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Reverse and Forward Engineering of Local Voltage Control
in Distribution Networks

Xinyang Zhou, Masoud Farivar, Zhiyuan Liu, Lijun Chen and Steven Low

Abstract—The increasing penetration of renewable and dis-
tributed energy resources in distribution networks calls for real-
time and distributed voltage control. In this paper we investigate
local Volt/VAR control with a general class of control functions,
and show that the power system dynamics with non-incremental
local voltage control can be seen as a distributed algorithm
for solving a well-defined optimization problem (reverse engi-
neering). The reverse engineering further reveals a fundamental
limitation of the non-incremental voltage control: the convergence
condition is restrictive and prevents better voltage regulation
at equilibrium. This motivates us to design two incremental
local voltage control schemes based on the subgradient and
pseudo-gradient algorithms respectively for solving the same
optimization problem (forward engineering). The new control
schemes decouple the dynamical property from the equilibrium
property, and have much less restrictive convergence conditions.
This work presents another step towards developing a new
foundation—network dynamics as optimization algorithms—for
distributed real-time control and optimization of future power
networks.

Index Terms—Distributed control and optimization, voltage
regulation, network dynamics as optimization algorithms, reverse
and forward engineering, power networks.

I. Introduction

Traditionally, given the predictable and relatively slow
changes in power demand, capacitor banks and load tap
changers are switched a few times per day to regulate the
voltages in distribution systems; see, e.g., [1], [2]. However,
with the increasing penetration of renewable energy resources
such as photovoltaic (PV) and wind turbines in both residential
and commercial settings [3], [4], the intermittent and fast-
changing renewable energy supply introduces rapid fluctu-
ations in voltages that are beyond the capability of those
traditional voltage regulation schemes and thus calls for new
voltage control paradigms.
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Conference on Smart Grid Communications, Miami, FL, 2015 [54], and
Annual Allerton Conference on Communication, Control, and Computing,
Allerton, IL, 2015 [55].

A. Inverter-Based Voltage Regulation

Even though the current IEEE Standard 1547 [5] requires
distributed generation to operate at unity power factor, in-
verters can readily adjust real and reactive power outputs to
stabilize voltages and cope with fast time-varying conditions.
Indeed, the IEEE Standards group is actively exploring a new
inverter-based Volt/VAR control. Unlike the capacity banks
or tap changers, inverters can push and pull reactive power
much faster, in a much finer granularity and with low operation
cost, enabling real-time distributed control that is needed for
the future power grid with a large number of renewable and
distributed energy resources.

Inverter-based voltage regulation has been studied exten-
sively in the literature. Related work roughly falls into the
following categories:

1) Centralized control: By collecting all the required in-
formation and computing a global optimal power flow
(OPF) problem, a central controller determines optimal
set-points for the whole system; see, e.g., [6]–[10].
Centralized control can incorporate general objectives
and operational constraints, but suffers from consid-
erable communication overhead and long computation
time especially when the size of the system is large.
Therefore, it usually cannot provide fast control.

2) Distributed control: For OPF problems with certain
structures, one can design algorithms to distribute the
computation with coordinating communication, which
is conducted either between a central controller and
agents in a hierarchical way, e.g., [11]–[18], or among
neighborhoods of individual agents without any central
controller, e.g., [19]–[24]. Given the required commu-
nication infrastructure, the scheme based on distributed
OPF algorithm can provide scalable voltage control.

3) Local control: Based only on local information, local
voltage control provides fast response and, without the
need of communication, allows simple and scalable
implementation; see, e.g., [25]–[32].

In this paper, we focus on the analysis and design of local
voltage control. Characterization of local control, especially
system-wide properties arising from the interaction between
local controls, is challenging. In the literature, the work such
as [31], [33] lacks analytical characterization. Other work such
as [29], [30], [34], [35] provides stability analysis but lacks
systemwide performance characterization of the equilibrium
point. There is work that provided rigorous performance anal-
ysis for stability and system-wide performance of local voltage
control, but are subject to control functions of a particular type,
e.g., linear control functions without deadband [26], [36] and
quadratic control functions [25].
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This paper is the extended version of our preliminary work
[53]–[55]. In [53] we study a general class of local voltage
control algorithms and characterize their global performance
as well as convergence properties, and in [54], [55] we propose
two different local voltage control schemes based on the
subgradient and pseudo-gradient algorithms with better con-
vergence properties. This paper significantly improves upon
our preliminary work. In particular, 1) we have adopted new
mathematical techniques to re-do all convergence proofs to
explicitly handle the non-differentiability issue caused by the
deadband in control, 2) we have enriched the characterization
of the equilibrium based on a new characterization of the
inverse reactance matrix, 3) we have added new numerical
results to complement the analytical results, and importantly
4) we have laid out a general reverse and forward engineering
framework for systematic analysis and design of local voltage
control; see the next subsection for more detail. Related work
also includes [32] that shows the uniqueness of equilibrium of
local voltage control as in [53] but using a different technique
and does not provide convergence proof, and [34], [35] that
consider the pseudo-gradient algorithm as in [55] but without
deadband in control and do not have a characterization of the
equilibrium as the optimum of an optimization problem.

B. Reverse and Forward Engineering

Different from other work, in this paper, we consider local
voltage control with general monotone control functions, and
seek a principled way to guide systematic analysis and design
of local voltage control with a global perspective through the
approach of reverse and forward engineering. We first develop
models to understand the systemwide properties arising from
the interaction between local controls, in particular, whether
the power system dynamics with existing controls can be
interpreted as distributed algorithms for solving certain op-
timization problems, i.e., network dynamics as optimization
algorithms. We then leverage the insights obtained from
the reverse engineering to design new local voltage control
schemes according to distributed algorithms for solving the
resulting optimization problem (or its variant that incorporates
new design objective and/or constraints).

Specifically, we first lay out a general framework for reverse
engineering power system dynamics with non-incremental
local voltage control with general control functions, and show
that it can be seen as a distributed algorithm for solving a
well-defined optimization problem. We characterize the con-
dition under which the dynamical system converges, which is
however very restrictive and prevents better voltage regulation
at the equilibrium (or optimum): aggressive control functions
are preferred for better voltage regulation at equilibrium, while
less aggressive ones are preferred for convergence. We are
therefore motivated to find a way to decouple the dynamical
property from the equilibrium property.

Notice that the optimization-based model does not only
provide a way to characterize the equilibrium and establish
the convergence of power system dynamics with local control
(i.e., reverse engineering) but also suggests a principled way
to engineer the control to achieve the desired property (i.e.,

forward engineering). In particular, new control schemes with
better dynamical properties can be designed based on different
optimization algorithms for solving the same optimization
problem. Accordingly, we propose an incremental local volt-
age control scheme based on the (sub)gradient algorithm for
solving the same optimization problem. This new control
scheme decouples the equilibrium property and the conver-
gence property and has much less restrictive convergence
condition. However, it converges to only within a small
neighborhood of the equilibrium. Furthermore, it requires
computing the inverse of the control function, which may incur
considerable computation overhead. We thus propose another
incremental local voltage control scheme based on a pseudo-
gradient algorithm that has better convergence property and
simpler implementation than the (sub)gradient control while
achieving the same equilibrium.

Similar ideas of reverse and forward engineering based on
the perspective of network dynamics as optimization algo-
rithms have been applied to distributed real-time frequency
control of power systems, e.g., [37]–[43], as well as synchro-
nization of networks of coupled oscillators [44]. This paper
presents another step towards developing a new foundation –
network dynamics as optimization algorithms – for distributed
real-time control and optimization of future power networks.

The rest of the paper is organized as follows. Section II de-
scribes the system model and introduces the non-incremental
local voltage control. Section III investigates the equilibrium
and dynamical properties of the non-incremental local control
by reverse engineering. Section IV proposes two incremental
local voltage control schemes that decouple the equilibrium
and convergence properties and have much less restrictive
convergence conditions. Section V provides numerical exam-
ples to complement the theoretical analysis, and Section VI
concludes the paper.

II. NetworkModel and Local Voltage Control

Consider a tree graph G =
{
N ∪ {0},L

}
that represents a

radial distribution network consisting of n + 1 buses and a set
L of directed lines between these buses whose directions are
pointing away from bus 0. Bus 0 is the substation bus (slack
bus) and is assumed to have a fixed voltage of v0 = 1 p.u.
Let N := {1, . . . , n}. Due to the tree topology, we have the
cardinality of the line set |L| = n. For each bus i ∈ N , denote
by Li ⊆ L the set of lines on the unique path from bus 0 to
bus i, pc

i and pg
i the real power consumption and generation

respectively, and qc
i and qg

i the reactive power consumption
and generation respectively. Let vi be the magnitude of the
complex voltage (phasor) at bus i. For each line (i, j) ∈ L,
denote by ri j and xi j its resistance and reactance, and Pi j and
Qi j the sending-end real and reactive power from bus i to bus
j. Let `i j denote the squared magnitude of the complex branch
current (phasor) from bus i to bus j. We summarize some of
the notations used in this paper in Section II-A.
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A. Notation

N set of buses excluding bus 0, N := {1, ..., n}
L set of power lines
Li set of lines from bus 0 to bus i
pc

i , q
c
i real, reactive power consumption at bus i

qg
i , q

g
i real, reactive power generation at bus i

Pi j,Qi j real and reactive power flow from i to j
ri j, xi j resistance and reactance of line (i, j)
vi magnitude of complex voltage at bus i
`i j squared magnitude of complex current of

line (i, j)
Ωi feasible power set of inverter i; Ω :=× n

i=1Ωi

[ ]Ωi projection onto set Ωi

σmax( ) maximum singular value of a matrix
λmax( ) maximum eigenvalue of a matrix
αi upper-bound of the (sub)derivative d fi(vi)/dvi;

A := diag{α1, . . . , αn} ∈ S
N
++

A quantity without subscript is usually a vector with appro-
priate components defined earlier, e.g., v := (vi, i ∈ N), qg :=
(qg

i , i ∈ N).

B. Linearized Branch Flow Model

We adopt the following branch flow model introduced in
[1], [2] (DistFlow equations) to model a radial distribution
system:

Pi j = pc
j − pg

j +
∑

k:( j,k)∈L

P jk + ri j`i j, (1a)

Qi j = qc
j − qg

j +
∑

k:( j,k)∈L

Q jk + xi j`i j, (1b)

v2
j = v2

i − 2
(
ri jPi j + xi jQi j

)
+

(
r2

i j + x2
i j

)
`i j, (1c)

`i jv2
i = P2

i j + Q2
i j. (1d)

Following [45] we assume that the terms involving `i j are
zero for all (i, j) ∈ L in (1). This approximation neglects the
higher-order real and reactive power loss terms. Since losses
are typically much smaller than power flows Pi j and Qi j, it
only introduces a small relative error, typically on the order
of 1%. We further assume that vi ≈ 1, ∀i so that we can
set v2

j − v2
i = 2(v j − vi) in equation (1c). This approximation

introduces a small relative error of at most 0.25% if there is
a 5% deviation in voltage magnitude.

With the above approximations (1) is simplified to the
following linear model:

Pi j =
∑

k∈β( j)

(
pc

k − pg
k

)
,

Qi j =
∑

k∈β( j)

(
qc

k − qg
k

)
,

vi − v j = ri jPi j + xi jQi j,

where β( j) is the set of all descendants of bus j including bus
j itself, i.e., β( j) =

{
i|L j ⊆ Li

}
. This yields an explicit solution

for vi in terms of v0 (which is given and fixed):

v0 − vi =
∑

( j,k)∈Li

r jkP jk +
∑

( j,k)∈Li

x jkQ jk

=
∑

( j,k)∈Li

r jk

 ∑
h∈β(k)

(
pc

h − pg
h

) +
∑

( j,k)∈Li

x jk

 ∑
h∈β(k)

(
qc

h − qg
h

)
=

∑
j∈N

(
pc

j − pg
j

)  ∑
(h,k)∈Li∩L j

rhk

 +
∑
j∈N

(
qc

j − qg
j

)  ∑
(h,k)∈Li∩L j

xhk


=

∑
j∈N

Ri j

(
pc

j − pg
j

)
+

∑
j∈N

Xi j

(
qc

j − qg
j

)
,

where

Ri j :=
∑

(h,k)∈Li∩L j

rhk, Xi j :=
∑

(h,k)∈Li∩L j

xhk. (2)

Fig. 1. Li∩L j for two arbitrary buses i, j in the network and the corresponding
mutual voltage-to-power-injection sensitivity factors Ri j, Xi j.

Fig. 1 gives an illustration of Li∩L j for two arbitrary buses
i and j in a radial network and the corresponding Ri j and Xi j.
Since

Ri j =
∂vi

∂pg
j

= −
∂vi

∂pc
j
, (3a)

Xi j =
∂vi

∂qg
j

= −
∂vi

∂qc
j
, (3b)

Ri j, Xi j are also referred to as the mutual voltage-to-power-
injection sensitivity factors.

Define a resistance matrix R = [Ri j]n×n and a reactance
matrix X = [Xi j]n×n. Both matrices are symmetric. With the
matrices R and X the linearized branch flow model can be
summarized compactly as:

v = v0 + R(pg − pc) + X(qg − qc), (4)

where v0 = [v0, . . . , v0]> is an n-dimensional vector. In this
paper we assume that v0, pg, pc, qc are given constants. The
only variables are (column) vectors v := [v1, . . . , vn]> of
squared voltage magnitudes and qg := [qg

1, . . . , q
g
n] of generated

reactive powers. Let ṽ = v0 + R(pg − pc) − Xqc, which is a
constant vector. For notational simplicity, we will henceforth
ignore the superscript in qg and write q instead. Then the
linearized branch flow model reduces to the following simple
form:

v = Xq + ṽ. (5)

We have the following result.

Lemma 1 The matrices R and X are positive definite.
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Proof: The proof uses the fact that the resistance and
reactance values of power lines in the network are all positive.1

Here the same argument applies to the resistance matrix R.
We prove by induction on the number k of buses in the

network, excluding bus 0 (the root bus). The base case of
k = 1 corresponds to a two-bus network with one line. Here
X is a positive scalar that is equal to the reactance of the line
connecting the two buses.

Suppose that the theorem holds for all k ≤ n. For the case
of k = n + 1 we consider two possible network topologies as
shown in Figure 2:

(a) Case1: degree of bus 0 is
greater than 1.

(b) Case 2: degree of bus 0 is
1.

Fig. 2. Two possible network structures.

Case 1: bus 0 is of degree greater than 1. Split the network
into two different trees rooted at bus 0, denoted by T1 and
T2, each of which has no more than n buses excluding bus 0.
Denote by X1 and X2 respectively the reactance matrices of
T1 and T2. By induction assumption X1 and X2 are positive
definite. Note that the set Li of lines on the unique path from
bus 0 to bus i must completely lie inside either T1 or T2, for
all i. Therefore, by definition (2), the reactance matrix X of
the network has the following block-diagonal form:

Xi j =


X1i j , i, j ∈ T1
X2i j , i, j ∈ T2
0, otherwise

⇒ X =

[
X1 0
0 X2

]
.

Since X1 and X2 are positive definite, so is X.
Case 2: bus 0 is of degree 1. Suppose without loss of

generality that bus 0 is connected to bus 1. Denote by x
the reactance of the line connecting buses 0 and 1, and T
the tree rooted at bus 1, excluding bus 0. Denote by Y the
reactance matrix of T , and by induction assumption, Y is
positive definite. Note that, for all buses i in the network,
the set Li includes the single line that connects buses 0 and
1. Therefore, by definition (2), the reactance matrix X has the
following form:

Xi j =

{
Yi j + x, i, j ∈ T
x, otherwise ⇒ X =


x . . . x
...

...
x . . . x

 +

[
0 0
0 Y

]
,

One can verify that, when Y is positive definite and x is
positive, X is positive definite. This concludes the proof.

We also refer to [26] for an alternative proof for the same
result.

1This is true for both over-head and underground power lines. The un-
derground lines usually have larger capacitances and thus smaller reactances
than the over-head lines. But their reactances are still positive because of the
dominance of inductance; see, e.g., Table 3.1 in [46].

Nonetheless, there may be situations where capacitance dominates induc-
tance such that the overall reactance is negative. In view of this, we limit the
applicability of Lemma 1 and other results of this paper to power networks
where reactances are positive.

C. Inverter Model

At each bus i there is an inverter that can generate non-
negative real power pi and reactive power qi that can have
either sign. pi and qi are constrained by the apparent power
capability si of the inverter as follows:

0 ≤ pi ≤ si, 0 ≤ |qi| ≤ si, p2
i + q2

i ≤ s2
i . (6)

Consider power ratio cos ρi with 0 ≤ ρi ≤ π/2 such that

pi/si ≥ cos ρi. (7)

Given non-controllable pi ≤ si, the feasible (reactive) power
set Ωi for inverter i is given by:

Ωi :=
{
qi

∣∣∣ qi
min ≤ qi ≤ qi

max
}
, (8)

where, based on (6)–(7),

qmax
i = min

{
pi tan ρi,

√
s2

i − p2
i

}
,

qmin
i = max

{
−pi tan ρi,−

√
s2

i − p2
i

}
.

Here, pi is further assumed to be sized appropriately to provide
enough freedom in qi [31]. For buses without controllable
inverters, we can set qi = qmax

i = qmin
i to make Ωi a singleton.

Define Ω :=× n
i=1 Ωi for notational simplicity.

D. Local Volt/VAR Control

The goal of Volt/VAR control in a distribution network is
to maintain the bus voltages v to within a tight range around
their nominal values vnom

i = 1 p.u., i ∈ N by provisioning
reactive power injections q. This can be modeled as a feedback
dynamical system with state

(
v(t), q(t)

)
at discrete time t. A

general Volt/VAR control algorithm maps the current state(
v(t), q(t)

)
to a new reactive power injections q(t + 1). The

new q(t + 1) updates voltage magnitudes v(t + 1) according to
(5). Usually q(t + 1) is determined either completely or partly
by a certain Volt/VAR control function defined as follows:

Definition 1 A Volt/VAR control function f : Rn → Rn is a
collection of local control functions fi : R→ R, each of which
maps the current local voltage vi to a local control variable
ui in reactive power at bus i:

ui = fi(vi − vnom
i ). ∀i ∈ N . (9)

The control functions fi are usually decreasing but not
always strictly decreasing because of a potential deadband
where the control signal ui is set to zero to prevent too
frequent actuation. We assume for each bus i ∈ N a symmetric
deadband (vnom

i − δi/2, vnom
i + δi/2) with δi ≥ 0 around the

nominal voltage vnom
i . The following assumptions are made

for fi.

Assumption 1 The control functions fi are continuous, non-
increasing in R, and strictly decreasing and differentiable in
(−∞,−δi/2) ∪ (δi/2,+∞).

Assumption 2 The derivative of fi is upper-bounded, i.e.,
there exist αi > 0 such that | f ′i (vi)| ≤ αi for all feasible
vi ∈ (−∞,−δi/2) ∪ (−δi/2, δi/2) ∪ (δi/2,+∞), ∀i ∈ N .
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Assumption 2 ensures that an infinitesimal change in voltage
does not lead to a jump in the control variable. Define A :=
diag{α1, . . . , αn} ∈ S

N
++, and let M = σmax

(
AX

)
denote the

largest singular value of AX. We have the following result.

Lemma 2 (Lipschitz continuity) Suppose Assumptions 1–2
hold. For any q, q′ ∈ Ω, we have

‖ f (v(q) − vnom) − f (v(q′) − vnom)‖2 ≤ M‖q − q′‖2. (10)

Proof: Without loss of generality, assume that vi(q) ≥
vi(q′). If both vi(q) and vi(q′) are in (−∞, vnom

i − δi/2] or
in [vnom

i + δi/2,+∞), by the mean value theorem we have
| fi(vi(q) − vnom

i ) − fi(vi(q′) − vnom
i )| ≤ ᾱi|vi(q) − vi(q′)|. If both

are in [vnom
i −δi/2, vnom

i +δi/2], 0 = | fi(vi(q)−vnom
i )− fi(vi(q′)−

vnom
i )| ≤ ᾱi|vi(q) − vi(q′)|. If vi(q) ∈ [vnom

i + δi/2,+∞) and
vi(q′) ∈ [vnom

i − δi/2, vnom
i + δi/2], | fi(vi(q) − vnom

i ) − fi(vi(q′) −
vnom

i )| = | fi(vi(q) − vnom
i ) − fi(δi/2))| ≤ ᾱi|vi(q) − (vnom

i +

δi/2)| ≤ ᾱi|vi(q) − vi(q′)|, where the first inequality follows
from the mean value theorem. Similarly, we can show that
| fi(vi(q) − vnom

i ) − fi(vi(q′) − vnom
i )| ≤ ᾱi|vi(q) − vi(q′)| holds

under other situations too. Therefore, the following holds:∥∥∥ f (v(q) − vnom) − f (v(q′) − vnom)
∥∥∥

2 ≤
∥∥∥A(v(q) − v(q′))

∥∥∥
2 .

Then by the definition of M we have (10).
See Fig. 3 (left) for an illustrative example of a piecewise

linear droop control function based on IEEE Standard 1547
[5]:

fi(vi) = −αi [vi − δi/2]+ + αi [−vi − δi/2]+ (11)

with slope −αi in (−∞,−δi/2) and (δi/2,+∞). Notice that our
design and analysis in this paper are not limited to linear
control functions.

Motivated by the IEEE Standard 1547, we first consider
a “non-incremental” control where the reactive power qi =

ui, i ∈ N , and obtain the following dynamical system D1 for
the local Volt/VAR control:

D1 :

 v(t) = Xq(t) + ṽ

qi(t + 1) =
[
fi
(
vi(t) − vnom

i
)]

Ωi
, i ∈ N ,

(12a)
(12b)

where [ ]Ωi denotes the projection onto the set Ωi. A fixed point
(v∗, q∗) of the above dynamical system, defined as follows,
represents an equilibrium operating point of the network.

Definition 2 (v∗, q∗) is called an equilibrium point of D1, if
it satisfies

v∗ = Xq∗ + ṽ, (13a)
q∗ =

[
f (v∗ − vnom)

]
Ω . (13b)

In the next section, we characterize the equilibrium and
dynamical properties of the system D1 by showing that it is an
distributed algorithm for solving a well-defined optimization
problem.

III. Reverse Engineering

Since fi is non-increasing, a (generalized) inverse f −1
i exists.

In particular, at the origin, we assign f −1
i (0) = 0 corresponding

to the deadband [−δi/2,+δi/2] of fi. This may introduce
discontinuity to f −1

i at qi = 0 if the deadband δi > 0, i.e.,

f −1
i (0+) ≤ −δi/2 and f −1

i (0−) ≥ δi/2, (14)

where 0+ and 0− represent approaching 0 from right and left,
respectively.

Define a cost function for provisioning reactive power at
each bus i ∈ N as:

Ci(qi) := −

∫ qi

0
f −1
i (q) dq, (15)

which is convex since f −1
i is decreasing. Then, given vi(t),

qi(t + 1) in (12b) is the unique solution to the following
optimization problem:

qi(t + 1) = arg min
qi∈Ωi

Ci(qi) + qi
(
vi(t) − vnom

i
)
, (16)

i.e., (12b) and (16) are equivalent specification of qi(t + 1).
Take the piecewise linear control function (11) for example.

Its inverse is given by:

f −1
i (qi) :=


−

qi
αi

+ δi
2 , if qi < 0,

0, if qi = 0,
−

qi
αi
−

δi
2 , if qi > 0,

(17)

and the corresponding cost function is given by:

Ci(qi) =

 1
2αi

q2
i −

δi
2 qi, if qi ≤ 0,

1
2αi

q2
i + δi

2 qi, if qi > 0.
(18)

See Fig. 3 (middle and right) for illustration.

A. Equilibrium

Consider the function F(q) : Ω→ R:

F(q) := C(q) +
1
2

q>Xq + q>∆ṽ, (19)

where C(q) =
∑

i∈N Ci(qi) and ∆ṽ := ṽ − vnom, and a global
optimization problem:

min
q∈Ω

F(q). (20)

Theorem 1 Suppose Assumption 1 holds. Then D1 has a
unique equilibrium point. Moreover, a point (v∗, q∗) is an
equilibrium of D1 if and only if q∗ is the unique optimal
solution of (20) and v∗ = Xq∗ + ṽ.

Proof: By Lemma 1 the matrix X is positive definite. This
implies that the objective function F(q) is strongly convex.
Hence, the first-order optimality condition for (20) is both
necessary and sufficient; moreover, (20) has a unique optimal
solution. We next relate it to the equilibrium point of D1.

The subdifferential of F(q) is given by:

∂F(q) = ∂C(q) + Xq + ∆ṽ

= ∂C(q) + (Xq + ṽ) − vnom,

where, by the definition of Ci(qi),

∂C(q) =
[
∂C1(q1) , . . . , ∂Cn(qn)

]>
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Fig. 3. (left) The piecewise linear control function (11), (middle) its inverse function (17), and (right) the corresponding cost function (18).

with

∂Ci(qi) =

{
− f −1

i (qi), if qi , 0,[
−
δi
2 ,

δi
2

]
, if qi = 0.

By the optimality condition, q∗ is an optimum of (20) iff
there exists a (sub)gradient ∇F(q∗) ∈ ∂F(q∗) such that

∇F(q∗)>(q − q∗) ≥ 0, ∀q ∈ Ω,

which is equivalent to:

q∗ =
[
f
(
Xq∗ + ṽ − vnom)]

Ω .

It follows that a point (v∗, q∗) is an equilibrium of D1 if
and only if q∗ solves (20) and v∗ = Xq∗+ ṽ. The existence and
uniqueness of the optimal solution of (20) then implies that
of the equilibrium (v∗, q∗).

By v = Xq + ṽ, the objective can be equivalently written as:

F(q, v) = C(q) +
1
2

(
v − vnom)> X−1 (

v − vnom)
−

1
2

∆ṽ>X−1∆ṽ.

(21)

Notice that the last term is a constant. Therefore, the local
Volt/VAR control D1 seeks an optimal trade-off between min-
imizing the cost of reactive power provisioning C(q) and min-
imizing the cost of voltage deviation 1

2 (v−vnom)>X−1(v−vnom).
1) Further Characterization of Equilibrium: The first term

C(q) of the objective (21) is well-defined and has the desired
additive structure. It is however not clear what specific struc-
ture the second term 1

2 (v − vnom)>X−1(v − vnom) entails. We
further characterize this term in this subsection.

Notice that bus 0 has a fixed voltage magnitude, which
decouples different subtrees rooted at it. Therefore without
loss of generality, we only consider a topology where the bus
0 is of degree 1. Denote T the (sub)tree rooted at bus 1 and
LT the set of links of T . Define an inverse tree T ′ that has
the same sets of buses and lines as T but with reciprocal
line reactance 1/xi j. Let L ∈ Rn×n be the weighted Laplacian
matrix of T ′ defined as follows:

Li j =


−1/xi j, (i, j) ∈ LT ,∑

(i,k)∈L 1/xik, i = j,
0, otherwise.

Recall that x denotes the reactance of the line connecting buses
0 and 1, we have the following result by Liu et al. [47].

Theorem 2 (Lemma 6 in [47]) Given the tree graph G =

{N ∪ {0},L} with bus 0 being of degree 1 and its reactance
matrix X defined by (2), the inverse matrix X−1 has the
following explicit form:

X−1 = L +


1/x 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . (22)

With the above result, the cost function (21) can be rewritten
as:

F(q, v) = C(q) +
1
2

 (v1 − vnom)2

x
+

∑
(i, j)∈LT

(vi − v j)2

xi j


−

1
2

∆ṽ>X−1∆ṽ. (23)

whose second term (i.e., the cost of voltage deviation) consists
of two parts: the first part (v1 − vnom)2/x represents the cost
of voltage deviation of the bus 1 from the nominal value, and
the second part

∑
(i, j)∈LT

(vi − v j)2/xi j gives the cost of voltage
deviation between the neighboring buses. This leads to a nice
leader-follower structure where the first bus (the bus 1) aims
to attain the nominal voltage while every other bus tries to
achieve the same voltage as that of the bus “in front of” it.

B. Dynamics

We now study the dynamical properties of the local
Volt/VAR control D1.

Theorem 3 Suppose Assumptions 1–2 hold. If

σmax
(
AX

)
< 1, (24)

then the local Volt/VAR control D1 converges to the unique
equilibrium point (v∗, q∗). Moreover, it converges exponentially
fast to the equilibrium.
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Proof: Write D1 equivalently as a mapping g1 : Ω→ Ω:

q(t + 1) = g1(q(t)) :=
[
f
(
Xq(t) + ∆ṽ − vnom)]

Ω . (25)

By Lemma 2 and the non-expansiveness property of projection
operator, given any feasible q, q′ we have∥∥∥g1(q) − g1(q′)

∥∥∥
2 ≤ M‖q − q′‖2, (26)

where M = σmax(AX). When condition (24) holds, M < 1 and
thus the mapping g1 is a contraction, implying that (v(t), q(t))
converges exponentially to the unique equilibrium point under
D1.

We next develop a sufficient condition for (24), which is
easier to verify in practice. Define the following matrix norms
for some W ∈ Rm×n:

‖W‖1 = max
1≤ j≤n

m∑
i=1

|wi j|, ‖W‖∞ = max
1≤i≤m

n∑
j=1

|wi j|,

‖W‖2 =
√
λmax(W>W) = σmax(W),

where λmax(·) denotes the largest eigenvalue of a matrix. By
utilizing the following relationship among these matrix norms
based on Hölder’s inequality

‖W‖2 ≤
√
‖W‖1 · ‖W‖∞ , (27)

we have the following sufficient condition for convergence of
D1.

Corollary 1 Suppose Assumptions 1–2 hold. If

max
i∈N

(αi) ·max
i∈N

∑
j∈N

Xi j

 < 1, (28)

thenD1 converges exponentially fast to the unique equilibrium
point (v∗, q∗).

Proof: A sufficient condition for (24) based on (27) is∥∥∥AX
∥∥∥

1 < 1 and
∥∥∥AX

∥∥∥
∞
< 1. (29)

Therefore given symmetric matrix X, (28) is sufficient for (29).

C. Limitation of the Non-Incremental Control

The local voltage control (12b) is non-incremental, as it
decides the total amount of reactive power (instead of the
change in reactive power) based on the deviation of the current
voltage from the nominal value. Intuitively, such control may
lead to over-actuation and oscillatory behavior. In order to have
converging or stable behavior, the control function should not
be too aggressive, i.e., have a small (absolute) derivative. This
can also be seen from Theorem 3, and in the case of the piece-
wise linear control function (11), implies a small αi value.

On the other hand, seen from the equivalent objective
(21), smaller cost functions Ci(qi) are preferred for better
voltage regulation. However, a small cost function implies
large derivative of the control function; see, e.g., the cost
function (18) that becomes smaller as αi takes larger value,
as well as the numerical examples in Section V.

Hence, there is a contention or fundamental limitation for
the non-incremental control: control function with smaller

derivative is preferred for convergence, while for better voltage
regulation at the equilibrium control function with larger
derivative is desired. This motivates us to seek new local volt-
age control schemes that are not subject to such a limitation,
as will be seen in the next section.

IV. Forward Engineering: Decoupling Equilibrium and
Dynamical Properties

The optimization-based model (20) not only provides a way
to characterize the equilibrium of the local voltage control (see
Theorem 1) but also suggests a principled way to engineer
the control. New design goal such as fairness and economic
efficiency can be incorporated by engineering the objective
function in (20), and more importantly, new control schemes
with better dynamical properties can be designed based on
various optimization algorithms such as a (sub)gradient al-
gorithm. In this section, we apply two iterative optimization
algorithms to design local voltage control schemes that can
decouple the dynamical property from the equilibrium prop-
erty and have less restrictive convergence conditions than the
non-incremental local voltage control studied in the previous
section.

A. Local Voltage Control Based on (Sub)gradient Algorithm

Given an optimization problem, we may apply different
algorithms to solve it. A common algorithm that often admits
distributed implementation is the (sub)gradient method [48].
Applying it to the problem (20) leads to the following voltage
control:

qi(t + 1) =

[
qi(t) − γ2

∂F(q(t))
∂qi

]
Ωi

, i ∈ N , (30)

where γ2 > 0 is a constant stepsize and the (sub)gradient is
calculated as follows:

∂F(q(t))
∂qi

=



− f −1
i

(
qi(t)

)
+ vi(t) − vnom, if qi(t) , 0,

vi(t) − vnom, if qi(t) = 0 and
−δ/2 ≤ vi(t) − vnom ≤ δi/2,

−δi/2 + vi(t) − vnom, if qi(t) = 0 and
vi(t) − vnom > δi/2,

δi/2 + vi(t) − vnom, if qi(t) = 0 and
vi(t) − vnom < −δi/2.

(31)
The above control is incremental as the change in reactive
power (instead of the total reactive power) is based on the
voltage deviation from the nominal value. It is also distributed
since the decision at each bus i ∈ N depends only on its current
reactive power qi and voltage vi.

We thus obtain the following dynamical system

D2 :


v(t) = Xq(t) + ṽ

qi(t + 1) =

[
qi(t) − γ2

∂F(q(t))
∂qi

]
Ωi

, i ∈ N .

(32a)

(32b)

The following result is immediate.

Theorem 4 Suppose Assumption 1 holds. Then there exists
a unique equilibrium point for the dynamical system D2.
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Moreover, a point (v∗, q∗) is an equilibrium if and only if q∗ is
the unique optimal solution of problem (20) and v∗ = Xq∗ + ṽ.

Proof: The proof is similar to that for Theorem 1. At the
equilibrium q∗ of dynamical system D2, we have

q∗i =

[
q∗i − γ2

∂F(q∗)
∂qi

]
Ωi

, i ∈ N ,

which is equivalent to

∂F(q∗)
∂qi

(q̄i − q∗i ) ≥ 0, ∀q̄i ∈ Ωi,

i.e., ∇F(q∗)T (q̄ − q∗) ≥ 0, ∀q̄ ∈ Ω. So, q∗ satisfies the
optimality condition and thus is an optimum of problem (20).
The uniqueness of equilibrium/optimum comes from the fact
that convex problem (20) has a strongly convex objective
function.

Since the feasible sets are bounded, we also have the
bounded (sub)gradient of F(q) with some constant G > 0:

‖∇qF(q)‖2 ≤ G, ∀q ∈ Ω. (33)

Theorem 5 Suppose Assumption 1 holds. The dynamical sys-
tem D2 converges as

lim sup
t→∞

t∑
τ=1

F(q(τ)) − F(q∗)
t

= γ2
2G2. (34)

Proof: We characterize the distance between q(t + 1) and
q∗ as:

‖q(t + 1) − q∗‖22
≤ ‖q(t) − γ2∇qF(q(t)) − q∗‖22
= ‖q(t) − q∗‖22 + γ2

2‖∇qF(q(t))‖22 − 2γ2

(
q(t) − q∗

)>
∇qF

(
q(t)

)
≤ ‖q(t) − q∗‖22 + γ2

2G2 −
(
F
(
q(t)

)
− F(q∗)

)
≤ ‖q(1) − q∗‖22 + tγ2

2G2 −

t∑
τ=1

(
F
(
q(τ)

)
− F(q∗)

)
,

where the first inequality is due to non-expansiveness of
projection operator, the second inequality is because of the
definition of subgradient as well as the bounded gradient (33),
and the last inequality is by repeating previous steps.

As ‖q(t + 1) − q∗‖22 ≥ 0, it follows that:

t∑
τ=1

F
(
q(τ)

)
− F(q∗)
t

≤ ‖q(1) − q∗‖22/t + γ2
2G2. (35)

When t → ∞, we have (34).
Theorem 5 states that for any control functions fi (that sat-

isfies Assumptions 1–2), one can always find a small enough
stepsize γ2 such that D2 converges to a neighborhood of the
(v∗, q∗) of required accuracy on running average. Moreover, as
shown in [54], when q∗ is not close to the non-differentiable
point,D2 converges exactly to the optimum with small enough
constant stepsizes. In contrast, the convergence condition (24)
for the non-incremental voltage control D1 does constrain the
allowable control functions fi. Therefore, D2 permits better
voltage regulation than D1; see the discussion at the end of
Section III and simulation results in Fig. 5.

Nevertheless, the (sub)gradient nature of D2 may prevent
it from converging to the exact optimal point. This could
happen when the optimum is close to the non-differentiable
point (q∗ = 0 in this case) where the value of subgradient
(31) changes abruptly if δi , 0. Moreover, the (sub)gradient
computation (31) requires computing the inverse of the con-
trol function fi, which can be computationally expensive for
general control functions, as well as tracking the value of vi

with respect to deadband ±δi/2. These limitations motivate
us to design another incremental control scheme with better
convergence and lower implementation complexity.

B. Local Voltage Control Based on Pseudo-Gradient Algo-
rithm

The pseudo-gradient can provide a good search direction
for an optimization problem without requiring the objective
function to be differentiable; see, e.g., [49]. Applying it to
the problem (20) leads to the following incremental voltage
control at bus i ∈ N :

qi(t + 1) =
[
qi(t) − γ3

(
qi(t) − fi

(
vi(t) − vnom

i
))]

Ωi
(36a)

=
[
(1 − γ3)qi(t) + γ3 fi

(
vi(t) − vnom

i
)]

Ωi
, (36b)

where γ3 > 0 is a constant stepsize/weight and qi− fi(vi−vnom
i )

is the pseudo-gradient. The above control is distributed, and
is simpler to implement than the control (30).

With (36) we obtain the following dynamical system

D3 :


v(t) = Xq(t) + ṽ,

qi(t + 1) =
[
qi(t) − γ3

(
qi(t) − fi

(
vi(t) − vnom

i
))]

Ωi
,

i ∈ N .

(37a)

(37b)

Notice that D3 has the same equilibrium condition as the
dynamical systems D1 and D2. The following result is im-
mediate.

Theorem 6 Suppose Assumption 1 holds. There exists a
unique equilibrium point for the dynamical system D3. More-
over, a point (v∗, q∗) is an equilibrium if and only if q∗ is the
unique optimal solution of problem (20) and v∗ = Xq∗ + ṽ.

We now analyze the convergence of the dynamical system
D3. We first introduce the following useful results.

Denote by ∇v f the diagonal matrix with each diagonal entry(
∇v f

)
ii representing the (sub)gradient of fi with respect to vi

defined as:

(∇v f )ii


= f ′i (vi), if vi ∈ (−∞,−δi/2)∪

(−δi/2, δi/2) ∪ (δi/2,+∞),
∈ [ f ′i (v−i ), f ′i (v+

i )], if vi = −δi/2,
∈ [ f ′i (v+

i ), f ′i (v−i )], if vi = δi/2,

(38)

which is bounded as −αi ≤ (∇v f )ii ≤ 0 based on Assump-
tions 1–2. Denote by λ any eigenvalue of the matrix ∇v f · X.
Consider ∇v f · X’s similar matrix X1/2 · ∇v f · X1/2, which is
symmetric and negative semidefinite with real and nonpositive
eigenvalues. Therefore, eigenvalues of the original asymmetric
matrix ∇v f · X are also real and nonpositive. Similarly, all the
eigenvalues of AX are real and positive.
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Theorem 7 Suppose Assumptions 1–2 hold. If the stepsize γ3
satisfies the following condition:

0 < γ3 < 2/
(
1 + λmax

(
AX

))
, (39)

then the dynamical system D3 converges to its unique equi-
librium point.

Proof: Write D3 equivalently as a mapping g3 : Ω→ Ω:

q(t + 1) = g3
(
q(t)

)
:=

[
(1 − γ3)q(t) + γ3 f

(
v
(
q(t)

))]
Ω
, (40)

where v
(
q(t)

)
= Xq(t) + ∆ṽ − vnom. The Jacobian matrix of g3

without projection operator is computed as

∇qg3 = (1 − γ3)In + γ3∇v f · X, (41)

where In is n × n identity matrix. On the other hand, when
projection operator is active for some qi, notice that the term
(1 − γ3)qi(t) + γ3 fi

(
v
(
q(t)

))
inside the projection operator is

continuous, so the value of qi(t + 1) does not change with
respect to a small change of q(t), and hence the ith row of
the resulting ∇qg3 is all 0. Therefore, by Gershgorin circle
theorem [50], the magnitude of ∇qg3’s eigenvalue without
active projection has a larger bound than that with projection.
Therefore, it is sufficient to consider g3 without the projection
operator in this proof.

Denote by z the eigenvector of matrix ∇v f ·X corresponding
to λ. By definition one has ∇v f · X · z = λz. Therefore,

∇qg3z = (1 − γ3 + γ3λ)z, (42)

that is, the corresponding eigenvalue of ∇qg3 with respect to
λ is 1 − γ3 + γ3λ. To ensure that g3 is stable, we must have
[29], [51]:

−1 < 1 − γ3 + γ3λ < 1 (43)

for any eigenvalue λ of ∇v f X. (39) is sufficient for the left-
hand side of (43) and the right-hand side always holds because
λ is nonpositive. This completes the proof.

We conclude that the dynamical system D3 based on the
pseudo-gradient algorithm converges to the unique optimum
with proper constant stepsize, while the dynamical system D2
based on the subgradient algorithm only guarantees conver-
gence to within a small neighborhood of the optimum on
running average with constant stepsize.

Remark 1 Notice that, when γ3 ≤ 1 in, the control (36) has
a nice interpretation of the new decision qi(t + 1) being a
(positively-)weighted sum of the decision qi(t) at the previous
time and the local control ui(t) = fi(vi(t) − vnom

i ) in reactive
power. Similar approaches in literature are also identified as
exponentially weighted moving average (EWMA) control and
delayed control, etc. However, here we do not require γ3 ≤ 1
for D3 to converge, as long as condition (39) is satisfied.

C. Control Function Design for Better Equilibrium Voltage
Regulation

As mentioned earlier, one motivation to consider the in-
cremental local voltage control algorithms in the last two
subsections is to decouple the convergence property from the
equilibrium property, so that we can choose proper control

Fig. 4. Circuit diagram for SCE distribution system.

functions to achieve better equilibrium voltage profiles without
risking the convergence of the system. In this subsection,
we briefly discuss the design of control functions for better
equilibrium voltage regulation.

Recall from Section III that, based on (21), local voltage
control seeks an optimal trade-off between minimizing the
cost of reactive power provisioning

∑
i Ci(qi) and minimizing

the cost of voltage deviation 1
2 (v − vnom)>X−1(v − vnom). For

better equilibrium voltage profile (i.e., closer to the nominal
voltages), smaller cost functions Ci(qi) should be used, which
by definition (15) means that control functions fi with larger
(absolute) derivatives should be used; e.g., choose a large αi

value in the piecewise linear droop control function (11).
Notice that by choosing different control functions, we can

achieve a “soft” control of equilibrium voltage profile. For
the “hard” control or constraints of the voltage profile such
as the voltage magnitude must fall into a specified range, we
have to include these constraints explicitly in the optimization
problem. There is work that considers the hard constraints and
develops distributed voltage control algorithms, see, e.g., [14],
[15], but it remains to be seen if local voltage control without
any communication can achieve these hard constraints.

V. Numerical examples

Consider a distribution feeder of South California Edison
(SCE) with a high penetration of photovoltaic (PV) generation.
As shown in Fig. 4, bus 1 is the substation (root bus) and five
PV generators are integrated at buses 2, 12, 26, 29, and 31. As
we aim to study the Volt/VAR control through PV inverters,
all shunt capacitors are assumed to be off. Table I contains
the network data including the line impedance, the peak MVA
demand of loads, and the capacity of the PV generators. It
is important to note that all studies are run with a full AC
power flow model with MATPOWER [52] instead of its linear
approximation. As will be seen, the results we develop for the
linearized model are corroborated numerically with the full
power flow model.

In all numerical studies, we implement the following homo-
geneous piecewise linear droop control functions of the IEEE
1547.8 Standard for all PV inverters with their deadbands from
0.98 p.u. to 1.02 p.u. and slopes αi to be determined.

A. Equilibrium

As discussed in Section III-C, large (absolute) slopes of
the control function lead to better voltage regulation at the
equilibrium. To show this, we change αi from 1 to 200 and
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Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Capacity
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MW

1 2 0.259 0.808 8 34 0.244 0.046 18 19 0.198 0.046 11 0.67 28 0.27
2 3 0.031 0.092 8 36 0.107 0.031 22 26 0.046 0.015 12 0.45 29 0.2 2 1
3 4 0.046 0.092 8 30 0.076 0.015 22 23 0.107 0.031 13 0.89 31 0.27 12 3
3 13 0.092 0.031 8 9 0.031 0.031 23 24 0.107 0.031 15 0.07 33 0.45 26 2
3 14 0.214 0.046 9 10 0.015 0.015 24 25 0.061 0.015 16 0.67 34 1.34 29 1.8
4 17 0.336 0.061 9 37 0.153 0.046 27 28 0.046 0.015 18 0.45 35 0.13 31 2.5
4 5 0.107 0.183 10 11 0.107 0.076 28 29 0.031 0 19 1.23 36 0.67
5 21 0.061 0.015 10 41 0.229 0.122 30 31 0.076 0.015 20 0.45 37 0.13
5 6 0.015 0.031 11 42 0.031 0.015 30 32 0.076 0.046 21 0.2 39 0.45
6 22 0.168 0.061 11 12 0.076 0.046 30 33 0.107 0.015 23 0.13 40 0.2
6 7 0.031 0.046 14 16 0.046 0.015 37 38 0.061 0.015 24 0.13 41 0.45
7 27 0.076 0.015 14 15 0.107 0.015 38 39 0.061 0.015 25 0.2 Vbase = 12.35 KV
7 8 0.015 0.015 17 18 0.122 0.092 38 40 0.061 0.015 26 0.07 S base = 1000 KVA
8 35 0.046 0.015 17 20 0.214 0.046 27 0.13 Zbase = 152.52 Ω

TABLE I
Network Parameters of the SCE Circuit: Line impedances, peak spot load KVA, Capacitors and PV generation’s nameplate ratings.
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Fig. 5. Equilibrium voltage versus the αi value: As αi increases, the
equilibrium voltage v∗i deviates less from the nominal value.

record the corresponding equilibrium voltages v∗. As shown
in Fig. 5, v∗ gets closer to vnom as αi increases. This confirms
our previous discussion that steeper control functions are to
be implemented to achieve smaller voltage deviations from the
nominal value.

B. Dynamics

1) Convergence of Dynamical System D1: As shown in
Fig. 6, the dynamical system D1 displays less stable behavior
as the control function become steeper with the increase of
αi value, till it ends up with oscillation when αi becomes
too large. See also the vertical dash line on Fig. 5 beyond
which there is no convergence.2 As discussed in Section III-C,
there is a contention between convergence and equilibrium
performance for the non-incremental voltage control (12b): A
smaller (absolute) slope is preferred for convergence, while a
larger one is preferred for voltage regulation at the equilibrium.

2) Convergence of Dynamical Systems D2 and D3: As
discussed in Section IV, given any control function, D2 and
D3 converge if small enough stepsizes are chosen, and we can

2The αi value for the vertical dash line on Fig. 5 is obtained numerically. It
is much larger than the sufficient but conservative condition αi < 9.96 given
by (24) or αi < 3.15 given by (28).

Fig. 6. Voltage convergence under dynamical system D1 with different slopes
of the piecewise linear control function: voltage does not converge when the
(absolute) slope of the control function become too large (when αi > 26 in
this example).

thus decouple the equilibrium property from the dynamical
property. For instance, when αi = 27, the dynamical system
D1 does not converge; see Fig. 6(b). However, as shown in
Fig. 7, when the stepsizes γ2 and γ3 are properly chosen, the
dynamical systems D2 and D3 converge.

3) Convergence at Non-Differentiable Point: We have dis-
cussed in Section IV-A that the dynamical system D2 based
on subgradient algorithm can only converge to within a small
neighborhood of the equilibrium if it is at a nonsmooth point
of the objective function (19). We tune the parameters such
that the equilibrium reactive power provisioned at certain
bus—bus 2 in this case—is close to zero. As shown in
Fig. 8, D2 eventually converges to a small region around the
optimum, even with very small stepsize. On the other hand, as
shown in Fig. 9, the dynamical system D3 based on pseudo-
gradient algorithm converges to the equilibrium despite the
non-smoothness of the objective function at the equilibrium.
See the embedded windows in Fig. 8–9.
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Fig. 7. Evolution of voltage of the dynamical systems D2 and D3 with
αi = 27: Convergence is ensured with small enough stepsizes.
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Fig. 8. Convergence of dynamical system D2 to within a small neighborhood
of the equilibrium when q∗2 ≈ 0.
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Fig. 9. Convergence of dynamical system D3 to the equilibrium point when
q∗2 ≈ 0.

VI. Conclusion

We have investigated local voltage control with a general
class of control functions in distribution networks. We show
that the power system dynamics with non-incremental local
voltage control can be seen as a distributed algorithm for
solving a well-defined optimization problem (reverse engi-
neering). The reverse engineering further reveals a limita-
tion of the non-incremental voltage control: the convergence
condition is restrictive and prevents better voltage regulation
at equilibrium. This motivates us to design two incremental
local voltage control schemes based on different algorithms for
solving the same optimization problem (forward engineering).
The new control schemes decouple the dynamical property
from the equilibrium property and have much less restrictive
convergence conditions. This work presents another step to-
wards developing a new foundation—network dynamics as
optimization algorithms—for distributed real-time control and
optimization of future power networks
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