (la)

s9
subject to Aeqsg = beq(sl7 b/)’ (Ib)
AinSg S bin (IC)

This work was funded by NSF grants CCF 1637598, CPS 1739355, and
ECCS 1619352, PNNL grant 424858, and through the ARPA-E GRID DATA
program.

Fengyu Zhou and Steven H. Low are with the Department of Electrical
Engineering, California Institute of Technology, Pasadena, CA 91125 USA
(e-mail: {f.zhou, slow}@caltech.edu).

James Anderson is now with the Department of Electrical Engi-
neering, Columbia University, New York, NY 10027 USA (e-mail:
james.anderson @columbia.edu).

where s9 € RV¢ is the decision vector of power generations

at each generator node in the network. The equality constraint
function b, is linear in s' (the vector of power demands at
each node) and b’ (some constants). We view f, b’ and by,
as problem parameters, whose values are allowed to change
in a set Q. Matrices A.q and A;, are determined by network
topology and susceptances. We treat the power demand s',
which is allowed to take values in the set {0, as an “input” and
the optimal generations (s9)* as an “output”. One of the main
contributions of this work is to study the DC-OPF problem
(1) as an operator, defined as:

OPF : Qg — 25

where S € RN¢ and 25 denotes the power set of S.
We begin by deriving conditions such that:

1) OPF maps to a singleton.

2) OPF is continuous everywhere and differentiable almost
everywhere.

3) All points in the image space of OPF are optimal
solutions to a DC-OPF problem with a fixed number of
binding constraints (the number will be later derived as
Ng —1).

Results such as those above have been shown to hold (with
high probability) when the problem is simply viewed as a
mathematical program (see for example; [9], [10], [11], [12]),
of which the DC-OPF problem is a special case. However
these results, while insightful in optimization theory convey
little information about the process the optimization problem
models. We note that Property 3 is equivalent to the concept
of nondegeneracy [13]. In contrast to standard results, we
narrate from the perspective of binding constraints. Such a
perspective is beneficial because it provides insight into the
physical meaning of OPF problem solutions. In particular, each
binding constraint implies that either a generator or power
line is idle or saturated. Furthermore, we use a sequence of
restrictions to obtain subsets of “good” parameters (i.e., those
which preserve the properties listed), thus our method is both
constructive and interpretable.

With properties 1) — 3) established, we provide a closed-
form expression for the Jacobian matrix of OPF, that is,
an approximate linear mapping from input (loads) to output
(an optimal DC-OPF solution). We also show how one could
equivalently view the Jacobian as a function of the set of
binding constraints, i.e, a mapping which is independent of
problem parameters. This new perspective presents advantages
especially if we are more interested in the global behavior of
the Jacobian map (such as the worst-case amplification of a



generator gain given a change in load), rather than just the
generations given a specific load profile. Finally, we conclude
by describing how various derivatives can be computed using
recently developed ideas [14], [15].

From a power networks perspective there has been a lot of
interest on the topic of characterizing the relationship between
power demand and generation over the last few years, see for
example [16], [17], [18], [19], [20], and the references therein.
The purpose of this paper is to make these concepts rigorous
and bridge optimization theory with practical power system
operation and planning.

This work is a first step towards characterizing this com-
plicated relationship. Specifically, establishing uniqueness of
solution is a fundamental property of an operator as it
provides the foundation for defining a derivative. Moreover,
many numerical techniques require unique solutions to ensure
convergence. Characterizing the set of independent binding
constraints paves the road for many further topics of interest.
For instance, in [21], it is shown that even under significant
load variations, the number of binding line constraints in
the DC-OPF problem is frequently a small proportion of
the total number of constraints — an observation which has
significant implications when it comes to long-term planning
and assessing network vulnerability [22]. In [17], the set of
binding constraints determines an area of load profiles (termed
System Pattern Regions by the authors) within which the
vector of locational marginal prices remains constant.

Sensitivity, more broadly is a useful term to quantify.
In recent works we showed that “worst-case” sensitivity
bounds provide privacy guarantees when releasing power flow
data [16] and for data disaggregation [23]. In the context of
real-time optimization where sensitivity is often assumed to
be known and bounded [24], this work can be used to provide
exactly these bounds (or rule them out).

B. Related work

Our approach to sensitivity analysis differs from the stan-
dard perturbation approach which assumes the constraints are
shifted from their nominal right-hand sides, and then looks at
the Lagrange multipliers; see for example [25, Ch. 5.6]. In
such a setting one considers the optimization problem

{minimize. fo(x) : fi(x) < w;, h;(x) =v;,Vi,j}.

The nominal form of problem (2) has u; = 0 and v; = 0 for
all ¢ and j. Denote the nominal optimal value by x*.

Then we have the following well known lower-bound for the
perturbed problem p*(u,v) > p*(0,0) — A*Tu — v*Tu, and
the sensitivities are given by the relations A7 = —3dy,p*(0,0)
and v = —0y,p*(0,0). This standard perturbation approach
is also applied to AC power systems to study the sensitivity
and subdifferential of the optimal cost value [26]. This ap-
proach differs from our problem in the following ways. First,
we focus on the perturbation of the optimal solution, rather
than the optimal value. Second, we focus more on the set
of binding constraints and whether they are independent, as
opposed to appealing to duality.

A related body of work to compare our results to is
that of robust optimization [27], [28], [29] and stochastic

optimization [30], [31], [32]. In both cases, the goal is to
mitigate the effects of uncertainty. In contrast, our work seeks
to determine how the optimal decision changes with respect to
data perturbations. Our results can thus be considered comple-
mentary to the robust and stochastic optimization frameworks.

Within the optimization community there has been a lot of
interest in sensitivity problems. Although not stated formally,
some work has studied LPs as operators. We can trace these
sensitivity-type results back to Hoffman [33] who showed that
for vector x which satisfies Ax < b and z such that Az j{ b,
then dist(x,z) is bounded from above by «|(Az —Db).|,
where the constant o depends on A. The value of o depends
on the choices of norms and is typically difficult to compute.
This line of work was generalized in [34] and extended in
[35], where it was shown that perturbations to the cost vector
can destroy Lipschitz continuity. A contribution of our work
is to provide dense sets for which perturbations of the cost
vector (and right-hand-side vectors) maintain differentiability.

With respect to uniqueness of the solution, it has been
proved in [9], [10] that among all the linear program problem
instances, almost all of those instances have unique (thus
basic) and non-degenerate primal and dual solutions, and
strict complementarity holds almost everywhere. In the context
of OPF problems, our results are more specific. First, the
traditional result shows nondegenerate instances are almost
everywhere among all the problem instances, while our result
says the good instances within a subset are also almost
everywhere. Taking (1) as an example, traditional results show
that for almost all the (f, Aeq, Ain, beq, bin), (1) maintains the
three desirable properties above. In our work, we show that
given any fixed (Aeq, Ajn) that describes a power network
structure, for almost all (f,b’ by,), all the good properties
listed above hold for almost all instances of s'. In DC-OPF
problems, many entries of bey, bi, are fixed or restricted due
to their physical meanings. As a result, set of all the physical
problem instance is of measure zero compared to the entire
instance space of (1). Good instances being dense in the
entire space in general does not imply they are still dense
within a measure zero subset. Therefore, our results are not
direct corollaries of the properties for general LP. It means
that for any network, these analytical properties hold under
almost all operating conditions and can thus be relied upon in
applications. Second, traditional results are usually formulated
in the canonical form in order to capture the general features of
LPs. Our result, on the other hand, does not rely on introducing
auxiliary slack variables and thus reveals how those properties
link to the physical behavior of power systems.

There has been some work which specifically defines and
studies the DC-OPF sensitivity. In [36], [37], the OPF prob-
lem is formulated as a parameterized optimization. Under
heavy assumptions, sensitivity can be computed. In contrast,
our methods are more general and offer structural insights.
Furthermore, we provide numerical methods to compute the
derivatives.

C. Paper outline

In Section II, we formalize the DC-OPF problem, and
characterize the parameter set of interest. In Section III, we



restrict the set of interest to those parameters that endow
the OPF operator with desirable properties. We show that
the restricted set is dense within the set of interest, so the
restriction does not lose generality up to perturbation. In
Section IV, we prove the operator is differentiable and derive
the closed form expression of the Jacobian matrix in terms
of the independent binding constraints. Section V shows how
an algorithm introduced in recent work [14], [15] can help
numerically evaluate the operator derivative. Finally, Section
VI provides an illustrative example.

II. BACKGROUND

Vectors and matrices are typically written in bold while
scalars are not. For a set S, we use clos(S) and int(S) to
refer to its closure and interior, respectively. The power set of
S is the set of all subsets of S. Given two vectors a, b € R”,
a > b denotes the element-wise partial order a; > b; for
i=1,...,n. For a scalar k, we define the projection operator
[k]” := min{0, k}. We define ||x||o as the number of non-
zero elements of the vector x. Identity and zero matrices
are denoted by I"™ and 0™*™ while vectors of all ones are
denoted by 1,, where superscripts and subscripts indicate their
dimensions. To streamline notation, we omit the dimensions
when the context makes it clear. The notation R denotes the
non-negative real set [0, +00). For X € R"*™ the restriction
X1,3,5) denotes the 3 x m matrix composed of stacking rows
1,3, and 5 on top of each other. We will frequently use a set
to describe the rows we wish to form the restriction from, in
this case we assume the elements of the set are arranged in
increasing order. We will use e,, to denote the standard base
for the m™ coordinate, and its dimension will be clear from
the context. Let (-)T be the Moore-Penrose inverse. Denote
[m] :={1,2,...,m}and [n,m] := {n,n+1,...,m}. Finally,
for a convex set X C R"” and vector x € R™, we let Pyx be
the projection of x onto the set X'. By isometry, the domain of
the projection operator is extended to matrices when needed.

A. System model

Consider a power network modeled by an undirected con-
nected graph G(V, £), where V := Vg UV, denotes the set of
buses which can be further classified into subsets of generators
Vg and loads Vi, and € C V x V is the set of all branches
linking those buses. Suppose Vg NV, = 0 and there are
[Va| =: Ng generator and |Vi,| =: Ny, loads, respectively.
For simplicity, let Vg = [N(}}, VL = [NG + 1, Ng + NL].
Let N = Ng + Np. Without loss of generality, G is a
connected graph with |£| =: E edges labelled as 1,2, ..., F.
Let C € RVY*E pe the incidence matrix. We will use e,
(u,v) or (v,u) interchangeably to denote the same edge. Let
B = diag(by, b, ...,bg), where b, > 0 is the susceptance of
branch e. As we adopt a DC power flow model, all branches
are assumed lossless. Further, we denote the generation and
load as s9 € RNe, sl € RN, respectively. Thus s? refers
to the generation on bus i while s! refers to the load on bus
Ng + i. We will refer to bus Ng + ¢ simply as load ¢ for
simplicity. The power flow on branch e € £ is denoted as
Pe, and p := [p1,...,pr|" € R¥ is the vector of all branch

power flows. To simplify analysis, we assume that there are
no buses in the network that are both loads and generators.

B. DC Optimal Power Flow

We focus on the DC-OPF problem with a linear cost
function [6], [7], [8]. That is to say, the voltage magnitudes are
assumed to be fixed and known and the lines are considered
to be lossless. Without loss of generality, we assume all
the voltage magnitudes to be 1. The decision variables are
the voltage angles denoted by vector & € RY and power
generations s9, given loads s'. The DC-OPF problem takes
the form:

minirgize fTs9 (3a)
s9,
subject to 0,=0 (3b)
g
CBC"6 = { S } (3c)
s <s9 <8 (3d)
p<BCT0<p. (3e)

Here, f € Rfc is the unit cost for each generator, and bus 1
is selected as the slack bus with fixed voltage angle 0. In (3c),
we define the injections for generators to be positive, while
injections for loads are defined as —s’. The upper and lower
limits on the generations are set as 87 and sY, respectively,
and p and p are the limits on branch power flows. We assume
that (3) is well posed, i.e. 89 > s9 > 0, p > p. Note that the
LP (3) is a particular realization of (1).!

Let 7 € RN*! be the vector of Lagrangian multipliers
associated with equality constraints (3b), (3c), and (A, A_)
and (p,,p_) be the Lagrangian multipliers associated with
inequalities (3d) and (3e) respectively. As (3) is a linear
program, the following KKT condition holds at an optimal
point when (3) is feasible:

(3b) — (3e) (4a)
0=M"7+CB(p, —p_) (4b)
—f=—[r1,T2, " ,TNG}T+)\+7)\_ (4¢)
By, A, A >0 (4d)
pL(BCTO —p)=pl(p-BCTO) =0 (do)
AL(s? —89) = AT (s - 89) =0, (4f)
where
ik
1

is an (N + 1)-by-N matrix with rank N, and e; denotes the
standard first basis vector.

We adopt the DC model for many reasons. First, it is a good
approximation of the AC model while being simple and more
tractable. It also serves as a first step towards the study of
an AC-OPF operator. Second, the DC model is widely used
by system operators for transmission networks [6]. Therefore,

IThough two problems have different decision variables, one can always
replace @ in (3) by (CBCT)t[(s?)T, (=s")T]T to absorb the additional
decision variable 6.



studying the sensitivity of the DC model, even although it is
an approximation, can have an impact on how the real system
is operated.

The formulation in (3) is equipped with a linear cost
function. In fact, our results can be applied to more general
situations; in particular we can handle cost functions of the
form 37, .\, fi(s]) where each f; is strictly increasing, convex
and piecewise linear. In this case, one can always convert
each generator into multiple sub-generators, and each of which
corresponds to a specific linear segment of the cost. The actual
marginal cost for all those sub-generators will be determined
by the merit order, which would take the same value as the
original piecewise linear cost function [8]. Since any strictly
increasing and convex function can be approximated by a
piecewise linear function, our results can be applied (with
arbitrarily small approximation error) to more general cost
functions including quadratic cost.

C. OPF as an operator: OPF

We will now describe how to formulate the DC-OPF (3) as a
mapping from load to (optimal) generation space. We assume
throughout the paper that the topology of the network remains
constant, as do the line susceptances. These assumptions imply
that the graph Laplacian given by CBCT does not change.
Let £ :=[(89)7,(s9)T,p",p"|" € R?NV6+2F be the vector of
system limits. Define B

Qe :={& | s? > 0,(3b) — (3e) are feasible for some s > 0}.

The set ()¢ defines the set of power flow and generation

limits such that the DC-OPF is primal-dual feasible and makes

physical sense i.e. upper-limits are greater than lower-limits.
For each & € Q, define?

Qg (€) := {s' | s' > 0,(3b) — (3e) are feasible}.

Then Qg (&) is convex and nonempty. When we fix £ and
there is no confusion, we simply write ).

Definition 1: Define Q := {(f,&,s') | f ¢ RfG,S €

QE’ sl € Qg (f)}
When ¢ € Q¢ and s! € Qg (€) the DC-OPF problem (3) is
feasible. As (3b) fixes the angle 6, at the slack bus, and (3b)
restricts the angle difference between any two adjacent buses
we conclude that the feasible set of (3) is compact, and thus,
by Weirstrass’ Theorem, the optimal solutions to (3) always
exist. We now define the operator OPF, which is the central
object of study in this paper.

Definition 2: For given f € RfG and £ € (¢, the set

valued operator OPF : Qg — 2RYC s the mapping such that
OPF(x) is the set of optimal solutions to (3) with parameter
sl = x.
In the following section we will establish various properties
of the OPF operator and show that it is a valuable tool for
gaining insight into the sensitivity, robustness, and structure
of the DC-OPF problem (3).

2In practice, if a load has 0 value, one could replace it by an arbitrarily
small positive value so that the load profile is always strictly positive.

ITI. OPERATOR PROPERTIES

The operator OPF is parameterized by f, & and acts on s'.
The set €2 defined in Definition 1 prescribes all the parameters
under which (3) is feasible.

A. Uniqueness

We are specifically interested in the case when the OPF
operator defined above maps to a singleton. Adapting from
the results in [9], one can easily show that OPF has a unique
solution for almost all choices of f. However, to pave the way
for further properties in the following subsections, we in fact
consider the vector f under heavier constraints. Let {2¢ be the
set of vectors £ > 0 such that V& € Qg¢, Vs! € Qg (€):

o DC-OPF problem (3) has a unique solution.
e The KKT-system (4) satisfies

ey llo+ le_llo + IA+llo + [[A=llo > Na = 1. (5

Proposition 1: ¢ is dense in Rfc.
Proof: See Appendix A. [ ]

Proposition 1 shows that for a fixed network, it is easy
to find an objective vector f such that (3) not only has a
unique solution for feasible s', but also gives sufficiently many
non-zero dual variables. For the remainder of the paper, the
following assumption is in play:

Assumption 1: The objective vector f is in Q.
This assumption ensures that (3) has to have a unique solution.
When Assumption 1 does not hold, Proposition 1 implies that
we can always perturb f such that the assumption is valid.

Remark 1: Under Assumption 1, the value of OPF is
always a singleton, so we can overload OPF(x) as the
function mapping from x to the unique optimal solution of (3)
with parameter s’ = x. Since the solution set to the parametric
linear program is both upper and lower hemi-continuous [38],
OPF is continuous as well.

B. Independent binding constraints

The analysis on the OPF operator can usually be simplified
if the set of binding (active) constraints at the optimal point
is independent. Here, binding constraints refer to the set of
equality constraints (3b), (3¢), and those inequality constraints
(3d), (3e) for which either the upper or lower-bounds are
active. Grouping the coefficients of these constraints into a
single matrix Z we refer to them as being independent if Z is
full-rank. Finally, define

Qi (&,F) := {s' € Qu(€) | (3) has exactly N — 1 binding

inequalities at the optimal point, given s'}.

When f is fixed, we shorten fvlsz (&,f) as ﬁsz (&). Further, if &€
is also fixed, then we will simply use €g.
_ Theorem 1: For a fixed f € Q¢, there exists a dense set
Qe(f) C Qg such that V€ € Q¢(f), the following statements
are true:

o clos(int (241 (§))) = clos(Q4(§)).

o Qu (&, 1) is dense in Qg (€).

Proof: See Appendix B. [ ]



Assumption 2: The parameter & for the limits of generations
and branch power flows is assumed to be in Q¢ (f), as proposed
in Theorem 1. _

Assumption 2 allows one to work with sets Q¢ (f) that are
well behaved (where “well behaved” is interpreted as {2y and
int (g ) having the same closure and there being exactly Ng—
1 binding constraints at the optimal point in the associated
DC-OPF problem for almost every s'). This assumption is
important as in Section IV it will be needed to show that the
derivative of OPF exists and can be efficiently represented
almost everywhere. If Assumption 2 does not hold, Theorem 1
implies that we can always perturb £ such that the assumption
holds. In the context of DC-OPF problem, it also means for
almost all the problem instances, there are exactly Ng — 1
binding generators or power lines at the optimal point. The
proof of Theorem 1 can directly extend to the following two
corollaries: ~

Corollary 1: The set Qg \ g can be covered by the union
of finitely many affine hyperplanes.

Corollary 2: For any s' € Qg, the Ng — 1 tight inequalities
in (3), along with N + 1 equality constraints, are independent.
__ Definition_3: Define Q = {(f.&s) | f € Q¢ €
Qg(f),sl S Qsl(£7f)} B

In summary, the two sets 2 and €) characterize sets of ob-
jective functions, problem parameters, and “inputs” that endow
OPF with desirable properties. In particular 2 guarantees (3)
is feasible and OPF is thereby well-defined. The parameters
in additionally guarantee that (3) has independent binding
constraints and OPF is singleton-valued, and as will be shown
in the next section, OPF is differentiable when (f, &, s) € Q.
The relationship among the sets Q¢, {2gi, g, Q¢, (¢ defined
above is illustrated in Fig. 1. Recall that informally, the set
{}¢ contains all the & that make the OPF problem feasible,
and ¢ contains f that guarantee the unique optimal solution
for feasible OPF problems and sufficiently many non-zero
Lagrange multipliers. Proposition 1 shows )¢ is dense in Rf‘s.
Each £ € (¢ maps to a set q (&), while each (&, f) maps
to set Qg (&, f), which is a subset of Qg (&). For fixed f, by
collecting all the & such that Qg (§) has “good” topological
property and Qg (&,f) is dense in Q4 (§), we obtain a set
Q¢(f) depending on f, and Proposition 1 implies Q¢(f) is
always dense in {)¢. L

Since the sets that imply “good” properties (€2, Q0gt, €2¢)
are all dense with respect to the corresponding whole sets of
interest (RfG , g1, Q2¢), one can always perturb the parameters
to endow OPF with these desirable properties.

Some practical implications of those results can be found in
[39]. For example, one direct consequence is that for almost
all problem instances, there must be at least one non-binding
generator (i.e. a generator which is not inactive or saturated)
in each subnetwork partitioned by binding branches. Therefore
for radial power networks, if a single load is changed by a tiny
amount, then only one generator will respond to this change
in its optimal generation, which will change by the same
amount. As a result, the locational marginal prices (LMP) for
radial networks are always strictly positive. However, such
result does not hold in general for meshed networks. In fact,
for meshed networks the increase in a single loads can lead

Fig. 1: Relationship among definitions in Section II-C. Solid
arrows show the mapping from & to {2 (£), and dashed arrows
show the mapping from (&,f) to Qg (&, f). A star inscribed
within an oval indicates the former set is dense within the
latter.

to both increase and decrease in the optimal generation at
multiple different locations, and this effect is well known as the
cause of negative LMPs. For almost all the problem instances
with “good” properties, i.e. those we restrict the parameter
sets to (¢, Qg, Q¢), our work [39] further suggests that the
computation of the sensitivity of the optimal generation with
respect to loads can be decomposed and is thus tractable even
for huge networks.

IV. OPF DERIVATIVE

In this section we show that OPF is differentiable almost
everywhere. We also provide an equivalent perspective from
which to view the derivative (Jacobian matrix) of OPF
in terms of binding constraints, and derive its closed-form
expression.’

A. Existence

Before deriving the expressions for the OPF derivative,
it is necessary to guarantee that the operator is in fact dif-
ferentiable. The following lemma of [40] and [12] gives a
sufficient condition of differentiability. We rephrase the lemma
as follows.

Lemma 1 ([40], [12]): Consider a generic optimization
problem parametrized by ©:

minei%}}ze f(x;0) (6a)
subject to 9i(x;0) <0,i=1,2,...,m  (6b)
hj(x;©)=0,j=1,2,...,l.  (6¢c)

If (x*,n*,v*) is a primal-dual optimal solution for some ®q
and satisfies:

1) x* is a locally unique primal solution.

2) f,gi,h; are twice continuously differentiable in x and
differentiable in ©.

3) The gradients Vg;(x*) for binding inequality constraints
and Vh,;(x*) for equality constraints are independent.

3A word on notation is in order here. We denote the derivative of f(z)
with respect to x by 9. f, however in some cases when there are complex
dependencies on =z we will use % In Section V when we deal with
derivatives of conic programs we use the notationally lighter differential
operator D.



4) Strict complementary slackness holds.

Then the local derivative dgx™* exists at @, and the set of
binding constraints is unchanged in some neighborhood of @.

Using the set definitions from the previous section and the
above lemma, we obtain the following result:

Corollary 3: Under Assumptions 1 and 2, for sl e fNZSz, the
derivative 0yt OPF(s!) always exists, and the set of binding
constraints stay unchanged in some neighborhood of s.

Proof: By checking the conditions 1-4 in Lemma 1, the
proof is established. Alternatively, the theorem can be proved
by extending Proposition 3.2 in [11]. ]

Having established the existence of the derivative of OPF
we are now ready to study the associated Jacobian matrix.

B. Jacobian matrix

The Jacobian is an important tool in sensitivity analysis
as it provides the best linear approximation of an operator
from input to output space. The results of the previous section
ensure that the partial derivatives exist almost everywhere. Let

J(s;£,8) := 0. OPF(sh) (7)

for (£, £,s') € Q denote the Jacobian of OPF at s'. To reduce
the notational burden, we will simply use J or J(s') for short
when the value of (f,€,s!) or (f,€) is clear from context.
Suppose at point s, the set of generators corresponding to
binding inequalities is S¢ C Vg, while the set of branches
corresponding to binding inequalities is Sg C £. From Theo-
rem 1 and Assumption 2 the following corollary is immediate:
Corollary 4: |Sg| + |Sg| = Ng — 1.

As Lemma 1 implies that generators S¢ and branches Sp
still correspond to binding constraints near s', there is a local
relationship between (s9)* = OPF(s!) and s':

ON(;Xl
s9 —g!
H = JH =
[ 6 } vTE
0

®)

When there is no danger of confusion, we use s to denote
COM

On the right hand side, v € R(2Nc+2E)x(Na—1) where each
column of + is a basis vector such that y'& gives a vector
of capacity limits that binding generations and branch power
flows hit. By Corollary 2, the first N + Ng — 1 rows of H are
independent, and clearly the last row [0, e]] does not depend
on the first N+ Ng —1 rows. Hence H is invertible, and using
the block matrix inversion formula, we have

ONle ONG><1
| e | mETE|
6 vTE x| x ¢

0 0

(€))

with H; = I, CBCT (R(Sg,S)T) " and

LY CBCT
I CBCT
R(Se,Sp)T:=| ¢
(6, Sp) £ BCT

T
€

(10)

Recall (7) that s9 = OPF(s!) in (9), so the Jacobian matrix
Jis

J= le(If}’VL])T. (11)

It is worth noting that the value of J computed via (8)-(11)
depends on knowing the binding constraints Sg and Sg for
given (f,€&,s!). We abuse notation slightly and let J(s'; f, &)
be the Jacobian matrix when (f, £, s!) € Q is known and let
J(S¢, Sp) be the Jacobian when (Sg, Sp) is known. When it
is clear from context or not relevant we simply use J.

C. Range of OPF derivative

The previous subsection has shown that the value of
J(s'; £, €) is equivalent to J(Sg, Sg) for certain choices of Sg
and Sp. The following theorem also implies the equivalence
between the range of J(s'; f, &) and J(Sq, Sg). *

Theorem 2:

{I(s'5£,8) | (£.€,8") €}
:{J(S(;,SB) ‘ Sg € V(;,SB S g,SG 1 SB,

|8(}‘ + |SB| = N¢g — 1}. (12)

Here, we use Sg L Sp to denote that in (3), all the inequality
constraints corresponding to Sg and Sp, as well as equality
constraints, are independent of each other. Notice that the left
hand side of (12) is induced by the DC-OPF problem and
hence involves physical parameters such as the cost function,
generation and load. The right hand side, however, purely de-
pends on the graph topology. Theorem 2 shows the equivalence
between the value ranges of J(s') and J(Sg, Sg). While one
direction, Range(J(Sq,Sp)) 2 Range(J(s!;f,&)), trivially
hold for general linear programs with a graph structure, the

. other direction, Range(J(Sq,Sg)) C Range(J(s';f,€)), is

in fact non-trivial and does not hold for general LPs. This
is because it requires any valid combination of generators
and branches to be achievable by a problem with physically
meaningful parameters (e.g., non-negative f and s?). However,
Theorem 2 shows for DC-OPF, any valid combination is
indeed achievable.

We first provide the following lemmas in order to build up
to the final proof for Theorem 2.

Lemma 2: For any S¢ € Vg, Sp € & such that [Sg| +
|Sg| = Ng—1 and S L Sg, there exist (f,,&,,s.) € Q such
that (3) has unique solution and all the binding constraints at
the solution point exactly correspond to Sg and Sg.

Proof: See [41]. |

Lemma 3: For any S¢ € Vg, Sp € & such that [Sg| +
|§B| = Ng — 1 and S¢ L Sg, there exist f.. € Qf, &, €
Q¢(f..) and an open ball W C Qg (&,,, f..) such that all the

“4Here, the range refers to the set of values that J(s*; f, &) or J(Sq, Sp)
could take, rather than the column space of J(s'; f, &) or J(Sg, Sp).



binding constraints exactly correspond to S and Sg whenever
st e W.
Proof: See [41]. | |
Proof: (Theorem 2) For any (f,€,s!) € Q, by definition
the binding constraints Sg and Sg must satisfy |Sg|+ |Sp| =
Ng — 1 and Sg L Sg. Thus the left hand side of (12) is
a subset of the right hand side of (12). As for the opposite
direction, Lemma 3 implies for any (Sq, S) such that |Sg|+
|Sg| = Ng — 1 and Sg | Sp we can always find (f, ,s!) €
Q whose associated binding constraints exactly correspond to
(Sg, SB). Hence (12) holds. [ ]
The result of Theorem 2 indicates there exists a surjection
from € to the set {(Sa, Sg) | |Sa|+|Ss| = Na—1,8¢ L Sg}
and the derivative of the operator (depending on the param-
eters) and the Jacobian matrix (depending on the binding
constraints) take the same value under such surjection. If one
is only interested in the range of J(s'; f, &) such as the worst-
case analysis instead of the value at a specific point, then it
is tight to study J(Sq,Sp) instead. One benefit of studying
J(Sc,Sp) is it has a closed-form expression and only depends
on the graph topology of the system. For instance, it helps us
study the OPF sensitivity bounds in the “worst case” [39],
which provides privacy guarantees when releasing power flow
data [16].

V. COMPUTATION

In this section, we will show how recent results on conic
problem differentiation can be applied to the OPF operator. To
compare this section and the result in Subsection IV-B, this
method provides an efficient way to compute the derivative of
the optimal solution with respect to more general parameters,
and could also be extended to other power flow models,
while Subsection I'V-B is specifically for OPF operator under
DC model and focuses more on deriving the closed-form
expression for analytical rather than computational studies.

A. Differentiating a General Conic Program

The method of computation we pursue largely follows
that presented in [14] which considers general convex conic
optimization problems that are solved using the homogenous
self-dual embedding framework [42], [43]. Consider a standard
primal-dual pair written in conic form:

minimize c'x
(P) (xs)ER™XK
subject to Ax+s=Db,
minimize bTy
(D) (ry)e{o}rxK
subject to ATy +c=r.

In this setting the problem data consists of the triple
(A,b,c) € R™*"™ x R™ x R™. The primal variable is x € R",
the primal slack variable is s € R™, and the dual variable
is y € R™, with r € R" the dual slack variable. The set
K in a non-empty, closed, convex cone with K* its dual.
Linear programming falls into this class of conic problems
by setting /C to be the positive orthant. We will only provide
the main technical results from [14] in this subsection, the
detailed derivation can be found in the original paper.

The homogenous self-dual embedding formulation is ex-
pressed as

find (u,v)
subject to v = Qu
(u,v) eC xC* (13)

with cones C = R"™ x K* x Ry and its dual C* = {0} x K x
R, . The variables u and v correspond to variables in (P) and
(D) and two augmented variables x and 7, and satisfy:

r 0 AT ¢ X

S = —A 0 b y s (’7'7 I{) S R+ X R+
—c" —-b" 0 T

v Q u

Using Minty’s parametrization [44], one can reformulate (13)
as (where z denotes u — v)

find z=(z; € R",zy € R™, z3 € R) € R"T™"H!
—P_crz =QPcz, z3>0. (14)

The solution map is defined as . : R"™*™ x R™ x R" —
R2?™+n which “pushes” the problem data (A,b,c) through
optimization problem (13) to return (x,y,s) — the primal-
dual solutions. The task here is to find (dx,dy,ds) from
(dA,db,dc). The following result is taken from [14]. One can
first derive the expression for dz and then recover (dx, dy, ds)
from dz. Numerically dz = —M_lg, where

M = ((Q - I)DPcz +1)/z3
g =dQPc(z/z3)
0 dAT dc

—dA 0 db
—dc™ —db" 0

subject to

dQ = 15)

Here for any set X, DPx(-) is the derivative of the projec-
tion operator Px (-). Note that for large systems it may be
preferable to not invert M and instead solve a least squares
problem. Finally, partition dz conformally as (dzi,dzs, dz3)
and compute

dx dz; — (dzs3)x
dy | = (DPi-(z2))dzs — (dzs)y (16)
ds (DPic~(2z2))dzg — dzy — (dzs)s

The method outlined above provides us with more information
than we have considered to this point. Specifically, it leverages
information about the primal and dual conic forms and pro-
vides derivative information with respect to all problem data
rather than just load changes.

B. DC Optimal Power Flow

The DC OPF problem (3) can easily be written in the form
(P) by introducing appropriate slack variables:

minimize [f7,07]x
x:=[(s?)T,07]T,s
. Aeq | beq
subject to [ A :|X-|—S = { by }

(x,5) € RNGHN 5 ({O}NF! x RINGF2E)



Fig. 2: Region for the cost vector f. Black lines denote the
values of f in Rf‘; \ Q. The red dot denotes the cost vector
which will be used throughout this example.

where (Aeq, Ain, beq, bin) are as defined in (20). Noting that
Kr = RV+L « R2+NG+2E'

Here we note that the derivative of the projection operator
DP¢ appearing in (15) is decomposed as

DPRNG+N X DPRN+1 X DPRiNG+2E X D’P]R+
and DPx- appearing in (16) is decomposed as
DPRN+1 X DPR2NG+2E.
+

Specifically, DPg_ is differentiable everywhere but at {0},
elsewhere DPg, x = 1 (sign(x) + 1).

VI. ILLUSTRATIVE EXAMPLES

In this section, we use the IEEE 9-bus test networlg as an
example to illustrate what the sets (Q¢, Qg¢, Q¢, Qq, Qg) in
Fig. 1 look like. It has three generators (white circles) and
6 loads (black circles). The susceptances (edge weights) of
power lines are taken from the MATPOWER toolbox [45].
The system parameters not provided in the text can be found
in Table 1 of [41]. The data for the capacity limits and the
loads are either directly taken from MATPOWER or perturbed
to satisfy our assumptions.

First, we visualize and illustrate the sets RfG and )¢ where
the cost vector f resides. As we ignore the trivial case when
f = 0, we restrict f to the unit sphere for visual clarity. As
a result, Rfc is visualized by the blue region including the
boundary and black curve segments shown in Fig. 2. The black
curve segments represent the set of f which may potentially
make the OPF problem have multiple solutions or violate (5).
Thereby the blue region excluding the black curve segments
is the restriction of a subset of )¢ onto the unit sphere. Figure
2 provides a visualization that )¢ is dense in RfG (Ng =3
in this example). If the cost vector f is randomly chosen in
]RfG, then we will almost surely obtain a well-behaved f not
aligned with the black curves. In the rest of this example, we
randomly chose f = [0.7191,0.5066,0.4758]T and is shown
as the red point in Fig. 2. B

We will now visualize the sets ¢ and Q¢ (f) for our choice
of f, and illustrate how different points in those two sets endow
the OPF problem with different properties. Consider that there
are 3 generators and 9 branches in the network, and each

generator and branch has both the upper and lower bounds
for its generation and branch power flow, the vector £ thus
has 24 dimensions. In order to make visualization possible,
we fix all the capacity limits except for the power flow limits
at branch (2, 8). A positive power flow at branch (u,v) means
that power is transmitted from u to v. Conversely, a negative
value implies power is transmitted in the opposite direction.
Figure 3 shows when f and other capacity limits are fixed, how
the upper and lower bounds for branch (2, 8) affect the OPF
operator. In other words, Fig. 3 visualizes a slice of sets {2¢ and
Q¢ (f). The purple region, including the boundaries and black
lines, is the slice of {¢. Picking any point in the purple region
as the capacity limits for branch (2, 8), there exist some s! > 0
such that the constraints (3b)-(3e) are feasible. However, for
some points on the black lines or boundaries, the associated
set (&, f) might be not dense in Qg (&). We collect all
the points in the purple region excluding the black lines and
boundaries to form a slice of Q¢ (f), which is dense in 2. We
now pick the red point in ﬁ&(f ) (not on the black lines) and
the black point in ¢ \ Q¢ (f) (on the black line) as shown in
Fig. 3, and will show their difference. Recall that in Fig. 1,
we plot two points &; € Q¢ (f) and &, € Q¢ \ Q¢(£), so the
red point visualizes &; while the black point visualizes &,.

First, we pick the red point in Fig. 3, i.e., set the lower
and upper bounds for branch (2,8) at (—2.5490,2.5695),
respectively. Since it is difficult to visualize all 6 loads, we fix
buses 5, 6, 8 and 9, and visualize the region for buses 4 and 7
in Fig. 4a. The whole hexagon excluding the axes represents
the slice of Qg (&), within which any point corresponds to
a load profile which makes the OPF problem feasible. The
whole region is further divided into seven colored subregions,
and each of them refers to the set of load profiles under
which the binding constraints of (3) do not change. In the
interior of those subregions, there will be exactly Ng —1 =2
independent binding inequality constraints. Depending on the
physical meaning of binding inequalities, we use three colors
to distinguish different subregions. Red indicates two binding
constraints refer to two binding generators, green indicates one
generator and one branch are binding, and purple indicates two
binding branches. Only the interior of those colored subregions
contribute to the set Qg (&, ), which guarantees the number
of and independence among all the binding constraints. The
operator OP F is also guaranteed to be differentiable when the
loads are picked in Qg (&, f), and here the Jacobian matrix is
given in Section IV-B in a closed form. From Fig. 4a we can
see that when the red point is picked, the interior of all the

subregions (i.e., 4 (&, f)) is dense in the whole hexagon (i.e.,
Qg (8)).

Next, we pick the black point in Fig. 3, i.e., set the lower
and upper bounds for branch (2,8) at (—3.0758,3.0758). In
this case, the whole hexagon contains a large chunk of shaded
area. For the load profile in the shaded area, there might be
more than Ng — 1 = 2 binding inequality constraints, and
all the binding constraints are not independent any more. The
Jacobian matrix we derived in Section IV-B is no longer valid.
As the shaded area is non-negligible, the interior of all the
subregions is not dense in the whole hexagon any more.
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Fig. 3: Feasibility region for the power flow

limits at branch (2,8). The polytope (in- o s 1 1
cluding its boundaries and the black lines)
is (a slice of) Q¢. The set Q¢ (f) is given by
the purple region excluding the black lines
and boundaries.
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Fig. 5: Optimal generations and costs for different load profiles
along the path plotted in Fig. 4a. The solid red horizontal lines
indicate the upper and lower bounds for the generation.

Fortunately, both our proof and Fig. 3 show that for almost
all the capacity limits, they will behave like the red point in
the above example and guarantee the independence among
binding constraints for almost all the feasible load profiles.

Finally, we consider a path in Fig. 4a which goes through
four different subregions, and pick 50 sample points along the
path. Each sample point corresponds to a specific load profile
for the power system. In Fig. 5, we show how the optimal
generations and costs change for those 50 sample load profiles.
In each subregion, the gradient of the optimal solution stays
unchanged until the load profile enters a new subregion.

VII. CONCLUSION

We presented an approach for analyzing a linear program
that solves the DC optimal power flow problem based on oper-
ator theoretic view of a linear program. Sets were defined upon
which the OPF operator has a unique solution, is continuous,
induces independent binding constraints, and the derivative
exists (almost everywhere). Two equivalent perspectives on
Jacobian matrix were given. The first was from the problem

2

bus 4 (100 MW)

(a) When £ is selected at the red point.

25 3 35 4 45 0 05 1 15 2 25 3 35 4 45

bus 4 (100 MW)

(b) When £ is selected at the black point.

Fig. 4: Region for the loads (bus 4 and bus 7).

data and the second from knowledge of the binding constraints.
A closed-form expression of the Jacobian matrix is derived
in terms of the binding constraints sets. Finally a numerical
method based upon differentiating the solution map of a
homogeneous self-dual conic program was described.

It is hoped that this formulation will provide practitioners
with new tools for analyzing the robustness of their networks.
Simultaneously, it opens up many interesting theoretical ques-
tions, in particular, the study of AC optimal power flow
sensitivity. The main challenge to study AC-OPF operator is
the non-convexity of AC power flow equations. As a first step,
it is promising to extend our results to the SDP relaxation
by leveraging the techniques on differentiating through a cone
program. However, to recover a solution from the relaxation, a
rank-1 solution is required. Therefore, it will be an interesting
but also challenging task to study how the perturbation in prob-
lem parameters may affect the rank of relaxation solutions.

We are currently investigating how to compute the worst-
case sensitivity of the DC-OPF problem as this appears in
a diverse range of applications including differential privacy,
real-time optimization, and locational marginal pricing.

APPENDIX A
PROOF OF PROPOSITION 1

We first define
O = {f e RYe | V& € Qg Vs! € 0y (€), (3) has
unique optimal solution} (17a)
Qf) = {f e RY® | V&€ € Q¢,Vs' € 0, (), all solutions
of (4) satisfy (5)}, (17b)
then Qf = le) N Qf). For S C £, T C Vg such that

|S|+|T| < Ng — 2, we construct Q(S,7T) to be the set of f
such that 37 € RV*! € RF X € RV¢ satisfying:

0=M'"r+CBpu (18a)
—f = —[11, T2, ,TNe]T + A (18b)
w,#0=ieS (18c)
AN#A0=>ieT. (18d)



When S and 7 are fixed, the vector CBpu takes value in an
|S| dimensional subspace. Since rank(M) = N, the possible
values of 7 must fall within an |S|+ 1 dimensional subspace.
Therefore, (18b) implies that f must be in an |S|+ 1+ |7| <
Ng —1 dimensional subspace, and hence int(clos(Q(S,T)) =
(). Denote

Q=

U

SCE,TCVg
[SI+|TISNg -2

Q(S7T)>,

then, QO N RfG is nowhere dense in RfG.
On one hand, (17b) and (18) imply that

]RfG\Q?) ={f e R | 3¢ € Qs € Qu(€),one solution
of (4) violates (5)}

is a subset of Q. Thereby, RfG\QU C Qf).

On the other hand, we reformulate (3) as

minimize [f7,07]x (19a)
x:=[(s9)7,07]T
subject to Acgx = beg (19b)
Apx < by, (19¢)
where
01><NG e 0(1+NG)><1
Acq = | _1¥% T | Peq:= l )
oVL X NG CBC —s
(20a)
OEXNG BCT ﬁ
0E><NG _BCT —p
Ay, = 1Na oNaxN , big = 557 .(20b)
ING ONG XN _§g

Geometrically, an LP has multiple optimal solutions if and
only if the objective vector is normal to the hyperplane
defined by equality constraints and the set of inequality
constraints which are binding for all the optimal solutions
(i.e., corresponding rows in A., and Aj,). We collect the
rows in A;, which correspond to binding inequality constraints
(for all the optimal solutions) and form a new matrix A,
Formally, let X be the set of indices ¢ such that the ™ row
of A;, corresponds to a binding constraint for all the optimal
solutions, then Ain = Iy A;,. In our case, the objective vector
[fT,07]T is an Ng+ N dimensional vector, thus the row space
of [AIq,AT} must have dimension < Ng + N — 1 and
[fT,07] must be within this row space. As A, has N + 1
linearly independent rows, we can always find < Ng — 2
independent rows of Aln to form a new matrix Aln such that
(AL, ATIT and (AL AII] share the same row space. As a
result, [fT OT] can be represented as the linear combination of
rows in [A],, AT} and one can always find (S, 7,7, s, A)
satisfying (18) and also |S|+|7| < Ng —2. Hence Rfc \le)

is also a subset of O, and thus RNG\QU - fol)

Above all, RNG\Q - Q(l) Q(z)
is nowhere dense in R

Q¢. Since 9N
Qf is dense in R+G.

Ng
R-i-

APPENDIX B
PROOF OF THEOREM 1

The following results are used in the proof of Theorem 1.
Their proofs can be found in [41].

Lemma 4: The set Q¢ satisfies clos(int({2¢)) = clos(€).

Lemma 5: Suppose the set S C R” satisfies the condition
that clos(int(S)) = clos(S), and T is an affine hyperplane
with dimension strictly less than n. Then 7 is nowhere dense
in S.

We now prove Theorem 1. Our strategy is to construct the
set Q¢(f) first, then prove clos(int(24:(§))) = clos(Qg (£)),
and finally show that Q. (&, f) is dense in Qg (&).

Consider the power flow equations below:

CBCT s
TO ::{ BoT ]9: —g! 1)
p

Proposition 1 and Assumption 1 show that there will always
be at least Ng — 1 binding inequality constraints. We use the
following procedure to construct the set {2¢.

I. Let (NZ,;: be the subset of ()¢ where upper limits for
generation/line flow are strictly larger than lower limits.
II. For each S C Vg U[N + 1, N + E], construct Ts.
a) If rank(Ts) = |S|, then continue to another S.
b) If rank(Ts) < |S|, then consider

.= H {ei?eNGJri} X H {e2NG+j7eZNG+E+j}' (22)

iESNVG JjEE
j+Nes

Now update ﬁg as

O¢ Q¢ \ | {€ 136, such that 17¢ = Ts0}. (23)
yel’

1L Return Q.

In the above procedure, an n-tuple of vectors is also
regarded as a matrix of n columns and the product in (22)
is Cartesian product. > Since v € T is of rank |S| and T50
with @ € RY defines a subspace of < |S|—1 dimensions, each
set of {&€ | 30, such that yT¢ = Ts0} in (23) is a subspace
with dimension strictly lower than 2Ng + 2F, and is thereby
nowhere dense in {)¢ by Lemma 5. As a result, we have that
62,5 is dense in {2¢. It is sufficient to show that two conditions
in Proposition 1 are satisfied.

To show clos(int(Qg (E))) = clos(Qq (£)), it is sufficient
to prove that fix £ € €, Vs € Qg (&), there exists a sequence
(s (n))n:1 such that hm s( ) = = &' and each sl(n) has an open
neighborhood U(sl(n)) such that U(s( ) € Qg (§). By defini-
tion, there exists § and  such that (3b)-(3e) are satisfied for
3'. We also use p to denote the branch power flow associated
with (8¢,8'). Here we overload S C Vg U[N + 1, N + E] to
denote the indices of all the binding inequality constraints for
(87,8") and let S¢ denote the indices of all the non-binding
inequalities. ® By construction, we have rank(Ts) = |S| <

SHence, each v € T" can also be regarded as a (2Ng + 2F)-by-|S| matrix.
An explicit example of  could be found in [41].

%In this section, the index of a constraint associated with generator 7 is ¢
and the index of a constraint associated with branch 4 is i + V.



rank(T) = N —1. There are two situations to discuss: |S| = 0
and 1 < |S| <N -1

In the first case, if |S| = 0, let p; be the matrix norm of

T 7t
€]
TVGU[N+1,N+E] [ Ty }
L

induced by the ¢; vector norm. Let

€1 = min ¢ min. 8 — s?, min.s? — &7,
ievg ¢ eV
89>s? s9>s

min. p; — p,;, min. p; — p; 24
Pi>p, P >b;
€2 = min. §i (25)

7

Here, we have used min. as short hand for minimize. Now we
_ 4l
can construct sl(n) =§’, and

Ulst) = {s

1 €
l l : 1
< = —_, 1 .
|s s(n)\ 2mln{ o 62} NL}

It is trivial that lim sl(n) =& . Foranys! € U(sén)), we have
n— oo

(26)

T
0
[ ] -ae

(3b)-(3e) are satisfied. As a result, s' € Qu (&) and thus
UE') € Qg ().
In the second case, we have 1 < |S| < N — 1, then define

el
T/(R) = TS s for R - VL.
Tr
Let R* be a smallest R (in cardinality) such that
rank(T/(R)) = rank(T'(Vy)). We further define
T'(R*)
" o c
T(T) := [ T, },for’TQS.

Let 7* be a smallest 7 such that rank(T”(7)) =
rank(T”(8°)). There are two simple observations:

o All rows of the matrix T”(7*) are independent.
o All rows of T are in the row space of T”(7*).

Let po be the matrix norm of T(T”(7*))" induced by the
£1 vector norm. Let €; and €5 be the same as in (24) and (25),
and we define the direction vector v € RIS as

~ 5 ~ s9
Vv i=sgn (TSG — [ Ovj } ) + sgn (TSO — [ oV } )
s p ls
where sgn applies the sign function to each coordinate of the
vector. We then construct

0
g _ min{ej,ea}
TsO 3N 2 v

Tr~6

Tr+0

Sty o= Tw, (T/(T)!

l l

It is easy to check lim Stn) — §" and sl(n) > 0. We then
n— oo
construct the associated 6,,), s?n) and p(y,) as
0
Tsé _ min{el,eg}v
- " *\\ T 2nNpa
O0(n) = (T(T7)) Tt 7
TT*é

sty = TveO(m), Py = Tnv41,8+E0(n)-

This constriction guarantees that sl(n) € Qu (&) and (s?n), sl(n))
does not introduce new binding constraints. Similar to the first
case, there is always a neighborhood U (sl(n)) C Qu(&). This
completes the proof for clos(int(Q (£))) = clos(Q (£)).

__ Next, we will show Qg (&) is dense in Qg (). In fact, V€ €
(¢, if for some s! € Qg (&), the optimal solution to (3) has
> Ng tight inequality constraints, then we use S C [N +
E\VL, |S| = N¢ again to denote the indices of any N tight
inequality constraints. As those Ng inequality constraints are
tight, there must exist v € I', as defined in (22), such that
vT€ = Ts0" for the optimal 8 € RY. According to (23),
rank(Ts) must be exactly Ng. We now have

yTE=Ts0*, —s' =T 6" (27)

For each v € T, as rank(Ts) = Ng but rank(T) = N — 1,
the set {s' | 30", (27) holds} is a strict subspace in RVt and
thereby nowhere dense in {2y according to Proposition 4 and
Lemma 5. As the result, we have

Ou20.\  |J ({1 367,27) holds for v}
|S|=Ng ~€l
SC[N+E\VL
must be dense in .
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