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ABSTRACT: We report the first measurement of the exclusive cross sections ete™ — BB,
ete™ — BB*, and ete™ — B*B* in the energy range from 10.63 GeV to 11.02GeV. The
B mesons are fully reconstructed in a large number of hadronic final states and the three

channels are identified using a beam-constrained-mass variable. The shapes of the exclusive

cross sections show oscillatory behavior with several maxima and minima. The results are

obtained using data collected by the Belle experiment at the KEKB asymmetric-energy

eTe™ collider.
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1 Introduction

The total eTe~ — bb cross section at various energies above the BB threshold is shown
in figure 1 (left) [1]. It exhibits peaks of Y(4S5), T(10860), and Y(11020), possibly a dip
in the region of Y(10775), and also dips at the BB* and B*B* thresholds. The exclusive
two-body cross sections ete™ — BB, eTe” — BB*, and eTe” — B*B*, that saturate
the total cross section below the T(10860) peak and give a dominant contribution also
at higher energy, are expected to show much more pronounced behaviour, as shown in
figure 1 (right) [2]. The expected oscillatory behavior of the exclusive cross sections might
be due to the nodes of the T(4S), Y(10860), and Y(11020) wave functions [2]. These
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Figure 1. The R} scan results from BaBar [1] (left), and the expected in Unitarized Quark Model
contributions of the BB, BB*, and B* B* channels [2] (right).

cross sections provide important information about the interactions in this energy region
and, in particular, about the structure of the Y(45), T(10860), and Y(11020) states. This
topic is of special interest since the above states show anomalies, primarily in the pattern
of transitions to lower bottomonium states, that are currently not well understood (for a
review see, e.g., ref. [3]).

Here we report the first measurement of the energy dependence of the ete™ — BB,
ete™ — BB*, and eTe™ — B*B* exclusive cross sections.! Our approach is to perform
a full reconstruction of one B meson in hadronic channels, and then to identify the BB,
BB*, and B*B* signals using the M, distribution, Myc = \/(Eem/2)2 — pQB, where F¢p, is
the center-of-mass (c.m.) energy and pp is the B-candidate momentum measured in the
c.m. frame. The M, distribution for BB events peaks at the nominal B-meson mass, mzg,
while the distributions for BB* and B*B* events peak approximately at mp — % and
mp — Amp-, respectively, where Amp-~ is the mass difference of the B* and B mesons [4].
If the B meson originates from a B* — B~y decay, there is an additional broadening of the
signal due to the photon recoil momentum.

To reconstruct B mesons in a large number of hadronic final states we apply the Full
Event Interpretation (FEI) package of the Belle IT software that was developed primarily for
tagging B mesons in the Y(4S) — BB decays [5]. This package uses multivariate analysis
for the event selection and provides high flexibility in choosing the B decay channels and
the input variables for the classifier.

Before going into details, we describe how the paper is organized and give an overview
of the analysis. In section 2 we briefly describe the Belle detector, the data samples and
the simulation. Selection of events is described in section 3. For the FEI classifier, we
choose input variables that are not correlated with the B candidate momentum, which
helps to avoid distortion of the background in the My, distribution and to keep efficiency
approximately independent of E.,. We do not include the energy of the B candidate,
Ep, into the FEI training and use sidebands in the M, versus AFE plane to study back-
ground, where AE = Ep — E.,/2. We find that there is a peaking background in the

'BB* denotes the sum of BB* and B*B.



My, distribution which is primarily due to misreconstructed soft photons. We first apply
FEI to the T(45) data sample (section 4). We construct the My, fit function in which the
signal shape is calculated based on the FE.,, spread, the cross section energy dependence,
and the momentum resolution. We also calibrate simulation of the peaking background
and determine the total B meson yield which is later used to determine the efficiency.
We proceed with the analysis of the Y(10860) data sample (section 5) with the aim to
verify the fit procedure and measure the signal yield. We also study the distribution of B
mesons in the polar angle (appendix B). The fits to the data samples at various energies
are presented in section 6. We measure the efficiency at the Y(4S5) and Y(10860) energies
(section 7). To determine the total numbers of B mesons in the YT (10860) data sample, we
use five clean BT and B decay channels reconstructed without FEI. Determination of the
cross sections, parameterization of the cross section energy dependence, and estimation
of the systematic uncertainties are presented in section 8. The results are discussed in
section 9. As a byproduct, we measure fs, the fraction of the Bg*)Bg*) events at YT (10860)
(section 10). We conclude in section 11.
For brevity, in the following we denote Y(10860) as Y(55) and Y(11020) as Y(6.S5).

2 Belle detector and data sets

The analysis is based on data collected by the Belle detector at the KEKB asymmetric-
energy ete” collider [6, 7]. The Belle detector is a large-solid-angle magnetic spectrometer
that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an
array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-
flight scintillation counters (TOF'), and an electromagnetic calorimeter (ECL) comprised of
CsI(T1) crystals located inside a superconducting solenoid that provides a 1.5 T magnetic
field. An iron flux return located outside the coil is instrumented to detect K9 mesons and
to identify muons (KLM). Two different inner detector configurations were used. For the
first sample of 156fb~!, a 2.0 cm-radius beam pipe, and a 3-layer silicon vertex detector
were used; for the latter sample of 833fb~!, a 1.5 cm-radius beam pipe, a 4-layer silicon
vertex detector (SVD2), and a small-cell inner drift chamber were used. This analysis is
based only on data collected with the SVD2 configuration. Detailed description of the
detector can be found in refs. [8, 9].

We use energy scan data with approximately 1fb~! per point, six points collected
in 2007 and 16 points collected in 2010. We use also the Y (55) on-resonance data with
a total luminosity of 121fb~! collected at five points with energies from 10.864 GeV to
10.868 GeV. The E.p, calibration of these data is reported in ref. [10]. We combine the
data samples with similar energies so that finally we obtain 23 energy points. The energies
and integrated luminosities of these 23 data samples are presented in table 5 below. We
use also the SVD2 part of the Y(4S) data sample with the primary goal to calibrate the
reconstruction efficiency; its integrated luminosity is 571 b~

The signal ete™ — B®B® events and the background ete™ — Bg*)B’g*), ete”™ — qq
(¢ = u,d, s, c) events are generated using EvtGen [11]. The detector response is simulated
using GEANT [12]. The Monte-Carlo (MC) simulation includes run-dependent variations
in the detector performance and background conditions.



3 Event selection

The event selection is performed primarily by FEI. Our strategy is not to include the AF
variable in the training of the FEI classifier so that the AE sidebands (or, more precisely,
the AFE’ sidebands with the AE’ variable defined as AE' = AE+ My, —mp) are available.
We use the sidebands to study the smooth background component. We perform the FEI
training and then apply further channel-dependent selection criteria on the FEI output
variable and the AE’ variable, as described below.

We reconstruct Bt and B® in the decay channels D™zt (ztr—), DI D),
J/K¥(n7), JJKY(nT), J/pKertn™, DX =rtrt and D*~ Kt K~ 7", where D de-
notes D? and D~. We do not use B-decay channels with 70 as their energy resolution is
rather poor. The D°, D*, and D mesons are reconstructed in the final states with K+,
K9, 7%, up to one 7%, and multiplicity up to five. The complete list of the B- and D-meson
decay channels is given in appendix A. We reconstruct D* in all possible decay modes: D7
and D~y. J/v are reconstructed in both u*u~ and ete™ channels. To improve momentum
resolution, we apply a mass-constrained fit to 7%, J/¢, and D*; mass-vertex-constrained
fit to D and DJ; and vertex fit to K3 and B.

In FEI, the Fast Boosted Decision Tree algorithm [13] is used to discriminate signal and
background events. First, the final-state particles are classified, and then all the candidates
for unstable particles are obtained as combinations. Thus, FEI training is performed in
stages, and the results of the previous stage are used in the training of the current one.
The training is performed using MC simulation at the Y (55) energy. The classifier output
is the probability that a given candidate is the signal.

As training variables of charged pions, kaons, and leptons, we use particle identifica-
tion information, momentum, and transverse momentum. Prior to training we select the
candidates that originate from the interaction-point (IP) region: we require dr < 0.5cm
and dz < 3cm, where dr and dz are cylindrical coordinates of the point of the closest
approach of the track to the beam. For kaons we apply an additional requirement of
L(K)/(L(K) + L(mw)) > 0.1, where L(K) and L(m) are likelihoods of the kaon and pion
hypotheses formed from the measurements in the ACC and TOF systems, as well as energy
loss measurement in CDC. The efficiency of this requirement is 98% and the probability
to misidentify a pion as a kaon is about 20%.

Photon candidates are clusters in ECL with the energies above 30 MeV and without
matching tracks. As training variables we use the number of crystals in the cluster, the
ratio of energy deposit in a 3 x 3 matrix of crystals to that in a 5 x 5 matrix, cluster energy,
and polar angle.

For the 7° — 47 candidates we use mass, momentum, and decay angle, which is defined
as the angle between the v momentum measured in the 7° rest frame and the 7° boost
direction from the laboratory frame. For the K2 — 777~ candidates we use mass and a
set of parameters describing the displaced vertex of Kg. These are the distance of closest
approach between the two daughter pions, the impact parameters of the daughter pions,
the distance between the IP and the Kg vertex, and the angle between the K g momentum
and the direction from the IP to the Kg vertex; the latter three variables are measured in
the plane perpendicular to the beam direction.



The training variables for J/v¢, D, and D* candidates are the signal probability of each
daughter (thus the number of variables varies with the channel) and the mass. In case of
D, we use also the x? of the mass-vertex fit; if the D decay is a three-body decay, we use
invariant masses of pairs of its daughters to take into account signals of p, K*, and ¢.

For the B meson candidates we use the signal probability of each daughter and x? of
the B vertex fit. If there is a D meson in the decay, we include the distance between the
B and D vertices, the significance of this distance, and the cosine of the angle between the
D momentum and the direction from B to D vertices. In the case when there are several
pions or pions and kaons in the decay, we include invariant masses of the combinations in
which production of p (— 77), a1(— 37) or K*(— K) is expected.

At the last stage when the training for the B candidates is performed, we include
also variables that help to suppress continuum production of light and charm quarks,
ete” — qq. These are the event-shape variable Ry (the ratio of the second to zeroth
Fox-Wolfram moments [14]) and the angle between the thrust axis of the B candidate
and the rest of the event. We also include two flags indicating the presence of a muon
and an electron, respectively, in the rest of the event. We consider lepton candidates in
the c.m. momentum windows 1.0 < p, < 2.6GeV/c and 0.8 < p. < 2.6 GeV/c where the
contribution of leptons from the semileptonic B decays is enhanced. We require that the
leptons are well identified with a likelihood ratio above 0.9 [8]. The efficiencies of this
requirement are 71% and 76% for muons and electrons, respectively; the probabilities to
misidentify hadrons as leptons are 1% and 0.1%, respectively.

Although the training is performed individually for each decay channel of every unsta-
ble particle in the decay chain, the signal probability is defined in a universal way so that
various channels can be compared. Thus, the signal probability from the classifier is used
to rank multiple candidates. At the intermediate stage of the reconstruction, we retain up
to 10 best DY, D*, and DY candidates. At the final stage of the B meson reconstruction,
we retain only one best candidate selected from all Bt and B° candidates in the event.

The entire MC statistics corresponds to six times the statistics of real data. We use
half of the MC statistics to train the classifier and the other half to determine the efficiency.
The efficiency in the part that was used for training is higher by a factor 1.025 + 0.006,
which is an indication of a small overtraining.

The AE’ versus My, distribution for the Y(55) on-resonance data is presented in
figure 2. Here we apply a requirement on the B meson signal probability from the FEI
classifier of Pg > 0.1. In the AE’ projection, the signal events are concentrated near zero.

We optimize the requirements on the Pp and AFE’ variables individually for each
B decay channel. We evaluate the contribution of each channel to an overall figure of
merit (FoM) defined as Ns/v/Ns + Np, where Ng and Np are the numbers of signal and
background events, respectively. This optimization is performed based on the Y(55) on-
resonance data. The requirements on Ppg are in the range 0.01 to 0.1; the AE’ window size
varies from £10MeV to £40 MeV depending on the channel.

The My, distributions in the Y(55) and Y(4S5) data for the AE’ signal region and
sidebands are shown in figure 3. The centers of the AE’ sidebands are shifted by +80 MeV
from zero; the sizes of the high and low sidebands are the same as the size of the signal
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Figure 3. The M, distributions in the T(55) (left) and Y (45) (right) data. Black solid histogram
shows the AE’ signal region, while red points with error bars show the normalized AE’ sidebands.

region. The three peaks in the Y(55) data from left to right are the signals of BB,
BB*, and B*B*, respectively. The peaking structure near the M, threshold is due to
the three-body processes ete™ — BB*m, B*B*r, and the Y(4S) production in the initial
state radiation (ISR) process. The AE’ sidebands describe the combinatorial background

outside the peaks well.

The MC simulation at Y(5S5) shows that the background is dominated by the ce
production. The B mesons do not produce a significant contribution in the region of

the B®) B®) signals.



In the optimization of the channel-dependent selection requirements, Ng and Np are
determined using the AE’ signal and sideband regions with an additional requirement of
5.27 < My < 5.34GeV /c?. The optimization for each channel is performed iteratively by
scanning FoM in turn in Pp and |AE’|. Since we use the Y(55) on-resonance data for the
optimization, the measured B meson yield could be biased. We note, however, that the
statistics in each B decay channel is high and we use a relatively large step in the Pp and
|AE’| scanning; therefore, statistical fluctuations in the FoM dependence on Pp and |AFE’|
are small. To further study this issue, we divide the T(5S5) data sample into two approx-
imately equal parts. We then use part 1 for optimization and reconstruct part 2 using the
resulting selection requirements. Similarly, we reconstruct part 1 using selection require-
ments optimized with part 2. In this way we completely avoid any bias in the yields due to
statistical fluctuations in the value of FoM during the optimization. We find a 1.3% smaller
ratio of the yields at Y(55) and Y(4S5) compared to the default procedure. We consider
this value as a symmetric systematic uncertainty due to the optimization procedure.

4 Analysis of the Y(4S) data sample

Here our goal is to describe the My, distribution in the Y(4S) data in terms of the Eey,
spread and the BB cross section shape. This experience is essential for the analysis of the
T (5S5) and energy scan data.

The information about the BB cross section shape in the Y (45) region is rather limited.
Current values for the Y(4S5) mass and width are dominated by the BaBar measurement in
2004 [15]. There is also a more precise scan performed by BaBar in 2008 [1], however it was
not fitted in the original paper. We attempt to fit the 2008 scan results using the Y (45)
parameterization from ref. [15], which is based on the Quark Pair Creation model [16].
However, the fit function overestimates the measured values at high-mass side of T(45).
Since we need the cross section shape to calculate the signal shape in the My, distribution,
we adopt the following strategy. We perform a simultaneous fit to the My, distributions
and the scan results of BaBar [1]. As a suitable model is missing, the cross section is
described by a high-order Chebyshev polynomial.

4.1 My, fit function

The signal component of the My, fit is calculated numerically as a sequence of convolutions.
It takes into account the beam-energy spread, the energy dependence of the production
cross section, the ISR, and the momentum resolution.

The energy spread of the colliding beams is described by a single Gaussian with the
mean Fgpo, which is a nominal c.m. energy. The distribution in FE¢y is multiplied by
the energy dependence of the cross section. We convolve the obtained function with the
Kuraev-Fadin radiation kernel [17] to account for the ISR. We then change the argument
of the function from FE, to the B meson momentum py. At this step we account for the
ISR recoil momentum of the B mesons.

We convolve the distribution in pg with the momentum resolution functions. We
use three resolution functions to describe the candidates of three types: (1) MC truth-



fi f2 I3
w — 0.073 0.041

u (MeV/e) 004 —0.13  7.93
o1 MeV/c) 540 877  60.6
T9 0.52 043 0.066
w2 (MeV/e) 036 727  —3.79
oy (MeV/c) 10.6 488  8.64

Table 1. Parameters of the momentum resolution functions of eq. (4.1).

matched candidates in the AE’ signal window, (2) not MC truth-matched candidates in
the AFE’ signal window, and (3) candidates in the AE’ sidebands. The candidates of type
1 correspond to the signal, while candidates of type 2 and 3 correspond to the peaking
background. Each of the three resolution functions, f;, is a sum of two Gaussians with
special factors that account for the fact that p can not be negative:

P S s 10) exp d (p —po — p(2)* Cex ~ 2p(po + p1(i))
filp —po) = o) p{ 201(1)? } (1 p{ 1(0)? })
ra (i) (p — po — p2(i))? 2p(po + p2(i))
+ oa(0) exp {— 203(1)? } (1 — exp {—02(2,)2 }) . (4.1)

The special factors are found by considering the momentum resolution function in three
dimensions and analytically integrating out all variables other than p. The parameters of
the resolution function are determined from the MC simulation (table 1). The functions fo
and fs3 are multiplied by additional factors w(i) which are weight factors for the peaking
background in the AFE’ signal and sideband regions. The momentum distributions are
transformed into the My, distributions.

The smooth background is described by a threshold function \/FEey /2 — 2 multiplied
by a third-order Chebyshev polynomial. The shape of the smooth background is the same in
the AFE’ signal region and sidebands while the normalizations are allowed to float indepen-
dently (the smooth component in the sidebands is multiplied by a floated parameter rg1, ).

When fitting the data, we introduce a shift and a width-correction factor for each
component of the momentum resolution function, s; and ¢;. Using the AE’ distributions
we find that for the signal component the shift is negligibly small, while the width-correction
factor is ¢; = 1.18740.012. We float the shift and the width-correction factor of the peaking
background in the sidebands, s3 and ¢3, and find that the values are consistent with zero
and one, respectively (table 2 below). Therefore, the shift and the width-correction factor
of the peaking background in the signal region, s9 and ¢9, that are poorly constrained by
the My, fit, are fixed at so = 0 and ¢o = 1.

The peaking background components in the AE’ signal region and sidebands are mul-
tiplied by a common normalization factor n which is floated in the fit. Thus, the floated
parameters related to the signal in the My, distribution are the signal yield N (integral



(\Ag NQ
gwo; é 9r
z | z 8
g2 8or 2 7
@ [ r
3 [ 3 6L
© 60 R
- i T 5
— 4t
40 - [
L 3:
20F 2
1F
07 seseseseeerererereettol By, L Oi P
0sF + 05F
0 bt rrarasstorstitonpesstopspebopsbrogtot 2o, Au+# \h* 0 Frop st attppetbatppet to g e sabip bt bbbt L bidg o
ettt ettt St et e e e \T+Y Froeete 3t et MMM IR AP AR AF AN I SOk S FRYE S S
-0.5? + + 051
B v v b v e e e Bev v v b e e
5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.23 5.24 5.25 5.26 5.27 5.28 5.29
My, (GeV/c?) M, (GeV/c?)

Figure 4. The M, distributions in the AE’ signal region (left) and sidebands (right). Points with
error bars are data, solid red histogram is the result of the simultaneous fit to these distributions
and the cross section energy dependence (figure 5), dashed red histogram is the smooth background,
dotted black histogram is the peaking background in the AE’ signal region. The lower panels show
the residuals.

of the signal component; it does not include the integral of the peaking background), the
E.n, spread og,,,, the peaking background normalization factor n, the shift s3, and the
width-correction factor ¢s.

4.2 Cross section fit function

We describe the energy dependence of the dressed cross section? by an 11th order Cheby-
shev polynomial (in case of the 10th order, x? of the fit is higher by about 20, while in case
of the 12th order it is almost unchanged). We require that the cross section is zero at the
BB threshold and is never negative. We then apply the ISR correction and convolve with
the BaBar energy spread of 4.83MeV [15]. We use 9 BaBar points located between the
BB and BB* thresholds. The accuracy of the c.m. energy calibration at BaBar is 1.5 MeV.
We introduce a common shift for all nine points, AFEg,Bar, and float it in the fit with the
uncertainty constraint adding a term AEZ 5. /(1.5MeV)? to x2.

4.3 Results of the simultaneous fit

The results of the simultaneous fit to the M. distributions in the AE’ signal and sideband
regions and to the cross section energy dependence are presented in figures 4, 5 and table 2.
We perform the fit at several values of Ecno, the average c.m. energy of the Belle T(45)
SVD2 data. For each fit, we determine the difference between F.n¢ and the peak position of
the visible cross section, AFE.,. We find that AFE.,, is equal to zero at E¢mg = 10.5787 GeV

2The dressed cross section differs from the Born cross section in that the vacuum polarization is accounted
for.
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Figure 5. Energy dependence of the total bb cross section (Ry,). Points with error bars are from
ref. [1]. Black solid curve is the result of the simultaneous fit to this distribution and the My,
distributions (figure 4). Blue curve is the visible cross section before accounting for the Eqy, spread.
Red curve is the dressed cross section. Vertical dashed lines indicate the BB threshold, the nominal
Belle c.m. energy Fcmo, and the BB* threshold, in increasing values of Fp,.

N (581.2 £ 1.1 £3.2) x 103
OB, (5.36 £0.11 & 0.16) MeV
AEB.Bar  (—1.7540.14 £ 0.67) MeV

n 1.16 £0.03

S3 (—=0.24+0.6) MeV/c
o3 1.00 £0.02
Ts.b. 1.017 £ 0.005

Table 2. Results of the simultaneous fit to the Belle My, distribution and the BaBar cross section
scan results [1]. The first error is statistical, the second one (if present) is systematic.

and use this F.yo value in the default fit. If E.yg is floated, we find E.,9 = 10.5791 &
0.0003 GeV, which is 1.6 0 away from the constraint. The p-value of the default fit is 1.8%.

To determine the systematic uncertainty, we consider a variation in E¢yg of 0.5 MeV
that corresponds to a variation in AFE¢y, of £1.5MeV. The decrease of the visible cross
section at AF¢, = £1.5MeV is about 1%. This variation produces a negligible change in
the yield N, but is a dominant uncertainty for og, and AFEp,par-

We increase the order of the Chebyshev polynomial that describes the cross section
shape (11th order to 12th) and which is used in the smooth background component (3rd
order to 4th). In both cases we find a negligible change in all fit results.

The normalization factor n of the peaking background is found to be 1.16 (table 2).
This value is determined primarily by the AFE’ sidebands. To estimate the systematic
uncertainty related to the peaking background in the AFE’ signal region, we introduce a
separate normalization factor for this component, ny, and repeat the fit fixing ny at 1.08
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Figure 6. Energy dependence of the E.,, spread. Black dots with error bars are the measurements,
red open dots are o, corrected for the microwave instability effect, red line is the fit result.

and 1.24. This source is dominant for the yield while for o, and AEp,pa, the changes are
small. The total systematic uncertainty for the yield N, og_ , and AEp,pay is presented
in table 2. The value of the yield is used to determine the efficiency at the Y(4S) energy
(section 7).

The value of the E.p, spread at T(4S), (5.36 = 0.19) MeV, and the measurements at
other energies are shown in figure 6. The value at T(55), (5.36 & 0.13) MeV, is measured
in ref. [10] using the ete™ — T(nS)r*7~ (n = 1,2,3) processes. To find the values at
Y (1S5,285,35), we use the visible cross sections that are determined based on the event
yields and luminosities in ref. [9]. The procedure is the following. We determine the
energy dependence of the dressed cross section near the resonance using corresponding
parameters: mass, width, and electron width [4]. We then apply the ISR correction by
performing a convolution with the Kuraev-Fadin radiation kernel [17] and account for the
FEenm energy spread by performing another convolution with a Gaussian. The integral of the
cross section depends on the total and electron widths, while the shape of the cross section
is determined by the energy spread, since the YT(1S5,25,3S) resonances are very narrow.
Thus, the maximum of the visible cross section is sensitive to og. . For each Y(nS)
(n = 1,2,3) we fit a single point: the measured visible cross section at the resonance
maximum. The value of the fit function is the maximum of the calculated cross section.
The parameters of the resonance are floated in the fit within the uncertainties of their world-
average values [4], thus their contribution to the uncertainty in the spread is accounted
for. We find that the dominant contribution is the uncertainty in the electron width. The
spread values at T(15), T(2S5), and YT (35) are (4.439+0.157) MeV, (5.19+0.59) MeV, and
(5.95 £+ 0.80) MeV, respectively.

If the bunch current of the positron beam, I+, is above 0.5 mA, there is a microwave
instability that increases the F.p, spread [18]. The increase factor, f,, depends linearly
on I+ reaching f, = 1.20 at I.+ = 1.0mA. The average over data taking period value
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of f, is determined based on I+ and integrated luminosity of each run. For the T(nS)
(n=1,2,3,4,5) data samples, we find f, = 1.070, 1.157, 1.223, 1.203, and 1.179, respec-
tively. The uncertainty in f, is negligibly small compared to the uncertainty in og_, . The

corrected values U%‘i} = op.,,/fo at various E¢y, are shown in figure 6. The dependence of

og on Eey is consistent with the proportionality hypothesis; from the fit we find:

o5 = (4.247 £ 0.073) x 107 x Ep,. (4.2)

cm

The f, values in the scan data samples are in the range 1.11 — 1.20. To determine og,_, of
each scan data sample we use its f, factor and the %" value from eq. (4.2).

The shift in Eey, of BaBar, (—1.75+0.68) MeV, is 1.2 0 away from zero in terms of the
BaBar accuracy of 1.5 MeV. This shift could be used in future phenomenological analyses
of the BaBar scan results.

As a consistency check we estimate the ISR correction factor to be (1 + digg) =
0.626 £+ 0.012. The uncertainty here is a systematic one due to variation of F¢yg. This

value agrees with the result of ref. [19] of 0.622 £ 0.018.

5 Analysis of the Y(5S) data sample

To fit the Y(5S5) data we include also the ete™ — BB* and ete™ — B*B* signals. The
decay B* — B+ leads to additional smearing of the B momentum that we take into account
in the fit function by performing additional convolution; relativistic kinematics is used in
this calculation. The distribution in the helicity angle of the B* — B~y decay, defined as the
angle between the B momentum measured in the B* rest frame and the boost direction of
the B* from the c.m. frame, is expected to be 1+cos? @y, for eTe™ — BB* and 1+ ay, cos? 6y,
with —1 < a, < 1 for ete~ — B*B*. In the fit, we float the parameter ay,.

The energy dependence of the ete™ — B®B® cross sections, that is needed for the
fit function, is taken from the measurements described below; the analysis is performed
using an iterative procedure. The parameters of the momentum resolution function are
determined from the T (5S) simulation. They are found to be close to those at T(4S). The
factor n for the normalization of the peaking background is taken to be the same as in the
T(4S5) data (table 2). The E.p, spread is fixed to the fitted value (eq. (4.2)) multiplied by
the microwave instability correction factor; the result is o, = (5.44 £ 0.09) MeV. The
smooth background is described by a threshold function \/FEcy,/2 — x multiplied by a 6th
order Chebyshev polynomial; the order is higher than at Y (4S) because we use a broader
fit interval. The result of the fit to the Y(5S5) data is shown in figure 7 and table 3. We
report the total yield Niota1 and the fractions of various channels Ny ge) / Niotal. One of
the fractions is not floated as its value is determined from the constraint that the sum of
the three fractions is equal to 1. To find its statistical uncertainty, we repeat the fit with a
different choice of the fraction, which is not floated. The yield is defined as the integral of
the fit function in the region 5.27 < My, < 5.35GeV/c?. The fit describes the data well,
and its p-value is 87%. The My, distribution in the AFE’ signal region is fitted only up to
My = 5.375MeV/ c? to avoid the region near the My, threshold where the contribution
of the eTe™ — BB*r and ete™ — B*B*r processes is expected [20]. We extrapolate the
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Figure 7. The My, distributions in the AE’ signal (top) and sideband (bottom) regions. Points
with error bars are data, solid histogram is the result of the simultaneous fit, dashed histogram
is the smooth background. Black dotted histogram indicates the contribution of the BB channel
that includes a peak near threshold due to the ISR production of Y(4S). Vertical red line at
5.375 GeV /c? in the top panel indicates the upper boundary of the fit interval.

Niotal (23.66 4 0.22 4 0.34) x 103
Ngg / Niotal 0.1121 £ 0.0030
Ngg- / Niotal 0.3095 £ 0.0045
Ng.g+ / Niotal 0.5784 4 0.0048

an —0.18 £0.07

S3 (—39T35) MeV /¢

$3 1427053

Tsb. 0.998 + 0.007

Table 3. Results of the fit to the My, distribution at Y(5S5). The errors are statistical.

fit function beyond the fit interval and indeed find an excess of events near the threshold.
The study of the three-body channels B*) B®) 7z will be a subject of separate analysis.
The value of Niotal is used to calculate the efficiency in the T(5S5) data (section 7),
therefore we estimate its systematic uncertainty (table 4). The shape of the signal depends
upon the energy dependence of the BB, BB*, and B*B* cross sections. We find the
corresponding uncertainty as described in section 8. To estimate the uncertainty due to
the F.m spread, we vary its value within the uncertainty of £0.09 MeV. The normalization
factor of the peaking background n is varied between 1.08 and 1.24. In the fit to the
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Cross section shape

— statistical uncertainty 0.37
— parameterization 0.35
FE¢.m spread 0.12

Yield of peaking background 0.33
Shape of peaking background 0.13
Shape of smooth background 0.05
Optimization procedure 1.3

Total 1.45

Table 4. Systematic uncertainties in the total signal yield Nioa1 at Y(55) (in %).

Y (4S) data we find that the shift s3 and the width-correction factor ¢3 of the peaking
background in the AE’ sidebands are consistent with zero and one, respectively (table 2),
while in the Y(55) data they deviate from the above values with a combined significance
of 2.6 0 (table 3). To estimate the uncertainty associated with the shape of the peaking
background, we repeat the fit fixing s3 = 0 and ¢3 = 1. To account for the uncertainty
in the shape of the smooth background we change the order of the polynomial which is
used in the parameterization from 6th to 7th and 8th. We account also for the systematic
uncertainty due to the optimization procedure of 1.3% (section 3). The deviations in the
yield under the variations of the analysis are considered as systematic uncertainties due to
a given source. The total systematic uncertainty (given both in tables 3 and 4) is estimated
as a sum in quadrature of the individual contributions.

We study the distributions of the BB, BB*, and B*B* in the polar angle of the
B meson and find that they agree with the expectations. The details are provided in
appendix B.

6 Fits at various energies

The fit function is the same as at Y(5S5), except for the normalization of the signal. Here
the integral of each signal component is not normalized to unity in the range 5.27 < My <
5.35 GeV/c?. Instead, it is equal to the integral of the ISR kernel [17] multiplied by the
relative change of the cross section with energy. This normalization value is equal to the
(1 + d1sRr) correction factor and thus the measured yields include the ISR correction and
can be used directly to determine the dressed cross sections. This approach was used in
previous energy scan papers [10, 21].

We fix the shift s3, the width-correction factor ¢3 and the relative normalization of
the smooth background 74y, to the fit results at T(55) (table 3). The angular distribution
parameter ay, is floated within the allowed range —1 < ap < 1. In case of the smooth
background only the normalization is floated. The fits at various energies are shown in
appendix C.
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Measured yields are used to calculate the dressed cross sections as described in section 8
after we present the determination of the efficiency in the next section. The values of ay
in the scan data samples are poorly constrained by the fit; their uncertainties are close to
the size of the allowed range.

7 Determination of the efficiency

To determine the efficiency at the T(4S) energy we use the measured B meson yield
N(Y(4S)) (table 2) and the total number of the BB pairs in the Y(4S) SVD2 data,
Ngp(T(4S)) = (619.6 £ 9.4) x 10% [9]. This number is obtained by counting hadronic
events at Y(45) and subtracting the continuum contribution, which is determined using
data collected 60 MeV below Y (4S5). The transitions from Y (4S5) to lower bottomonia have
total branching fraction of 0.26% [4] and are neglected. The efficiency is calculated as

N(Y(45))

S Sl isiorV A -3
EY(45) = 2N, 5 (T(4S)) (0.4690 £ 0.0077) x 10~ °. (7.1)

To determine precisely the ratio of the B meson yields in the T(4S5) and Y(5S5) data
samples, we use five final states with low multiplicity for which the distribution over phase
space is well known and which can be reliably simulated:

1. Bt - J/y KT,

2. BY — J/y K*(892)Y, K*(892)° — K*n~,
3. Bt - D%t DY —» K*trn—,

4. Bt - D7+ DY - Ktnto—n—,

5. B s D nt, D~ - Ktr 7.

The signal-to-background ratio in these final states is high, and they are reconstructed with-
out application of FEI. Selection requirements are taken to be the same as in ref. [20]. To
minimize the sensitivity to the peaking background, we fit the AE’ spectra simultaneously
in the T (45) and Y(55) data samples applying a requirement 5.27 < M, < 5.35 GeV /c2.
The fit is performed separately for each channel. The fit function for the Y(4S) data is
a sum of two Gaussians to describe the signal and a first or second order polynomial (de-
pending on the channel) to describe the background. The fit function for the YT (55) data
is the same except that the ratio of yields at Y(5S5) and Y(4S5), shift, and width-correction
factor are introduced for the signal. The background components in the Y(4S) and YT (55)
data samples are floated independently. To estimate the systematic uncertainty, we con-
sider variations of the polynomial order and the fit interval. The systematic uncertainty is
calculated as the root-mean-square (RMS) of the deviations. We repeat the same fits for
the MC samples and find that the efficiency ratio is consistent with one for all the channels.
The efficiency-corrected yield ratios are 0.0393 £ 0.0017, 0.0376 + 0.0023, 0.0399 + 0.0021,
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0.0365 + 0.0033, and 0.0391 + 0.0022 for the channels from one to five, respectively; the
uncertainties include the statistical and systematic contributions. The average yield ratio is

R5 chan = 0.03882 £ 0.00097. (7.2)

In this calculation we implicitly assume that the ratio of the B*B~ and B°B° pro-
duction rates, fp+/fpo, is the same at T(4S) and Y(55). Since Y(55) is far from the
BB threshold, one can expect that isospin violation at Y(5S) is small and fg+/fgo = 1.
At Y(45), fg+/fpo was measured to be 1.058 £ 0.024 [4]; thus, it is shifted from 1 by
2.4 standard deviations. We repeat the calculation taking into account the isospin non-
conservation at Y (45), and find that Rgcpan increases by 0.53%. Since the change is very
small, the isospin non-conservation is neglected.

The efficiency at the T (55) energy is determined from the total B meson yield Niotal

(table 3):
N; total 1

FYGS) T 9N 5(T(45)) Rschan

The ratio of the efficiencies at Y(55) and Y (45), 1.049 £ 0.032, agrees with the MC expec-
tation of 1.028 4 0.004.

From MC simulation we find that the dependence of the efficiency on the B meson

= (0.492 +0.017) x 1073, (7.3)

momentum is consistent with being linear. Thus, for all energies and various B® B(*) final
states we determine the efficiency ¢ based on the corresponding average momentum and
the values ey (45) and ey(ss), assuming linear dependence on the B meson momentum. To
find the uncertainty in £, we separate uncertainties in ey 45y and ey (55) into common and
uncorrelated parts; we then assume that the uncorrelated part varies linearly with the B
meson momentum.

8 Results for the cross sections

The dressed cross sections are calculated as

O,dressed — N ’ (81)
(1+dmsr) Le
where the ratio N/(1 + digr) is directly obtained from the fit. The cross sections are
presented in table 5 and in figure 8. The cross sections show a non-trivial behaviour with
several maxima and minima. There is no obvious signal of Y(55) that matches its mass
and width.

In figure 9 we plot the sum of the exclusive BB, BB*, and B*B* cross sections super-
imposed on the total bb dressed cross section that was obtained in ref. [19] from the visible
cross sections measured by Belle [22] and BaBar [1]. The sum is compatible with the total
bb cross section up to Fep = 10.82GeV; this value is close to the BB threshold. The
deviation at higher energy is presumably due to the contributions of Bs; mesons, multibody
final states B B®) (), and production of bottomonia with light hadrons.

To calculate the shapes of the signals at various energies and to determine the ISR
corrections, we need to parameterize the energy dependence of the cross sections. Since
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Eem L o(BB) o(BB¥) o(B*B*)
11020.84+1.4 0.982 31.549.94+1.241.7 158.44+19.34+4.247.7 77.6+15.6+5.4+3.6
11018.542.0 0.859 27.84+10.54+1.041.5 82.4+16.5+2.3+4.0  71.94+15.943.1+3.4
11014.8+£1.4 0.771 34.84+11.44+1.2+1.9 119.24£19.5+2.445.8  85.0+18.14+2.7+3.9
11003.94£1.0 0.976  9.747.0£0.340.6  45.2+11.8+1.342.2  78.44+14.245.1+3.6
10990.4+1.3 0.985 10.54£8.14+0.4+0.7  47.9411.742.0+2.3  43.14+12.443.542.0
10975.3+1.4 0.999 85+7.241.240.6  44.0+11.940.842.1  81.74+14.3+4.5+3.6
10957.5+1.5 0.969 —2.846.0+0.140.3 54.5+12.6+1.64+2.5  89.24+15.54+2.5+3.8
10928.7+1.6 1.149 10.5£6.940.9+£0.6  62.7+£12.1+£1.64+2.7 115.6+16.2+3.844.7
10907.3+1.1 0.980 28.849.14+2.0+1.4  66.8413.543.242.8  72.14+14.0+4.0+£2.8
10898.34+0.7 2.408 32.246.3+0.5+1.4  90.249.4+1.343.7 61.14£8.0+1.4+2.3
10888.940.8 0.990 43.8410.54+0.7£2.0 101.2415.6+1.0+4.1  82.74+14.44+1.843.1
10882.840.7 1.848 33.9+£7.54+0.441.5 109.6+11.7+1.54+4.4 88.94+10.84+2.5+3.3
10877.84£0.8 0.978 33.7+10.14+1.7+1.5 103.1£16.0£2.844.1 117.34+16.64+3.0+£4.3
10867.64+0.2 4528 31.3+£1.54+0.041.3  76.542.14£0.14+3.2  154.14£2.740.2+6.2
10865.840.3 29.11 32.74£1.940.041.4  81.342.74+0.14+34  154.943.440.1+£6.2
10864.240.3 47.65 32.2+41.440.0+1.4  74.242.04+0.1+£3.1  159.942.74+0.3+6.3
10857.4+£0.9 0.988 17.8+8.841.2+0.8  81.5+15.0+2.54+3.2  184.1+20.4+4.446.5
10848.941.0 0.989 19.6+£8.742.3+£0.9  109.34+15.243.2+4.1 160.8+£19.4+6.24+5.6
10829.54+1.2 1.697 18.6+£7.040.740.8 101.8411.64+3.4+3.7 198.4+16.0+4.246.6
10771.241.0  0.955  9.747.64£2.240.5  112.24+16.245.243.6  58.24+12.14+6.1+1.7
10731.341.5 0.946 27.0410.14+1.441.0 54.74+11.84+8.5+1.6 161.34+18.4+8.7+4.2
10681.0+£1.4 0.949 19.249.344.14£0.7 177.3+£18.4+10.7+4.5 139.0+18.44+5.7+3.1
10632.24+1.5 0.989 51.04+11.14£6.0+1.4 257.6422.74+8.1+5.6 —

Table 5. Energies (in MeV), luminosities (in fb™') for various data samples and the results for
the dressed cross sections (in pb). The first error in the cross section is statistical, the second is
uncorrelated systematic, and the third is correlated systematic.

currently there is no suitable phenomenological model for the cross section energy de-
pendence, we fit the cross sections using high-order Chebyshev polynomials. The fit to
the total bb visible cross section in the Y(4S5) region (figure 5) and the analysis in ref. [19]
(figure 9) show that the dressed BB cross section goes to zero at the BB* threshold. Thus,
for the BB channel we fit the cross section starting from the BB* threshold, while below
this threshold we use the result of the fit shown in figure 5. To impose the requirement
that the cross section is zero at the BB* threshold in the BB channel, as well as at the
corresponding thresholds in the BB* and B*B* channels, we add points at the thresholds
with zero values and small uncertainties.

The energy dependence of the total bb dressed cross section shows a dip at the B*B*
threshold of 10.65 GeV (figure 9). To take into account this dip in the fits to the exclusive
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Figure 8. Measured dressed cross sections at various energies for e*e™ — BB (left), ete™ — BB*
(right), and ete~ — B*B* (bottom). The outer error bars indicate statistical uncertainties and
inner red error bars indicate uncorrelated systematic uncertainties. Solid curves show the result of
the simultaneous fit to these distributions and the total bb cross section energy dependence (figure 9).
Dashed curves show the fit function before the convolution to account for the E.,, spread.

cross sections, we use the total bb dressed cross section as an additional constraint. We fit
simultaneously the exclusive cross sections and the total bb dressed cross section, the latter
only in the region below the BB*r threshold of 10.75 GeV. The fit function for the total
bb dressed cross section is just a sum of the individual BB, BB*, and B*B* contributions.
The orders of the polynomials that we use for BB, BB*, and B*B* are 10, 17, and 12,
respectively. These orders provide sufficient flexibility to describe the available data. The
polynomials are constrained to be positive by adding a penalty term to the x? in case the
polynomial becomes negative at any energy. To account for the E., spread, we convolve

the polynomials with the Gaussian. The results of the simultaneous fit are presented in
figures 8 and 10.
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Figure 9. Energy dependence of the total bb dressed cross section obtained in ref. [19] from the
visible cross sections measured by Belle [22] and BaBar [1] (black dots). Open red circles represent
the sum of the exclusive BB, BB*, and B*B* cross sections measured in this work. Right panel is

a zoom of the low cross section region.

cdres (ﬂb)

11
E.., (GeV)

Figure 10. Energy dependence of the total bb dressed cross section from ref. [19] (blue dots). Solid
black curve is the result of the simultaneous fit to this distribution and the exclusive BB, BB*, and
B*B* cross section energy dependence (figure 8). Vertical line at 10.75 GeV indicates the upper
boundary of the fit interval; dashed black curve is an extrapolation of the fit function. Also shown
are the individual contributions of BB (blue dashed curve), BB* (red dotted curve), and B*B*

(green dash-dotted curve).
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Figure 11. Measured dressed cross sections at various energies for ete™ — BB (left), ete™ — BB*
(right), and e*e~ — B*B* (bottom). The outer error bars indicate the statistical uncertainties
and the inner red error bars indicate the systematic uncertainties due to the cross section parame-
terization. Solid curves show the fit results for the default set of polynomial orders. Dotted curves
show the fit results for the polynomial orders varied by +1 and £2.

The uncertainty in the shape of the cross section energy dependence contributes to the
systematic uncertainty in the cross section measurements at various energies. The uncer-
tainty in the shapes originates from the parameterization and from the limited statistical
accuracy in the cross section measurements. In addition to the default set of the polyno-
mial orders of (10, 17, 12), we consider also sets (11, 18, 13), (12, 19, 14), (9, 16, 11), and
(8, 15, 10) that provide a conservative estimation of the possible cross section behaviours.
Corresponding fit results are shown in figure 11.

To estimate the influence of the statistical accuracy, we use toy MC. We generate
pseudoexperiments using the fitted cross sections as central values and statistical uncer-
tainties in data as standard deviations. We fit the energy dependence of the cross sections
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o(BB) o(BB*) o(B*B*)

Cross section shape

— statistical uncertainty 0.51 1.03 0.87

— parameterization 0.17 1.30 1.55
Fem spread 0.22 0.04 0.05
Yield of peaking background 0.12 0.04 0.05
Shape of peaking background  0.76 0.11 0.21
Efficiency 3.40 3.40 3.40
Luminosity 1.4 1.4 1.4
Total 3.80 4.04 4.09

Table 6. Correlated systematic uncertainties in cross sections at Y(55) (in %).

in each pseudoexperiment and, based on the fit results, determine the My, signal shapes
for all energies. We then refit the data using the new shapes and repeat the measurement
of the cross sections. The RMS of the deviations is taken as a systematic uncertainty; the
parameterization and the statistical accuracy are considered as separate sources. We find
that for the three high-statistics YT(5S) on-resonance points the deviations are strongly
correlated, therefore they are accounted for in the correlated uncertainty of these points;
for other points the uncertainties are considered to be uncorrelated.

To study the uncertainty due to the shape of the smooth background in the My, fits,
we multiply the corresponding contribution by the Chebyshev polynomial of the first or
second order with floated parameters. The RMS of the deviations of the yields are used to
calculate the uncertainties.

We vary the E.n, values within their uncertainties, the deviations in the yields are
found to be negligible. The cross section shape contributions and the smooth background
shape contribution are added in quadrature to obtain the total uncorrelated systematic
uncertainties. They are found to be small compared to the statistical uncertainties as
shown in figure 8.

Various contributions to the correlated systematic uncertainty, estimated for the T(55)
high-statistics data, are presented in table 6. The contribution of the cross-section shape
is estimated as discussed above. The contributions of the FE.n spread and the peaking
background yield and shape are estimated as described in section 5 for the total B meson
yield. We account also for the uncertainty in the efficiency (eq. (7.3)) and the uncertainty
in the integrated luminosity of 1.4%. Total correlated uncertainty is estimated as a sum in
quadrature of the individual contributions.

The sources of the correlated systematic uncertainty at energies other than Y(55) on-
resonance are the same as listed in table 6, except for the cross section shape source which
is accounted for in the uncorrelated uncertainty. The contributions of the E.p, spread and
the shape of the peaking background are assumed to be the same as listed in table 6. The
uncertainty in the efficiency varies with the B meson momentum as described in section 7.
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To transform the multiplicative correlated uncertainty in the cross section into the
additive one, we use formula:

(C£A,) - (1£0) =0 LA, £ (05D A,0), (8.2)

where the symbol @ denotes addition in quadrature. The measured dressed cross sections
at various energies with statistical, uncorrelated systematic, and correlated systematic
uncertainties are presented in table 5.

9 Discussion

Figure 12 presents a comparison of the measured exclusive cross sections with the predic-
tions of the Unitarized Quark Model (UQM) [2]. The data confirm the prediction that
the cross sections show oscillatory behaviour. Also, there is a rather good agreement in
the positions of the minima, that in the UQM are due to zeros in the Y (45,55,65) wave
functions. The UQM fails to describe the absolute values of the cross sections. Contrary
to the expectations, the cross sections in the minima are not zero, which suggests that the
UQM misses some general non-resonant offset.

In the UQM there are narrow structures in all the channels that correspond to the sig-
nals of T(55). Data do not show such structures. Thus, in the final states BB, BB*, and
B*B* we find no clear Y(59) signal. As follows from figure 9, the narrow peak in the T(55)
region is present in other bb final states, B§*)B§*), B® B® . and the final states with bot-
tomonium and light hadrons. This finding contradicts to the expectations of the potential
models that the dominant decay channels of Y(55) are B*) B®) (sce, e.g., ref. [23]).

The sum of exclusive B®) B™) cross sections does not saturate the total bb cross section
for the energies above the B* B} threshold, as shown in figure 9. This sets goals for further
studies. It is of interest to measure the energy dependence of the ete™ — Bé*)B§*> and
ete — B®BWx(7) cross sections. These channels, together with the B®*) B(*) channels
measured herein, should provide complete information for the coupled channel analysis in
the energy region under study.

The polarization of the B* B* channel is described by three amplitudes, as discussed
in appendix B. To measure these amplitudes the reconstruction of a photon from the
B* — B~ decay would be needed. Such a measurement requires higher statistics than
currently available 1fb~! at the scan points.

The separation between the points is rather large in the low-energy region. In partic-
ular, the model [2] predicts an additional zero in the BB and BB* cross sections which is
in the gap between two scan points. More scan data with smaller energy step sizes and
larger integrated luminosity in this region are needed to understand reliably the shape of
the exclusive cross sections. These data could be collected by the Belle II experiment.

10 Measurement of visible cross sections and event fractions at Y (55)

As a byproduct, we measure the visible cross sections ete~ — BB X, ete” — BB,
ete” — BB*, and ete” — B*B* at T (55), as well as corresponding fractions of events
and the fraction of Bé*)Bé*) events fs.
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Figure 12. Measured dressed cross sections at various energies for ete™ — BB (left), ete™ — BB*
(right), and eTe™ — B*B* (bottom). Points and dashed curves are the same as in figure 8. Solid
curve shows the predictions of the Unitarized Quark Model [2].

To find the inclusive ete~ — BB X cross section, we use the same method as for
the measurement of the efficiency at Y(55) (section 7). The only difference is that the
requirement My, < 5.35GeV/c? is not applied; thus, we consider not only two-body
ete — BWB® but also multi-body ete” — B®B®r(x) processes. The ratio of
the B meson yields in the T(55) and Y(4S) SVD2 data samples, averaged over the five
low-multiplicity B-decay channels that were used in section 7, is

R =0.0503 + 0.0012, (10.1)

where the uncertainty includes statistical and systematic contributions. For the cross
section we find:

Rglclhan X NBB(T(4S))

o"®(ete” - BBX) = 7

= (255.5 + 7.9) pb, (10.2)
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where L is the total integrated luminosity of the three high-statistics points in table 5. The
fraction of BB X events is

oV¥(ete” — BB X)

Opp

feex = = 0.751 £ 0.040, (10.3)
where o,; = (340 & 16) pb is the total bb cross section at Y(5S) [24]. Here and in the
following we take into account that in the ratio of cross sections the uncertainty due
to the integrated luminosity cancels. The remaining events, f, . _px = 1 — feax =
0.249 4+ 0.040, contain B mesons or bottomonia with light hadrons.

To estimate the fraction of bottomonium events, we consider all final states with bot-
tomonium listed in PDG 2020 [4]. These are Y(nS)ntn~ (n = 1,2,3), T(1S)KTK~,
Y(1D)n, hy(nP)nt7~ (n =1,2), and xps 7t7~ 7", The sum of corresponding fractions is
(3.507019)%, where we assume that the uncertainties in various fractions are uncorrelated.
Using isospin relations, we account also for the final states with neutrals: the fractions for
the 777~ transitions are multiplied by 1.5, while the fraction for the K™K~ transition is
multiplied by 2.0. The resulting sum is (4.92f8:‘gg)%. Belle reported preliminary results
on the Y(nS)n (n = 1,2) and Y(1D)r" 7~ transitions [25] that show that corresponding
fractions are not large. There are also rather strict upper limits on fractions of the 7, (nS)w
(n =1,2) [26] and hy(nP)n (n = 1,2) [27] transitions. However, there are still channels for
which no experimental information is available. Among them are 47 transitions to T (nS),
hy(nP) and Y(1D), as well as T(55) — Zy ™ — np(1S)pw. To estimate the total fraction
of bottomonium, we assume that all the channels that are not in PDG 2020 contribute no
more than already measured channels and thus assign a large positive uncertainty:

fbottomonium = (491_(5)8)% (104)
Finally, we estimate the fraction of the events with Bs; mesons:

fs = fnon—BBX — Jbottomonium = 0200t88ég, (105)

where the uncertainty includes statistical and systematic contributions. This result is
consistent with the PDG 2020 value of 0.201 + 0.031 [4] and the value that follows from

the measurement of the eTe™ — Bg*)Bg*) cross section in ref. [28]:

o <e+e_ — Bg*)ég*))

fs = = 0.158 + 0.017. (10.6)

Opp

To measure the visible ete™ — B® B®) cross sections, we use the formula:

fa — N *) R (* k ) B(*
oVis <€+6_ _ B(*)B(*)) _ BBt X Kp) B )’ (10.7)
2 X 6B<*)B<*) X L

where N g+ is the B®) B™) signal yield in the interval 5.27 < My, < 5.35 MeV (table 3).
The factor kg g = 1.042, 1.120, and 1.089 for BB, BB*, and B*B*, respectively,
accounts for the ISR tail in the My, > 5.35 MeV region. For the BB channel, k pp includes
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BB BB* B*B*

Cross section shape:

— statistical uncertainty 2.03 160 1.11
— parameterization 1.56 2.83 2.38
FEem spread 0.20 0.03 0.05

Yield of peaking background 0.12 0.04  0.05
Shape of peaking background 0.76 0.11  0.21
Shape of smooth background 0.28 0.09  0.10
Total 2.70  3.25 2.64

Table 7. Systematic uncertainties in (Nge) 5 / Nrotal) X kg g for various channels (in %).

the ISR contribution down to the BB* threshold, while the region between the BB and
BB* thresholds (the Y(4S5) region) is accounted for separately. For the BB* and B*B*
channels, kg ) include the ISR contributions down to the corresponding thresholds.
The efficiency €p(s) g+ 18 equal to ey(55) X T g, where the factor rzu g = 1.010,
1.004, and 0.998 for BB, BB*, and B*B*, respectively, accounts for the small variation of
the efficiency with the momentum of the B meson (section 7). Using eq. (7.3), we obtain

Npp(Y(4S)) X Rschan
TB<*)B(*) X L

gVis (6+€_ N B(*)B(*)) = m kB(*)B(*> ) (10'8)

Ntotal
here Ny ) / Niotal are the fractions of various channels given in table 3.

We study the systematic uncertainty in the values of the expression (N g () /Ntotal) X
kg g+ in the same way as described in section 5 for Niota1. The results are presented in
table 7.

The contribution of the ISR events in the Y (4S5) region is obtained by integrating the
ISR kernel multiplied by the dressed cross section shown in figure 5 in the region between
the BB and BB* thresholds. The resulting value is (10.53+0.31) pb, where the uncertainty
includes the contributions from the statistical (1.2%) and systematic (2.6%) errors in Ry, [1],
and the systematic uncertainty due to the variation of E.yo (0.7%). The values of the
measured visible cross sections are presented in table 8. We show also corresponding event
fractions. Previous Belle measurement of these values [20] did not take into account the
ISR tails of the signals. The results shown in table 8 supersede those in ref. [20].

We also measure the ratio oV*(ete™ — BB*)/c"®(eTe” — BB X), which is needed
for the measurement of fs using lepton-charge correlations in the dilepton events [29].
Based on egs. (10.2) and (10.8), we find

o"®(ete” = BB*) _ Npeype 1 kpe e

- — = = 0.2664 4+ 0.0101, 10.9
oVis(ete~ — BB X) Niotal  Tpe e R /R5chan (10.9)

where the uncertainty includes statistical and systematic contributions. While calculating
the ratio Rgléhan /R5chan = 0.2962 + 0.0176, we take into account the correlation of the

corresponding uncertainties.
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O.vis

ete” > BBX 255.5+7.9 75.1+4.0
ete” BB 333+12 98+05
ete - BB* 68.0+33 20.0+1.3

efe” — B*B* 1244453 36.6+£22

UVis/ Oph

Table 8. Visible cross sections 0¥ (in pb) for various processes at Y(5S) and corresponding
oVi®/ a,; fractions (in %). The BB X final state includes B*) B®*) and B®*) B*)x (). The errors
contain the statistical and systematic contributions.

11 Conclusions

To conclude, we report the first measurement of the energy dependence of the exclusive
cross sections, ete™ — BB, ete™ — BB*, and ete” — B*B* in the region from 10.63
to 11.02 GeV. The results are presented in table 5 and figure 8. The cross sections show
non-trivial behavior with several maxima and minima. They can be used in future phe-
nomenological studies to shed light on bb-quark and B® B*)-meson interactions in this
energy region.

As a byproduct, we measure at Y(55) the fraction of the events containing the Bj
mesons, fs = 0.20079060, where the error contains statistical and systematic contributions.
We measure also the visible cross sections and corresponding fractions of the events for the
BB X, BB, BB* and B*B* final states (table 8 and eq. (10.9)).
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A B and D decay channels

The B- and D-meson decay channels that are used in this analysis are listed in tables 9
and 10.

Bt — BY —

DOrt D—rnt
DOrtptg— D ntrta~
D Ort D* gt
D*Ortpta— D* ntgtn~
DS DO DD~

D+ DO DD~
DfD*0 DfD*=

D+ D0 Dt D*
T/ KT T/ K§

J/p Kyt J/p Ktr~
J/ Kot

D rntrt D "KtK—nt
D* ntgt

Table 9. Decay channels of BT and B° used in FEL

D% — Dt — Df —

K-t K-nrnt KTK—nt

K—ntn0 K ntnta®  KTK}

K- ntnta™ ngﬂ'+ KtK—ntn0

Kyrntn™ Kyntn0 KTKyntn~

Kg7r+7r_7r0 Kgﬂ+7r+7r_ K_Kgﬂ+7r+

KtK~- KtK—nt KtK ntrntn™

KTK K} Ktntm
atate™

Table 10. Decay channels of D°, D* and D used in FEL
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Figure 13. The yield of B*B* (top set of points), BB* (middle) and BB (bottom set of points)
as a function of the polar angle of the B meson. The histograms show the fit results.

B Angular analysis at Y(5S5)

As a consistency check, we measure signal yields in various intervals of the B meson polar
angle (figure 13). From the MC simulation we find that the variation of the efficiency
with cos@ can be neglected. The expected distributions for BB and BB* are sin?# and
1 + cos? 6, respectively. The data agree with these expectations well, the p-values of the
corresponding fits are 69% and 24%, respectively.

The B*B* pairs can be produced in three states: L=1,S=2; L =3,5=2; L =1,
S = 0, where L is the orbital angular momentum and S the total spin of the B*B* pair.
The expected total polar angle distribution is 1 4+ bcos? 6, with —1 < b < 1. From the fit
we find b = —0.20 4= 0.03, the p-value of the fit is 88%.

We measure the parameter ay in various intervals of cos # and do not find a significant
variation.

Currently available experimental information on the ete™ — B*B* process is insuffi-
cient to determine its production amplitudes. To determine the polarization, reconstruction
of ~v from the B* — B~ decay would be necessary.

C Fits to My, distributions at various energies

The fits to My, distributions at various energies are shown in figures 14-17.
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Figure 14. The My, distributions for the points 1 to 6 in table 5 (from left to right and from top
to bottom). Legend is the same as in figure 7.
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Figure 15. The M, distributions for the points 7 to 12 in table 5 (from left to right and from top
to bottom). Legend is the same as in figure 7.
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Figure 16. The My, distributions for the points 13 to 18 in table 5 (from left to right and from
top to bottom). Legend is the same as in figure 7.
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Figure 17. The My, distributions for the points 19 to 23 in table 5 (from left to right and from
top to bottom). Legend is the same as in figure 7.
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