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Using a data sample of 980 fb−1 collected with the Belle detector operating at the KEKB asymmetric-
energy eþe− collider, we present evidence for the Ωð2012Þ− in the resonant substructure of Ω0

c → πþðK̄ΞÞ−
(ðK̄ΞÞ− ¼ K−Ξ0 þ K̄0Ξ−) decays. The significance of the Ωð2012Þ− signal is 4.2σ after considering the
systematic uncertainties. The ratio of the branching fraction of Ω0

c → πþΩð2012Þ− → πþðK̄ΞÞ− relative to
that of Ω0

c → πþΩ− is calculated to be 0.220� 0.059ðstat:Þ � 0.035ðsyst:Þ. The individual ratios of the
branching fractions of the two isospin modes are also determined and found to be BðΩ0

c → πþΩð2012Þ−Þ ×
BðΩð2012Þ− → K−Ξ0Þ=BðΩ0

c → πþK−Ξ0Þ ¼ ð9.6� 3.2ðstat:Þ � 1.8ðsyst:ÞÞ% and BðΩ0
c → πþΩ

ð2012Þ−Þ × BðΩð2012Þ− → K̄0Ξ−Þ=BðΩ0
c → πþK̄0Ξ−Þ ¼ ð5.5� 2.8ðstat:Þ � 0.7ðsyst:ÞÞ%.

DOI: 10.1103/PhysRevD.104.052005

Several excited Ω− baryons have been observed [1]; the
latest addition was an excited Ω− state decaying into K−Ξ0

and K0
SΞ− observed by Belle in 2018 using data samples

collected at the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ resonances [2].
This new excited Ω− state is called the Ωð2012Þ− and has
a measured mass of ð2012.4� 0.7ðstat:Þ � 0.6ðsyst:ÞÞ
MeV=c2 and width of ð6.4þ2.5

−2.0ðstat:Þ � 1.6ðsyst:ÞÞ MeV.
Following the discovery of the Ωð2012Þ−, several

interpretations of the state were suggested [3–9]. The mass
and the two-body strong decays of the Ωð2012Þ− were
studied in the framework of quantum chromodynamics sum
rules [3,4], and this showed that the Ωð2012Þ− could be
interpreted as a 1P orbital excitation of the ground-stateΩ−

baryon with a spin-parity JP ¼ 3=2−. As the mass of the
Ωð2012Þ− is very close to the ðK̄Ξð1530ÞÞ− threshold, it
was interpreted as a ðK̄Ξð1530ÞÞ− hadronic molecule in
Refs. [5–9]. These hadronic molecule models predicted a
large decay width for Ωð2012Þ− → ðK̄πΞÞ−.
The three-body decay Ωð2012Þ− → ðK̄Ξð1530ÞÞ− →

ðK̄πΞÞ− has been searched for by Belle [10]. No significant
signals were found for the Ωð2012Þ− → ðK̄Ξð1530ÞÞ− →
ðK̄πΞÞ− decay, and the 90% credibility level (C.L.)

upper limit on the ratio of RðK̄πΞÞ−
ðK̄ΞÞ− ¼ BðΩð2012Þ− →

ðK̄Ξð1530ÞÞ− → ðK̄πΞÞ−Þ=BðΩð2012Þ− → ðK̄ΞÞ−Þ was
determined to be 0.119. Based on this upper limit for

the ratio RðK̄πΞÞ−
ðK̄ΞÞ− , the authors in Refs. [11,12] revisited the

Ωð2012Þ− resonance from the molecular perspective and
concluded that the experimental data were still consistent

with their molecular picture with a certain set of naturally
allowed parameters. On the other hand, the authors of
Ref. [13] conducted a dynamical calculation of pentaquark
systems with quark contents sssuū in the framework of
the chiral quark model [14] and the quark delocalization
color screening model [15,16], and concluded that the
Ωð2012Þ− is not suitable to be interpreted as a
ðK̄Ξð1530ÞÞ− molecular state.
A theoretical study of the Ωð2012Þ− resonance in the

nonleptonic weak decays Ω0
c → πþK̄Ξð1530ÞðηΩÞ →

πþðK̄πΞÞ− and πþðK̄ΞÞ− via final-state interactions of
the K̄Ξð1530Þ and ηΩ pairs has been reported [17]. The
authors found that the Ω0

c → πþðK̄πΞÞ− decay is not well
suited to study the Ωð2012Þ− because the dominant
contribution is from the Ω0

c → πþðK̄Ξð1530ÞÞ− decay at
tree level, and this will not contribute to the production of
the Ωð2012Þ−. On the other hand, they predicted that the
Ωð2012Þ− would be visible in the ðK̄ΞÞ− invariant mass
spectrum of the Ω0

c → πþðK̄ΞÞ− decay. It is clear that
observing the Ωð2012Þ− in different production mecha-
nisms can not only further confirm its existence but also
yield important information that can increase the under-
standing of its internal structure.
In this paper, we search for the Ωð2012Þ− in the decay

Ω0
c → πþΩð2012Þ− → πþðK̄ΞÞ−. We first perform the

analysis separately for the two isospin modes
(Ω0

c → πþΩð2012Þ− → πþK−Ξ0=πþK0
SΞ−) and then com-

bine them for further analysis. Throughout this paper
inclusion of charge-conjugate modes are implicitly
assumed.
This analysis is based on data collected at or near the

ϒð1SÞ, ϒð2SÞ, ϒð3SÞ, ϒð4SÞ, and ϒð5SÞ resonances by
the Belle detector [18,19] at the KEKB asymmetric-energy
eþe− collider [20,21]. The total data sample corresponds
to an integrated luminosity of 980 fb−1 [19]. The Belle
detector was a large-solid-angle magnetic spectrometer
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consisting of a silicon vertex detector, a 50-layer central
drift chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), a barrellike arrangement of
time-of-flight scintillation counters (TOF), and an electro-
magnetic calorimeter comprising CsI(TI) crystals (ECL)
located inside a superconducting solenoid coil that provides
a 1.5T magnetic field. An iron flux return comprising
resistive plate chambers located outside the coil was
instrumented to detect K0

L mesons and to identify muons.
A detailed description of the Belle detector can be found in
Refs. [18,19].
Monte Carlo (MC) simulated signal events are generated

using EvtGen [22] to optimize the signal selection criteria
and calculate the reconstruction efficiencies. eþe− → cc̄
events are simulated using PYTHIA [23], where one of the
two charm quarks hadronizes into an Ω0

c baryon. Both
Ω0

c → πþΩð2012Þ− and Ωð2012Þ− → K−Ξ0=K0
SΞ− decays

are isotropic in the rest frame of the parent particle. We also
generate the signal MC events of Ω0

c → πþK−Ξ0=πþK0
SΞ−

decays with a phase-space model to estimate the
reconstruction efficiencies of the reference modes. The
simulated events are processed with a detector simulation
based on GEANT3 [24]. Inclusive MC samples of
ϒð1S; 2S; 3SÞ decays, ϒð4SÞ → BþB−=B0B̄0, ϒð5SÞ →
Bð�Þ
ðsÞB̄

ð�Þ
ðsÞ , and eþe− → qq̄ (q ¼ u, d, s, c) at center-of-mass

(C.M.) energies of 10.520, 10.580, and 10.867 GeV
corresponding to 4 times the integrated luminosity of data
are used to optimize the signal selection criteria and to
check possible peaking backgrounds [25].
The impact parameters of the charged particle tracks,

except for those of the decay products of K0
S, Λ, and Ξ−,

measured with respect to the nominal interaction point (IP),
are required to be less than 0.2 cm perpendicular to the
beam direction and less than 1 cm parallel to it. For the
particle identification (PID) of a well-reconstructed charged
track, information from different detector subsystems,
including specific ionization in the CDC, time measure-
ment in the TOF, and the response of the ACC, is combined
to form a likelihood Li [26] for particle species i, where
i ¼ K, π, or p. Kaon candidates are defined as those with
LK=ðLK þ LpÞ > 0.8 and LK=ðLK þ LπÞ > 0.8, which is
approximately 87% efficient. For protons the requirements
are Lp=ðLp þ LKÞ > 0.2 and Lp=ðLp þ LπÞ > 0.2,
while for charged pions Lπ=ðLπ þ LKÞ > 0.2 and
Lπ=ðLπ þ LpÞ > 0.2; these requirements are approxi-
mately 99% efficient.
An ECL cluster is taken as a photon candidate if it does

not match the extrapolation of any charged track. The π0

candidates are reconstructed from two photons having
energy exceeding 30 MeV in the barrel or 50 MeV in
the end caps. The reconstructed invariant mass of the π0

candidate is required to be within 10.8 MeV=c2 of the π0

nominal mass [1], corresponding to approximately twice
the resolution (σ). To reduce the large combinatorial

backgrounds, the momentum of the π0 candidate is
required to exceed 200 MeV=c [2]. Λ candidates are
reconstructed from pπ− pairs with a production vertex
significantly separated from the IP, and a reconstructed
invariant mass within 3.5 MeV=c2 of the Λ nominal mass
[1] (∼3σ).
The Ξ0 → Λπ0 reconstruction is performed as follows.

The selected Λ candidate is combined with a π0 to form a
Ξ0 candidate, and then taking the IP as the point of origin of
the Ξ0, the sum of the Λ and π0 momenta is taken as the
momentum vector of the Ξ0 candidate. The intersection of
this trajectory with the reconstructed Λ trajectory is then
found, and this position is taken as the decay location of the
Ξ0 baryon. The π0 is then refit using this location as its
point of origin. Only those combinations with the decay
location of the Ξ0 indicating a positive Ξ0 path length of
greater than 2 cm but less than the distance between the Λ
decay vertex and the IP are retained [2]. The Ξ− candidate
is reconstructed by combining a Λ candidate with a π−. The
vertex formed from the Λ and π− is required to be at least
0.35 cm from the IP, to have a shorter distance from the IP
than the Λ decay vertex, and to signify a positive Ξ− flight
distance [2].

The K0
S candidates are first reconstructed from pairs of

oppositely charged tracks, which are treated as pions, with
a production vertex significantly separated from the aver-
age IP, and then selected using an artificial neural network
[27] based on two sets of input variables [28].
The Ξ0 and Ξ− are kinematically constrained to their

nominal masses [1], and then combined with a K− or K0
S to

form an Ωð2012Þ− candidate. Finally, the reconstructed
Ωð2012Þ− candidate is combined with a πþ to form an Ω0

c
candidate. To improve the momentum resolution and
suppress the backgrounds, a vertex fit (the IP is not
included in this vertex) is performed for the πþðK̄ΞÞ−
final state, and then χ2vertex < 20 is required, corresponding
to an efficiency exceeding 90%.
To reduce combinatorial backgrounds, especially from

B-meson decays, the scaled momentum xp ¼ p�
Ω0

c
=pmax is

required to be larger than 0.6. Here, p�
Ω0

c
is the momentum

of Ω0
c candidates in the eþe− C.M. frame, and

pmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam −M2

Ω0
c
c4

q
=c, where Ebeam is the beam

energy in the eþe− C.M. frame and MΩ0
c
is the invariant

mass of Ω0
c candidates. This criterion is optimized by

maximizing the Punzi figure of merit = S=ð3=2þ ffiffiffiffi
B

p
)

[29], where S is the number of expected Ω0
c →

πþΩð2012Þ− → πþðK̄ΞÞ− signal events from signal
MC samples, by performing a two-dimensional (2D)
maximum-likelihood fit to MððK̄ΞÞ−Þ and
MðπþΩð2012Þ−Þ distributions and assuming σðeþe− →
Ω0

c þ anythingÞ×BðΩ0
c → πþΩð2012Þ−Þ×BðΩð2012Þ− →

ðK̄ΞÞ−Þ ¼ 10 fb, and B is the number of background events
from a 2D fit from inclusive MC samples.
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Reconstructed invariant masses for Ξ0, K0
S, and Ξ−

candidates are required to be within 7.0, 7.0, and
3.5 MeV=c2 of the corresponding nominal masses [1]
(> 94% signal events are retained for each intermediate
state), respectively. These requirements are optimized using
the same method as was used for scaled momentum.
Finally, if there are multiple Ω0

c candidates in an event,
all the combinations are retained for further analysis. The
fractions of events with multiple combinations for Ω0

c →
πþΩð2012Þ− → πþK−Ξ0 and Ω0

c → πþΩð2012Þ− →
πþK0

SΞ− decays are 2.4% and 0.8%, respectively, which
are consistent with the signal MC expectations.
After applying the aforementioned event selection cri-

teria, the Dalitz plots of M2ðK−Ξ0Þ versus M2ðπþK−Þ and
M2ðK0

SΞ−Þ versus M2ðπþK0
SÞ in the Ω0

c signal region are
shown in Fig. 1, where the reconstructed invariant mass of
Ω0

c candidates is required to be within 15 MeV=c2 of the
Ω0

c nominal mass [1] (∼2.5σ).
To extract the Ωð2012Þ− signal events from Ω0

c decay,
we perform a 2D unbinned maximum-likelihood fit to
MðK−Ξ0)/MðK0

SΞ−Þ and MðπþΩð2012Þ−Þ distributions.
The 2D fitting function fðM1;M2Þ is expressed as

fðM1;M2Þ ¼ Nsig
ss s1ðM1Þs2ðM2Þ þ Nbg

sbs1ðM1Þb2ðM2Þ
þ Nbg

bsb1ðM1Þs2ðM2Þ þ Nbg
bbb1ðM1Þb2ðM2Þ;

where s1ðM1Þ and b1ðM1Þ are the signal and background
probability density functions (PDFs) for the MðK−Ξ0Þ=
MðK0

SΞ−Þ distributions, respectively, and s2ðM2Þ and
b2ðM2Þ are the corresponding PDFs for the MðπþΩ
ð2012Þ−Þ distributions. Here, Nsig

ss is the number of signal
events, Nbg

sb and Nbg
bs denote the numbers of peaking

background events in MðK−Ξ0Þ=MðK0
SΞ−Þ and MðπþΩ

ð2012Þ−Þ distributions, respectively, and Nbg
bb is the number

of combinatorial background events both forΩð2012Þ− and
Ω0

c candidates. The signal shapes [s1ðM1Þ and s2ðM2Þ] of
Ωð2012Þ− and Ω0

c candidates are described by a Breit-
Wigner (BW) function convolved with a Gaussian function
and a double-Gaussian function, respectively, and first-
order polynomial functions represent the backgrounds

[b1ðM1Þ and b2ðM2Þ]. The values of signal PDF parameters
are fixed to those obtained from the fits to the correspond-
ing simulated signal distributions. The values of the back-
ground shape parameters are allowed to float in the fit. The
one-dimensional (1D) projections of MðK−Ξ0Þ=MðK0

SΞ−Þ
in the Ω0

c signal region and MðπþΩð2012Þ−Þ in the
Ωð2012Þ− signal region from 2D fits are shown in
Fig. 2. The signal regions of Ωð2012Þ− and Ω0

c candidates
are defined as jMðK−Ξ0Þ=MðK0

SΞ−Þ −mðΩð2012Þ−Þj <
20 MeV=c2 (∼2.5σ) and jMðπþΩð2012Þ−Þ −mðΩ0

cÞj <
15 MeV=c2 (∼2.5σ), respectively, where mðΩð2012Þ−Þ
and mðΩ0

cÞ are the nominal masses of Ωð2012Þ− and Ω0
c

[1]. The numbers of fitted Ω0
c → πþΩð2012Þ− → πþK−Ξ0

and Ω0
c → πþΩð2012Þ− → πþK0

SΞ− signal events are
28.3� 8.9 and 17.9� 8.9 with statistical significances
of 4.0σ and 2.3σ, respectively. Here, the statistical signifi-
cances are defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnðL0=LmaxÞ

p
, where L0 and

Lmax are the maximized likelihoods without and with a
signal component, respectively.
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FIG. 2. The 1D projections of the 2D fits of
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SΞ−Þ and (b) MðπþΩð2012Þ−Þ distributions
for (1) Ω0

c → πþΩð2012Þ− → πþK−Ξ0 and (2) Ω0
c → πþΩ

ð2012Þ− → πþK0
SΞ− decays in data. All components are indi-

cated in the legends and described in the text.
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For Ω0
c → πþK−Ξ0 and Ω0

c → πþK0
SΞ− decays, the

MðπþK−Ξ0Þ and MðπþK0
SΞ−Þ distributions are shown in

Fig. 3, together with the fitted results. The signal shapes of
Ω0

c are described by double-Gaussian functions, where the
parameters are fixed to those obtained from the fits to the
corresponding simulated signal distributions. The back-
grounds are parametrized by first-order polynomial func-
tions. The fitted Ω0

c → πþK−Ξ0 and Ω0
c → πþK0

SΞ− signal
yields are 279� 27 and 317� 32, respectively.
The branching fraction ratios are calculated according to

the formulas,

R1 ¼
BðΩ0

c → πþΩð2012Þ−ÞBðΩð2012Þ− → K−Ξ0Þ
BðΩ0

c → πþK−Ξ0Þ

¼
Nobs

πþΩð2012Þ−ð→K−Ξ0Þ × ϵπþK−Ξ0

Nobs
πþK−Ξ0 × ϵπþΩð2012Þ−ð→K−Ξ0Þ

¼ ð9.6� 3.2ðstat:Þ � 1.8ðsyst:ÞÞ%;

and

R2 ¼
BðΩ0

c → πþΩð2012Þ−ÞBðΩð2012Þ− → K̄0Ξ−Þ
BðΩ0

c → πþK̄0Ξ−Þ

¼
Nobs

πþΩð2012Þ−ð→K0
SΞ

−Þ × ϵπþK0
SΞ

−

Nobs
πþK0

SΞ
− × ϵπþΩð2012Þ−ð→K0

SΞ
−Þ

¼ ð5.5� 2.8ðstat:Þ � 0.7ðsyst:ÞÞ%:

Here, Nobs
πþΩð2012Þ−ð→K−Ξ0Þ, N

obs
πþΩð2012Þ−ð→K0

SΞ
−Þ, N

obs
πþK−Ξ0 , and

Nobs
πþK0

SΞ
− are the fitted signal yields in the decay modes

Ω0
c → πþΩð2012Þ− → πþK−Ξ0, Ω0

c → πþΩð2012Þ− →
πþK0

SΞ−, Ω0
c → πþK−Ξ0, and Ω0

c → πþK0
SΞ−, respec-

tively; ϵπþΩð2012Þ−ð→K−Ξ0Þ, ϵπþΩð2012Þ−ð→K0
SΞ

−Þ, ϵπþK−Ξ0 , and
ϵπþK0

SΞ
− are the corresponding reconstruction efficiencies,

which are obtained from the signal MC simulations and are
listed in Table I. The systematic uncertainties are dis-
cussed below.

From these fitted signal yields and reconstruction
efficiencies, and the intermediate state branching fractions
of Ω0

c → πþΩð2012Þ− → πþK−Ξ0 and Ω0
c → πþΩ

ð2012Þ− → πþK0
SΞ− decays [1], the branching fraction

ratio BðΩð2012Þ− → K−Ξ0Þ=BðΩð2012Þ− → K̄0Ξ−Þ is
determined to be 1.19� 0.70ðstat:Þ, which is consistent
with the expectation of isospin symmetry and the previ-
ously measured value of 1.2� 0.3 by Belle [2].
Assuming BðΩð2012Þ− → K−Ξ0Þ ¼ BðΩð2012Þ− →

K̄0Ξ−Þ based on isospin symmetry, the ratio of the expected
signal yields of Ω0

c → πþΩð2012Þ− → πþK−Ξ0 and Ω0
c →

πþΩð2012Þ− → πþK0
SΞ− decays is 57.1%:42.9% after

considering the products of detection efficiency and inter-
mediate-state branching fractions ϵiBi (i ¼ 1, 2), where ϵ1
and ϵ2 are the corresponding detection efficiencies,
B1 ¼ BðΞ0 → Λπ0Þ × Bðπ0 → γγÞ, and B2 ¼ BðΞ− →
Λπ−Þ × BðK̄0 → K0

SÞ × BðK0
S → πþπ−Þ [1]. We perform

a 2D unbinned maximum-likelihood simultaneous fit to
MððK̄ΞÞ−Þ and MðπþΩð2012Þ−Þ distributions, where the
ratio of the expected signal yields of two isospin modes is
fixed to 57.1%:42.9%, and the functions used to describe
the signal and background shapes are parametrized as
before. The 1D projections of MððK̄ΞÞ−Þ in the Ω0

c signal
region andMðπþΩð2012Þ−Þ in the Ωð2012Þ− signal region
from the 2D simultaneous fit are shown in Fig. 4, corre-
sponding to a total signal yield of 46.6� 12.3. The
statistical significance of the Ωð2012Þ− signal in Ω0

c →
πþΩð2012Þ− → πþðK̄ΞÞ− decay is 4.6σ. The fitting ranges
and background shapes are the dominant systematic
uncertainties for the estimate of the signal significance.
If the background shapes are replaced by second-order
polynomial functions and fitting ranges are changed, the
Ωð2012Þ− signal significance in the simultaneous fit is
reduced to 4.2σ corresponding to a total signal yield of
44.7� 12.4. We take this value as the signal significance
with systematic uncertainties included.
The Ωð2012Þ− was first observed in data taken at the

ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ resonances [2]. In order to make
a statistically independent check of its existence, we
exclude these datasets from our sample and repeat the
fitting procedure used to produce Fig. 4. The total number
of signal events of Ω0

c → πþΩð2012Þ− → πþðK̄ΞÞ− is
38.9� 11.2 in this reduced data sample which corresponds
to an integrated luminosity of 949.5 fb−1, and the statistical
significance of the signal is 4.2σ. We prefer to use the entire

TABLE I. Summary of the fitted signal yields (Nobs) and
reconstruction efficiencies (ϵ). All the uncertainties here are
statistical only.

Mode Nobs ϵð%Þ
Ω0

c → πþΩð2012Þ− → πþK−Ξ0 28.3� 8.9 3.59
Ω0

c → πþΩð2012Þ− → πþK0
SΞ− 17.9� 8.9 7.68

Ω0
c → πþK−Ξ0 279� 27 3.41

Ω0
c → πþK0

SΞ− 317� 32 7.41
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FIG. 4. The 1D projections of the 2D simultaneous fit of
(a) MððK̄ΞÞ−Þ and (b) MðπþΩð2012Þ−Þ distributions in data. All
components are indicated in the legends and described in the text.
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dataset for our investigation of the branching fractions
of the Ω0

c.
The ratio of the branching fraction of Ω0

c →
πþΩð2012Þ− → πþðK̄ΞÞ− relative to that of Ω0

c → πþΩ−

decay is also calculated from the following formula:

R3 ¼
BðΩ0

c → πþΩð2012Þ−Þ × BðΩð2012Þ− → ðK̄ΞÞ−Þ
BðΩ0

c → πþΩ−Þ

¼ Nobs
sig: × ϵπþΩ−

Nobs
πþΩ− × ðf1 × ϵ1 × B1 þ f2 × ϵ2 × B2Þ

¼ 0.220� 0.059ðstat:Þ � 0.035ðsyst:Þ;

whereNobs
sig: is the fitted signal yield from the simultaneous fit

in the decay Ω0
c → πþΩð2012Þ− → πþðK̄ΞÞ−; ϵ1 and ϵ2 are

the corresponding reconstruction efficiencies from the signal
MC simulations; according to isospin symmetry, f1 ¼ BðΩ
ð2012Þ− → K−Ξ0Þ=BðΩð2012Þ− → ðK̄ΞÞ−Þ ¼ 0.5, f2¼
BðΩð2012Þ−→ K̄0Ξ−Þ=BðΩð2012Þ−→ ðK̄ΞÞ−Þ¼0.5; B1

andB2 are thecorrespondingproductsof secondarybranching
fractions defined above; Nobs

πþΩ− ¼ 691� 29 and ϵπþΩ− ¼
10.08% are the number of signal events and detection
efficiency of Ω0

c → πþΩ− decay taken from Ref. [30].
There are several sources of systematic uncertainties for

the measurements of branching fraction ratios R1, R2, and
R3 as listed in Table II, including detection-efficiency-
related uncertainties, the statistical uncertainty of the MC
efficiency, the modeling of MC event generation, the
branching fractions of intermediate states, the Ωð2012Þ−
resonance parameters, the uncertainty in the Ξ0 mass (as
evaluated from the difference between the reconstructed
value and the world average value) as well as the overall fit
uncertainty.
The detection-efficiency-related uncertainties include

those for tracking efficiency (0.35% per track), PID
efficiency (1.2% per kaon, 1.0% or 1.2% per pion depend-
ing on the specific decay mode), K0

S selection efficiency
(1.7%), as well as π0 reconstruction efficiency (2.25%). For
the measurements of R1 and R2, the detection-efficiency-
related sources can cancel. For the measurement ofR3, the
common sources of systematic uncertainties such as Λ
selection cancel; to determine the total detection-efficiency-

related uncertainties, the above individual uncertainties
from different reconstructed modes (σi=πþΩ− ) are added
using the following standard error propagation formula

σR3

DER ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣiðWi × σiÞ2
ðΣiWiÞ2

þ σ2πþΩ−

s
;

where Wi (W1 ¼ f1 × ϵ1 × B1, W2 ¼ f2 × ϵ2 × B2) is
the weight factor for the ith (i ¼ 1, 2) mode of
Ω0

c → πþΩð2012Þ− → πþðK̄ΞÞ− decays. Assuming these
sources are independent and adding them in quadrature, the
final uncertainty related to the reconstruction efficiency in
the measurement of R3 is 2.2%.
The MC statistical uncertainties are all 1.0% or less. We

assume that both Ω0
c → πþΩð2012Þ− and Ωð2012Þ− →

K−Ξ0=K0
SΞ− decays are isotropic in the rest frame of the

parent particle, and a phase space model is used to generate
signal events. Since the signal efficiency is independent
of the decay angular distributions of πþ in Ω0

c C.M. and
K−=K0

S in Ωð2012Þ− C.M., the model-dependent uncer-
tainty has negligible effect on efficiency. For the measure-
ment of R3, the uncertainties from the BðΞ0 → Λπ0Þ,
BðΞ− → Λπ−Þ, BðK0

S → πþπ−Þ, and Bðπ0 → γγÞ are
0.012%, 0.035%, 0.072%, and 0.035% [1], respectively,
which are small and neglected. The uncertainties related to
the mass and width of Ωð2012Þ− resonance are considered
as different sources and are estimated by changing the
values of resonance mass and width by �1σ and refitting
[2]. The largest differences compared to the nominal fit
results are added in quadrature as systematic uncertainty.
The uncertainty in the Ξ0 mass is estimated by comparing
the signal yields ofΩ0

c→πþΩð2012Þ−→πþK−Ξ0=πþðK̄ΞÞ−
for the case where the reconstructed Ξ0 mass is fixed at the
found peak value versus the case where the mass is fixed at
the nominal mass [1].

The systematic uncertainties associated with the fit
range, background shape, and mass resolution are consid-
ered as follows. To consider the uncertainty due to mass
resolution, we enlarge the mass resolution of signal by 10%
and take the difference in the number of signal events as the
systematic uncertainty. The order of the background poly-
nomial is replaced by a higher-order Chebyshev function
and the fit range is changed. The largest deviation com-
pared to the nominal fit results is taken as the systematic
uncertainty. For each mode, all the above uncertainties are
summed in quadrature to obtain the total systematic
uncertainty due to the fit. Finally, the fit uncertainties of
signal and reference modes are added in quadrature as
total fit uncertainties in the measurements of branching
fraction ratios.
We estimate the uncertainty in R3 associated with the

ratio of the expected signal yields of the Ω0
c →

πþΩð2012Þ− → πþK−Ξ0 and Ω0
c → πþΩð2012Þ− →

πþK0
SΞ− decays by constraining the ratio of

TABLE II. Relative systematic uncertainties (%) on the mea-
surements of R1, R2, and R3.

Sources R1 R2 R3

Detection-efficiency-related � � � � � � 2.2
MC statistics 1.0 1.0 1.0
Ωð2012Þ resonance parameters 14.3 9.2 12.8
Ξ0 mass 4.2 � � � 3.2
Fit 10.4 9.9 7.8
Ratio � � � � � � 2.3
Sum in quadrature 18.2 13.6 15.7
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BðΩð2012Þ− → K−Ξ0Þ:BðΩð2012Þ− → K̄0Ξ−Þ to 1.2∶1
[2] rather than taking the value of 1∶1 which assumes
exact isospin symmetry. The resultant change in R3 is
2.3%, which is taken as the systematic uncertainty.
Assuming all the sources are independent and adding

them in quadrature, the total systematic uncertainties are
obtained. All the systematical uncertainties are summarized
in Table II.
In summary, using the entire data sample of 980 fb−1

integrated luminosity collected with the Belle detector, we
search for the Ωð2012Þ− resonance in Ω0

c → πþΩ
ð2012Þ− → πþðK̄ΞÞ−. In Ω0

c → πþΩð2012Þ− → πþK−Ξ0,
we find evidence for the Ωð2012Þ− in the K−Ξ0 invariant
mass spectrum with a statistical significance of 4.0σ.
In Ω0

c → πþΩð2012Þ− → πþK0
SΞ−, a marginal Ωð2012Þ−

signal can be seen in the K0
SΞ− invariant mass spectrum

with a statistical significance of 2.3σ. We perform a 2D
simultaneous fit to the two isospin decay modes, and
the significance of Ωð2012Þ− in Ω0

c → πþΩð2012Þ− →
πþðK̄ΞÞ− is 4.2σ, including the systematic uncertainties.
The ratios of the branching fractions BðΩ0

c→
πþΩð2012Þ−Þ × BðΩð2012Þ−→K−Ξ0Þ=BðΩ0

c→πþK−Ξ0Þ,
BðΩ0

c → πþΩð2012Þ−Þ× BðΩð2012Þ− → K̄0Ξ−Þ=BðΩ0
c →

πþK̄0Ξ−Þ, and BðΩ0
c → πþΩð2012Þ−Þ × BðΩð2012Þ− →

ðK̄ΞÞ−Þ=BðΩ0
c → πþΩ−Þ are measured to be ð9.6�

3.2ðstat:Þ�1.8ðsyst:ÞÞ%, ð5.5�2.8ðstat:Þ�0.7ðsyst:ÞÞ%,
and 0.220� 0.059ðstat:Þ � 0.035ðsyst:Þ, respectively.
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