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Abstract—We consider a specific graph learning task: recon-
structing a symmetric matrix that represents an underlying graph
using linear measurements. We present a sparsity characteri-
zation for distributions of random graphs (that are allowed to
contain high-degree nodes), based on which we study fundamental
trade-offs between the number of measurements, the complexity
of the graph class, and the probability of error. We first derive
a necessary condition on the number of measurements. Then, by
considering a three-stage recovery scheme, we give a sufficient
condition for recovery. Furthermore, assuming the measurements
are Gaussian IID, we prove upper and lower bounds on the
(worst-case) sample complexity for both noisy and noiseless
recovery. In the special cases of the uniform distribution on trees
with n nodes and the Erdős-Rényi (n, p) class, the fundamental
trade-offs are tight up to multiplicative factors with noiseless
measurements. In addition, for practical applications, we design
and implement a polynomial-time (in n) algorithm based on the
three-stage recovery scheme. Experiments show that the heuristic
algorithm outperforms basis pursuit on star graphs. We apply the
heuristic algorithm to learn admittance matrices in electric grids.
Simulations for several canonical graph classes and IEEE power
system test cases demonstrate the effectiveness and robustness of
the proposed algorithm for parameter reconstruction.

Index Terms—Graph signal processing, sample complexity,
network parameter reconstruction, information theory, sparse
recovery

I. INTRODUCTION

A. Background

SYMMETRIC matrices are ubiquitous in graphical models
with examples such as the (0, 1) adjacency matrix and

the (generalized) Laplacian of an undirected graph. A major
challenge in graph learning is inferring graph parameters
embedded in those graph-based matrices from historical data
or real-time measurements. In contrast to traditional statistical
inference methods [1], [2], [3], model-based graph learning,
such as physically-motivated models and graph signal process-
ing (GSP) [4], takes advantage of additional data structures
offered freely by nature. Among different measurement models
for graph learning, linear models have been used and analyzed
widely for different tasks, e.g., linear structural equation mod-
els (SEMs) [5], [6], linear graph measurements [7], generalized
linear cascade models [8], etc.

Despite extra efforts required on data collection, process-
ing and storage, model-based graph learning often guaran-
tees provable sample complexity, which is often significantly
lower than the empirical number of measurements needed
with traditional inference methods. In many problem settings,

Li, Werner and Low are with the Computing + Mathematical Sciences
Department, California Institute of Technology, Pasadena, CA 91125 USA
(e-mails: {tongxin, lwerner, slow}@caltech.edu)

having computationally efficient algorithms with low sample
complexity is important. One reason for this is that the graph
parameters may change in a short time-scale, making sample
complexity a vital metric to guarantee that the learning can be
accomplished with limited measurements. Indeed many appli-
cations, such as real-time optimal power flow [9], [10], [11],
real-time contingency analysis [12] and frequency control [13]
in power systems etc., require data about the network that
are time-varying. For example, the generations or net loads
may change rapidly due to the proliferation of distributed
energy resources. The topology and line parameters of the
grid may be reconfigured to mitigate cascading failure [14].
Line switching has changed the traditional idea of a power
network with a fixed topology, enabling power flow control by
switching lines [15], etc. Hence analyzing fundamental limits
of parameter reconstruction and designing graph algorithms
that are efficient in both computational and sample complexity
are important.

The number of measurements needed for reconstructing a
graph Laplacian can be affected by various system parameters,
such as data quality (distribution), physical laws, and graph
structures. In particular, existing recovery algorithms often
assume the graph to be recovered is in a specific class, e.g.,
trees [1], sparse graphs [16], graphs with no high-degree
nodes [17], with notable exceptions such as [18], which
considers an empirical algorithm for topology identification.
However, there is still a lack of understanding of sample com-
plexity for learning general undirected graphs that may contain
high-degree nodes, especially with measurements constrained
naturally by a linear system.

In this work, we consider a general graph learning problem
where the measurements and underlying matrix to be recov-
ered can be represented as or approximated by a linear system.
A graph matrix Y(G) with respect to an underlying graph
G, which may have high-degree nodes (see Definition II.1) is
defined as an n×n symmetric matrix with each nonzero (i, j)-
th entry corresponding to an edge connecting node i and node
j where n ∈ N+ is the number of nodes of the underlying
undirected graph. The diagonal entries can be arbitrary. The
measurements are summarized as two m × n (1 ≤ m ≤ n)
real or complex matrices A and B satisfying

A = BY(G) + Z (1)

where Z denotes additive noise.
We focus on the following problems:

• Fundamental Trade-offs. What is the minimum number
m of linear measurements required for reconstructing the
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symmetric matrix Y(G)? Is there an algorithm asymptot-
ically achieving recovery with the minimum number of
measurements? As a special case, can we characterize the
sample complexity when the measurements are Gaussian
IID1?

• Applications to Electrical Grids. Do the theoretical guar-
antees on sample complexity result in a practical al-
gorithm (in terms of both sample and computational
complexity) for recovering electric grid topology and
parameters?

Some comments about the above model and the results in
this paper are as follows.

Remark 1. It has been noted that vectorization and standard
compressed sensing techniques do not lead to straightforward
results (see [17] for detailed arguments about a similar linear
system). This issue is discussed extensively in Section I-B3.

Remark 2. The results in this paper do not assume low-degree
nodes as most of existing results do, with notable exceptions
such as [18] which gives empirical and data-based subroutines
for topology identification.

B. Related Work

1) Graph Learning: Algorithms for learning sparse graph-
ical model structures have a rich tradition in the literature. For
general Markov random fields (MRFs), learning the underlying
graph structures is known to be NP-hard [19]. However, in the
case when the underlying graph is a tree, the classical Chow-
Liu algorithm [1] offers an efficient approach to structure
estimation. Recent results contribute to an extensive under-
standing of the Chow-Liu algorithm. The authors in [3] ana-
lyzed the error exponent and showed experimental results for
chain graphs and star graphs. For pairwise binary MRFs with
bounded maximum degree, [20] provides sufficient conditions
for correct graph selection. Similar achievability results for
Ising models are in [21]. Model-based graph learning has been
emerging recently and assuming the measurements form linear
SEMs, the authors in [5], [6] showed theoretical guarantees
of the sample complexity for learning a directed acyclic graph
(DAG) structure, under mild conditions on the class of graphs.

For converse, information-theoretic tools have been widely
applied to derive fundamental limits for learning graph struc-
tures. For a Markov random field with bounded maximum
degree, necessary conditions on the number of samples for
estimating the underlying graph structure were derived in [20]
using Fano’s inequality (see [22]). For Ising models, [23]
combines Fano’s inequality with the idea of typicality to derive
weak and strong converse. Similar techniques have also been
applied to Gaussian graphical models [24] and Bayesian net-
works [25]. Fundamental limits for noisy compressed sensing
have been extensively studied in [26] under an information-
theoretic framework.

2) System Identification in Power Systems: Graph learning
has been widely used in electric grids applications, such as
state estimation [27], [28] and topology identification [29],

1This means the entries of the matrix B are IID normally distributed.

[30]. Most of the literature focuses on topology identification
or change detection, but there is less work on joint topology
and parameter reconstruction, with notable exceptions of [31],
[32], [33], [34]. However, the linear system proposed in [32]
does not leverage the sparsity of the graph2. Thus, in the worst
case, the matrix B needs to have full column rank, implying
that m = Ω(n) measurements are necessary for recovery.

Moreover, there is little exploration on the fundamental
performance limits (estimation error and sample complexity)
on topology and parameter reconstruction of power networks,
with the exception of [35] where a sparsity condition was given
for exact recovery of outage lines. Based on single-type mea-
surements (either current or voltage), correlation analysis has
been applied for topology identification [36], [37], [38]. Ap-
proximating the measurements as normal distributed random
variables, the authors of [29] proposed an approach for topol-
ogy identification with limited measurements. A graphical
learning-based approach can be found in [39]. Recently, data-
driven methods were studied for parameter estimation [33].
In [32], a similar linear system as (6) was used combined with
regression to recover the symmetric graph parameters (which
is the admittance matrix in the power network).

3) Compressed Sensing and Sketching: It is well known
that compressed sensing ([40], [41]) techniques allow for
recovery of a sparse matrix with a limited number of measure-
ments in various applications such as medical imaging [42],
wireless communication [43], channel estimation [44] and
circuit design [45], etc. For electricity grids, in [46], based
on these techniques, experimental results have been given for
topology recovery. However, nodal admittance matrices (gen-
eralized Laplacians) for power systems have two properties
for which there are gaps in the sparse recovery literature: 1)
the presence of high-degree nodes in a graph (corresponding
to dense columns in its Laplacian) and 2) symmetry.

Consider a vectorization of system (1) using tensor product
notation, with a := vec(A) and y(G) := vec(Y(G)). Then
linear system (1) is equivalent to a = (I ⊗ B)y(G) where
vec(·) produces a column vector by stacking the columns of
the input matrix and I⊗B is the Kronecker product of an iden-
tity matrix I ∈ Rn×n and B. With the sensing matrix being
a Kronecker product of two matrices, traditional compressed
sensing analysis works for the case when y contains only
µ = Θ(1) non-zeros [47]. For instance, the authors of [48]
showed that the restricted isometry constant (see Section III-B
for the definition), δµ(I⊗B) is bounded from above by δµ(B),
the restricted isometry constant of B. However, if a column
(or row) of Y(G) is dense, classical restricted isometry-based
approach cannot be applied straightforwardly.

Another way of viewing it is that vectorizing A and Y(G)
and constructing a sensing matrix I ⊗ B is equivalent to
recovering each of the column (or row) of Y(G) separately
from Aj = BYj(G) for j = 1, . . . , n where Aj’s and Yj(G)’s
are columns of A and Y(G). For a general “sparse” graph
G, such as a star graph, some of the columns (or rows) of
the graph matrix Y(G) may be dense vectors consisting of

2With respect to sparsity, we consider not only graphs with bounded
degrees, but a broader class of graphs which may contain high-degree nodes.
Definition III.1 gives a comprehensive characterization of sparsity.
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many non-zeros. The results in [48], [47] give no guarantee for
the recovery of the dense columns of Y(G) (correspondingly,
the high-degree nodes in G), and thus they cannot be applied
directly to the analysis of sample complexity. This statement is
further validated in our experimental results shown in Figure 4
and Figure 5.

The authors of [17] considered the recovery of an unknown
sparse matrix M ∈ Rn×n (not necessarily symmetric) from
an m×m matrix A = BMC

T
where B ∈ Rm×n and C ∈

Rm×n with m� n. By adding a symmetry constraint to their
recovery formulation, we obtain the following modified basis
pursuit as a convex optimization:

minimize ||Y(G)||1 (2)
subject to BY(G) = A, (3)

Y(G) ∈ Sn×n (4)

where ||Y(G)||1 = ||vec(Y(G))||1 is the entry-wise `1-norm
of Y(G) and Sn×n denotes the set of all symmetric matrices in
Rn×n. However, the approach in [17] does not carry through
to our setting for two reasons. First, the analysis of such an
optimization often requires stronger assumptions, e.g., the non-
zeros are not concentrated in any single column (or row) of
Y(G), as in [17]. Second, having the symmetry property of
Y as a constraint does not explicitly make use of the fact that
many columns in Y are indeed sparse and can be recovered
correctly. As a consequence, basis pursuit may produce poor
results in certain scenarios where our approach performs well,
as demonstration in our experimental results on star graphs in
Section VI-B4.

Although the columns of Y(G) are correlated because of the
symmetry, in general there are no constraints on the support
sets of the columns. Thus distributed compressed sensing
schemes (for instance, [49] requires the columns to share the
same support set) are not directly applicable in this situation.

The previous studies and aforementioned issues together
motivate us to propose a novel three-stage recovery scheme for
the derivation of a sufficient recovery condition, which leads
to a practical algorithm that is sample and computationally
efficient as well as robust to noise.

C. Our Contributions

We demonstrate that the linear system in (1) can be
used to learn the topology and parameters of a graph. Our
framework can be applied to perform system identification
in electrical grids by leveraging synchronous nodal current
and voltage measurements obtained from phasor measurement
units (PMUs).

Compared to existing methods and analysis, the main results
of this paper are three-fold:

1) Fundamental Trade-offs: In Theorem III.1, we derive
a general lower bound on the probability of error for
topology identification (defined in (7)). In Section III-C,
we describe a simple three-stage recovery scheme com-
bining `1-norm minimization with an additional step
called consistency-checking, rendering which allows us
to bound the number of measurements for exact recovery
from above as in Theorem III.2.

2) (Worst-case) Sample Complexity: We provide sample
complexity results for recovering a random graph that
may contain high-degree nodes. The unknown distribu-
tion that the graph is sampled from is characterized
based on the definition of “(µ,K, ρ)-sparsity” (see Defi-
nition III.1). Under the assumption that the matrix B has
Gaussian IID entries, in Section IV, we provide upper
and lower bounds on the worst-case sample complexity
in Theorem IV.1. We show two applications of The-
orem IV.1 for the uniform sampling of trees and the
Erdős-Rényi (n, p) model in Corollary IV.1 and IV.2,
respectively.

3) (Heuristic) Algorithm: Motivated by the three-stage re-
covery scheme, a heuristic algorithm with polynomial (in
n) running-time is reported in Section V, together with
simulation results for power system test cases validating
its performance in Section VI.

Some comments about the above results are as follows:

D. Outline of the Paper

The remaining content is organized as follows. In Section II,
we specify our models. In Section III-A, we present the
converse result as fundamental limits for recovery. The achiev-
ability is provided in III-C. We present our main result as the
worst-case sample complexity for Gaussian IID measurements
in Section IV. A heuristic algorithm together with simulation
results are reported in Section V and VI.

II. MODEL AND DEFINITIONS

A. Notation

Let F denote a field that can either be the set of real numbers
R, or the set of complex numbers C. The set of all symmetric
n×n matrices whose entries are in F is denoted by Sn×n. The
imaginary unit is denoted by j. Throughout the work, let log (·)
denote the binary logarithm with base 2 and let ln (·) denote
the natural logarithm with base e. We use E [·] to denote the
expectation of random variables. The mutual information is
denoted by I(·). The entropy function (either differential or
discrete) is denoted by H(·) and in particular, we reserve
h(·) for the binary entropy function. To distinguish random
variables and their realizations, we follow the convention and
denote the former by capital letters (e.g., A) and the latter by
lower case letters (e.g., a). The symbol C is used to designate
a constant.

Matrices are denoted in boldface (e.g., A, B and Y). The
i-th row, the j-th column and the (i, j)-th entry of a matrix A
are denoted by A(i), Aj and Ai,j respectively. For notational
convenience, let S be a subset of V . Denote by S := V\S
the complement of S and by AS a sub-matrix consisting of
|S| columns of the matrix A whose indices are chosen from
S. The notation > denotes the transpose of a matrix, det (·)
calculates its determinant. For the sake of notational simplicity,
we use big O notation (o,ω,O,Ω,Θ) to quantify asymptotic
behavior.
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B. Graphical Model

Denote by V = {1, . . . , n} a set of n nodes and consider
an undirected graph G = (V, E) (with no self-loops) whose
edge set E ⊆ V×V contains the desired topology information.
The degree of each node j is denoted by dj . The connectivity
between the nodes is unknown and our goal is to determine it
by learning the associated graph matrix using linear measure-
ments.

Definition II.1 (Graph matrix). Provided with an underlying
graph G = (V, E), a symmetric matrix Y(G) ∈ Sn×n is called
a graph matrix if the following conditions hold:

Yi,j(G) =


6= 0 if i 6= j and (i, j) ∈ E
0 if i 6= j and (i, j) /∈ E
arbitrary otherwise

.

Remark 3. Our theorems can be generalized to recover a
broader class of symmetric matrices, as long as the matrix to
be recovered satisfies (1) Knowing Y(G) ∈ Fn×n gives the
full knowledge of the topology of G; (2) The number of non-
zero entries in a column of Y(G) has the same order as the
degree of the corresponding node, i.e., |supp(Yj)| = O(dj).
for all j ∈ V . To have a clear presentation, we consider
specifically the case |supp(Yj)| = dj .

In this work, we employ a probabilistic model and assume
that the graph G is chosen randomly from a candidacy set
C(n) (with n nodes), according to some distribution Gn. Both
the candidacy set C(n) and distribution Gn are not known to
the estimator. For simplicity, we often omit the subscripts of
C(n) and Gn.

Example II.1. We exemplify some possible choices of the
candidacy set and distribution:
(a) (Mesh Network) When G represents a transmission

(mesh) power network and no prior information is avail-
able, the corresponding candidacy set G(n) consisting of
all graphs with n nodes and G is selected uniformly at
random from G(n). Moreover, |G(n)| = 2(n

2) in this case.
(b) (Radial Network) When G represents a distribution (ra-

dial) power network and no other prior information is
available, then the corresponding candidacy set T(n) is
a set containing all spanning trees of the complete graph
with n buses (nodes) and G is selected uniformly at
random from T(n); the cardinality is |T(n)| = nn−2 by
Cayley’s formula.

(c) (Radial Network with Prior Information) When G =
(V, E) represents a distribution (radial) power network,
and we further know that some of the buses can-
not be connected (which may be inferred from loca-
tional/geographical information), then the corresponding
candidacy set TH(n) is a set of spanning trees of a sub-
graph H = (V, EH) with n buses. An edge e /∈ EH if
and only if we know e /∈ E . The size of TH(n) is given
by Kirchhoff’s matrix tree theorem (c.f. [50]).

(d) (Erdős-Rényi (n, p) model) In a more general setting,
G can be a random graph chosen from an ensemble of
graphs according to a certain distribution. When a graph

G is sampled according to the Erdős-Rényi (n, p) model,
each edge of G is connected IID with probability p. We
denote the corresponding graph distribution for this case
by GER(n, p).

The next section is devoted to describing available measure-
ments.

C. Linear System of Measurements

Suppose the measurements are sampled discretely and in-
dexed by the elements of the set {1, . . . ,m}. As a general
framework, the measurements are collected in two matrices
A and B and defined as follows.

Definition II.2 (Generator and measurement matrices). Let m
be an integer with 1 ≤ m ≤ n. The generator matrix B is
an m × n random matrix and the measurement matrix A is
an m× n matrix with entries selected from F that satisfy the
linear system (1):

A = BY(G) + Z

where Y(G) ∈ Sn×n is a graph matrix to be recovered, with
an underlying graph G and Z ∈ Fm×n denotes the random
additive noise. We call the recovery noiseless if Z = 0. Our
goal is to resolve the matrix Y(G) based on given matrices
A and B.

In the remaining contexts, we sometime simplify the matrix
Y(G) as Y if there is no confusion.

D. Applications to Electrical Grids

Various applications fall into the framework in (1). Here we
present two examples of the graph identification problem in
power systems. The measurements are modeled as time series
data obtained via nodal sensors at each node, e.g., PMUs,
smart switches, or smart meters.

1) Example 1: Nodal Current and Voltage Measurements:
We assume data is obtained from a short time interval over
which the unknown parameters in the network are time-
invariant. Y ∈ Cn×n denotes the nodal admittance matrix
of the network and is defined

Yi,j :=

{
−yi,j if i 6= j

yi +
∑
k 6=i yi,k if i = j

(5)

where yi,j ∈ C is the admittance of line (i, j) ∈ E and yi
is the self-admittance of bus i. Note that if two buses are not
connected then Yi,j = 0.

The corresponding generator and measurement matrices
are formed by simultaneously measuring both current (or
equivalently, power injection) and voltage at each node and
at each time step. For each t = 1, . . . ,m, the nodal current
injection is collected in an n-dimensional random vector
It = (It,1, . . . , It,n). Concatenating the It into a matrix we
get I := [I1, I2, . . . , Im]> ∈ Cm×n. The generator matrix
V := [V1, V2, . . . , Vm]> ∈ Cm×n is constructed analogously.
Each pair of measurement vectors (It, Vt) from I and V must
satisfy Kirchhoff’s and Ohm’s laws,

It = YVt, t = 1, . . . ,m. (6)
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In matrix notation (6) is equivalent to I = VY, which is a
noiseless version of the linear system defined in (1).

Compared with only obtaining one of the current, power
injection or voltage measurements (for example, as in [36], [3],
[37]), collecting simultaneous current-voltage pairs doubles
the amount of data to be acquired and stored. There are
benefits however. First, exploiting the physical law relating
voltage and current not only enables us to identify the topology
of a power network but also recover the parameters of the
admittance matrix. Furthermore, dual-type measurements sig-
nificantly reduce the sample complexity for learning the graph,
compared with the results for single-type measurements.

2) Example 2: Nodal Power Injection and Phase Angles:
Similar to the previous example, at each time t = 1, . . . ,m,
denote by Pt,j and θt,j the active nodal power injection and
the phase of voltage at node j respectively. The matrices
P ∈ Rm×n and θθθ ∈ Rm×n are constructed in a similar
way by concatenating the vectors Pt = (Pt,1, . . . , Pt,n) and
θt = (θt,1, . . . , θt,n). The matrix representation of the DC
power flow model can be expressed as a linear system P =
θθθCSC>, which belongs to the general class represented in
(1). Here, the diagonal matrix S ∈ R|E|×|E| is the susceptence
matrix whose e-th diagonal entry represents the susceptence
on the e-th edge in E and C ∈ {−1, 0, 1}n×|E| is the node-to-
link incidence matrix of the graph. The vertex-edge incidence
matrix3 C ∈ {−1, 0, 1}n×|E| is defined as

Cj,e :=


1, if bus j is the source of e
−1, if bus j is the target of e
0, otherwise

.

Note that CSC> specifies both the network topology and the
susceptences of power lines.

E. Probability of Error as the Recovery Metric

We define the error criteria considered in this paper. We
refer to finding the edge set E of G via matrices A and
B as the topology identification problem and recovering the
graph matrix Y via matrices A and B as the parameter
reconstruction problem.

Definition II.3. Let f be a function or algorithm that returns
an estimated graph matrix X = f(A,B) given inputs A and
B. The probability of error for topology identification εT is
defined to be the probability that the estimated edge set is not
equal to the correct edge set:

εT := P
(
∃ i 6= j

∣∣ sign(Xi,j) 6= sign (Yi,j(G))
)

(7)

where the probability is taken over the randomness in G,B
and Z. The probability of error for parameter reconstruction
εP(η) is defined to be the probability that the Frobenius norm
of the difference between the estimate X and the original graph
matrix Y(G) is larger than η > 0:

εP(η) := sup
Y∈Y(G)

P (||X−Y(G)||F > η) (8)

3Although the underlying network is a directed graph, when considering
the fundamental limit for topology identification, we still refer to the recovery
of an undirected graph G.

where || · ||F denotes the Frobenius norm, η > 0 and Y(G)
is the set of all graph matrices Y (G) that satisfy Definition
II.1 for the underlying graph G, and the probability is taken
over the randomness in G, B and Z. Note that for noiseless
parameter reconstruction, i.e., Z = 0, we always consider
exact recovery and set η = 0 and abbreviate the probability
of error as εP.

III. FUNDAMENTAL TRADE-OFFS

We discuss fundamental trade-offs of the parameter re-
construction problem defined in Section II-B and II-C. The
converse result is summarized in Theorem III.1 as an in-
equality involving the probability of error, the distributions
of the underlying graph, generator matrix and noise. Next, in
Section III-C, we focus on a particular three-stage scheme,
and show in Theorem III.2 that under certain conditions, the
probability of error is asymptotically zero (in n).

A. Necessary Conditions

The following theorem states the fundamental limit.

Theorem III.1 (Converse). The probability of error for topol-
ogy identification εT is bounded from below as

εT ≥ 1− H (A)−H (Z) + ln 2

H (Gn)
(9)

where H (A), H (Z) are differential entropy (in base e)
functions of the random variables A, Z respectively and
H (Gn) is the entropy (in base e) of the probability distribution
Gn.

Remark 4. It can be inferred from the theorem that εT =
1 − O(mn/H (Gn)), given that the generator matrix B has
Gaussian IID entries and the noise Z is additive white Gaus-
sian (see Lemma 3). Therefore, the structure of the graphs
reflected in the corresponding entropy of the graph distribution
determines the number of samples needed. Consider the four
cases listed in Example II.1. The number of samples must be at
least linear in n (size of the graph) to ensure a small probability
of error, given that the graph, as a mesh network, is chosen
uniformly at random from C(n) (see Example II.1 (a)) since
H(UG(n)) =

(
n
2

)
. On the other hand, as corollaries, under the

assumptions of Gaussian IID measurements, m = Ω(log n) is
necessary for making the probability of error less or equal to
1/2, if the graph is chosen uniformly at random from T(n);
m = Ω(nh(p)) is necessary if the graph is sampled according
to GER(n, p), as in Examples II.1 (b) and (c), respectively.
The theorem can be generalized to complex measurements by
adding additional multiplicative constants.

Note that εP ≥ εT for any fixed noiseless parameter
reconstruction algorithm, the necessary conditions work for
both topology and (noiseless) parameter reconstruction. The
proof is postponed to Appendix A and the key steps are first
applying the generalized Fano’s inequality (see [22], [26])
and then bounding the mutual information I (G;A|B) from
above by H(A) − H(Z). The general converse stated in
Theorem III.1 is used in asserting the results on worst-case
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sample complexity in Theorem IV.1. Next, we analyze the suf-
ficient condition for recovering a graph matrix Y(G). Before
proceeding to the results, we introduce a novel characterization
of the distribution Gn, from which a graph G is sampled. In
particular, the graph G is allowed to have high-degree nodes.

B. Characterization of Graph Distributions

Let dj(G) denote the degree of node j ∈ V in G. Denote
by VLarge (µ) := {j ∈ V

∣∣ dj(G) > µ} the set of nodes
having degrees greater than the threshold parameter 0 ≤ µ ≤
n − 2 and VSmall (µ) := V\VLarge (µ) the set of nodes for
all µ-sparse column vectors of Y. With a counting parameter
0 ≤ K ≤ n, we define a set of graphs wherein each graph
consists of no more than K nodes with degree larger than µ,
denoted by C(n, µ,K) := {G ∈ C(n) | |VLarge (µ)| ≤ K}.
The following definition characterizes graph distributions.

Definition III.1 ((µ,K, ρ)-sparse distribution). A graph dis-
tribution Gn is said to be (µ,K, ρ)-sparse if assuming that
G is distributed according to Gn, then the probability that G
belongs to C(n, µ,K) is larger than 1− ρ, i.e.,

PGn (G /∈ C(n, µ,K)) ≤ ρ. (10)

1) Uniform Sampling of Trees:
Based on the definition above, for particular graph distri-

butions, we can find the associated parameters. We exemplify
by considering two graph distributions introduced in Exam-
ple II.1. Denote by UT(n) the uniform distribution on the set
T(n) of all trees with n nodes.

Lemma 1. For any µ ≥ 1 and K > 0, the distribution UT(n)
is (µ,K, 1/K)-sparse.

2) Erdős-Rényi (n, p) model:
Denote by GER(n, p) the graph distribution for the Erdős-

Rényi (n, p) model. Similarly, the lemma below classifies
GER(n, p) into a (µ,K, ρ)-sparse distribution with appropriate
parameters.

Lemma 2. For any µ(n, p) ≥ 2nh(p)/(ln 1/p) and K >
0, the distribution GER(n, p) is (µ,K, n exp(−nh(p))/K)-
sparse.

The proofs of Lemmas 1 and 2 are in Appendix D.

Remark 5. It is worth noting that the (µ,K, ρ)-sparsity is
capable of characterizing any arbitrarily chosen distribution.
The interesting part is that for some of the well-known
distributions, such as GER(n, p), this sparsity characterization
offers a method that can be used in the analysis and moreover,
it leads to an exact characterization of sample complexity
for the noiseless case. Therefore, for the particular examples
presented in Lemma 1 and Lemma 2, the selected threshold
and counting parameters for both of them are “tight” (up
to multiplicative factors), in the sense that the corresponding
sample complexity matches (up to multiplicative factors) the
lower bounds derived from Theorem III.1. This can be seen
in Corollary IV.1 and IV.2.

Data: Matrices of measurements A and B
Result: Estimated graph matrix X

Step (a): Recovering columns independently:

for j ∈ V do
Solve the following `1-minimization and obtain an optimal
X:

minimize
∣∣∣∣Xj

∣∣∣∣
1

subject to ||BXj −Aj ||2 ≤ γ,
Xj ∈ Fn.

end

Step (b): Consistency-checking:

for S ⊆ V with |S| = n−K do
for i, j ∈ S do

if |Xi,j −Xj,i| ≤ 2γ then
break;

end
Declare an error;

end
for j ∈ S do

Step (c): Resolving unknown entries:

Update XSj by solving the linear system:

BSX
S
j = Aj −BSX

S
j .

end
return X = (X1, . . . , Xn);

end

Algorithm 1: A three-stage recovery scheme. The first
stage focuses on solving each column of the matrix Y
independently using `1-minimization. In the second stage, the
recovery correctness of the first stage is further verified via
consistency-checking, which utilizes the fact that the matrix
to be recovered Y is symmetric. The parameter γ is set to
zero for the analysis of noiseless parameter reconstruction.

C. Sufficient Conditions

In this subsection, we consider the sufficient conditions
(achievability) for parameter reconstruction. The proofs rely
on constructing a three-stage recovery scheme (Algorithm 1),
which contains three steps – column-retrieving, consistency-
checking and solving unknown entries. The worst-case running
time of this scheme depends on the underlying distribution
Gn4. The scheme is presented as follows.

1) Three-stage Recovery Scheme:
Step (a): Retrieving columns. In the first stage, using `1-

norm minimization, we recover each column of Y based on

4Although for certain distributions, the computational complexity is not
polynomial in n, the scheme still provides insights on the fundamental trade-
offs between the number of samples and the probability of error for recovering
graph matrices. Furthermore, motivated by the scheme, a polynomial-time
heuristic algorithm is provided in Section V and experimental results are
reported in Section VI.
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Fig. 1. The recovery of a graph matrix Y using the three-stage scheme in
Algorithm 1. The n−K columns of Y colored by gray are first recovered via
the `1-minimization (11a)-(11c) in step (a), after they are accepted by passing
the consistency check in step (b). Then, symmetry is used for recovering the
entries in the matrix marked by green. Leveraging the linear measurements
again, in step (c), the remaining K2 entries in the white symmetric sub-matrix
are solved using Equation (12).

(1):

minimize
∣∣∣∣Xj

∣∣∣∣
1

(11a)

subject to ||BXj −Aj ||2 ≤ γ, (11b)
Xj ∈ Fn. (11c)

Let XSj := (Xi,j)i∈S be a length-|S| column vector consisting
of |S| coordinates in Xj , the j-th retrieved column. We do
not restrict the methods for solving the `1-norm minimization
in (11a)-(11c), as long as there is a unique solution for
sparse columns with fewer than µ non-zeros (provided enough
number of measurements and the parameter µ > 0 is defined
in Definition III.1).

Step (b): Checking consistency.
In the second stage, we check for error in the decoded

columns X1, . . . , Xn using the symmetry property (perturbed
by noise) of the graph matrix Y. Specifically, we fix a subset
S ⊆ V with a given size |S| = n − K for some integer5

0 ≤ K ≤ n. Then we check if |Xi,j − Xj,i| ≤ 2γ for all
i, j ∈ S. If not, we choose a different set S of the same size.
This procedure stops until either we find such a subset S of
columns, or we go through all possible subsets without finding
one. In the latter case, an error is declared and the recovery is
unsuccessful. It remains to recover the vectors Xj for j ∈ S.

Step (c): Resolving unknown entries. In the former case,
for each vector Xj , j ∈ S, we accept its entries Xi,j , i ∈ S,
as correct and therefore, according to the symmetry assump-
tion, we know the entries Xi,j , i ∈ S, j ∈ S (equivalently
{XSj : j ∈ S}), which are used together with the sub-matrices

5The choice of K depends on the structure of the graph to be recovered
and more specifically, K is the counting parameter in Definition III.1. In
Theorem III.2 and Corollary III.1, we analyze the sample complexity of this
three-stage recovery scheme by characterizing an arbitrary graph into the
classes specified by Definition III.1 with a fixed K.

BS and BS to compute the other entries Xi,j , i ∈ S, of Xj

using (11b):

BSX
S
j = Aj −BSX

S
j , j ∈ S. (12)

Note that to avoid being over-determined, in practice, we solve

BKSX
S
j = AKj −BKSX

S
j , j ∈ S

where BKS is a K ×K matrix whose rows are selected from
BS corresponding to K ⊆ V with |K| = K and BKS selects
the rows of BS in the same way. We combine XSj and XSj
to obtain a new estimate Xj for each j ∈ S . Together with
the columns Xj , j ∈ S, that we have accepted, they form
the estimated graph matrix X. We illustrate the three-stage
scheme in Figure 1. In the sequel, we analyze the sample
complexity of the three-stage scheme based on the (µ,K, ρ)-
sparse distributions defined in Definition III.1.

2) Analysis of the Scheme:
Let F ≡ R for the simplicity of representation and analysis.

We now present another of our main theorems. Consider the
models defined in Section II-B and II-C. The Γ-probability of
error is defined to be the maximal probability that the `2-norm
of the difference between the estimated vector X ∈ Rn and
the original vector Y ∈ Rn (satisfying A = BY +Z and both
A and B are known to the estimator) is larger than Γ > 0:

εP(Γ) := sup
Y ∈Y(µ)

P (||X − Y ||2 > Γ)

where Y(µ) is the set of all µ-sparse vectors in Rn and
the probability is taken over the randomness in the generator
matrix B and the additive noise Z. Given a generator matrix
B, the corresponding restricted isometry constant denoted by
δµ is the smallest positive number with

(1− δµ) ||x||22 ≤ ||BSx||
2
2 ≤ (1 + δµ) ||x||22 (13)

for all subsets S ⊆ V of size |S| ≤ µ and all x ∈ R|S|. Below
we state a sufficient condition6 derived form the three-stage
scheme for parameter reconstruction.

Theorem III.2 (Achievability). Suppose the generator matrix
satisfies that BKS ∈ R

K×K is invertible for all S ⊆ V and
K ⊆ V with |S| = |K| = K. Let the distribution Gn be
(µ,K, ρ)-sparse. If the three-stage scheme in Algorithm 1 is
used for recovering a graph matrix Y(Gn) of Gn that is
sampled according to Gn, then the probability of error satisfies
εP(η) ≤ ρ+ (n−K)εP(Γ) with η greater or equal to

2

(
nΓ +

Γ||B||2 + γ

1− δ2K

)(
2(n−K) +Kξ(B)

)
where δ2K is the corresponding restricted isometry constant
of B with µ = 2K defined in (13) and

ξ(B) := max
S,K⊆V,|S|=|K|=K

∣∣∣∣BS ∣∣∣∣2∣∣∣∣ (BKS )−1 ∣∣∣∣2.
The proof is in Appendix B. The theory of classical

compressed sensing (see [40], [41], [51]) implies that for

6Note that γ cannot be chosen arbitrarily and Γ depends on γ; otherwise
the probability of error εP(Γ) will blow up. Theorem IV.2 indicates that for
Gaussian ensembles setting Γ = O(γ) = O(

√
nσN) is a valid choice where

σN is the standard deviation of each independent Zi,j in Z.
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noiseless parameter reconstruction, if the generator matrix
B has restricted isometry constants δ2µ and δ3µ satisfying
δ2µ + δ3µ < 1, then all columns Yj with j ∈ VSmall are cor-
rectly recovered using the minimization in (11a)-(11c). Denote
by spark(B) the smallest number of columns in the matrix
B that are linearly dependent (see [52] for the requirements
on the spark of the generator matrix to guarantee desired
recovery criteria). The following corollary is an improvement
of Theorem III.2 for the noiseless case. The proof is postponed
to Appendix C.

Corollary III.1. Let Z = 0 and suppose the generator matrix
B has restricted isometry constants δ2µ and δ3µ satisfying
δ2µ + δ3µ < 1 and furthermore, spark(B) > 2K. If the
distribution Gn is (µ,K, ρ)-sparse, then the probability of
error for the three-stage scheme to recover the parameters
of a graph matrix Y(Gn) of Gn that is sampled according to
Gn satisfies εP ≤ ρ.

IV. GAUSSIAN IID MEASUREMENTS

In this section, we consider a special regime when the mea-
surements in the matrix B are Gaussian IID random variables.
Utilizing the converse in Theorem III.1 and the achievability
in Theorem III.2, the Gaussian IID assumption allows the
derivation of explicit expressions of sample complexity as
upper and lower bounds on the number of measurements m.
Combining with the results in Lemma 1 and 2, we are able to
show that for the corresponding lower and upper bounds match
each other for graphs distributions UT(n) and GER(n, p) (with
certain conditions on p and n).

For the convenience of presentation, in the remainder of
the paper, we restrict that the measurements are chosen
from R, although the theorems can be generalized to the
complex measurements. In realistic scenarios, for instance, a
power network, besides the measurements collected from the
nodes, nominal state values, e.g., operating current and voltage
measurements are known to the system designer a priori.
Representing the nominal values at the nodes by A ∈ Rn
and B ∈ Rn respectively, the measurements in A and B are
centered around m× n matrices A and B defined as

A :=


· · · A · · ·
· · · A · · ·

...
· · · A · · ·

 , B :=


· · · B · · ·
· · · B · · ·

...
· · · B · · ·

 .
The rows in A and B are the same, because the graph
parameters are time-invariant, so are the nominal values.
Without system fluctuations and noise, the nominal values
satisfy the linear system in (1), i.e.,

A = BY. (14)

Knowing A and B is not sufficient to infer the network
parameters (the entries in the graph matrix Y), since the rank
of the matrix B is one. However, measurement fluctuations can
be used to facilitate the recovery of Y. The deviations from the
nominal values are denoted by additive perturbation matrices
Ã and B̃ such that A = A+Ã. Similarly, B = B+B̃ where

B̃ is an m × n matrix consisting of additive perturbations.
Therefore, considering the original linear system in (1), the
equations above imply that A+Ã = BY+Z = BY+B̃Y+Z
leading to Ã = B̃Y+Z where we have made use of (14) and
extracted the perturbation matrices Ã and B̃. We specifically
consider the case when the additive perturbations B̃ is a
matrix with Gaussian IID entries. Without loss of generality,
we suppose the mean of the Gaussian random variable is
zero and the standard deviation is σS. We consider additive
white Gaussian noise (AWGN) with mean zero and standard
deviation σN. For simplicity, in the remainder of this paper,
we slightly abuse the notation and replace the perturbation
matrices Ã and B̃ by A and B (we assume that B is Gaussian
IID), if the context is clear. Under the assumptions above, the
following lemma can be inferred from Theorem III.1 and the
proof is in Appendix F.

Lemma 3. Consider the linear model A = BY + Z. Sup-
pose Bi,j ∼ N (0, σ2

S) and Zi,j ∼ N (0, σ2
N) are mutually

independent Gaussian random variables for all i, j ∈ V . The
probability of error for topology identification εT is bounded
from below as

εT ≥1−
nm ln

(
1 +

σ2
S

σ2
N
Y
)

2H (Gn)
(15)

where Y := maxi,j |Yi,j | denotes the maximal absolute value
of the entries in the graph matrix Y. In particular, if Z = 0,
then for parameter reconstruction,

εP ≥1−
nm ln

(
2πeY σ2

S

)
2H (Gn)

. (16)

A. Sample Complexity for Sparse Distributions

We consider the worst-case sample complexity for recover-
ing graphs generated according to a sequence of sparse dis-
tributions, defined similarly as Definition III.1 to characterize
asymptotic behavior of graph distributions.

Definition IV.1 (Sequence of sparse distributions). A sequence
{Gn} of graph distributions is said to be (µ,K)-sparse if
assuming a sequence of graphs {Gn} is generated according
to {Gn}, the sequences {µ(n)} and {K(n)} guarantee that

lim
n→∞

PGn (Gn /∈ C(n)(µ(n),K(n))) = 0. (17)

In the remaining contexts, we write µ(n) and K(n) as
µ and K for simplicity if there is no confusion. Based on
the sequence of sparse distributions we defined above, we
show the following theorem, which provides upper and lower
bounds on the worst-case sample complexity, with Gaussian
IID measurements.

Theorem IV.1 (Noiseless worst-case sample complexity). Let
Z = 0. Suppose that the generator matrix B has Gaussian
IID entries with mean zero and variance one and assume
µ < n−3/µ(n−K) and K = o(n). For any sequence of distri-
butions that is (µ,K)-sparse, the three-stage scheme guaran-
tees that limn→∞ εP = 0 using m = O (µ log(n/µ) +K)
measurements. Conversely, there exists a (µ,K)-sparse se-
quence of distributions such that the number of measurements
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must satisfy m = Ω
(
µ log(n/µ) +K/n3/µ

)
to make the

probability of error εP less than 1/2 for all n.

The proof is postponed to Appendix G.

Remark 6. The upper bound on m that we are able to show
differs from the lower bound by a sub-linear term n3/µ. In
particular, when the term µ log(n/µ) dominates K, the lower
and upper bounds become tight up to a multiplicative factor.

B. Applications of Theorem IV.1

1) Uniform Sampling of Trees:
As one of the applications of Theorem IV.1, we characterize

the sample complexity of the uniform sampling of trees.

Corollary IV.1. Let Z = 0. Suppose that the generator
matrix B has Gaussian IID entries with mean zero and
variance one and assume Gn is distributed according to UT(n).
There exists an algorithm that guarantees limn→∞ εP = 0
using m = O (log n) measurements. Conversely, the number
of measurements must satisfy m = Ω (log n) to make the
probability of error εP less than 1/2.

Proof. The achievability follows from combining Theo-
rem IV.1 and Lemma 1, by setting K(n) = logn. Substituting
H(UT(n)) = Ω (n log n) into (16) yields the desired result for
converse.

2) Erdős-Rényi (n, p) model:
Similarly, recalling Lemma 2, the sample complexity for

recovering a random graph generated according to the Erdős-
Rényi (n, p) model is obtained.

Corollary IV.2. Let Z = 0. Assume Gn is a random graph
sampled according to GER(n, p) with 1/n ≤ p ≤ 1−1/n. Un-
der the same conditions in Corollary IV.1, there exists an algo-
rithm that guarantees limn→∞ εP = 0 using m = O (nh(p))
measurements. Conversely, the number of measurements must
satisfy m = Ω (nh(p)) to make the probability of error εP
less than 1/2.

Proof. Taking K = nh(p)/ log n and µ = 2nh(p)/(ln 1/p),
we check that µ < n−3/µ(n − K) and K = o(n). The
assumptions on h(p) guarantee that h(p) ≥ log n/n, whence
nh(p) = ω (log(n/K)). The choices of {µ(n)} and {K(n)}
make sure that the sequence of distributions is (µ(n),K(n))-
sparse. Theorem IV.1 implies that m = O(nh(p)) is sufficient
for achieving a vanishing probability of error. For the second
part of the corollary, substituting H(GER(n, p)) = h(p)

(
n
2

)
=

Ω
(
n2h(p)

)
into (16) yields the desired result.

C. Measurements corrupted by AWGN

The results on sample complexity can be extended to the
case with noisy measurements. The following theorem is
proved by combining Theorem III.2 and Lemma 3. The details
can be found in Appendix H.

Theorem IV.2 (Noisy worst-case sample complexity). Sup-
pose that B and Z are defined as in Lemma 3. Let µ <
n−3/µ(n − K) and K = o(n). Conversely, there exists a

(µ,K)-sparse sequence of distributions such that the number
of measurements must satisfy

m = Ω

(
µ log(n/µ) +K/n3/µ

log(1 + σ2
S/σ

2
N)

)
to make the probability of error εT less than 1/2 for all
n. Moreover, if σN = o(1/n5/2), σS = 1/

√
m and K ≤

µ, then for any sequence of distributions that is (µ,K)-
sparse, the three-stage scheme guarantees that limn→∞ εT =
0 using m = O (µ log(n/µ)) measurements. Moreover,
limn→∞ εP(η) = 0 with η = o(1).

Remark 7. The proof of Theorem IV.2 implies that η =
O(n5/2σN). Therefore, if we consider the normalized Frobe-
nius norm of (1/n2)||Y − X||F where X and Y are the
recovered and original graph matrices respectively, then σN =
o(1/
√
n) guarantees that the normalized Frobenius norm van-

ishes. For topology identification, we need to consider the
Frobenius norm bound, η, to rule out the worst-case situation
and the sufficient condition becomes σN = o(1/n5/2). An-
other implication is that the choice of γ in (11b) satisfying
γ = O(

√
nσN) (used in the proof) guarantees the recon-

struction criteria and its effectiveness is also validated in our
experiments in Section VI-B5.

V. HEURISTIC ALGORITHM

We present in this section an algorithm motivated by the
consistency-checking step in the proof of achievability (see
Section III-C). Instead of checking the consistency of each
subset of V consisting of n − K nodes, as the three-stage
scheme does and which requires O(nK) operations, we com-
pute an estimate Xj for each column of the graph matrix
independently and then assign a score to each column based on
its symemtric consistency with respect to the other columns
in the matrix. The lower the score, the closer the estimate
of the matrix column Xj is to the ground truth Yj . Using
a scoring function we rank the columns, select a subset of
them to be “correct”, and then eliminate this subset from
the system. The size of the subset determines the number of
iterations. Heuristically, this procedure results in a polynomial-
time algorithm to compute an estimate X of the graph matrix
Y.

The algorithm proceeds in four steps.
1) Step 1. Initialization: Let matrices A ∈ Rm×n and B ∈

Rm×n be given and set the number of columns fixed in each
iteration to be an integer s such that 1 ≤ s ≤ n. For the first
iteration, set S(0)← V , A(0)← A, and B(0)← B.

For each iteration r = 0, . . . , dn/se − 1, we perform the
remaining three stages. The system dimension is reduced by
s after each iteration.

2) Step 2. Independent `1-minimization: For all j ∈ S(r),
we solve the following `1-minimization:

Xj(r) = arg min
x∈Fn−sr

∣∣∣∣x∣∣∣∣
1

(18)

subject to ||B(r)x−Aj(r)||2 ≤ γ, (19)
x ∈ Xj(r).
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Fig. 2. Iterative dimension reduction of the heuristic algorithm. At step r,
the s columns with the smallest scores defined in (20) are assumed to be
“correct” and eliminated from the linear system. The dimension of variables
is reduced by s and this procedure is repeated until the dn/se iterations are
complete.

Constraint (18) is optional; the set Xj(r) may encode addi-
tional constraints on the form of x such as entry-wise positivity
or negativity (e.g., Section VI). The forms of reduced matrix
B(r) and reduced vector Aj(r) are specified in Step 4.

3) Step 3. Column scoring: We rank the symmetric consis-
tency of the independently solved columns. For all j ∈ S(r),
let

scorej(r) :=

n−sr∑
i=1

|Xi,j(r)−Xj,i(r)| . (20)

Note that if scorej(r) = 0 then Xj(r) and its partner
symmetric row in X(r) are identical. Otherwise there will
be some discrepancies between the entries and the sum will
be positive. The subset of the Xj(r) corresponding to the s
smallest values of scorej(r) is deemed “correct”. Call this
subset of correct indices S ′(r).

4) Step 4. System dimension reduction: Based on the as-
sumption that s of the previously computed columns Xj(r)
are correct, the dimension of the linear system is reduced by
s. We set S(r+ 1)← S(r)\S ′(r). For all i, j ∈ S ′(r), we fix

Xi,j = Xi,j(r), Xj,i = Xi,j(r). (21)

The measurement matrices are reduced to

B(r + 1)← BS(r+1),

Aj(r + 1)← Aj(r)−
∑

i∈S′(r)

BiXi,j .

When r ≤ n −m, BS(r+1) = BS(r+1), Aj(r) = Aj(r) and
Bi = Bi. When r > n − m, to avoid making the reduced
matrix B(r + 1) over-determined, we set B(r + 1) to be an
(n − r) × (n − r) sub-matrix of BS(r+1) by selecting n − r
rows of BS(r+1) uniformly at random. A new length-(n− r)
vector Aj(r) is formed by selecting the corresponding entries
from Aj(r). Once the dn/se iterations complete, an estimate

X is returned using (21). The algorithm requires at most
dn/se iterations and in each iteration, the algorithm solves
an `1-minimization and updates a linear system. Solving an
`1-minimization can be done in polynomial time (c.f. [53]).
Thus, the heuristic algorithm is a polynomial-time algorithm.

VI. APPLICATIONS IN ELECTRIC GRIDS

Experimental results for the heuristic algorithm are given
here for both synthetic data and IEEE standard power system
test cases. The algorithm was implemented in Matlab; simu-
lated power flow data was generated using Matpower 7.0 [54]
and CVX 2.1 [55] with the Gurobi solver [56] was used to
solve the sparse optimization subroutine.

A. Scalable Topologies and Error Criteria

We first demonstrate our results using synthetic data and
two typical graph ensembles – stars and chains. For both
topologies, we increment the graph size from n = 5 to n =
300 and record the number of samples required for accurate
recovery of parameters and topology. For each simulation, we
generate a complex-valued random admittance matrix Y as
the ground truth. Both the real and imaginary parts of the line
impedances of the network are selected uniformly and IID
from [−100, 100]. A valid electrical admittance matrix is then
constructed using these impedances. The real components of
the entries of B are distributed IID according to V (1, 1) and
the imaginary components according to V (0, 1). A = YB
gives the corresponding complex-valued measurement matrix.
The parameter γ in (19) is 0 since we consider noiseless
reconstruction here.

Given data matrices A,B the algorithm returns an estimate
X of the ground truth Y. We set s = dn/2e for each graph.
If an entry of X has magnitude |Xi,j | < 10−5, then we
fix it to be 0. Following this, if supp (X) = supp (Y) then
the topology identification is deemed exact. The criterion for
accurate parameter reconstruction is ||Y −X||F/n2 < 10−6.
The number of samples m (averaged over repeated trials)
required to meet both of these criteria is designated as the
sample complexity for accurate recovery. The sample com-
plexity trade-off displayed in Figure 3 shows approximately
logarithmic dependence on graph size n for both ensembles.

B. IEEE Test Cases

We also validate the heuristic algorithm on 17 IEEE stan-
dard power system test cases ranging from 5 to 200 buses.
The procedure for determining sample complexity for accurate
recovery is the same as above, but the data generation is more
involved.

1) Power flow data generation: A sequence of time-varying
loads is created by scaling the nominal load values in the test
cases by a times series of Bonneville Power Administration’s
aggregate load on 02/08/2016, 6am to 12pm [57]. For each
test case network, we perform the following steps to generate
a set of measurements:

a) Interpolate the aggregate load profile to 6-second inter-
vals, extract a length-m random consecutive subsequence,
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Fig. 3. The number of samples required to accurately recover the nodal
admittance matrix is shown on the vertical axis. Results are averaged over 20
independent simulations. Star and chain graphs are scaled in size between 5
and 300 nodes. IEEE test cases ranged from 5 to 200 buses. In the latter case,
there are no assumptions on the random IID selection of the entries of Y (in
contrast to the star/chain networks). Linear and logarithmic (in n) reference
curves are plotted as dashed lines.

and then scale the real parts of bus power injections by
the load factors in the subsequence.

b) Compute optimal power flow in Matpower for the net-
work at each time step to determine bus voltage phasors.

c) Add a small amount of Gaussian random noise (σ2 =
0.001) to the voltage measurements and generate corre-
sponding current phasor measurements using the known
admittance matrix.

2) Sample complexity for recovery of IEEE test cases:
Figure 3 shows the sample complexity for accurate recovery of
the IEEE test cases. The procedure and criteria for determining
the necessary number of samples for accurate recovery of the
admittance matrix are the same as for the synthetic data case.
Unlike the previous setting, here we have no prior assumptions
about the structure of the IEEE networks: networks have both
mesh and radial topologies. However, because power system
topologies are typically highly sparse, the heuristic algorithm
was able to achieve accurate recovery with a comparable
(logarithmic) dependence on graph size.

3) Influence of structure constraints on recovery: There
are structural properties of the nodal admittance ma-
trix for power systems—symmetry, sparsity, and entry-wise
positivity/negativity—that we exploit in the heuristic algorithm
to improve sample complexity for accurate recovery. The score
function scorej(r) rewards symmetric consistency between
columns in X; the use of `1-minimization promotes sparsity in
the recovered columns; and the constraint set Xj in (18) forces
Re(Xi,j) ≤ 0, Im(Xi,j) ≥ 0 for i 6= j and Re(Xi,j) ≥ 0
for i = j. These entry-wise properties are commonly found
in power system admittance matrices. In Figure 4 we show
the results of an experiment on the IEEE 30-bus test case
that quantify the effects of the structure constraints on the
probability of error. In Figure 5 we show that the score
function and the constraints are effective across a range of
IEEE test cases, compared with the standard compressed

Fig. 4. Probability of error for parameter reconstruction εP for the IEEE
30-bus test case is displayed on the vertical axis. Probability is taken over 50
independent trials. The horizontal axis shows the number of samples used to
compute the estimate X. The probability of error for independent recovery of
allXj via `1-norm minimization (double dashed line) and full rank non-sparse
recovery (dot dashed line) are shown for reference. Adding the symmetry
score function (second-to-left) improves over the naive column-wise scheme.
Adding entry-wise positivity/negativity constraints on the entries of X (left-
most curve) reduces sample complexity even further (≈ 1/3 samples needed
compared to full rank recovery).

sensing recovery discussed in Section I-B3. Furthermore, this
demonstrates the heuristic algorithm is robust to noise for a
broad range of real-world graph structures with respect to
Frobenius norm error.

Fig. 5. Sample complexity for accurate recovery is shown for a selection
of IEEE power system test cases ranging from 5 to 57 buses. The number
of samples for accurate recovery is obtained by satisfying the criterion
||X − Y||F/n2 < 10−4. The noise Z is an IID Gaussian matrix with
zero mean and standard deviation 0.01. The parameter γ in (19) is set to be
10−4. As a benchmark, the number of measurements required for separately
reconstructing every column of Y (standard compressed sensing) is also given.

4) Comparison with basis pursuit on star graphs: In Fig-
ure 6, we consider star graphs and compare our heuristic
algorithm with the modified basis pursuit subroutine in (2)-(4)
with noiseless measurements. For a star graph with n = 24
nodes, the iterative recovery scheme with s = 12 outperforms
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Fig. 6. A comparison between our iterative heuristic and basis pursuit. The
Frobenius norm error plotted is averaged over 250 independent trials. The
underlying graph is a star graph with n = 24. The solid and dotted gray
curves are results for basis pursuit with and without a constraint emphasizing
symmetry, respectively.

the basis pursuit, with or without a symmetry constraint. The
solid and dotted gray curves show the normalized Frobenius
error for cases where Y(G) is constrained to be symmetric
and where it is not, respectively. Our experiments show that
convex optimization-based approach breaks down if there are
highly dense columns in Y. The star graph contains a high-
degree node (degree n−1), hindering the standard compressed
sensing (basis pursuit without the symmetry constraint) from
recovering the whole matrix until the number of measure-
ments reaches n. Surprisingly, adding the symmetry constraint
suggests basis pursuit performs less well than basis pursuit
without the symmetry condition. This is evidence to support
the assumption made in [17]. There, the non-zeros in the
matrix to be recovered should not be concentrated in any single
column (or row) of Y(G).

5) Effects of noise and selection of γ: In this section, we
consider noisy measurements and fix the additive noise Z be
IID Gaussian with mean zero and variance σ2

N ∈ [10−9, 10−2].
We set γ =

√
nσN in (19), as indicated in Remark 7. Due to

the presence of noise, there is error in the recovered matrix
X. However, the mean absolute percentage error is small.

APPENDIX

A. Proof of Theorem III.1

Proof. The graph G is chosen from a discrete set C(n) accord-
ing to some probability distribution Gn. Fano’s inequality [22]
plays an important role in deriving fundamental limits. We es-
pecially focus on its extended version. Similar generalizations
appear in many places, e.g., [26], [20] and [58]. We repeat the
lemma here for the sake of completion:

Lemma 4 (Generalized Fano’s inequality). Let G be a random
graph and let A and B be matrices defined in Section II-B
and II-C. Suppose the original graph G is selected from

Fig. 7. The impact of measurement noise on sample complexity for recovery
of the IEEE 24-bus RTS test case is demonstrated. Trajectories correspond to
increasing noise levels from dark (least) to light (most). From left to right, we
observe—as expected—that for each variance value, the normalized Frobenius
error of the recovered matrix decreases as the number of samples used for
recovery increases. From bottom to top, we observe that the error increases
(for every value of m) as variance of the additive noise Z increases.

a nonempty candidacy set C(n) according to a probability
distribution Gn. Let Ĝ denote the estimated graph. Then the
conditional probability of error for estimating G from A given
B is always bounded from below as

P

(
Ĝ 6= G

∣∣B) ≥ 1−
I
(
G;A

∣∣B)+ ln 2

H (Gn)
(22)

where the randomness is over the selections of the original
graph G and the estimated graph Ĝ.

In (22), the term I
(
G;B

∣∣A) denotes the conditional mutual
information (base e) between G and B conditioned on A.
Furthermore, the conditional mutual information I (G;A|B)
is bounded from above by the differential entropies of A and
B. It follows that

I (G;A|B) = H (A|B)−H (A|G,B) (23)
≤ H (A|B)−H (A|Y,B) (24)
= H (A|B)−H (Z) (25)
≤ H (A)−H (Z) . (26)

Here, Eq. (23) follows from the definitions of mutual infor-
mation and differential entropy. Moreover, knowing Y, the
graph G can be inferred. Thus, H (A|G,B) ≥ H (A|Y,B)
yields (24). Recalling the linear system in (1), we obtain (25).
Furthermore, (26) holds since H (A) ≥ H (A|B).

Plugging (26) into (22),

εT =EB

[
P

(
Ĝ 6= G

∣∣B)]
≥1− H (A)−H (Z) + ln 2

H (Gn)
,

which yields the desired (9).

B. Proof of Theorem III.2

Conditioning on that no less than n − K many columns
are recovered with respect to the Γ-probability of error, i,e.,
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for each entry, the absolute value of the difference between
the recovered one and the original one is bounded from
above by γ, the union bound ensures the desired bound on
the probability of error for noisy parameter reconstruction.
It remains to show that the consistency-check in our scheme
gives the expression for η. First, if no less than n−K many
columns are recovered, there must be a subset S ⊆ V passing
through the consistency-check. Let us consider the vectors that
are not µ-sparse. For any such vector Y ∗ ∈ Rn, denote by
e = Y ∗ − Y ′ the difference of Y ∗ and the original vector
Y ′. It follows that e can be decomposed as a summation of a
2K-sparse vector e ∈ Rn and a vector f ∈ Rn that satisfies
|fi| ≤ 2Γ for all i ∈ V . Therefore, the definition of restricted
isometry constant ensures the following:

||e||2 ≤||e||2 + ||f ||2

≤ 1

1− δ2K
||Be||2 + 2nΓ

≤ 1

1− δ2K
||Be||2 +

(
2n+

2||B||2
1− δ2K

)
Γ

which can be further bounded by noting that

||Be||2 =||(BY ∗ −A)− (BY ′ −A)||2 ≤ 2γ

since both Y ′ and Y ∗ satisfy (11b) where A is a column of
A. Thus, the consistency-check guarantees that for each j in
the set S ⊆ V that passes the check,

||Xj − Yj ||2 ≤ 2

(
n+

||B||2
1− δ2K

)
Γ +

2γ

1− δ2K
.

Consider the reduced linear system in (12). For each j in the
set S ⊆ V ,

||XSj − Y Sj ||2 ≤
∣∣∣∣∣∣(BKS )−1∣∣∣∣∣∣2 ∣∣∣∣BS(XSj − Y Sj )

∣∣∣∣
2

≤
∣∣∣∣∣∣(BKS )−1∣∣∣∣∣∣2 ||BS ||2 ∣∣∣∣XSj − Y Sj ∣∣∣∣2 .

Summing up the bounds on the `2 norms for each column
and considering the worst case of the invertible matrix BKS ,
the bound η on the Frobenius norm follows by arranging the
terms.

C. Proof of Corollary III.1

Proof. Conditioned on G ∈ C(n)(µ,K) and the assumption
δ3µ + 3δ4µ < 2, there are no less than n−K many columns
correctly recovered. Therefore, any such set S with |S| =
n − K must contain at least n − 2K many corresponding
indexes of the correctly recovered columns. The consistency-
checking verifies that if the collection of an arbitrary set of
nodes S of cardinality n−K satisfies the symmetry property as
the true graph Y must obey. If the consistency-checking fails,
it is necessary that there exist two distinct length-n vectors
Y ′ and Y ∗ in Fn such that Y ∗ is the minimizer of the `1-
minimization (11a)-(11c) that differs from the correct answer
Y ′, i.e., Y ′ 6= Y ∗ where A = BY ′ and

Y ∗ = arg min
Y

||Y ||1

subject to A = BY

Y ∈ Fn

for some A ∈ Fm and furthermore, the vectors Y ′ and Y ∗

can have at most 2K distinct coordinates,

|supp (Y ′ − Y ∗)| ≤ 2K.

However, the constraints BY ′ = A and BY ∗ = A imply
that B (Y ′ − Y ∗) = 0, contradicting to spark(B) > 2K.
Therefore, n − K many columns can be successfully recov-
ered if the decoded solution passes the consistency-checking.
Moreover, since spark(B) > 2K and number of unknown
coordinates in each length-K vector XSj (for j = 1, . . . , |S|)
to be recovered is K, the solution of the system (12) is guar-
anteed to be unique. Thus, Algorithm 1 always recovers the
correct columns Y1, . . . , YN conditioned on spark(B) > 2K.
It follows that εP ≤ 1 − PG(G ∈ C(n, µ,K)) provided
spark(B) > 2K. In agreement with the assumption that
the distribution G is (µ,K, ρ)-sparse, (10) must be satisfied.
Therefore, the probability of error must be less than ρ.

D. Proof of Lemma 1

Proof. Consider the following function

F (E) =
n∑
j=1

f(dj(G))

where dj(G) denotes the degree of the j-th node and consider
the following indicator function:

f(dj(G)) :=

{
1 if dj(G) > µ

0 otherwise
.

Applying the Markov’s inequality,

P (G /∈ T(n)(µ,K)) = PUT(n)
(F (E) ≥ K)

≤
EUT(n)

[F (E)]

K
. (27)

Continuing from (27), the expectation EUT(n)
[F (E)] can be

further expressed and bounded as

EUT(n)
[F (E)] =

n∑
j=1

EUT(n)
[f(dj(G))]

=
n∑
j=1

PUT(n)
(dj(G) > µ) . (28)

Since G is chosen uniformly at random from T(n), it is
equivalent to selecting its corresponding Prüfer sequence (by
choosing n−2 integers independently and uniformly from the
set V , c.f. [59]) and the number of appearances of each j ∈ V
equals to dj(G)− 1. Therefore, for any fixed node j ∈ V , the
Chernoff bound implies that

PUT(n)
(dj(G) > µ) ≤ exp

(
−(n− 2)DKL

(
µ

n− 2

∣∣∣∣ 1
n

))
(29)

where DKL(·||·) is the Kullback-Leibler divergence and

DKL

(
µ

n− 2

∣∣∣∣ 1
n

)
≥ µ

n− 2
lnn. (30)
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Therefore, substituting (30) back into (29) and combining
(27) and (28), setting µ ≥ 1 leads to

P (G /∈ T(n)(µ,K)) ≤ n exp(−µ lnn)

K
≤ 1

K
.

E. Proof of Lemma 2

Proof. For any fixed node j ∈ V , applying the Chernoff
bound,

PGER(n,p) (dj(G) > µ) ≤ exp
(
−nDKL

(µ
n

∣∣∣∣p)) .
Continuing from (27), the expectation EGER(n,p [F (E)] can

be further expressed and bounded as

EGER(n,p) [F (E)] ≤ n · exp
(
−nDKL

(µ
n

∣∣∣∣p)) (31)

where the probability p satisfies 0 < p ≤ µ/n < 1. Note that

DKL

(µ
n

∣∣∣∣p) =
µ

n
ln

1

p
+
(

1− µ

n

)
ln

1

1− p
− h(p) (32)

where the binary entropy h(p) is in base e. Taking µ ≥
2nh(p)/(ln 1/p) ≥ 2np, substituting (32) into (31) leads to

EGER(n,p) [F (E)] ≤ n exp (−nh(p)) .

Therefore, (27) gives

P (G /∈ C(n)(µ,K)) ≤ n exp (−nh(p))

K
.

F. Proof of Lemma 3

Proof. Continuing from Theorem III.1,

H(A)−H(Z)

=
m∑
i=1

[
H

(
A(i)

)
−H

(
Z(i)

)]
(a)

≤
m∑
i=1

n

2

[
ln

(
2πe

Tr (ΣA(i))

n

)
− ln(2πeσ2

N)

]
(33)

where Tr (ΣA(i)) is the trace of the covariance matrix of A(i)

and we have used the fact that normal distributions maximize
entropy and the inequality det(ΣA(i)) ≤ (Tr (ΣA(i)) /n)n to
obtain (a). Note that because of the assumption of indepen-
dence, the trace is bounded from above by nσ2

SY +nσ2
N where

Y := maxi,j |Yi,j |. Substituting this into (33) completes the
proof. The special case when Z = 0 follows similarly.

G. Proof of Theorem IV.1

Proof. The first part is based on Corollary III.1. Under the
assumption of the generator matrix B, using Gordon’s escape-
through-the-mesh theorem, Theorem 4.3 in [41] implies that
for any columns Yj with j ∈ VSmall are correctly recovered
using the minimization in (11a)-(11c) with probability at
least 1− 2.5 exp (−(4/9)µ log(n/µ)), as long as the number
of measurements satisfies m ≥ 48µ (3 + 2 log(n/µ)), and
n/µ > 2, µ ≥ 4 (if µ ≤ 3, the multiplicative constant

increases but our theorem still holds). Similar results were
first proved by Candes, et al. in [40] (see their Theorem 1.3).
Therefore, applying the union bound, the probability that all
the µ-sparse columns can be recovered simultaneously is at
least 1 − 2.5n exp (−(4/9)µ log(n/µ)). On the other hand,
conditioned on that all the µ-sparse columns are recovered,
Corollary III.1 indicates that spark(B) > 2K is sufficient for
the three-stage scheme to succeed. Since each entry in B is
an IID Gaussian random variable with zero mean and variance
one, if m ≥ 48µ (3 + 2 log(n/µ)) + 2K, with probability one
that the spark of B is greater than 2K, verifying the statement.

The converse follows by applying Lemma 3 with Z = 0.
Consider the uniform distribution UC(n)(µ,K) on C(n)(µ,K).
Then H

(
UC(n)(µ,K)

)
= ln |C(n)(µ,K)|. Let 0 ≤ α, β ≤ 1

be parameters such that µ < β(n − αK). To bound the size
of C(n)(µ,K), we partition V into V1 and V2 with |V1| =
n − αK and |V2| = αK. First, we assume that the nodes in
V1 form a µ/2-regular graph. For each node in V2, construct
β(n−αK) ∈ N+ edges and connect them to the other nodes
in V with uniform probability. A graph constructed in this way
always belongs to C(n)(µ,K), unless the added edges create
more than K nodes with degrees larger than µ. Therefore, as
n→∞,

|C(n)(µ,K)| ≥ρ ·
e1/4

(
N − 1

φ

)N( (N
2

)
φN/2

)
(
N(N − 1)

φN

) ·
(
n− 1

M

)αK
(34)

where N := n − αK, M := β(n − αK) and φ := µ/2. The
first term ρ denotes the fraction of the constructed graphs that
are in C(n)(µ,K). The second term in (34) counts the total
number of φ-regular graphs [60], and the last term is the total
number of graphs created by adding new edges for the nodes
in V2. If K = O(µ), there exists a constant α > 0 small
enough such that ρ = 1. If µ = o(K), for any fixed node in
V1, the probability that its degree is larger than µ is

αK∑
i=φ+1

(
αK

i

)
βi(1− β)αK−i

≤
αK∑

i=φ+1

αKh

(
i

αK

)
βi ≤ (αK)2βφ+1

where h(i/αK) is in base e. Take β = n−3/µ and α = 1/2.
The condition µ < n−3/µ(n−K) guarantees that µ < β(n−
αK). Letting z(n) := 1/n be the assignment function for
each node in V1, we check that

(αK)2βφ+1 ≤ 1

4n
≤ z(n) ·

(
1− 1

z(n)

)N
≤ 1

en
.

Therefore, applying the Lovász local lemma, the probability
that all the nodes in V1 have degree less than or equal to µ
can be bounded from below by (1−z(n))

N ≥ 1/4 if n ≥ 2,
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which furthermore is a lower bound on ρ. Therefore, taking
the logarithm,

H
(
UC(n)(µ,K)

)
≥ (N − 1)2

2
h(ε)−O(N lnµ)

+
K

2

(
(n− 1)h

(
M

n− 1

)
−O(lnn)

)
−O(1) (35)

=Ω
(
n2h(ε) + n1−3/µK

)
(36)

where ε := φ/(N−1) ≤ 1/2. In (35), we have used Stirling’s
approximation and the assumption that K = o(n). Continuing
from (36), since 2nh(ε) ≥ µ ln(n/µ), for sufficiently large n,

H
(
UC(n)(µ,K)

)
= Ω

(
nµ log

n

µ
+ n1−3/µK

)
. (37)

Substituting (37) into (16), when n→∞, it must hold that

m = Ω
(
µ log(n/µ) +K/n3/µ

)
to ensure that εP is smaller than 1/2.

H. Proof of Theorem IV.2

The structure of the proof is the same as Theorem IV.1.
The converse follows directly by putting the bounds in (37)
and (15) together. For proving the achievability, it is sufficient
to show that with high probability (in n), |Yi,j −Xi,j | = o(1)
for all i, j ∈ V where Xi,j and Yi,j are the recovered and
original (i, j)-th entry of the graph matrix. For the Gaussian
IID ensemble considered, the `2-norm of the inverse matrix
(BKS )−1, equivalently, the minimal singular value of BKS is
strictly positive with probability o(1) (see the proof of Lemma
III-9 in [26]). Using the Chernoff bound, with high probability,

||B||22 ≤||B||2F ≤ C1nmσ
2
S, (38)

||Zj ||22 ≤C2nσ
2
N, for all j ∈ V (39)

for some positive constants C1 and C2. Noting that if K ≤
µ, then δ2K < 1 with high probability, the bound in (38)
and the bound on the `2-norm of the inverse matrix (BKS )−1

imply η = O(n2γ), by applying our Theorem III.2. Moreover,
with Gaussian measurements, for each µ-sparse vector Yj in
Rn, ||Xj − Yj ||2 ≤ C3||Zj ||2 for some constant C3 > 0
(cf. Theorem 1 in [61]) where Yj satisfies BYj + Zj = Aj
and Xj is the optimal solution of (11a)-(11c) (with F ≡ R).
Therefore, Γ = O(γ) and γ = O(

√
nσN) using (39). Since

η = O(n2γ), the condition σN = o(1/n5/2) guarantees that
η = o(1), whence |Yi,j −Xi,j | = o(1) for all i, j ∈ V and the
proof is complete.
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