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Using 980.6 fb−1 of data collectedwith theBelle detector operating at theKEKBasymmetric-energy eþe−

collider, we present a measurement of the branching fraction of the singly Cabibbo-suppressed decay
Λþ
c → pω. A clear Λþ

c signal is observed for Λþ
c → pω with a statistical significance of 9.1 standard

deviations, and we measure the ratio of branching fractions BðΛþ
c → pωÞ=BðΛþ

c → pK−πþÞ ¼
ð1.32� 0.12ðstatÞ � 0.10ðsystÞÞ × 10−2, from which we infer the branching fraction BðΛþ

c → pωÞ ¼
ð8.27� 0.75ðstatÞ � 0.62ðsystÞ � 0.42ðrefÞÞ × 10−4. The first quoted uncertainty is statistical, the second
systematic, and the third from the reference mode Λþ

c → pK−πþ.

DOI: 10.1103/PhysRevD.104.072008

I. INTRODUCTION

Charmed mesons and baryons are copiously produced in
the B-factory experiment, providing an excellent arena for
understanding quantum chromodynamics (QCD) with
transitions involving charm quark. SUð3ÞF flavor sym-
metry [1,2] and QCD dynamical models [3–5] provide
theoretical estimates of charmed baryon decays. The former
relies on experimental results as the input; the latter models
often make different predictions for unknown baryon wave
functions and nonfactorizable contributions, which makes
it difficult to perform definitive tests between theoretical
models.
Experimentally, the investigation of charmed baryon

decays is more difficult than for charmed mesons due to
their smaller production rate. Only the lowest-lying charmed
baryon Λþ

c decays weakly. Since it was first discovered [6],
many hadronic weak decays, mostly Cabibbo favored, have
been observed [7]. In contrast, the knowledge of Cabibbo-
suppressed decays has been limited. Bothmeasurements and
theoretical models point to nonfactorizable contributions,
such as W exchange, having a sizable impact on individual
decay rates as well as the total widths [8–11].

Recently, the LHCb Collaboration reported the first
observation of a singly Cabibbo-suppressed (SCS) decay
Λþ
c → pωð→ μþμ−Þ with a statistical significance of five

standard deviations (σ). They measured a branching frac-
tion value of BðΛþ

c → pωÞ ¼ ð9.4� 3.9Þ × 10−4 [12].
Theoretical predictions exist, for this particular decay,
based either on SUð3ÞF flavor symmetry [13,14] or
QCD dynamical model predictions [15].
In this analysis, we measure the branching fraction of the

Λþ
c → pωð→ πþπ−π0Þ channel for the first time at Belle,

taking advantage of the large value of Bðω → πþπ−π0Þ [7].
To improve the measurement precision, we measure the
ratio of the branching fractions of this SCS process with
respect to the Λþ

c → pK−πþ reference decay mode:

BðΛþ
c → pωÞ

BðΛþ
c → pK−πþÞ ¼

Ndata
sig × ϵMC

ref

Ndata
ref × ϵMC

sig × B0 ; ð1Þ

where Ndata and ϵMC are the number of fitted Λþ
c events in

data and the detection efficiency, respectively; the subscript
“ref” refers to the reference mode and “sig” to the signal
mode; and B0 ¼ Bðω → πþπ−π0Þ × Bðπ0 → γγÞ [7].

II. THE DATA SAMPLE AND THE BELLE
DETECTOR

Measurement of the branching fraction of Λþ
c → pω is

based on a data sample taken at or near the ϒð1SÞ, ϒð2SÞ,
ϒð3SÞ, ϒð4SÞ, and ϒð5SÞ resonances collected with the
Belle detector at the KEKB asymmetric-energy eþe−
collider [16], corresponding to an integrated luminosity
of 980.6 fb−1. The Belle detector is a large-solid-angle
magnetic spectrometer that consists of a silicon vertex
detector (SVD), a 50-layer central drift chamber (CDC), an
array of aerogel threshold Cherenkov counters (ACC), a
barrel-like arrangement of time-of-flight scintillation
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counters (TOF), and an electromagnetic calorimeter com-
prised of CsI(Tl) crystals (ECL) located inside a super-
conducting solenoid coil that provides a 1.5Tmagnetic field.
An iron flux return located outside of the coil is instrumented
to detect K0

L mesons and to identify muons (K0
L and muon

sub-detector). The detector is described in detail else-
where [17].
A signal Monte Carlo (MC) sample of eþe− → cc̄; cc̄ →

Λþ
c X with X denoting anything; Λþ

c → pω with
ω → πþπ−π0, π0 → γγ is used to optimize the selection
criteria and estimate the reconstruction and selection effi-
ciency. Events are generated with PYTHIA [18] and EvtGen

[19], and decay products are propagated by GEANT3 [20] to
simulate the detector performance. Charge-conjugate modes
are also implied unless otherwise stated throughout this
paper.
Inclusive MC samples of ϒð4SÞ → BþB−=B0B̄0,

ϒð5SÞ → Bð�Þ
s B̄ð�Þ

s , eþe− → qq̄ (q ¼ u, d, s, c) atffiffiffi
s

p ¼ 10.52, 10.58, and 10.867 GeV, and ϒð1S; 2S; 3SÞ
decays, corresponding to four times the integrated lumi-
nosity of each data set, are used to characterize the
backgrounds [21].

III. EVENT SELECTION

The Λþ
c candidates are reconstructed in two decay

modes, Λþ
c → pK−πþ and Λþ

c → pω with ω → πþπ−π0,
π0 → γγ, corresponding to the reference and signal modes,
respectively. Final-state charged particles, p, K, and π, are
selected using the likelihood information derived from
the charged-hadron identification systems (ACC, TOF,
and CDC) into a combined likelihood, Rðhjh0Þ ¼ LðhÞ=
ðLðhÞ þ Lðh0ÞÞ where h and h0 are π, K, and p as
appropriate [22]. The protons are required to have
RðpjπÞ > 0.9 and RðpjKÞ > 0.9, charged kaons to have
RðKjpÞ > 0.4 and RðKjπÞ > 0.9, and charged pions to
have RðπjpÞ > 0.4 and RðπjKÞ > 0.4. A likelihood ratio
for e and h identification, RðeÞ, is formed from ACC,
CDC, and ECL information [23], and is required to be less
than 0.9 for all charged tracks to suppress electrons. For the
typical momentum range of our signal decay, the identi-
fication efficiencies of p, K, and π are 82%, 70%, and 97%,
respectively. Probabilities of misidentifying h as h0,
Pðh → h0Þ, are estimated to be 3% [Pðp → πÞ], 7%
[Pðp → KÞ], 10% [PðK → πÞ], 2% [PðK → pÞ], 5%
[Pðπ → KÞ], and 1% [Pðπ → pÞ]. Furthermore, for each
charged-particle track, the distance of closest approach with
respect to the interaction point along the direction opposite
the eþ beam (z axis) and in the transverse rϕ plane is
required to be less than 2.0 and 0.1 cm, respectively.
In addition, at least one SVD hit for each track is required.
For Λþ

c → pK−πþ, a common vertex fit is performed on
Λþ
c candidates and the corresponding χ2vtx value is required

to be less than 40 to reject the combinatorial background.
We require a scaled momentum of xp > 0.53 to suppress

the background, especially from B-meson decays, where
xp ¼ p�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
cm=4 −M2

p
[24], and Ecm is the center-of-

mass (CM) energy, p� and M are the momentum and
invariant mass, respectively, of the Λþ

c candidates in the
CM frame. All of these optimized selection criteria are the
same as those in our previous publication [25].
An ECL cluster not matching any track is identified as a

photon candidate. To reject neutral hadrons, the sum of the
energy deposited in the central 3 × 3 square of ECL cells is
required to be at least 90%of the total energy deposited in the
enclosing 5 × 5 square of cells for each photon candidate.
Moreover, the energy of photon candidates must exceed 50
and 70 MeV in the barrel (−0.63 < cos θ < 0.85) and end
cap (−0.91 < cos θ < −0.63 or 0.85 < cos θ < 0.98)
regions of the ECL, respectively, where θ is the inclination
angle with respect to the z axis. A π0 candidate is recon-
structed by two photons and 0.08 < MðγγÞ < 0.18 GeV=c2

is required. We perform a mass-constrained (1C) fit on the
two photons to require their mass at the π0 nominal mass [7]
and the corresponding χ21C value must be less than 10. For
ω → πþπ−π0, we place a requirement on the momentum of
ω candidates in the CM frame: P�ðωÞ > 0.9 GeV=c. An ω
candidate and a proton candidate are combined to form aΛþ

c
candidate. A common vertex fit is performed for the three
charged tracks,p and π�, and the requirement of χ2vtx < 15 is
set to suppress background events without a commonvertex,
especially due to long-lived particles such as K0

S and Σþ.
Again, xp > 0.53 is required forΛþ

c → pω candidates.With
the above requirements, ∼8% of events have multiple Λþ

c
candidates. We select the best Λþ

c candidate based on the
minimum χ21C value; the efficiency for this best candidate
selection is around 70%. All the above selection criteria are
based on an optimization with a maximum figure-of-merit
S=

ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
, where S and B are the numbers of signal and

background events, respectively, expected in the Λþ
c signal

region [ð2.25; 2.32Þ GeV=c2, corresponding to �2.5σ
around the nominal Λþ

c mass [7]]. S is estimated via
Ndata

ref ×ϵ
MC
sig ×B

0

ϵMC
ref

× BðΛþ
c →pωÞ

BðΛþ
c →pK−πþÞ, where BðΛþ

c → pωÞ is assumed

to be 9.4 × 10−4 [12], while the other parameters have been
introduced in Eq. (1). Likewise, B is the number of back-
ground events obtained from inclusive MC samples normal-
ized to the signal region.
From the study of inclusive MC samples [21], there are

several peaking backgrounds from the decaysΛþ
c → K0

Spπ
0

with K0
S → πþπ−, Λþ

c → Σþπþπ− with Σþ → pπ0, Λþ
c →

Λπþπ0 with Λ → pπ−, and Λþ
c → Δþþπ−π0 with

Δþþ → pπþ, which have the same final-state topology as
the signal. However, owing to the long lifetime of K0

S, Σþ,
and Λ, many of the decay vertices of these particles are
displaced by several centimeters from the main vertex.
Therefore, the χ2vtx requirement suppresses most of these
background events, subsequently leaving no K0

S nor Σþ

peaks in the Mðπþπ−Þ and Mðpπ0Þ distributions,
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respectively. In theMðpπ−Þ spectrum, aΛ signal is seen and
an optimized requirement of jMðpπ−Þ−mðΛÞj>
2.756MeV=c2 (≈3σ) is placed, where mðΛÞ is the nominal
mass of Λ [7]. There is a small Δþþ signal observed in the
MðpπþÞ distribution. Due to the broad width of the Δþþ
(∼118 MeV) [7], no requirement on MðpπþÞ is imposed.
Since such abackground canbe describedby theω sidebands,
a simultaneous fit to the MðpωÞ distributions from the
selected events in the ω signal region and the normalized
ω sidebands is used to handle the Δþþ background in
extracting theΛþ

c signal events, as introduced in the following
section.

IV. EFFICIENCY ESTIMATIONAND FIT RESULTS

To measure the ratio of the branching fractions,
BðΛþ

c → pωÞ=BðΛþ
c → pK−πþÞ, we first determine the

yields of Λþ
c → pK−πþ and Λþ

c → pω by fitting the
corresponding invariant mass distributions. Figure 1 shows
the MðpK−πþÞ distribution overlaid with the fit result.
A clear Λþ

c signal is seen and we fit the MðpK−πþÞ
distribution using a binned maximum likelihood fit with a
bin width of 3 MeV=c2. A sum of two Gaussian functions
with a common mean value is used to model the signal
events and a second-order polynomial is used to model the
background events. The parameters of the signal and
background shapes are free in the fit. The reduced χ2

value of the fit is χ2=ndf ¼ 87=82 ¼ 1.06 and the fitted
number of signal events is 1476200� 1560, where ndf is
the number of degrees of freedom and the uncertainty is
statistical only. The signal efficiency for this reference
mode is estimated to be ð14.06� 0.01Þ% via a Dalitz-plot
method [26]; the details can be found in Ref. [25].

Since the decay Λþ
c → pη with η → γγ has been well

measured [25], the same transition Λþ
c → pη, followed by

the decay η → πþπ−π0, having the same final-state top-
ology as our signal mode, is taken as a control channel to
validate the event selection criteria. With the final selection
criteria, a clear η signal is observed in the Mðπþπ−π0Þ
distribution and the η signal region is defined as
0.535 < Mðπþπ−π0Þ< 0.561 GeV=c2. In the MðpηÞ dis-
tribution, a significant Λþ

c signal is observed and a one-
dimensional fit is performed on the MðpηÞ distribution
using an unbinned maximum-likelihood method. A sum of
two Gaussian functions with the same mean value is used to
model the Λþ

c signal and a second-order polynomial
function is used to model the background, with all
parameters floated in the fit. The determined number of
Λþ
c signal events is 819.9� 78.6 and the signal efficiency

is ð1.48� 0.01Þ%, as determined from a signal MC
sample. Therefore, the branching ratio of Λþ

c → pη
with respect to the reference mode Λþ

c → pK−πþ is
BðΛþ

c →pηÞ
BðΛþ

c →pK−πþÞ ¼ 0.0233� 0.0022, resulting in the branching

fraction BðΛþ
c → pηÞ ¼ ð1.46� 0.14Þ × 10−3, where the

uncertainty is statistical only. Comparing with the result
of a previous dedicated measurement, BðΛþ

c → pηÞ ¼
ð1.42� 0.05ðstatÞ � 0.11ðsystÞÞ × 10−3 [25], we find they
are consistent with each other.
With the final selection criteria applied, the πþπ−π0

invariant mass distribution is displayed in Fig. 2. There is a
clear ω signal and a fit to the sum of a polynomial and a
signal function is performed using an unbinned maximum-
likelihood method. The ω signal is described by a Breit-
Wigner (BW) function convolved with a double Gaussian
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FIG. 1. Fit to the invariant mass distribution of pK−πþ from
data. Black dots with error bars represent the data; the pink
dashed line, the blue dash-dotted line, the green long-dashed line,
and the red solid line represent the background contribution, the
core Gaussian, tail Gaussian, and the total fit, respectively.
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FIG. 2. A fit to the πþπ−π0 invariant mass distribution is
shown. The black dots with error bars represent the data; the red
solid line represents the total fitted result; the blue dashed line
represents the signal shape; and the magenta dashed-dotted line
represents the fitted background. The region between the two
violet vertical lines is regarded as the signal region and the two
regions between the pairs of green vertical lines are regarded as
the ω sideband regions.
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function to represent the detector resolution. The mass and
width of the BW function are set to the ω world average
value [7], the means are constrained to be the same for the
double Gaussian function, and the remaining parameters
are free. A third-order polynomial function is used to model
the combinatorial background. The fit result is shown in
Fig. 2, along with the pulls ðNdata − NfitÞ=σdata, where σdata
is the error onNdata. The ω signal region is determined to be
0.75 to 0.81 GeV=c2 in the Mðπþπ−π0Þ spectrum, corre-
sponding to a 92% selection efficiency, and the sideband
regions of ω are set to be ð0.64; 0.70Þ GeV=c2
and ð0.86; 0.92Þ GeV=c2.
TheMðpωÞ distribution for events in the ω signal region

and the normalized ω sideband regions are shown in Fig. 3.
There is a clear Λþ

c signal observed and we perform a
simultaneous extended unbinned maximum-likelihood fit
to extract the Λþ

c signal yield. The function for an event in
the ω signal region (SR) is described as

FsrðMiÞ ¼ nsPsðMiÞ þ nbPbðMiÞ
þ fnorm½nssbPs

sbðMiÞ þ nbsbP
b
sbðMiÞ� ð2Þ

and that for an event in the ω sidebands (SB) is

FsbðMjÞ ¼ nssbP
s
sbðMjÞ þ nbsbP

b
sbðMjÞ; ð3Þ

where Ps and Pb are probability density functions (PDFs)
of the Λþ

c signal and background for the MðpωÞ distribu-
tion with the events in SR, respectively; Ps

sb and Pb
sb are

the Λþ
c signal and background PDFs for the MðpωÞ

distribution with the events in SB; ns, nb, nssb, and
nbsb are the corresponding numbers of the fitted events;
fnorm ¼ Ssb=Ssr ¼ 0.428 is the normalization factor

determined by fitting the Mðπþπ−π0Þ distribution (Ssb
and Ssr are the numbers of the fitted background events
in definedω sidebands and signal region, respectively). The
extended likelihood function is

L ¼ e−nsr

Nsr!

YNsr

i

FsrðMiÞ
e−nsb

Nsb!

YNsb

j

FsbðMjÞ; ð4Þ

where nsr ¼ ns þ nb þ fnormðnssb þ nbsbÞ, nsb ¼ nssb þ nbsb,
and Nsr and Nsb are the number of events in SR and SB.
The Ps and Ps

sb are both a sum of two Gaussian functions
with the same mean value. The parameters ofPs and Ps

sb are
kept the same and floated. The Pb and Pb

sb are described by
second-order and third-order polynomial functions, respec-
tively. All parameters of the background functions are free.
The fit result and pulls are shown in Fig. 3. After fitting,
ns ¼ 1829� 168 and nssb ¼ 39� 14 are obtained. The
χ2=ndf for the fit is 44=41 ¼ 1.07 for the fit. The statistical
significance is evaluated with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnðL0=LmaxÞ

p
, where L0

is the maximized-likelihood value with the number of
signal events set to zero, and Lmax is the nominal maxi-
mized-likelihood value. We obtain 9.1σ as the statistical
significance.
With all event selections, the MðpωÞ distribution from

signal MC sample is obtained and signal events of Λþ
c are

determined by fitting theMðpωÞ distribution. We use a sum
of two Gaussian functions with the same mean value to
model the signal and a second-order polynomial function to
model the background. All parameters of the signal and
background functions are free. The efficiency of our signal
decay is obtained by the ratio of the number of fitted signal
events in theMðpωÞ distribution to that of generated events
from signalMC sample, which is ð1.50� 0.01Þ%, where the
uncertainty is statistical only. The branching ratio is thus
BðΛþ

c → pωÞ=BðΛþ
c → pK−πþÞ ¼ ð1.32� 0.12Þ × 10−2,

where the uncertainty is statistical.

V. SYSTEMATIC UNCERTAINTIES

Since the branching fraction is obtained from a ratio of
quantities in Eq. (1), some systematic uncertainties cancel.
The sources of systematic uncertainties include the fits of the
reference and signal modes, particle identification (PID),
photon efficiency, the uncertainties of branching fractions for
the ω → πþπ−π0 and π0 → γγ decays, and the statistics of
the signal MC sample.
The systematic uncertainty from the fit of theMðpK−πþÞ

spectrum is estimated by modifying the signal and back-
ground functions, binwidth, and the fit range. To evaluate the
uncertainty from the signal function, the signal shape is fixed
to that from the fit to the MC sample. The uncertainty from
the background shape is assessed by using a first-order
polynomial. Furthermore, the bin width is varied from 2 to
4 MeV=c2, and the fit range of the invariant mass spectrum
adjusted to estimate the uncertainties from binning and

FIG. 3. A simultaneous fit to the pω invariant mass distribution
in the ω signal region, and the normalized ω sideband regions is
shown. The black dots with error bars represent the data, the red
solid line represents the total fitted result, the blue dashed line
represents the signal shape, the magenta long-dashed line
represents the fitted sideband line shape, and the green filled
region is from the normalized sideband regions.
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fit range. The fractional difference in measured branching
ratios, 2.1%, is taken as the uncertainty. The systematic
uncertainty from the fit of theMðpωÞ distribution is estimated
by changing the signal and background line shapes, the fit
range, and the fit method. The signal shape is changed from
the double Gaussian function to a single Gaussian function,
and the background line shape is changed from the second-
order polynomial function to a third-order polynomial
function, as well as enlarging the fit range. In addition, a
two-dimensional unbinned maximum-likelihood fit of the
[MðpωÞ,Mðπþπ−π0Þ] distribution is performed, to evaluate
the fit method uncertainty, and the fractional difference in the
branching ratio, 5.2%, is taken as the systematic uncertainty.
Systematic uncertainties from PID efficiencies of the

p and πþ cancel approximately, resulting in negligible
amount of systematic uncertainty in the ratio. Systematic
uncertainties of 1.6% and 1.3% are assigned for the K− and
π− identification efficiencies, respectively, calculated using a
D�þ → D0πþ with D0 → K−πþ sample. The total system-
atic uncertainty from PID is 2.9%. The systematic uncer-
tainty due to tracking efficiency cancels in the ratio. Based on
a study of radiative Bhabha events, a systematic uncertainty
of 2.0% is assigned to the photon efficiency for each photon,
and the total systematic uncertainty from photon recon-
struction is thus 4.0%. Since the signal efficiency is inde-
pendent of the decay angular distribution of proton in theΛþ

c
rest frame, the model-dependent uncertainty has negligible
effect on efficiency. The systematic uncertainty fromBðω →
πþπ−π0Þ × Bðπ0 → γγÞ is 0.7% [7], and that from the size of
the signal MC sample is estimated to be 0.8% forΛþ

c → pω.
These systematic uncertainties are summarized in

Table I, where a total systematic uncertainty of 7.6% is
obtained by assuming all uncertainties are independent and
adding them in quadrature.

VI. RESULT

We measure the ratio of branching fractions

BðΛþ
c → pωÞ

BðΛþ
c → pK−πþÞ ¼ ð1.32� 0.12� 0.10Þ × 10−2: ð5Þ

Using BðΛþ
c → pK−πþÞ ¼ ð6.28� 0.32Þ × 10−2 [7], we

obtain the branching fraction:

BðΛþ
c → pωÞ ¼ ð8.27� 0.75� 0.62� 0.42Þ × 10−4; ð6Þ

where the first uncertainty is statistical, the second sys-
tematic, and the third from the reference mode Λþ

c →
pK−πþ. This result is consistent with the LHCb result
ð9.4� 3.9Þ × 10−4 [12], and agrees with the theoretical
predictions of ð11.4� 5.4Þ × 10−4 [13] and ð6.3� 3.4Þ ×
10−4 [14] within uncertainties based on the SUð3ÞF flavor
symmetry. However, our result contradicts the QCD
dynamical model prediction of ð3.4 − 3.8Þ × 10−4 [15].

VII. CONCLUSION

To conclude, we perform a measurement of the decay
Λþ
c → pωwith the fullBelle dataset for the first time atBelle.

A Λþ
c signal is observed in the MðpωÞ distribution

with a statistical significance of 9.1 standard deviations.

The measured branching ratio is BðΛþ
c →pωÞ

BðΛþ
c →pK−πþÞ ¼ ð1.32�

0.12ðstatÞ � 0.10ðsystÞÞ × 10−2. With the independently
measured value of BðΛþ

c → pK−πþÞ [7], we extract a
branching fraction of BðΛþ

c →pωÞ¼ ð8.27�0.75ðstatÞ�
0.62ðsystÞ�0.42ðrefÞÞ×10−4, where the uncertainties are
statistical, systematic, and from BðΛþ

c → pK−πþÞ, respec-
tively. The measured result is consistent with the LHCb
result [12] but with a considerably improved precision.
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