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We report a systematic measurement of cumulants, Cn, for net-proton, proton, and antiproton multiplicity
distributions, and correlation functions, κn, for proton and antiproton multiplicity distributions up to the fourth
order in Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV. The Cn and κn

are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, y, and transverse
momentum, pT . The data were taken during the first phase of the Beam Energy Scan (BES) program (2010–2017)
at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity
(|y| < 0.5) and transverse momentum 0.4 < pT < 2.0 GeV/c, using the STAR detector at RHIC. We observe
a nonmonotonic energy dependence (

√
sNN = 7.7–62.4 GeV) of the net-proton C4/C2 with the significance of

3.1σ for the 0–5% central Au+Au collisions. This is consistent with the expectations of critical fluctuations
in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with

√
sNN .

For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation
function, κ2, of protons and antiprotons, which are mainly due to the effects of baryon number conservation.
Furthermore, it is found that the four-particle correlation function, κ4, of protons plays a role in determining
the energy dependence of proton C4/C1 below 19.6 GeV, which cannot be understood by the effect of baryon
number conservation.

DOI: 10.1103/PhysRevC.104.024902

I. INTRODUCTION

The main goal of the Beam Energy Scan (BES) program at
the BNL Relativistic Heavy Ion Collider (RHIC) is to study
the QCD phase structure [1,2]. This is expected to lead to
the mapping of the phase diagram for strong interactions in
the space of temperature (T ) versus baryon chemical po-
tential (μB). Both theoretically and experimentally, several
advancements have been made towards this goal. Lattice QCD
calculations have established that at high temperatures there
occurs a crossover transition from hadronic matter to a de-
confined state of quarks and gluons at μB = 0 MeV [3].
Experimental data from RHIC and the Large Hadron Col-
lider (LHC) have provided evidence of this matter with quark
and gluon degrees of freedom called the quark-gluon plasma
(QGP) [4–7]. The QGP has been found to hadronize into a
gas of hadrons, which undergoes chemical freeze-out (inelas-
tic collisions cease) [8] at a temperature close to the lattice
QCD-estimated quark-hadron transition temperature at μB =
0 MeV [9,10]. A suite of interesting results from the BES
program indicate a change of equation of state of QCD mat-
ter, with collision energy from partonic-interaction-dominated
matter at higher collision energies to a hadronic-interaction
regime at lower energies. These include the observations of
breakdown in the number of constituent-quark scaling of the
elliptic flow at lower

√
sNN [11], nonmonotonic variation of

the slope of the directed flow for protons and net protons at
midrapidity as a function of

√
sNN [12], nuclear modification

factor changing values from smaller than unity to larger than
unity at high pT as we go to lower

√
sNN [13], and finite to

vanishing values of the three-particle correlations with respect
to the event plane [14] as we go to lower

√
sNN .

The QCD phase structure at finite temperature and baryon
chemical potential has been extensively studied by various
QCD-based model calculations, such as the Dyson-Schwinger
equation (DSE) method [15–19], functional renormalization
group (FRG) [20], Nambu-Jona-Lasinio (NJL) [21], Polyakov
Nambu-Jona-Lasinio (PNJL) [22–24], and other effective

models [25,26]. One of the most important studies of the
QCD phase structure relates to the first-order phase boundary
and the expected existence of the critical point (CP) [27–32].
This is the end point of a first-order phase boundary between
quark-gluon and hadronic phases [33,34]. Experimental con-
firmation of the CP would be a landmark of exploring the
QCD phase structure. Previous studies of higher-order cu-
mulants of net-proton multiplicity distributions suggest that
the possible CP region is unlikely to be below μB = 200
MeV [35], which is consistent with the theoretical findings
[19,20,29,31,36]. The versatility of the RHIC machine has
permitted the colliding energies of ions to be varied below the
injection energy of

√
sNN = 19.6 GeV [37], and thereby the

RHIC BES program provides the possibility to scan the QCD
phase diagram up to μB = 420 MeV with the collider mode,
andμB = 720MeVwith the fixed-target mode [2,38]. This, in
turn, opens the possibility to find the experimental signatures
of a first-order phase transition and the CP [39,40].

Higher-order cumulants of the distributions of conserved
charge, such as net-baryon (B), net-charge (Q), and net-
strangeness (S) numbers, are sensitive to the QCD phase
transition and CP [41–51]. The signatures of conserved-
charge fluctuations near CP have been studied by various
model calculations [46,47,52–65]. However, these model cal-
culations are based on the assumption of thermal equilibrium
with a static and infinite medium. In heavy-ion collisions,
finite-size and time effects will put constraints on the sig-
nificance of the signals [66,67]. A theoretical calculation
suggests the nonequilibrium correlation length ξ ≈ 2–3
fm for heavy-ion collisions [68]. Dynamical modeling of
heavy-ion collisions with the physics of a critical point and
nonequilibrium effects is in progress [69–73]. The signatures
of a phase transition or a CP are detectable if they survive the
evolution of the system [74]. Due to a stronger dependence
on the correlation length (ξ ) [46–48], it is proposed to study
the higher moments, skewness [S = 〈(δN )3〉/σ 3] and kurtosis
[κ = 〈(δN )4〉/σ 4 − 3] with δN = N − 〈N〉, or cumulants Cn
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(defined in Sec. II E) of distributions of conserved quanti-
ties. Both the magnitude and the sign of the moments or Cn

[47,75], which quantify the shape of the multiplicity distri-
butions, are important for understanding the phase transition
and CP effects. The aim is to search for signatures of the
CP over a broad range of μB in the QCD phase diagram
[35].

Furthermore, the products of the moments or ratios of Cn

can be related to susceptibilities associated with the conserved
numbers. The product (κσ 2) or, equivalently, the ratio (C4/C2)
of the net-baryon number distribution is related to the ratio
of fourth-order (χB

4 ) to second-order (χB
2 ) baryon number

susceptibilities [44,50,76–78]. The ratio χB
4 /χB

2 is expected
to deviate from unity near the CP. It has different values for
the hadronic and partonic phases [78]. Similarly, the prod-
ucts Sσ (C3/C2) and σ 2/〈N〉 (C2/C1) are related to χB

3 /χB
2

and χB
2 /χB

1 , respectively. Experimentally, it is not possible
to measure the net-baryon distributions; however, theoretical
calculations have shown that net-proton multiplicity (Np −
Np̄ = �Np) fluctuations reflect the singularity of the charge
and baryon number susceptibility, as expected at the CP [43].
References [79,80] discuss the effect of using net protons as
the approximation for the net-baryon distributions and the
acceptance dependence for the moments of the protons and
antiprotons.

In an early publication from the STAR experiment on
the higher moments of net-proton distributions, the selected
kinematics of the (anti)proton are |y| < 0.5 and 0.4 < pT <

0.8 GeV/c, where only the Time Projection Chamber (TPC)
[81,82] was used for (anti)proton identification. Interest-
ing hints of a nonmonotonic variation of κσ 2 (or C4/C2)
was observed [83]. In this paper, we report measurements
of the energy dependence of Cn up to fourth order of
the net-proton multiplicity distributions from Au+Au col-
lisions with a larger acceptance of 0.4 < pT < 2.0 GeV/c
[84]. This is achieved by adding the information from
STAR’s Time-of-Flight (TOF) detector [85]. We present
results from Au+Au collisions at nine different collision en-
ergies:

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and

200 GeV.
The paper is organized as follows. In the next sec-

tion, we discuss the data sets used, event selection criteria,
centrality selection procedure, proton identification method,
measurement of raw cumulants of the net-proton distribu-
tions, corrections for the effects of centrality bin width
(CBW) and efficiency, and estimation of statistical and sys-
tematic uncertainties on the measurements. In Sec. III, we
present the results of cumulants and their ratios for net
protons, protons, and antiprotons in Au+Au collisions as
a function of collision energy (

√
sNN ), centrality, transverse

momentum (pT ) acceptance, and rapidity acceptance (�y).
In addition, we present the extracted various order integrated
correlation functions of protons and antiprotons from the
measured cumulants. In this section, we also discuss the re-
sults from the HRG model and transport model calculations.
In Sec. IV, we present the summary. Detailed discussions
on the efficiency correction, and the estimation of the sta-
tistical uncertainties are presented in Appendices A and B,
respectively.

TABLE I. Total number of events for Au+Au collisions analysed
for various collision energies (

√
sNN ) obtained after all of the event

selection criteria are applied. The Z-vertex (Vz) range, the chemical
freeze-out temperature (Tch), and baryon chemical potential (μB) for
0–5% Au+Au collisions [8] are also given.

√
sNN (GeV) No. of events (×106) |Vz| (cm) Tch (MeV) μB (MeV)

200 238 30 164.3 28
62.4 47 30 160.3 70
54.4 550 30 160.0 83
39 86 30 156.4 103
27 30 30 155.0 144
19.6 15 30 153.9 188
14.5 20 30 151.6 264
11.5 6.6 30 149.4 287
7.7 3 40 144.3 398

II. EXPERIMENTAL DATA ANALYSIS

A. Data set and event selection

The data presented in the paper were obtained using the
Time Projection Chamber (TPC) [81] and the Time-of-Flight
detectors (TOF) [85] of the Solenoidal Tracker at RHIC
(STAR) [81]. The event-by-event proton (Np) and antiproton
(Np̄) multiplicities are measured for Au+Au minimum-bias
events at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4,

and 200 GeV for collisions occurring within a certain Z-
position (Vz) range of the collision vertex (given in Table I)
from the TPC center along the beam line. These data sets
were taken with a minimum-bias trigger, which was defined
using a coincidence of hits in the zero degree calorimeters
(ZDCs) [86], vertex position detectors (VPDs) [87], and/or
beam-beam counters (BBCs) [88]. The range of |Vz| is chosen
to optimize the event statistics and uniformity of the response
of the detectors used in the analysis.

In order to reject background events which involve inter-
actions with the beam pipe, the transverse radius of the event
vertex is required to be within 2 cm (1 cm for 14.5 GeV) of
the center of STAR [8]. We use two methods to determine the
Vz: one from a fast scintillator-based vertex position detector,
and the other from the most probable point of common origin
of the tracks, which are reconstructed from the hits measured
in the TPC. To remove pile-up events at energies above 27
GeV, we require theVz difference between the two methods to
be within 3 cm. Further, a detailed study of the TPC tracks
as a function of the TOF matched tracks with valid TOF
information is carried out and outlier events are rejected. To
ensure the quality of the data, a run-by-run study of several
variables—such as the total number of uncorrected charged
particles measured in the TPC, average transverse momentum
(〈pT 〉), mean pseudorapidity (η), and azimuthal angle (φ) in
an event—is carried out. Outlier runs beyond ±3σ , where σ

corresponds to the standard deviation of run-by-run distribu-
tions of a variable, are not included in the current analysis.
In addition, the distance of closest approach (DCA) of the
charged-particle track from the primary vertex, and especially
the signed transverse DCA (DCAxy), are studied to remove

024902-4
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TABLE II. Proton and antiproton track selection criteria at all
energies. The NFit and NHitPoss represent the number of hits used in
track fitting and the maximum number of possible hits in the TPC.

pT DCA NFit/ No. of
|y| (GeV/c) (cm) NFit NHitPoss dE/dx points

< 0.5 0.4–2.0 < 1 > 20 > 0.52 > 5

bad events (The signed transverse DCA refers to the DCA
with respect to the primary vertex in the transverse plane.
Its sign is the sign of the vector product of the DCA vector
and the track momentum). These classes of bad events are
primarily related to unstable beam conditions during the data
taking and inaccurate space-charge calibration of the TPC.

Table I gives the total number of minimum-bias events
analyzed for each

√
sNN and the corresponding chemical

freeze-out temperature (Tch) and baryon chemical potential
(μB) values for central 0–5% Au+Au collisions. The beam
energy values in the BES program are chosen so that the
difference in μB values is not larger than 100 MeV between
adjacent collision energies.

B. Track selection, particle identification, and acceptance

The proton and antiproton track selection criteria for all the√
sNN are presented in Table II. In order to suppress contami-

nation by tracks from secondary vertices, a requirement of less
than 1 cm is placed on DCA between each track and the event
vertex. Tracks are required to have at least 20 points used in
track fitting out of a maximum of 45 possible hits in the TPC.
To prevent multiple counting of split tracks, more than 52%
of the maximum-possible fit points are required. A condition
is also placed on the number of points (> 5) used to extract
the energy loss (dE/dx) values, which is used to identify the
(anti)protons from the charged particles detected in the TPC.
The results presented here are within kinematics |y| < 0.5 and
0.4 < pT < 2.0 GeV/c.

Particle identification (PID) is carried out using the TPC
and TOF by measuring the dE/dx and time of flight, respec-
tively. Figure 1 (left top panel) shows a typical plot of the
square of the mass (m2) associated with a track measured in
the TPC as a function of rigidity (defined as momentum/z,
where z is the dimensionless ratio of particle charge to the
electron charge magnitude) for Au+Au collisions at

√
sNN =

FIG. 1. Top left panel: The mass squared (m2) versus rigidity for charged tracks in Au+Au collisions at
√
sNN = 39 GeV. The rigidity

is defined as momentum/z, where z is the dimensionless ratio of particle charge to the electron charge magnitude. Bottom left panel: The
specific ionization energy loss (dE/dx) as a function of rigidity measured in the TPC for the same data set. Also shown as solid lines are the
theoretical expectations for each particle species. Right panels: Rapidity (y) versus transverse momentum (pT ). The color reflects the relative
yields of protons (top) and antiprotons (bottom) using the TPC PID for Au+Au collisions at

√
sNN = 39 GeV. The dashed boxes represent the

acceptance used in the current analysis. Two blobs at large rapidities are contaminated by particles other than (anti)protons. This contamination
is rejected in later steps of the analysis.
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39 GeV. The m2 is given by

m2 = p2
(
c2t2

L2
− 1

)
, (1)

where p, t , L, and c are the momentum, time-of-flight of the
particle, path length, and speed of light, respectively. Protons
and antiprotons can be identified by selecting charged tracks
for which 0.6 < m2 < 1.2 GeV2/c4.

Figure 1 (left bottom panel) shows the dE/dx of measured
charged particles plotted as a function of the rigidity. The
measured values of dE/dx are compared to the expected
theoretical values [90] (shown as solid lines in Fig. 1) to select
the proton and antiproton tracks. A quantity called Nσ,p for
charged tracks in the TPC is defined as

Nσ,p = (1/σR) ln

( 〈dE/dx〉
〈dE/dx〉thp

)
, (2)

where 〈dE/dx〉 is the truncated mean value of the track energy
loss measured in the TPC, 〈dE/dx〉thp is the corresponding
theoretical value for a proton (or antiproton) in the STAR TPC
[90], and σR is the dE/dx resolution which is momentum-
dependent and of the order of 7.5% for the momentum range
of this analysis. Assuming that the Nσ,p distribution in a given
momentum range is Gaussian, it should peak at zero for proton
tracks and the values represent the deviation from the theoret-
ical values for proton tracks in terms of standard deviations
(σR). Momentum-dependent selection criteria are used for
TPC tracks to select protons or antiprotons. For 0.4 < pT <

0.8 GeV/c and momentum (p) less than 1 GeV/c, |Nσ,p| <

2.0 is chosen and for 0.8 < pT < 2.0 GeV/c and momentum
(p) less than 3 GeV/c, in addition to |Nσ,p| < 2.0, the track
is required to have 0.6 < m2 < 1.2 GeV2/c4 from TOF. The
purity is estimated by referring to the Nσ,p distributions from
the TPC in various pT ranges (within 0.4 to 0.8 GeV/c) to
estimate the contamination from other hadrons within the PID
selection criteria. For the higher pT range, them2 distributions
from the TOF are studied after applying the Nσ,p criteria and
the contamination from other hadrons within the PID selection
criteria is estimated. The purities of the proton and antiproton
samples are better than 97% for all the pT ranges and

√
sNN

studied.
Figure 1 (right panels) shows pT versus y for protons and

antiprotons selected by the TPC with |Nσ,p| < 2.0 in Au+Au
collisions at

√
sNN = 39 GeV. The acceptance is uniform in

y-pT and is the same for other
√
sNN studied here. This is

a major advantage of collider-based experiments over fixed-
target experiments. The boxes show the acceptance criteria
used in this analysis. The addition of the TOF extends the PID
capabilities to higher pT , thereby allowing for the detection of
∼ 80% of the total protons per unit rapidity (or antiprotons per
unit rapidity) produced in the collisions at midrapidity. This is
a significant improvement compared to the previous analysis
reported in Ref. [83]. The uniform and large acceptance at
midrapidity in y, pT , and φ allows STAR to measure and
compare the cumulants in Au+Au collisions at

√
sNN = 7.7

to 200 GeV.

C. Centrality selection

Centrality selection plays a crucial role in the fluctua-
tion analysis. There are two effects related to the centrality
selection which need to be addressed. These are (a) the self-
correlation [91,92] and (b) centrality resolution/fluctuation
effects [91–95].

One of the main self-correlation effects arises when par-
ticles used for the fluctuation analysis are also used for the
centrality definition. This can be significantly reduced by re-
moving the particles used in the fluctuation analysis from the
centrality definition. Hence, we exclude protons and antipro-
tons from charged particles for the centrality selection.

The centrality resolution effect arises due to the fact that
the number of participant nucleons and particle multiplicities
fluctuate even if the impact parameter is fixed. Through a
model simulation it has been shown that the larger the η

acceptance used for centrality selection, the closer are the
values of the cumulants to the actual values [91]. This is
because the centrality resolution is improved by increasing
the number of particles for the centrality definition with wider
acceptance. Therefore, to suppress the effect of centrality res-
olution, one should use the maximum available acceptance of
charged particles for centrality selection. In addition, it may be
mentioned that the choice of centrality definition also affects
the way volume fluctuations (discussed later) contribute to the
measurements.

These are the driving considerations for the centrality se-
lection for net-proton studies presented in this paper, and they
are discussed below. The basic strategy is to maximize the ac-
ceptance window for the centrality determination as allowed
by the detectors, and to not use protons and antiprotons for
the centrality selection. In addition, the centrality definition
method given below is determined after several optimization
studies using data and models. These studies were carried out
by varying the acceptances in η and charged particle types
in order to understand the effect of the choice of central-
ity determination method on the analysis [92]. The effect of
self-correlation potentially arising due to the decay of heavier
hadrons into protons and antiprotons and other charged par-
ticles has been verified to be negligible from a study using
standard heavy-ion collision event generators, HIJING [96]
and UrQMD [92,97].

In order to suppress the self-correlation, centrality resolu-
tion and volume fluctuation effects with the available STAR
detectors, a new centrality measure is defined, and is different
from other analyses reported by STAR [8]. The centrality is
determined from the uncorrected charged particle multiplic-
ity within pseudorapidity |η| < 1 (Nch) after excluding the
protons and antiprotons. Strict particle identification criteria
are used to remove the proton and antiproton contributions.
Charged tracks with Nσ,p < −3 are used and for those tracks
which have TOF information an additional criterion, m2 <

0.4 GeV2/c4, is applied. The resultant distribution of charged
particles is corrected for luminosity andVz dependence at each√
sNN . The corrected charged particle distribution is then fit to

a Monte Carlo Glauber model [37,89] to define the centrality
classes in the experiment (the percentage cross section and the
associated cuts on the charged-particle multiplicity). In the
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FIG. 2. The uncorrected reference charged particle multiplicity (Nch) distributions within pseudorapidity |η| < 1 by excluding protons and
antiprotons in Au+Au collisions at

√
sNN = 7.7–200 GeV. These distributions are used for centrality determination. The shaded region at each√

sNN corresponds to 0–5% central collisions. The dashed line corresponds to Monte Carlo Glauber model simulations [89].

fitting process, a multiplicity-dependent efficiency has been
applied [37].

Figure 2 shows the reference charged particle multiplicity
distributions after excluding protons and antiprotons used for
centrality determination for all of the

√
sNN studied here. The

lower boundaries of each centrality class based on Nch are
given in Table III. Table IV gives the average number of par-
ticipant nucleons (〈Npart〉) for various collision centralities for√
sNN = 7.7–200 GeV obtained from a Monte Carlo Glauber

model simulation.

D. Uncorrected net-proton multiplicity distributions

Figure 3 shows the event-by-event net-proton multiplic-
ity (�Np) distributions from Au+Au collisions at

√
sNN =

TABLE III. The uncorrected number of charged particles other
than protons and antiprotons (Nch) within the pseudorapidity |η| <

1.0 used for the centrality selection for various collision centralities
expressed in % centrality in Au+Au collisions at

√
sNN = 7.7–200

GeV.

Centrality (%) Nch values at different
√
sNN (GeV)

200 62.4 54.4 39 27 19.6 14.5 11.5 7.7

0–5 725 571 621 522 490 448 393 343 270
5–10 618 482 516 439 412 376 330 287 225
10–20 440 338 354 308 289 263 231 199 155
20–30 301 230 237 209 196 178 157 134 105
30–40 196 149 151 136 127 116 103 87 68
40–50 120 91 90 83 78 71 63 53 41
50–60 67 51 50 47 44 40 36 30 23
60–70 34 26 24 24 22 20 19 15 11
70–80 16 12 10 11 10 9 13 7 5

7.7–200 GeV for 0–5%, 30–40%, and 70–80% collision
centralities. The �Np distribution is obtained by counting the
number of protons and antiprotons within the y-pT acceptance
on an event-by-event basis for a given collision centrality
and

√
sNN . The distributions presented in Fig. 3 are not cor-

rected for the efficiency and acceptance effects. In general,
the shape of the �Np distributions is broader, more sym-
metric and closer to Gaussian for central collisions than that
for peripheral collisions. The shape of the distributions also
changes with

√
sNN . Cumulants (Cn) up to the fourth order are

obtained from these distributions for each collision centrality
and

√
sNN .

E. Definition of cumulants and integrated correlation functions

In this subsection, we give the definition of the cumulants
used in this paper. Let N represent any entry in the data
sample, its deviation from its mean value (〈N〉, referred to
as the first moment) is then given by δN = N − 〈N〉. Any
rth-order central moment is defined as

μr = 〈(δN )r〉. (3)

The cumulants of a given data sample could be written in
terms of moments as follows:

C1 = 〈N〉,
C2 = 〈(δN )2〉 = μ2,

C3 = 〈(δN )3〉 = μ3, (4)

C4 = 〈(δN )4〉 − 3〈(δN )2〉2
= μ4 − 3μ2

2,

Cn(n > 3) = μn −
n−2∑
m=2

(
n − 1
m − 1

)
Cmμn−m.
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TABLE IV. The average number of participant nucleons (〈Npart〉) for various collision centralities in Au+Au collisions at
√
sNN = 7.7–200

GeV from a Monte Carlo Glauber model. The numbers in parentheses are systematic uncertainties.

Centrality (%) 〈Npart〉 values at different √sNN (GeV)

200 62.4 54.4 39 27 19.6 14.5 11.5 7.7

0–5 351 (2) 347 (3) 346 (2) 342(2) 343 (2) 338 (2) 340(2) 338 (2) 337 (2)
5–10 299 (4) 294 (4) 292 (6) 294 (6) 299 (6) 289 (6) 289 (6) 291 (6) 290 (6)
10–20 234 (5) 230 (5) 228 (8) 230 (9) 234 (9) 225 (9) 225 (8) 226 (8) 226 (8)
20–30 168 (5) 164 (5) 161 (10) 162 (10) 166 (11) 158 (10) 159 (9) 160 (9) 160 (10)
30–40 117 (5) 114 (5) 111 (11) 111 (11) 114 (11) 108 (11) 109 (11) 110 (11) 110 (11)
40–50 78 (5) 76 (5) 73 (10) 74 (10) 75 (10) 71 (10) 72 (10) 73 (10) 72 (10)
50–60 49 (5) 48 (5) 45 (9) 46 (9) 47 (9) 44 (9) 45 (9) 45 (9) 45 (9)
60–70 29 (4) 28 (4) 26 (7) 26 (7) 27 (8) 26 (7) 26 (7) 26 (7) 26 (7)
70-80 16 (3) 15 (2) 13 (5) 14 (5) 14 (6) 14 (5) 14 (6) 14 (6) 14 (4)

The relations between cumulants and various moments are
given as

M = C1, σ 2 = C2, S = C3

(C2)3/2
, κ = C4

(C2)2
, (5)

where M, σ 2, S, and κ are mean, variance, skewness and kur-
tosis, respectively. The products κσ 2 and Sσ can be expressed
in terms of the ratio of cumulants as

σ 2/M = C2

C1
, Sσ = C3

C2
, κσ 2 = C4

C2
. (6)

With the above definition, we can calculate various order
cumulants (moments) and cumulant ratios (moment products)
from the measured event-by-event net-proton, proton, and
antiproton distributions for each centrality at a given

√
sNN .

For two independent variables X and Y , the cumulants of
the probability distributions of their sum (X + Y ) are just the

addition of cumulants of the individual distributions for X and
Y , i.e., Cn,X+Y = Cn,X +Cn,Y for the nth-order cumulant. For
a distribution of difference between X and Y , the cumulants
are Cn,X−Y = Cn,X + (−1)nCn,Y , where the even-order cumu-
lants are the addition of the individual cumulants, while the
odd-order cumulants are obtained by taking their difference.
If the protons and antiprotons are distributed as independent
Poissonian distributions, the various order cumulants of net-
proton, proton, and antiproton distributions can be expressed
as

Cn,p = C1,p, Cn,p̄ = C1,p̄,

Cn,p−p̄ = C1,p + (−1)nC1,p̄,

where the net-proton multiplicity distributions obey the Skel-
lam distribution and the Poisson baseline/expectation values

FIG. 3. Net-proton multiplicity (�Np) distributions in Au+Au collisions at various
√
sNN for 0–5%, 30–40%, and 70-80% collision

centralities at midrapidity. The statistical errors are small and within the symbol size. The distributions are not corrected for either the
finite-centrality-width effect or for the reconstruction efficiencies of protons and antiprotons.
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of the net-proton, proton, and antiproton cumulant ratios are

(σ 2/M )p,p̄ = (Sσ )p,p̄ = (κσ 2)p,p̄ = 1,

(σ 2/M )p−p̄ = 1

(Sσ )p−p̄
= C1,p +C1,p̄

C1,p −C1,p̄
,

(κσ 2)p−p̄ = 1,

whereC1,p andC1,p̄ are the mean values of proton and antipro-
ton, respectively.

On the other hand, it is expected that close to the CP the
three- and four-particle correlations are dominant relative to
two-particle correlations [46]. The various orders integrated
correlation functions of proton and antiproton (κn, also known
as factorial cumulants) are related to the corresponding proton
and antiproton cumulants (Cn) through the following relations
[98–100]:

κ1 = C1 = 〈N〉,
κ2 = −C1 +C2,

κ3 = 2C1 − 3C2 +C3,

κ4 = −6C1 + 11C2 − 6C3 +C4,

C2 = κ2 + κ1,

C3 = κ3 + 3κ2 + κ1,

C4 = κ4 + 6κ3 + 7κ2 + κ1,

(7)

where C1 and κ1 represent the mean values for protons or
antiprotons. For proton and antiproton cumulant ratiosC2/C1,
C3/C2, and C4/C2, they can be expressed in terms of corre-
sponding normalized correlation functions κn/κ1 (n > 1) as

C2

C1
= κ2

κ1
+ 1, (8)

C3

C2
= κ3/κ1 − 2

κ2/κ1 + 1
+ 3, (9)

C4

C2
= κ4/κ1 + 6κ3/κ1 − 6

κ2/κ1 + 1
+ 7. (10)

The higher-order integrated correlation functions κn (n > 1)
are equal to zero when the distributions are Poisson. Thus,
κn can be used to quantify the deviations from the Poisson
distributions in terms of n-particle correlations. For simplicity,
from here on, we refer to the κn as correlation functions
instead of integrated correlation functions.

In the following subsections, we discuss corrections that
are related to collision centrality bin width (Sec. II F) and
detection efficiency (Sec. II G). This is followed by the esti-
mation of statistical and systematic uncertainties in Secs. II H
and II I, respectively.

F. Centrality bin width correction

Data presented in this paper are classified into the fol-
lowing centrality bins: 0–5%, 5–10%, 10–20%, 20–30%,
30–40%, 40–50%, 50–60%, 60–70%, and 70–80%. The finite
size of centrality bins implies that the average number of
protons and antiprotons varies even within a centrality class.
This variation has to be accounted for while calculating the
cumulants in a broad centrality class. In addition, it is known
that calculating cumulants in such broad centrality bins leads

to a strong enhancement of cumulants and cumulant ratios due
to initial volume fluctuations [91,101].

A centrality bin width correction (CBWC) is the procedure
used to take care of the measurements in a wide centrality
bin and is based on weighting the cumulants measured at
each multiplicity bin by the number of events in the bin
[91,92,101]. This procedure is mathematically expressed in
the equation below:

Cn =
∑

r nrC
r
n∑

r nr
=

∑
r

ωrC
r
n, (11)

where the nr is the number of events at the rth multiplicity
bin for the centrality determination, the Cr

n represents the
nth-order cumulant of particle number distributions at rth
multiplicity. The corresponding weight for the rth multiplicity
bin is ωr = nr/

∑
r nr .

As an example, Fig. 4 shows the Cn up to the fourth order
as a function of 〈Npart〉 for three different collision energies:√
sNN = 7.7, 19.6, and 62.4 GeV. For each Cn case, four

different results are shown. One of them is the CBWC result
for nine collision centrality bins, which correspond to 0–5%,
5–10%, 10–20%, 20–30%, ..., 70–80%. For comparison, cu-
mulants are also calculated for the other three cases, which are
10%, 5%, and 2.5% centrality bin width without CBWC. The
higher-order cumulant results with 10% centrality bins are
found to have significant deviations compared to those with
5% and 2.5% centrality bins without CBWC. This finding
means that it is important to correct for the CBW effect, as
one normally expects that, irrespective of the centrality bin
width, the cumulant values should exhibit the same depen-
dence on 〈Npart〉. It is found that the results get closer to
CBWC results with narrower centrality bins and the results
with 2.5% centrality bins almost overlap with CBWC results,
which indicates that the CBWC can effectively suppress the
effect of the volume fluctuations on cumulants (up to the
fourth order) within a finite centrality bin width.

For comparison, a different approach, the volume fluc-
tuation correction (VFC) method [102,103], which assumes
independent production of protons, has been also applied at√
sNN = 7.7, 19.6, and 62.4 GeV for 0–5% Au+Au cen-

tral collisions. The correction factors are determined by the
Glauber model [103]. Figure 5 shows the comparison between
the results based on CBWC and VFCmethods. As can be seen
from the plot, for the 0–5% central collisions, the results of
CBWC and VFC are found to be consistent within statisti-
cal uncertainties. However, UrQMD model studies reported
in Ref. [94], indicate that the VFC method (as discussed in
Ref. [102]) does not work, as the independent particle pro-
duction model assumed in the VFC is expected to be broken.
Therefore, we follow the data-driven method, CBWC, in this
paper.

G. Efficiency correction

Figure 6 shows the efficiency-uncorrected Cn for
proton, antiproton, and net-proton multiplicity distributions
in Au+Au collisions at

√
sNN = 7.7–200 GeV as a

function of 〈Npart〉. This section discusses the method
of efficiency correction. One such method is called the
binomial-model-based method [80,100,104–106] and another
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FIG. 4. Cn of net-proton distributions in Au+Au collisions at
√
sNN = 7.7, 19.6, and 62.4 GeV as a function of 〈Npart〉. The results are

shown for 10%, 5%, and 2.5% centrality bins without CBWC and for nine centrality bins (0–5%, 5–10%, 10–20%, ..., 70–80%) with CBWC.
The bars are the statistical uncertainties.

is the unfolding method [107,108]. The cumulants presented
in the subsequent sections are corrected for efficiency
and acceptance effects related to proton and antiproton
reconstruction, unless specified otherwise.

1. Binomial model method

The binomial-based method involves two steps. First we
obtain the efficiency of proton and antiproton reconstruction
in the STAR detector and then correct the cumulants for effi-
ciency and acceptance effects using analytic expressions. The
former uses the embedding process and the latter invokes bi-
nomial model assumptions for the detector response function
for the efficiencies. One can find more details in Appendix A.

The detector acceptance and the efficiency of reconstruct-
ing proton and antiproton tracks are determined together by
embedding Monte Carlo (MC) tracks, simulated using the
GEANT [109] model of the STAR detector response, into
real events at the raw data level. One important requirement
is the matching of the distributions of reconstructed embed-
ded tracks and real data tracks for quantities reflecting track
quality and those used for track selection [8]. The ratio of
the distribution of reconstructed to embedded Monte Carlo
tracks as a function of pT gives the efficiency × acceptance
correction factor [εTPC(pT )] for the rapidity interval studied.
We refer to this factor as simply efficiency.

The current analysis makes use of both the TPC and the
TOF detectors. While the TPC identifies low pT (0.4 < pT <

0.8 GeV/c) protons and antiprotons with high purity, the TOF
gives better particle identification than the TPC in the higher
pT range (0.8 < pT < 2.0 GeV/c). However, not all TPC
tracks have valid TOF information due to the limited TOF ac-
ceptance and the mismatching of the TPC tracks to TOF hits.
This extra efficiency is called the TOF-matching efficiency
[εTOF(pT )]. The TOF-matching efficiency is particle-species
dependent and can be obtained using a data-driven technique,
which is defined as the ratio of the number of (anti)proton
tracks detected in the TOF to the total number of (anti)proton
tracks in the TPC within the same acceptance [8]. Thus, the
final average (anti)proton efficiency within a certain pT range
can be calculated as

〈ε〉 =
∫ pT2
pT1

ε(pT ) f (pT )d pT∫ pT2
pT1

f (pT )d pT
, (12)

where the pT -dependent efficiency, ε(pT ), is defined as
ε(pT ) = εTPC(pT ) for 0.4 < pT < 0.8 GeV/c and ε(pT ) =
εTPC(pT ) × εTOF(pT ) for 0.8 < pT < 2.0 GeV/c. The func-
tion f (pT ) is the efficiency-corrected pT spectrum for
(anti)protons [8].
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FIG. 5. κσ 2 as a function of collision energy for Au+Au colli-
sions for 0–5% centrality. The data have been corrected for volume
fluctuation effects using CBWC, a data driven approach, and a
model-dependent volume fluctuation correction method. The bars are
the statistical uncertainties.

Figure 7 shows the average efficiency (〈ε〉) for protons and
antiprotons at midrapidity (|y| < 0.5) as a function of collision
centrality (〈Npart〉). For 0.4 < pT < 0.8 GeV/c the efficiency
is only from the TPC and for 0.8 < pT < 2.0 GeV/c it is the
product of efficiencies from the TPC and TOF. In Fig. 7, only
statistical uncertainties are presented and a ± 5% systematic
uncertainty associated with determining the efficiency is con-
sidered in the analysis.

2. Unfolding method

In this section we discuss the effect of efficiency correction
on theCn measurement if the assumption of binomial detector
efficiency response breaks down due to some of the reasons
given in Refs. [110,111]. The technique is based on unfolding
of the detector response [107,108]. The response function is
obtained by MC simulations carried out in the STAR detector
environment [109]. MC tracks are simulated through GEANT
and embedded in the real data, and track reconstruction is
performed as is done in the real experiment. Many effects
can lead to nonbinomial detector response in heavy-ion ex-
periments. One of those effects could be track merging due to
the extreme environment of high particle multiplicity densities
in the detector. Hence, we have performed the embedding
simulations using the real data for 0–5% Au+Au collisions
at

√
sNN = 200 GeV. The numbers of embedded tracks of

Np and Np̄ are varied within 5 � Np( p̄) � 40. Since we are
measuring the net-proton multiplicity distributions, protons
and antiprotons are embedded simultaneously. We have shown
in Ref. [112] that, for the event statistics in the current anal-
ysis, the efficiencies for kaon reconstruction follow binomial
distributions.

Figure 8 shows the reconstructed protons from the embed-
ding data (black circles) of Au+Au collisions at

√
sNN = 200

GeV and 0–2.5% collision centrality. Each panel represents
a different number of embedded (anti)protons. These distri-

butions are fitted by a binomial distribution (red solid line)
at a fixed efficiency ε. The ratios of the fitted function to
the embedding data are shown in the lower panels. The fitted
χ2/ndf ranges from 5.2 to 17.8 and the tails of the distribu-
tions are not well described by the binomial distribution for
several combinations of embedded Np and Np̄ tracks. We find
that the embedding data is better described by a beta-binomial
distribution given by

β(n : N, a, b) =
∫ 1

0
d pB(ε, a, b)B(n;N, ε), (13)

and with the beta distribution given as

β(ε; a, b) = εa(1 − ε)b/B(a, b), (14)

where B(a, b) is the beta function. The beta-binomial distribu-
tion is given by an urn model. Let us consider Nw white balls
and Nb black balls in the urn. One draws a ball from the urn.
If it is white (black), return two white (black) balls to the urn.
This procedure is repeated with N times, then the resulting
distribution of n white balls is given by the beta-binomial
distributions as β(n;N,Nw,Nb). This is actually equivalent
to β(n;N, α, ε), where Nw = αN with ε = Nw/(Nw + Nb). A
smaller α gives a broader distribution than the binomial, while
the distribution becomes close to the binomial distribution
with a larger value of α.

The beta-binomial distributions are numerically generated
with various values of α. These are compared to the embed-
ding data to determine the best fit parameter value of α. The
green lines in Fig. 8 show the beta-binomial distribution for
the value of α that gives the minimum χ2/ndf. It is found
that χ2/ndf ≈ 1 for most (Np,Np̄) combinations. With this
additional parameter α, it is found that the detector response
is better described in the tails by a beta-binomial distribution
compared to a binomial distribution.

From the embedding simulations as discussed above, the
ε and α are parametrized as a function of Np and Np̄. Us-
ing the parametrization, a four-dimensional response matrix
between generated and reconstructed protons and antiprotons
is generated with 1 billion events. The limited statistics in
the embedding simulations lead to uncertainties on the α

values. Therefore, two more response matrices are generated
using α − σ and α + σ , where σ is the statistical uncertainty
on the α values determined by the embedding simulation.
Furthermore, the standard response matrices are also gen-
erated with the binomial distribution as a reference using
a multiplicity-dependent efficiency. These response matrices
are used to correct for the detector effects as a confirmation
of this approach by comparing to the binomial correction
method described in the previous section. The consistency of
the unfolding method has been checked through a detailed
simulation and an analytic study.

Figure 9 shows the unfolded net-proton distributions for
200 GeV Au+Au collisions at 0–2.5% centrality. Results
from four assumptions on the detector response are shown,
one is the binomial detector response and the other three
assume the beta-binomial distributions with different non-
binomial α values. The ratios of the beta-binomial unfolded
distributions to the binomial unfolded distributions are shown
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FIG. 6. Efficiency-uncorrectedCn of net-proton, proton, and antiproton multiplicity distributions in Au+Au collisions at
√
sNN = 7.7–200

GeV as a function of 〈Npart〉. The results are CBW corrected. The bars are the statistical uncertainties.

FIG. 7. Efficiencies of proton and antiproton as a function of 〈Npart〉 in Au+Au collisions for various
√
sNN . For the lower pT range

(0.4 < pT < 0.8 GeV/c), only the TPC is used. For the higher pT range (0.8 < pT < 2.0 GeV/c), both the TPC and TOF are used.
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FIG. 8. Distributions of reconstructed protons (black circles) from embedding simulations in 200 GeV top 2.5%-central Au+Au collisions.
Red lines are fits to the binomial distribution, and green dotted lines represent the fit with the beta-binomial distributions using the α that gives
the minimum χ 2/ndf. Each panel presents results for a different combination of the number of embedded protons and antiprotons as labeled
in the legend. The ratio of the fits to the embedding data is shown for each panel at the bottom.

FIG. 9. Unfolded net-proton multiplicity distributions for√
sNN = 200 GeV Au+Au collisions where the binomial

distribution (black circle), beta-binomial distributions with
α + σ (green triangle), α (red square), and α − σ (blue triangle) are
utilized in response matrices. Ratios of the beta-binomial unfolded
distributions to that from binomial response matrices are shown in
the bottom panel.

in the bottom panel. The unfolded distributions with beta-
binomial response matrices are found to be narrower with
a decreasing value of α. Calculations are done for 0–2.5%
and 2.5–5.0% centralities separately and averaged to deter-
mine the Cn values for the 0–5% centrality. The Cn values
and their ratios from data obtained using the binomial model
method of efficiency correction and those using the binomial
detector response matrix in the unfolding method are con-
sistent. Table V summarizes the cumulant ratios and their

TABLE V. Net-proton cumulant ratios and their statistical errors
for 0–5% central Au+Au collisions at

√
sNN = 200 GeV, (second

column) from the conventional efficiency correction with the bino-
mial detector response, and (third column) from unfolding with the
beta-binomial detector response. Systematic errors are also shown
for the beta-binomial case. The last column shows the difference
between two results normalized by total uncertainty, which is equal
to the statistical and systematic uncertainties summed in quadrature.

Binomial Beta
Cumulant ± statistical ± statistical error
ratio error ± systematical error Significance

C2/C1 1.3 ± neg. 1.20 ± neg. ± 0.03 3.1
C3/C2 0.13 ± 0.01 0.13 ± 0.01 ± neg. 4.8 × 10−2

C4/C2 1.10 ± 0.21 0.97 ± 0.21 ± 0.08 4.2 × 10−1

C5/C1 0.10 ± 0.48 −0.14 ± 0.44 ± 0.11 3.8 × 10−1

C6/C2 −0.45 ± 0.24 −0.14 ± 0.20 ± 0.07 1.0
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errors. Results are also obtained from the unfolding method
using the beta-binomial response function with nonbinomial
parameters in the range α ± σ . This range in values of α is
used to generate the systematic uncertainties associated with
the unfolding method. The deviations of those nonbinomial
efficiency-corrected results with respect to the conventional
efficiency correction with binomial detector response is found
to be 3.1σ for C2/C1 and less than 1.0σ for C4/C2 and for
C3/C2. The σ value is the statistical and systematic uncertain-
ties added in quadrature.

These studies have been done for Au+Au collisions for
the highest collision energy of

√
sNN = 200 GeV and top-

most 5% centrality. This set of data provides the largest
charged-particle-density environment for the detectors, where
we expect the maximum non-binomial detector effects. Even
in this situation, the differences in the two methods of
efficiency correction are at a level of less than one σ . Thus,
we conclude that the nonbinomial detector effects on higher-
order cumulant ratios presented in this work are within the
uncertainties quoted for all of the BES-I energies.

H. Statistical uncertainty

The higher-order cumulants are sensitive to the shape of
the distribution, and estimating their statistical uncertainty
is crucial due to the limited available statistics. It has been
shown that, among the various methods of obtaining statistical
uncertainty on cumulants, the delta theorem method [113] and
the bootstrap method [91,104,114–116] are the most reliable
ones. Below we briefly discuss the two methods and show
that the uncertainty values obtained up to the fourth-order
cumulant from both methods are consistent.

The delta theorem method gives a concise form of standard
error propagation method. This method of statistical uncer-
tainty estimation uses the central limit theorem (CLT). The
variance of the statistic φ can be calculated as

V (φ) =
m∑

i, j=1

(
∂φ

∂Xi

)(
∂φ

∂Xj

)
Cov(Xi,Xj ), (15)

where the Cov(Xi,Xj ) is the covariance between random
variables Xi and Xj . Thus, we need to know the covariance
between Xi and Xj to calculate the statistical errors.

If particle multiplicities follow a Gaussian distribution with
width σ , the statistical uncertainty of the cumulants and cumu-
lant ratios at different orders can be estimated as

error(Cm) ∝ σm

√
N εα

, error(Cn/C2) ∝ σ n−2

√
N εβ

, (16)

wherem and n are integer numbers withm � 1 and n � 2, and
α and β are real numbers with α > 0 and β > 0. The N and
ε denote the number of events and the particle-reconstruction
efficiency, respectively. Thus, one can find that the statistical
uncertainty strongly depends on the width (σ ) of the dis-
tributions. For similar event statistics, due to the increasing
width of the net-proton distributions from peripheral to central
collisions, the statistical uncertainties are larger in central
collisions than those from peripheral collisions. Furthermore,
the reconstruction efficiency increases the statistical uncer-

FIG. 10. Comparison of the statistical uncertainties onCn of net-
proton distributions in Au+Au collisions at

√
sNN = 19.6 GeV from

the delta theorem and bootstrap methods. The results are presented
as a function of 〈Npart〉.

tainties on the cumulants compared to their corresponding
uncorrected case. A more detailed discussion can be found
in Appendix B.

The bootstrap method finds the statistical uncertainties on
the cumulants in a Monte Carlo way by forming bootstrap
samples. It makes use of a random selection of elements with
replacement from the original sample to construct bootstrap
samples over which the sampling variance of a given order
cumulant is calculated [115,116]. Let X be a random sample
representing the experimental dataset. Let μr be the estimator
of a statistic (such as mean or variance etc.), on which we
intend to find the statistical error. Given a parent sample of
size n, construct B number of independent bootstrap samples
X ∗
1 , X

∗
2 , X

∗
3 , ..., X

∗
B , each consisting of n data points randomly

drawn with replacement from the parent sample. Then evalu-
ate the estimator in each bootstrap sample

μ∗
r = μr (X

∗
b ), b = 1, 2, 3, . . . ,B. (17)

Then obtain the sampling variance of the estimator as

Var(μr ) = 1

B − 1

B∑
b=1

(μ∗
r − μ̄r )

2, (18)

where μ̄r = 1
B

∑B
b=1(μ

∗
r ). The value of B is optimized and, in

general, the larger the value of B the better the estimate of the
error.

Figure 10 shows the statistical uncertainties on various
orders of Cn obtained using the delta theorem and bootstrap
methods for Au+Au collisions at

√
sNN = 19.6 GeV. The re-

sults are shown as a function of 〈Npart〉 for each Cn. The value
of B is 200. Good agreement of the statistical uncertainties is
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FIG. 11. Ratios of cumulants (Cn) as a function of 〈Npart〉, for net-proton distributions in Au+Au collisions at
√
sNN = 200 GeV obtained

by varying the analysis criteria in terms of track selection criteria, particle identification criteria, and efficiency. Since variations with respect
to default selection criteria are used to obtain the systematic uncertainties on the measurements, the errors are shown only for the default case.

seen from both methods. The delta theoremmethod is used for
obtaining the statistical uncertainties on the results discussed
below.

I. Systematic uncertainty

Systematic uncertainties are estimated by varying the fol-
lowing requirements for p ( p̄) tracks: DCA, track quality (as
reflected by the number of fit points used in track recon-
struction), dE/dx, and m2 for p ( p̄) identification [83]. A
± 5% systematic uncertainty associated with determining the
efficiency is also considered [8]. All of the different sources
of systematic uncertainty are added in quadrature to obtain
the final systematic uncertainties on the Cn and its ratios.
Figure 11 shows the variations of the cumulants ratios with
the changes in the above selection criteria for the net-proton
distributions in Au+Au collisions at

√
sNN = 200 GeV.

Table VI gives the systematic uncertainties on theCn of the
net-proton distribution for 0–5% central Au+Au collisions at√
sNN = 7.7–200 GeV. The statistical and systematic uncer-

tainties are presented separately in the figures.

III. RESULTS

In this section we present the efficiency-corrected cumu-
lants and cumulant ratios of net-proton, proton, and antiproton
multiplicity distributions in Au+Au collisions at

√
sNN =

7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV.
The cumulant ratios are related to the ratios of baryon
number susceptibilities (χB) computed in QCD-motivated
models as σ 2/M = χB

2 /χB
1 , Sσ = χB

3 /χB
2 , and κσ 2 = χB

4 /χB
2

[44,50,76–78]. Normalized correlation functions (κn/κ1, n >

1) for the proton and antiproton extracted from the measured
Cn are also presented. The statistical uncertainties on κn are
obtained from the uncertainties onCn using the standard error
propagation method. These results will be also compared to
corresponding results from a hadron resonance gas (HRG)
[117] and hadronic-transport-based UrQMD model calcula-
tions [118,119].

In the following subsections, the dependence of the cumu-
lants and correlation functions on collision energy, centrality,
rapidity, and transverse momentum are presented. The corre-
sponding physics implications are discussed.

A. Centrality dependence

In this subsection, we show the 〈Npart〉 (representing colli-
sion centrality) dependence of the cumulants, cumulant ratios,
and normalized correlation functions in Au+Au collisions at√
sNN = 7.7–200 GeV. To understand the evolution of the

centrality dependence of the cumulants and cumulant ratios,
we invoke the central limit theorem and consider the distribu-
tion at any given centrality i to be a superposition of several
independent source distributions [35]. Assuming the average
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TABLE VI. Total systematic uncertainty as well as the absolute
uncertainties from individual sources, such as DCA and NHITSFIT,
for net-protonCn in 0–5% central Au+Au collisions at

√
sNN = 7.7–

200 GeV. The total systematic uncertainties are obtained by adding
the uncertainties from individual sources in quadrature.

√
sNN Cumulant Total DCA NHITSFIT Nσ,p m2 Efficiency

(GeV) syst.

C1 2.42 0.85 0.78 0.99 0.028 1.88
C2 2.03 0.72 0.60 0.82 0.032 1.61

7.7 C3 1.65 0.60 0.97 0.54 0.31 1.02
C4 16.20 5.56 12.54 6.40 2.68 5.11
C1 2.82 1.76 1.03 1.13 0.033 1.59
C2 2.34 1.44 0.73 0.99 0.020 1.37

11.5 C3 1.36 0.64 0.20 0.85 0.035 0.82
C4 7.37 2.28 4.10 4.94 2.60 1.06
C1 1.72 0.77 0.54 0.76 0.03 1.22
C2 1.60 0.69 0.49 0.74 0.021 1.13

14.5 C3 1.16 0.52 0.44 0.51 0.047 0.78
C4 8.06 2.89 3.10 5.41 0.71 4.15
C1 1.46 0.60 0.62 0.56 0.045 1.03
C2 1.46 0.62 0.62 0.57 0.041 1.02

19.6 C3 0.68 0.36 0.26 0.23 0.13 0.44
C4 3.65 0.86 1.99 2.58 0.59 0.89
C1 1.20 0.51 0.53 0.47 0.025 0.83
C2 1.44 0.67 0.63 0.57 0.027 0.96

27 C3 0.62 0.33 0.27 0.23 0.035 0.39
C4 3.10 1.58 1.36 1.80 0.38 1.36
C1 0.94 0.39 0.45 0.35 0.026 0.64
C2 1.48 0.67 0.67 0.59 0.033 0.97

39 C3 0.51 0.29 0.21 0.17 0.04 0.313
C4 3.35 1.00 2.76 1.43 0.20 0.65
C1 0.81 0.43 0.33 0.20 0.034 0.56
C2 1.57 0.88 0.65 0.39 0.064 1.06

54.4 C3 0.42 0.27 0.15 0.078 0.025 0.27
C4 2.95 1.18 1.41 1.93 1.24 0.21
C1 1.04 0.45 0.49 0.35 0.044 0.71
C2 2.15 1.05 1.087 0.79 0.11 1.31

62.4 C3 0.58 0.14 0.22 0.30 0.081 0.41
C4 3.99 2.40 2.30 1.38 1.21 1.23
C1 0.39 0.19 0.24 0.11 0.01 0.22
C2 2.42 1.11 1.53 0.77 0.087 1.31

200 C3 0.39 0.24 0.18 0.19 0.074 0.14
C4 4.89 2.69 3.07 1.80 1.41 1.42

number of sources for a given centrality is proportional to the
corresponding 〈Npart〉, theCn should have a linear dependence
on 〈Npart〉 and the ratios C2/C1, C3/C2 and C4/C2 should be
constant as a function of 〈Npart〉.

Figure 12 shows the 〈Npart〉 dependence of Cn for net-
proton, proton, and antiproton distributions in Au+Au
collisions at

√
sNN = 7.7–200 GeV. Since the cumulants

are extensive quantities, the Cn for net-proton, proton, and
antiproton increase with increasing 〈Npart〉 for all of the√
sNN studied. The different mean values of the proton and

antiproton distributions at each energy are determined by
the interplay between proton-antiproton pair production and
baryon stopping effects. At the lower

√
sNN , the effects of

baryon stopping at midrapidity are more important than at

higher
√
sNN , and therefore the net-proton Cn has domi-

nant contributions from protons. The small mean values for
antiprotons at lower

√
sNN are due to their low rate of produc-

tion. At higher
√
sNN , the pair production process dominates

the production of protons and antiprotons at midrapidity. The
p̄/p ratio for 0–5% central Au+Au collisions at

√
sNN = 200

and 7.7 GeV are 0.769 and 0.007, respectively [8,120]. Large
values of C3 and C4 also indicate that the net-proton, proton,
and antiproton distributions are non-Gaussian. To facilitate
plotting, the net-proton and proton C4 from the 0–5% and
5–10% central Au+Au collisions at

√
sNN = 7.7 GeV are

scaled down by a factor of 2.
Figure 13 shows the 〈Npart〉 dependence of cumulant ratios

C2/C1, C3/C2, and C4/C2 for net-proton, proton and antipro-
ton distributions measured in Au+Au collisions at

√
sNN

= 7.7–200 GeV. In terms of the moments of the distribu-
tions, they correspond to σ 2/M (C2/C1), Sσ (C3/C2), and
κσ 2 (C4/C2). The volume effects are canceled to the first
order in these cumulant ratios. It is found that both of the
proton and antiproton cumulant ratios C2/C1 and C3/C2 show
weak variations with 〈Npart〉. Based on the HRG model with
the Boltzmann approximation, the orders of baryon num-
ber fluctuations can be analytically expressed as CB

1 /CB
2 =

CB
3 /CB

2 = tanh(μB/T ) and CB
4 /CB

2 = 1, where μB and T are
the baryon chemical potential and temperature of the sys-
tem, respectively. The values of net-proton C2/C1 show a
monotonic decrease with increasing 〈Npart〉 while the values
of C3/C2 show a slight increase with 〈Npart〉. For a fixed
centrality, both net-proton C2/C1 and C3/C2 show strong
energy dependence, which can be understood as C3/C2 ∝
tanh(μB/T ) and C2/C1 ∝ 1/tanh(μB/T ). At high

√
sNN , the

net-proton C3/C2 ∝ tanh(μB/T ) ≈ μB/T → 0 and C2/C1 ∝
1/tanh(μB/T ) ≈ T/μB > 1. Since the μB/T 
 1 for the
lower energies, the values of net-proton C2/C1 and C3/C2

approach unity. Due to the connection between higher-
order net-proton cumulant ratios and chemical freeze-out
μB and T , those cumulant ratios have been extensively
applied to probe the chemical freeze-out conditions and
thermal nature of the medium created in heavy-ion colli-
sions [121–123]. Finally, the net-proton and proton C4/C2

ratios have weak 〈Npart〉 dependence for energies above√
sNN = 39 GeV. For energies below

√
sNN = 39 GeV,

the net-proton and proton C4/C2 generally show a de-
creasing trend with increasing 〈Npart〉, except that, within
current uncertainties, weak centrality dependences of C4/C2

are observed in Au+Au collisions at
√
sNN = 7.7 and

11.5 GeV.
Figure 14 shows the variation of normalized correlation

functions κn/κ1 (n > 1) with 〈Npart〉 for protons and antipro-
tons in Au+Au collisions at

√
sNN = 7.7–200 GeV. As shown

in Eqs. (8)–(10), the proton and antiproton cumulant ratios
C2/C1, C3/C2, and C4/C2 can be expressed in terms of cor-
responding normalized correlation function κn/κ1. Therefore,
the results shown in Fig. 14 provide important information
on how different orders of multiparticle correlation functions
of protons and antiprotons contribute to the cumulant ratios.
The values of κ1 are equal to mean C1 values for protons
and antiprotons, and linearly increase with 〈Npart〉 as shown
in Fig. 12. The normalized two-particle correlation functions,
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FIG. 12. Collision centrality dependence of proton (open squares), antiproton (open triangles), and net-proton (filled circles) cumulants
from (7.7–200 GeV) Au+Au collisions at RHIC. The data are from |y| < 0.5 and 0.4 < pT < 2.0 GeV/c. Statistical and systematic
uncertainties are shown as the narrow black and wide grey bands, respectively. Note that the net-proton and protonC4 from 0–5% and 5–10%
central Au+Au collisions at 7.7 GeV have been scaled down by a factor of 2, indicated in the yellow box.

κ2/κ1, for protons and antiprotons are found to be negative
for all 〈Npart〉. The values of proton and antiproton κ2/κ1
become comparable at

√
sNN = 200 GeV but exhibit larger

discrepancies at lower energies. This can be understood as
the interplay between baryon stopping and pair production of
protons and antiprotons as a function of

√
sNN . Within current

uncertainties, no statistically significant deviation from zero
is observed in proton normalized correlation functions κ3/κ1
and κ4/κ1 as a function of collision centrality. As will be dis-

cussed later, however, one does observe nonmonotonic energy
dependence of proton C4/C1 in the 0–5% central collisions;
see Fig. 25. This is because, as defined in Eq. (7), the fourth-
order cumulantC4 contains contributions from second-, third-,
and fourth-order correlation functions (factorial cumulants).
In any case, high statistics data from the second phase of
the RHIC beam energy scan program (BES-II) are needed to
understand the origin of the observed dependences on both
collision energy and centrality.

FIG. 13. Collision centrality dependence of the cumulant ratios of proton, antiproton and net-proton multiplicity distributions for Au+Au
collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV. The bars and caps represent the statistical and systematic

uncertainties, respectively.
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FIG. 14. Collision centrality dependence of normalized correlation functions κn/κ1 (n = 2, 3, 4) for proton and antiproton multiplicity
distributions in Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV. The bars and caps represent the statistical

and systematic uncertainties, respectively. For clarity, the X -axis values for protons are shifted and the values of proton and antiproton κ4/κ1
at

√
sNN = 7.7 GeV are scaled down by a factor of 2.

B. Acceptance dependence

In this subsection, we focus on discussing the acceptance
dependence of the proton, antiproton, and net-proton cu-
mulants (Cn) and cumulant ratios in 0–5% central Au+Au
collisions at

√
sNN = 7.7–200 GeV. It was pointed out in

Refs. [98,99,124,125] that, when the rapidity acceptance
(�y) is much smaller than the typical correlation length (ξ )
of the system (�y � ξ ), the cumulants (Cn) and correla-
tion functions (κn) should scale with some power n of the
accepted mean particle multiplicities as Cn, κn ∝ (�N )n ∝
(�y)n. Meanwhile, in the regime where the rapidity accep-
tance becomes much larger than ξ (�y 
 ξ ), the Cn and
κn scale linearly with mean multiplicities or �y. Thus, the
rapidity acceptance dependence of the higher-order cumulants
and correlation functions of proton, antiproton, and net-proton
distributions are important observables to search for a signa-
ture of the QCD critical point in heavy-ion collisions. On the
other hand, that acceptance dependence ofCn and κn could be
affected by the effects of nonequilibrium [69,71,126], smear-
ing due to diffusion and hadronic re-scattering [126–129] in
the dynamical expansion of the created fireball.

1. Rapidity dependence

Figure 15 shows the rapidity (−ymax < y < ymax, �y =
2ymax) dependence of the Cn for proton, antiproton, and net-
proton distributions in 0–5% central Au+Au collisions at√
sNN = 7.7–200 GeV. The measurements are made in the pT

range of 0.4 to 2.0 GeV/c. The rapidity acceptance is cumula-
tively increased and theCn values for protons, antiprotons, and
net protons increase with increasing rapidity acceptance. For√
sNN < 27 GeV, the proton and net-proton Cn have similar

values, an inevitable consequence of the small production rate
of antiproton at lower energies.

Figure 16 shows the variation of normalized correlation
functions κn/κ1 with rapidity acceptance for proton and
antiproton in 0–5% central Au+Au collisions at

√
sNN =

7.7–200 GeV. The κ2/κ1 values for protons and antiprotons
are negative and monotonically increase in magnitude when
enlarging the rapidity acceptance up to ymax = 0.5 (�y = 1).
For the antiproton, the values of κ2/κ1 show stronger devia-
tions from zero at higher

√
sNN . As discussed around Fig. 14,

the negative values of the two-particle correlation functions
(κ2) of protons and antiprotons are consistent with the ex-
pectation of the effect of baryon number conservation. Within
current uncertainties, the rapidity acceptance dependences for
the κ3/κ1 and κ4/κ1 of protons and antiprotons in Au+Au
collisions at different

√
sNN are not significant. The signif-

icances of the proton κ4/κ1 with |y| < 0.5 deviating from
zero are 1.04σ , 0.05σ , 1.27σ , 0.90σ , 0.95σ , 0.40σ , 2.91σ ,
1.43σ , 0.11σ for 0–5% central Au+Au collisions at

√
sNN

= 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV,
respectively, where the σ is defined as the sum in quadrature
of the statistical and systematic uncertainties.

Figure 17 shows the rapidity acceptance dependence of the
cumulant ratiosC2/C1,C3/C2, andC4/C2 for protons, antipro-
tons, and net protons in 0–5% central Au+Au collisions at√
sNN = 7.7–200 GeV. Based on Eqs. (8) to (10), the rapidity

acceptance dependence of the cumulant ratios of proton and
antiproton can be understood by the interplay between differ-
ent orders of normalized correlation functions (κn/κ1). The
negative values of two-particle correlation functions (κ2) for
protons and antiprotons leads to a deviation of the correspond-
ing C2/C1 and C3/C2 below unity. Due to low production rate
of antiproton at low energies, the values of C2/C1 and C3/C2
for the net-proton distributions approach the corresponding
values for protons when the beam energy decreases. The
rapidity acceptance dependence of C2/C1, C3/C2 and C4/C2
values for protons and antiprotons are comparable at

√
sNN =

200 GeV. However, among these ratios, protons and antipro-
tons start to deviate at lower beam energies. This is mainly
due to baryon stopping and the larger fraction of transported
protons compared with proton-antiproton pair production at
midrapidity. The C4/C2 values for proton, antiproton, and
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FIG. 15. Rapidity acceptance dependence of cumulants of proton, antiproton, and net-proton multiplicity distributions in 0–5% central
Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV. The bars and caps represent statistical and systematic

uncertainties, respectively. For clarity, the X -axis values for protons are shifted and the values of proton, antiproton, and net-protonC4 at
√
sNN

= 7.7 GeV are scaled down by a factor of 2.

net-proton distributions are consistent within uncertainties for√
sNN = 39, 54.4, 62.4, and 200 GeV. Significant deviations

from unity are observed for proton and net-proton C4/C2 at√
sNN = 19.6 and 27 GeV, and the deviation decreases with

decreasing �y acceptance, where the effects of baryon num-

ber conservation plays an important role. For energies below
19.6 GeV, the rapidity acceptance dependence of C4/C2 for
protons, antiprotons, and net protons is not significant within
uncertainties.

FIG. 16. Rapidity acceptance dependence of normalized correlation functions up to fourth order (κn/κ1, n = 2, 3, 4) for proton and
antiproton multiplicity distributions in 0–5% central Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV.

The X -axis rapidity cut ymax is applied as |y| < ymax. The bars and caps represent statistical and systematic uncertainties, respectively. For
clarity, the X -axis values for protons are shifted and the values of proton and antiproton κ4/κ1 at

√
sNN = 7.7 GeV are scaled down by a factor

of 2.
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FIG. 17. Rapidity-acceptance dependence of cumulant ratios of proton, antiproton and net-proton multiplicity distributions in 0–5% central
Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV. The bars and caps represent statistical and systematic

uncertainties, respectively. For clarity, the X -axis values for net protons and protons are shifted.

2. Transverse momentum dependence

Figure 18 shows the pT acceptance dependence for the Cn

of proton, antiproton, and net-proton distributions at midra-
pidity (|y| < 0.5) for 0–5% central Au+Au collisions at

√
sNN

= 7.7–200 GeV. We fix the lower pT cut at 0.4 GeV/c, and
then the pT acceptance is increased by varying the upper limit
in steps between 1 and 2 GeV/c. The average efficiency values

used in the efficiency correction for various pT acceptances
are calculated based on Eq. (12). By extending the upper pT
coverage from 1 to 2 GeV/c, the mean numbers of protons
increased about 50% and 80% at

√
sNN = 7.7 and 200 GeV,

respectively. It is found that theCn values for protons, antipro-
tons, and net protons increase with increasing pT acceptance,
except for a weak pT acceptance dependence for C4 observed
at energies below 39 GeV.

FIG. 18. pT -acceptance dependence of cumulants of proton, antiproton, and net-proton multiplicity distributions for 0–5% central Au+Au
collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV. The bars and caps represent statistical and systematic uncertainties,

respectively. For clarity, the X -axis values for net protons are shifted and the values of proton, antiproton, and net-proton C4 at
√
sNN = 7.7

GeV are scaled down by a factor of 2.
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FIG. 19. The pT -acceptance dependence of the normalized correlation functions up to fourth order (κn/κ1, n = 2, 3, 4) for proton and
antiproton multiplicity distributions in 0–5% central Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV. The

bars and caps represent statistical and systematic uncertainties, respectively. For clarity, the X -axis values for protons are shifted and the values
of proton and antiproton κ4/κ1 at

√
sNN = 7.7 GeV are scaled down by a factor of 2.

Figure 19 shows the variation of normalized correlation
functions κn/κ1 with pT acceptance for protons and an-
tiprotons at midrapidity (|y| < 0.5) in 0–5% central Au+Au
collisions at

√
sNN = 7.7–200 GeV. The κ2/κ1 values for

protons and antiprotons are found to be negative and decrease
with increasing pT acceptance at higher

√
sNN . The κ2/κ1

values for antiprotons approach zero when the beam energy
is decreased, due to the small production rate of antiprotons
at low energies. The negative values of κ2/κ1 for protons
observed at low energies are mainly dominated by the baryon
stopping.

Figure 20 shows the pT acceptance dependence of C2/C1,
C3/C2, and C4/C2 for proton, antiproton and net-proton dis-
tributions in 0–5% central Au+Au collisions at

√
sNN =

7.7–200 GeV. In general, most of the ratios show a weak
dependence on pT acceptance for all of the

√
sNN studied. The

C4/C2 ratios of proton and net-proton distributions are similar
for all

√
sNN below 27 GeV. The C3/C2 ratios for protons

and antiprotons are similar at higher beam energy. However,
they differ from each other at the lower

√
sNN . From the

above differential measurements, it is found that the baryon
number conservation strongly influences the cumulants and

FIG. 20. pT -acceptance dependence of cumulant ratios of proton, antiproton, and net-proton multiplicity distributions for 0–5% central
Au+Au collisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV. The bars and caps represent statistical and systematic

uncertainties, respectively. For clarity, the X -axis values for net protons are shifted.

024902-21



M. S. ABDALLAH et al. PHYSICAL REVIEW C 104, 024902 (2021)

correlation functions in heavy-ion collisions, especially at
low energies. It could be the main reason for the negative
two-particle correlation functions for protons and antiprotons
[119].

C. Cumulants from models

Although our results can be compared to several models
[118,130–141], we have chosen two models which do not
have phase transition or critical point physics. They have
contrasting physics processes to understand the following: (a)
the effect of measuring net protons instead of net baryons
[79,142], (b) the role of resonance decay for net-proton mea-
surements [143–146], (c) the effect of finite pT acceptance for
the measurements [119,147], and (d) the effect of net-baryon
number conservation [142,148,149]. Models without a critical
point also provide an appropriate baseline for comparison to
data.

1. Hadron resonance gas model

The hadron resonance gas model includes all the relevant
degrees of freedom for the hadronic matter and also implic-
itly takes into account the interactions that are necessary for
resonance formation [117,150]. Hadrons and resonances of
masses up to 3 GeV/c2 are included. Considering a grand
canonical ensemble picture, the logarithm of the partition
function (Z) in the HRG model is given as

ln Z (T,V, μ) =
∑
B

ln Zi(T,V, μi ) +
∑
M

ln Zi(T,V, μi ),

(19)

where

ln Zi(T,V, μi ) = ±Vgi
2π2

∫
d3p ln {1 ± exp[(μi − E )/T ]},

(20)

T is the temperature, V is the volume of the system, μi is
the chemical potential, E is the energy, and gi is the degen-
eracy factor of the ith particle. The total chemical potential
μi = BiμB + QiμQ + SiμS , where Bi, Qi, and Si are the
baryon, electric charge and strangeness number of the ith
particle, with corresponding chemical potentials μB, μQ, and
μS , respectively. The+ and− signs in Eq. (20) are for baryons
(B) and mesons (M), respectively. The nth-order generalized
susceptibility for baryons can be expressed as [150]

χ
(n)
x,baryon = xn

VT 3

∫
d3p

∞∑
k=0

(−1)k (k + 1)n

× exp

{−(k + 1)E

T

}
exp

{
(k + 1)μ

T

}
, (21)

and for mesons

χ (n)
x,meson = xn

VT 3

∫
d3p

∞∑
k=0

(k + 1)n

× exp

{−(k + 1)E

T

}
exp

{
(k + 1)μ

T

}
. (22)

FIG. 21. Left panel: Collision energy dependence of CB
2 /CB

1 ,
CB
3 /CB

2 , and CB
4 /CB

2 for various pT acceptances from the hadron
resonance gas model. Right panel: The variation of net-proton and
net-baryon C2/C1, C3/C2, and C4/C2 within the experimental accep-
tance [117]. Note: this simulation is done within a pseudorapidity
window in order to make comparison between baryons of different
mass.

The factor x represents either B, Q, or S of the ith particle,
depending on whether the computed χx represents baryon,
electric charge or strangeness susceptibility.

For a particle of mass m with pT , η, and φ, the vol-
ume element (d3p) and energy (E ) can be written as d3p =
pTmT cosh(η)d pT dη dφ and E = mT cosh η, where mT =√
p2T + m2. The experimental acceptance can be incorporated

by considering the appropriate integration ranges in η, pT , φ,
and charge states by considering the values of |x|. The total
generalized susceptibilities will then be the sum of the contri-
butions from baryons and mesons as in χ (n)

x = ∑
χ

(n)
x,baryon +∑

χ (n)
x,meson.

Figure 21 shows the variation of CB
2 /CB

1 , C
B
3 /CB

2 , and
CB
4 /CB

2 as functions of
√
sNN from a hadron resonance gas

model [117]. The results are shown for different pT accep-
tances. The differences due to acceptance are very small, and
the maximum effect is at the level of 5% for

√
sNN = 7.7

GeV for CB
4 /CB

2 . The HRG results also show that the net-
proton results with resonance decays are smaller compared
to net baryons and larger than net protons without the decay
effect. Here also the effect is at the level of 5% for the lowest√
sNN and smaller at higher energies in the case of CB

4 /CB
2 .

The corresponding effect on CB
3 /CB

2 and CB
2 /CB

1 is larger at
the higher energies and of the order of 17% for net protons
without resonance decay and net baryons, while the effect is
10% for net protons with resonance decays and net baryons.
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2. UrQMD Model

The UrQMD (ultrarelativistic quantum molecular dynam-
ics) model [97,151] is a microscopic transport model where
the phase space description of the reactions are considered. It
treats the propagation of all hadrons as classical trajectories in
combination with stochastic binary scattering, color string for-
mation, and resonance decays. It incorporates baryon-baryon,
meson-baryon, and meson-meson interactions. The collisional
term includes more than 50 baryon species and 45 meson
species. The model preserves the conservation of electric
charge, baryon number, and strangeness number as expected
for QCD matter. It also models the phenomenon of baryon
stopping, an essential feature encountered in heavy-ion colli-
sions at lower beam energies. In this model, the space-time
evolution of the fireball is studied in terms of excitation and
fragmentation of color strings and formation and decay of
hadronic resonances. Since the model does not include the
physics of the quark-hadron phase transition nor the QCD crit-
ical point, the comparison of the data to the results obtained
from the UrQMD model will shed light on the contributions
from the hadronic phase and its associated processes, baryon
number conservation, and effect of measuring only net pro-
tons relative to net baryons.

In Fig. 22, the panels on the left present the energy depen-
dence of Cn ratios of net-baryon distributions for various pT
acceptance. It is observed that the larger the pT acceptance is,
the smaller the cumulant ratios. Furthermore, with the same
pT acceptance, the values of net-baryon C4/C2 and C2/C1 ra-
tios decrease with decreasing energies. Figure 22 right panels
show the comparison of the cumulant ratios for net-baryon
and net-proton distributions within the experimental accep-
tance for various

√
sNN . The differences between results from

different acceptance are larger for UrQMD compared to the
HRG model calculations with grand canonical ensemble. In
UrQMD the difference between net baryons and net protons
is larger at the lower beam energies for a fixed pT and y accep-
tance. The negative C4/C2 values of net-baryon distributions
observed at low energies could be mainly due to the effect of
baryon number conservation. The effects of resonance weak
decay and hadronic rescattering on proton and net-proton
number fluctuations in heavy-ion collisions have also been
investigated in Ref. [146] within the JAM (jet AAmicroscopic
transport) model. It is important to point out that in both
the HRG model and UrQMD transport model calculations,
a suppression in C4/C2 at low collision energy is observed,
as is evident from the right plots of Fig. 21 and Fig. 22,
respectively. In the case of the transport results, the suppres-
sion is attributed to the effect of baryon number conservation
in strong interactions. However, the interpretation does not
apply to the HRG calculation since for the grand canonical
ensemble (GCE) the event-by-event conservation is absent,
although, on average, the conservation law is preserved. In
addition to the law of conservation, quantum effects and the
change of temperature and baryon chemical potential could
play a role here. It is worth noting that the energy dependence
of the suppression in C4/C2 depends on the details of mod-
eling, especially on proton (baryon) rapidity distributions as
they directly reflect the local baryon density. This effect is

FIG. 22. Left panel: UrQMD results on pT acceptance depen-
dence of C2/C1, C3/C2, and C4/C2 ratios as a function of

√
sNN

for net baryons. Right panel: Same ratios within the experimental
acceptance for net protons and net baryons. Note: similar to Fig. 21,
this simulation is done within a pseudorapidity window in order to
make comparison between baryons of different mass.

particularly important at lower energy region due to strong
stopping in such collisions. Recently, Mohs, Ryu, and Elfner
reported rather different rapidity distributions for protons in
Pb+Pb collisions around SPS energies, compared to those of
UrQMD calculations. This is achieved by retuning parameters
in string excitation and decay in the hadronic transport model
SMASH [152]. In order to establish a noncritical baseline for
the critical point search, more systematic theoretical studies
of the higher-order cumulant as a function of collision energy
with the reliable dynamical models are called for.

3. Energy dependence

Figure 23 shows the collision-energy dependence of cu-
mulant ratios (a) σ 2/M, (b) Sσ , and (c) κσ 2 of net-proton
distributions for 0–5% central Au+Au collisions at

√
sNN =

7.7–62.4 GeV. As shown in Fig. 23, a polynomial of order
4 (5) well describes the plotted collision-energy dependence
of κσ 2 (Sσ ) of net-proton distributions for central Au+Au
collisions with a χ2/ndf = 1.3(0.72). The local derivative
of the fitted polynomial function shown in the lower panel
of Fig. 23 changes sign, demonstrating the nonmonotonic
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FIG. 23. Upper panel: (a) σ 2/M, (b) Sσ , and (c) κσ 2 of net-proton distributions for 0–5% central Au+Au collisions from
√
sNN = 7.7–62.4

GeV. The error bars on the data points are statistical and systematic uncertainties added in quadrature. The black solid lines are polynomial fit
functions which well describe the cumulant ratios. The legends also specify the values of chi squared per degree of freedom for the respective
fits. The black dashed lines are the Poisson baselines. Lower panel: Derivative of the fitted polynomial as a function of collision energy. The
bar and the gold band on the derivatives represent the statistical and systematic uncertainties, respectively.

variation of the measurements with respect to collision energy.
The statistical and systematic uncertainties on derivatives are
obtained by randomly varying the data points at each energy
within their statistical and systematic uncertainties.

The significance of the observed nonmonotonic depen-
dence of κσ 2 (Sσ ) on collision energy, in the energy range√
sNN = 7.7–62.4 GeV, is obtained based on the fourth (fifth)

order polynomial fitting procedure. This significance is evalu-
ated by randomly varying the κσ 2 and Sσ data points within
their total Gaussian uncertainties (statistical and systematic
uncertainties added in quadrature) at each corresponding en-
ergy. This procedure is repeated 106 times for κσ 2 and for
Sσ . Out of 106 trials, there are 1143 cases for κσ 2 and
158640 cases for Sσ where the signs of the derivative at all√
sNN are found to be the same. Thus, the probability that

at least one derivative at a given
√
sNN has a different sign

from the derivatives at remaining energies among the 106

trials performed is 0.99886 (0.84136), which corresponds to
a 3.1σ (1.0σ ) effect for κσ 2 (Sσ ). Similarly, based on the
third-order polynomial fitting procedure, the cumulant ratio
σ 2/M on the other hand (χ2/ndf = 0.32) exhibits a mono-
tonic dependence on collision energy with a significance of
3.4σ . Thus we find that the cumulant ratios as a function
of collision energy change from a monotonic variation to a
nonmonotonic variation with

√
sNN as we go to higher orders.

This is consistent with the QCD-based model expectation that,
the higher the order of the moments is, the more sensitive it
is to physics processes such as a critical point [46,75]. A test
of the nonmonotonicity energy dependence with κσ 2 is also
carried out with the energy range

√
sNN = 7.7–200 GeV and

the resulting significance is 3.0σ .
Figure 24 shows the collision-energy dependence of the

cumulant ratios of net-proton multiplicity distributions for
0–5% central Au+Au collisions. The comparison has been
made between experimental measurements and the corre-
sponding results from the HRG and UrQMD models. We
observe that both models, which do not have phase tran-
sition effects, show monotonic variations of the cumulant
ratios with beam energy. However, the experimental mea-

surements of net-proton C4/C2 ratios show a nonmonotonic
variation with

√
sNN . On the other hand, the net-protonC3/C2

(C2/C1) in both model and data show a smooth decrease
(increase) trend with increasing

√
sNN . Although both mod-

els show a smooth energy dependence, the third-order ratios
in the middle panel are larger for UrQMD than for (GCE)
HRG at collision energies above 14.5 GeV. At lower en-
ergy, a suppression relative to the results of GCE HRG is
observed. On the other hand, the canonical ensemble (CE)
HRG, presents a consistent suppression in all three panels.
In this approach, the baryon number conservation is the main
source of the suppression [154,155]. It is interesting to point
out that GCE models incorporating excluded volume effects
(GCE E.V.) can also reproduce the suppression. The larger
the repulsive volume, the stronger the suppression. Since the
repulsive volume reflects the “baryon density,” the observed
suppression GCE E.V. is due to the local density. For details,
see Refs. [141,156,157]. To quantify the level of agreement
between the experimental measurements and the model cal-
culations, the widely used χ2 test has been applied for two
energy ranges (

√
sNN = 7.7–27 and 7.7–62.4 GeV). The χ2

value is calculated as χ2(R) = ∑√
sNN

|Rdata−Rmodel|2
error2 , where R

denotes the cumulant ratios (C2/C1, C3/C2, C4/C2) and the
“error” represents the statistical and systematic uncertainties
of the data and the statistical uncertainties of the model added
in quadrature. In addition, the obtained χ2 value can be
converted to the corresponding right-tail p value, which is
the probability of obtaining discrepancies at least as large as
the results actually observed [153]. The resulting right-tail p
values listed in Table VII are calculated via p = Pr(χ2

n > χ2),
where χ2

n obeys the chi-square distribution with n independent
energy data points and the χ2 values are obtained in the chi-
squared test. Usually, for the right tail p-value test, p < 0.05
is the commonly used standard to reject the null hypothesis
and claim a significant deviation between the data and model
results. It is found that the p values from the the χ2 test are
smaller than 0.05 for all of the different variants of HRG and
the UrQMD model at

√
sNN = 7.7–27 GeV, which means

the deviations between data and model results are significant
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FIG. 24. Collision energy dependence of C2/C1, C3/C2, and
C4/C2 for net-proton multiplicity distributions in 0–5% central
Au+Au collisions. The experimental net-proton measurements are
compared to corresponding values from UrQMD and HRG models
within the experimental acceptances. The bars and caps represent the
statistical and systematic uncertainties of the experimental data, re-
spectively. The widths of the bands reflect the statistical uncertainties
for the model calculations.

and cannot be explained by statistical fluctuations. But, for
the range

√
sNN = 7.7–62.4 GeV, the p values of C4/C2 for

the HRG CE and UrQMD model cases are 0.128 and 0.0577,
respectively. Clearly as far as these tests are concerned, all
of the above-mentioned models, showing monotonic energy
dependences, do not fit the data in the most relevant energy

FIG. 25. Collision energy dependence of the scaled (anti)proton
cumulants and correlation functions in 0–5% central Au+Au col-
lisions at

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200

GeV. The error bars and bands represent the statistical and systematic
uncertainties, respectively. The results from UrQMD model calcula-
tion are also shown for comparison.

region,
√
sNN � 27 GeV. This result will be further tested with

the high-precision data from RHIC BES-II program.
Based on Eq. (7), the cumulants can be expressed in

terms of the sum of various-order multiparticle correlation
functions. In order to understand the contributions to the
cumulants, one can present different orders of correlation
functions separately. Figure 25 shows the energy dependence
of the cumulants and correlation functions normalized by the
mean numbers of protons and antiprotons in 0–5% central
Au+Au collisions. By definition and as shown in Fig. 25,
the values of C2/C1 − 1 are equal to κ2/κ1. It is observed that
the normalized second and third-order cumulants minus unity
(C2/C1 − 1, C3/C1 − 1) are negative and show an increas-
ing (decreasing) energy dependence in magnitude for protons
(antiprotons) with decreasing collision energies. From the
right panels in Fig. 25, the third-order normalized correlation

TABLE VII. The right-tail p values of a chi-squared test between experimental data and various models (shown in Fig. 24) for the energy
dependence of the net-proton cumulant ratios in 0–5% central Au+Au collisions at two ranges of collision energy:

√
sNN = 7.7–27 and

7.7–62.4 GeV (the latter shown in the parentheses). Those p values denote the probability of obtaining discrepancies at least as large as the
results actually observed [153]. The right-tail p values are calculated via p = Pr(χ2

n > χ 2), where χ 2
n obeys the chi-square distribution with n

independent energy data points and the χ2 values are obtained in the chi-squared test.

Cumulant ratios HRG GCE HRG CE HRG GCE+E.V. (R = 0.5 fm) UrQMD

C2/C1 <0.001(<0.001) <0.001(<0.001) <0.001(<0.001) <0.001(<0.001)
C3/C2 <0.001(<0.001) 0.0754 (<0.001) <0.001(<0.001) <0.001(<0.001)
C4/C2 0.00553 (0.00174) 0.0450 (0.128) 0.0145 (0.0107) 0.0221 (0.0577)
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functions (κ3/κ1) of protons and antiprotons show flat energy
dependence and are consistent with zero within uncertainties.
Therefore, the energy dependence for C3/C1 is dominated
by the negative two-particle normalized correlation functions
(κ2/κ1), which is mainly due to the effects of baryon number
conservation. The normalized four-particle correlation func-
tions (κ4/κ1) of antiprotons show flat energy dependence and
are consistent with zero within uncertainties. In panel (e) of
Fig. 25, we observe a similar energy dependence trend for
the normalized fourth-order cumulants (C4/C1) of protons as
for the net-proton C4/C2 in 0–5% central Au+Au collisions
shown in Fig. 24. For

√
sNN � 19.6 GeV, the values of proton

C4/C1 are dominated by the negative two-particle correlation
function (κ2) of protons (see panel (b) in Fig. 25). For

√
sNN <

19.6 GeV, the four-particle correlation function (κ4) of protons
plays a role in determining the energy dependence of proton
C4/C1, which cannot be solely understood by the suppression
effects due to negative values of κ2 for protons. As discussed
in Refs. [98,158], the observed large values of the four-particle
correlation function of protons (κ4) could be attributed to the
formation of proton cluster and related to the signature of a
critical point or a first order phase transition. Therefore, it is
necessary to perform precise measurements of the κ4/κ1 of
protons below 19.6 GeV with high statistics data taken in the
second phase of the beam energy scan at RHIC. In addition,
we compare the experimental data in Fig. 25 with UrQMD
model calculations. The energy dependence of the second-
and third-order normalized cumulants and correlation func-
tions can be qualitatively described by the UrQMD model.
However, the nonmonotonic energy dependence observed in
the proton C4/C1 cannot be described by the UrQMD model.
Furthermore, the three- and four-particle correlation functions
(κ3 and κ4) for (anti)protons from UrQMD show flat energy
dependence and are consistent with zero. This indicates that
the higher-order (anti)proton correlation functions κ3 and κ4
are not sensitive to the effect of baryon number conserva-
tion within the current acceptance, and therefore can serve
as good probes of critical fluctuations in heavy-ion collisions
[119,146].

IV. SUMMARY AND OUTLOOK

In summary, we report a systematic study of the cumulants
of the net-proton, proton, and antiproton multiplicity distribu-
tions from Au+Au collisions at

√
sNN = 7.7–200 GeV. The

data have been collected with the STAR experiment in the
first phase of the RHIC beam energy scan acquired over the
period of 2010–2017. The energy, centrality, and acceptance
dependence of the correlation functions of protons and an-
tiprotons are presented in this paper. Both cumulants and
correlation functions up to fourth order at midrapidity (|y| <

0.5) within 0.4 < pT < 2.0 GeV/c in Au+Au collisions are
presented to search for the signatures of a critical point and/or
a first-order phase transition over a broad region of baryon
chemical potential.

The protons and antiprotons are identified with greater than
97% purity using the TPC and TOF detectors of STAR. The
centrality selection is based on midrapidity pions and kaons
only to avoid self-correlation effects. The maximum-allowed
rapidity acceptance around midrapidity has been used for

centrality determination to minimize the effect of centrality
resolution. The variation of the average number of protons
and antiprotons in a given centrality bin has been accounted
for by applying a centrality bin-width correction, which also
minimizes volume fluctuation effects. The cumulants are cor-
rected for the proton and antiproton reconstruction efficiencies
using a binomial response function. Study of the unfolding
technique for efficiency correction of cumulants has shown
that, even in the 0–5% central Au+Au collisions at

√
sNN =

200 GeV, the case with the highest multiplicity, the results are
consistent with the commonly-used binomial approach within
current statistical uncertainties. The statistical errors on the
cumulants are based on the delta theorem method and are
shown to be consistent with those obtained by the bootstrap
method. A detailed estimate of the systematic uncertainties
is also presented. Results on cumulant ratios from different
variants of the HRG and the UrQMD models are presented to
understand the effects of experimental acceptance, resonance
decay, baryon number conservation, and net-proton versus
net-baryon analysis. The cumulant ratios show a centrality and
energy dependence, which are reproduced neither by purely
hadronic-transport-based UrQMD model calculations nor by
different variants of the hadron resonance gas model. Specif-
ically, the net-proton C4/C2 ratio for 0–5% central Au+Au
collisions shows a nonmonotonic variation with

√
sNN , with a

significance of 3.1σ . This is consistent with the expectations
of critical fluctuations in a QCD-inspired model. A χ2 test
has been applied to quantify the level of agreement between
experimental data and model calculations. The resulting p val-
ues suggest that the models fail to explain the 0-5% Au+Au
collision data at

√
sNN � 27 GeV. The y and pT acceptance

dependence of the cumulants and their ratios provide valuable
data to understand the range of the correlations and their rela-
tion to the acceptance of the detector [98,125]. Furthermore,
the systematic analysis presented here can be used to constrain
the freeze-out conditions in high-energy heavy-ion collisions
using QCD-based approaches, and to understand the nature of
thermalization in such collisions [121–123]. From the analysis
of multiparticle correlation functions, one observes significant
negative values for κ2 of protons and antiprotons, which are
mainly due to the effects of baryon number conservation in
heavy-ion collisions. The values of κ3 of protons and antipro-
tons are consistent with zero for all of the collision energies
studied. Further, the energy dependence trend of protonC4/C1

below 19.6 GeV cannot be solely understood by the negative
values of κ2 for protons, and the four-particle correlation
function of protons (κ4) is found to play a role, which needs
to be confirmed with the high statistics data taken in RHIC
BES-II, which began data-taking in 2018. Upgrades to the
STAR detector system have significantly improved the quality
of the measurements [2]. Primarily the goal of BES-II is to
make high-statistics measurements, with extended kinematic
range in rapidity and transverse momentum for the measure-
ments discussed in this paper. The extended kinematic range
in rapidity and transverse momentum are brought about by
upgrading the inner TPC (iTPC) to extend the measurement
coverage to |η| < 1.5, the pT acceptance down to 100 MeV/c
and improved dE/dx resolution. Particle identification capa-
bility will be extended to −1.6 < η < 1.0 with the addition of
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TABLE VIII. Total number of collected/expected events in BES
Phase II for various collision energies (

√
sNN ) [2].

√
sNN (GeV) Year No. of events (×106)

27 2018 500
19.6 2019 400
17.3 2021 250
14.5 2019 300
11.5 2020 230
9.2 2020 160
7.7 2021 100

an endcap TOF (eTOF) detector. The collected event statistics
to date, along with the goal for 2021, are listed in Table VIII.

At the same time, STAR will take data in fixed-target mode
to extend

√
sNN to 3 GeV. With these upgrades, and with

the benefits of extended kinematic coverage and the use of
sensitive observables, the RHIC BES Phase-II program will
allow measurements of unprecedented precision for exploring
the QCD phase structure within 200 < μB < 720 MeV.
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APPENDIX A: EFFICIENCY CORRECTION

In order to correct the Cn for efficiency effects, one has
to invoke a model assumption for the response of the detec-
tor. The detector response is assumed to follow a binomial
probability distribution function. The probability distribution
function of measured proton number np and antiproton num-
ber np̄ can be expressed as [80,104]

p(np, np̄) =
∞∑

Np=np

∞∑
Np̄=np̄

P(Np,Np̄) × Np!

np!(Np − np)!
(εp)

np (1 − εp)
Np−np

Np̄!

np̄!(Np̄ − np̄)!
(εp̄)

np̄ (1 − εp̄)
Np̄−np̄, (A1)

where the P(Np,Np̄) is the original joint probability distribution of numbers of protons (Np) and antiprotons (Np̄), and εp, εp̄
are the efficiency of reconstructing the protons and antiprotons, respectively. In order to arrive at an expression for efficiency-
corrected cumulants or moments, the bivariate factorial moments are first defined as

Fi,k (Np,Np̄) =
〈

Np!

(Np − i)!

Np̄!

(Np̄ − k)!

〉
=

∞∑
Np=i

∞∑
Np̄=k

P(Np,Np̄)
Np!

(Np − i)!

Np̄!

(Np̄ − k)!
, (A2)

fi,k (np, np̄) =
〈

np!

(np − i)!

np̄!

(np̄ − k)!

〉
=

∞∑
np=i

∞∑
np̄=k

p(np, np̄)
np!

(np − i)!

np̄!

(np̄ − k)!
. (A3)

The efficiency-corrected factorial moments are then given as

Fi,k (Np,Np̄) = fi,k (np, np̄)

(εp)i(εp̄)k
. (A4)

Then the nth-order efficiency-corrected moments of net-proton distributions are related to the efficiency-corrected factorial
moments as

mn(Np − Np̄) = 〈(Np − Np̄)
n〉 =

n∑
i=0

(−1)i
(
n
i

)〈
Nn−i
p Ni

p̄

〉

=
n∑

i=0

(−1)i
(
n
i

)[
n−i∑
r1=0

i∑
r2=0

s2(n − i, r1)s2(i, r2)Fr1,r2 (Np,Np̄)

]

=
n∑

i=0

n−i∑
r1=0

i∑
r2=0

(−1)i
(
n
i

)
s2(n − i, r1)s2(i, r2)Fr1,r2 (Np,Np̄). (A5)
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The Stirling numbers of the first [s1(n, i)] and second kind [s2(n, i)] are defined as

N!

(N − n)!
=

n∑
i=0

s1(n, i)N
i, (A6)

Nn =
n∑

i=0

s2(n, i)
N!

(N − i)!
, (A7)

where N , n, and i are non-negative integer numbers. The efficiency-corrected cumulants of net-proton distributions can be
obtained from the efficiency-corrected moments by using the recursion relation

Cr (Np − Np̄) = mr (Np − Np̄) −
r−1∑
s=1

(
r − 1
s − 1

)
Cs(Np − Np̄)mr−s(Np − Np̄), (A8)

where the Cr denotes the rth-order cumulants of net-proton distributions.
If the protons and antiprotons have the same efficiency, εp = εp̄ = ε, the expressions for the first four efficiency-corrected

cumulants can be explicitly written as

CX−Y
1 = 〈x〉 − 〈y〉

ε
,

CX−Y
2 = Cx−y

2 + (ε − 1)(〈x〉 + 〈y〉)
ε2

,

CX−Y
3 = Cx−y

3 + 3(ε − 1)
(
Cx
2 −Cy

2

) + (ε − 1)(ε − 2)(〈x〉 − 〈y〉)
ε3

,

CX−Y
4 = Cx−y

4 − 2(ε − 1)Cx+y
3 + 8(ε − 1)

(
Cx
3 +Cy

3

) + (5 − ε)(ε − 1)Cx+y
2

ε4

+ 8(ε − 1)(ε − 2)
(
Cx
2 +Cy

2

) + (ε2 − 6ε + 6)(ε − 1)(〈x〉 + 〈y〉)
ε4

, (A9)

where the (X,Y ) and (x, y) are the numbers of (p, p̄) produced
and measured, respectively. The efficiency-corrected cumu-
lants are sensitive to the efficiency and depend on the lower
order measured cumulants.

In the current analysis, the proton and antiproton pT range
is from 0.4 to 2 GeV/c. This has been possible by using
particle identification information for the TPC in the pT range
0.4 to 0.8 GeV/c and the TPC+TOF in the momentum range
0.8 to 2 GeV/c. This results in two different efficiencies for
proton reconstruction and two different values for antiprotons.

Hence the above formulation which holds for one single value
of efficiency and ε = εp = εp̄ has to be modified to take care
of four different efficiency values, two each for the proton and
antiproton corresponding to different pT ranges. Let εp1 , εp2
and εp̄1 , εp̄2 denote the efficiency for protons and antiprotons
in the two subphase spaces, and denote the corresponding
numbers of protons and antiprotons in the two subphase
spaces by Np1 , Np2 and Np̄1 , Np̄2 , respectively. Using analo-
gous formulations as above, the bivariate factorial moments
of protons and antiprotons distributions are given as

Fr1,r2 (Np,Np̄) = Fr1,r2 (Np1 + Np2 ,Np̄1 + Np̄2 ) =
r1∑

i1=0

r2∑
i2=0

s1(r1, i1)s1(r2, i2)〈(Np1 + Np2 )
i1 (Np̄1 + Np̄2 )

i2〉

=
r1∑

i1=0

r2∑
i2=0

s1(r1, i1)s1(r2, i2)

〈
i1∑
s=0

(
i1
s

)
Ni1−s
p1 Ns

p2

i2∑
t=0

(
i2
t

)
Ni2−t
p̄1 Nt

p̄2

〉

=
r1∑

i1=0

r2∑
i2=0

i1∑
s=0

i2∑
t=0

s1(r1, i1)s1(r2, i2)

(
i1
s

)(
i2
t

)〈
Ni1−s
p1 Ns

p2N
i2−t
p̄1 Nt

p̄2

〉

=
r1∑

i1=0

r2∑
i2=0

i1∑
s=0

i2∑
t=0

i1−s∑
u=0

s∑
v=0

i2−t∑
j=0

t∑
k=0

s1(r1, i1)s1(r2, i2)

(
i1
s

)(
i2
t

)

× s2(i1 − s, u)s2(s, v)s2(i2 − t, j)s2(t, k) × Fu,v, j,k (Np1 ,Np2 ,Np̄1 ,Np̄2 ). (A10)
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Similarly to Eq. (A4) for the multivariate case, the
efficiency-corrected multivariate factorial moments of pro-
ton and antiproton distributions in the current case are given
as

Fu,v, j,k (Np1 ,Np2 ,Np̄1 ,Np̄2 ) = fu,v, j,k (np1 , np2 , np̄1 , np̄2 )

(εp1 )
u(εp2 )

v (εp̄1 )
j (εp̄2 )

k
,

(A11)

where fu,v, j,k (Np1 ,Np2 ,Np̄1 ,Np̄2 ) are the measured multivari-
ate factorial moments of proton and antiproton distributions.
By using Eqs. (A5), (A8), (A10), and (A11), one can
obtain the efficiency-corrected moments and cumulants of
net-proton distributions for the case where the protons
(antiprotons) have different efficiencies in two subphase
spaces. Through simulations as discussed in Refs. [104,159],
it has been shown that this formulation works consis-
tently. Another binomial-model-based efficiency correction

method using track-by-track efficiency is discussed in
Ref. [106].

APPENDIX B: STATISTICAL UNCERTAINTIES
ESTIMATION

According to Eqs. (A5), (A8), and (A10), the efficiency-
corrected moments are expressed in terms of the factorial
moments, and thereby the factorial moments are the random
variable Xi in Eq. (15). The covariance of the multivariate
moments can be written as

Cov(mr,s,mu,v ) = 1

n
(mr+u,s+v − mr,smu,v ) (B1)

where n is the number of events, mr,s = 〈Xr
1X

s
2 〉 and mu,v =

〈Xu
1 X

v
2 〉 are the multivariate moments, and the X1 and X2 are

random variables. In this paper, X1 and X2 represent proton
and antiproton numbers, respectively. Based on Eq. (B1), one
can obtain the covariance for the multivariate factorial mo-
ments as

Cov( fr,s, fu,v ) = Cov

(
r∑

i=0

s∑
j=0

s1(r, i)s1(s, j)mi, j,

u∑
k=0

v∑
h=0

s1(u, k)s1(v, h)mk,h

)

=
r∑

i=0

s∑
j=0

u∑
k=0

v∑
h=0

s1(r, i)s1(s, j)s1(u, k)s1(v, h) × Cov(mi, j,mk,h)

= 1

n

r∑
i=0

s∑
j=0

u∑
k=0

v∑
h=0

s1(r, i)s1(s, j)s1(u, k)s1(v, h)×(mi+k, j+h − mi, jmk,h)

= 1

n
( f(r,u),(s,v) − fr,s fu,v ), (B2)

where the f(r,u),(s,v) is defined as

f(r,u),(s,v) =
〈

X1!

(X1 − r)!

X1!

(X1 − u)!

X2!

(X2 − s)!

X2!

(X2 − v)!

〉

=
r∑

i=0

s∑
j=0

u∑
k=0

v∑
h=0

i+k∑
α=0

j+h∑
β=0

s1(r, i)s1(s, j)s1(u, k)s1(v, h)s2(i + k, α)s2( j + h, β ) fα,β . (B3)

The definition of the bivariate factorial moments fr,s, fu,v , and fα,β can be found in Eq. (A3). Equation (B2) can be used in
the standard error propagation formula, Eq. (15), to obtain the statistical uncertainties of the efficiency-corrected cumulants.
The detailed derivation of the analytical formulae for statistical uncertainties on cumulants and moments exists in the literature
[104,113]. If we put εp = εp̄ = 1, the statistical uncertainties on the cumulants and cumulant ratios up to the eighth order
expressed in terms of central moments (μn) are given below, where the uncertainties are the square roots of the variances:

Var(C1) = μ2/n,

Var(C2) = ( − μ2
2 + μ4

)
/n,

Var(C3) = (
9μ3

2 − 6μ2μ4 − μ2
3 + μ6

)
/n,

Var(C4) = ( − 36μ4
2 + 48μ2

2μ4 + 64μ2μ
2
3 − 12μ2μ6 − 8μ3μ5 − μ2

4 + μ8
)
/n,

Var(C5) = (
μ10 + 900μ5

2 − 900μ3
2μ4 − 1000μ2

2μ
2
3 + 160μ2

2μ6 + 240μ2μ3μ5

+ 125μ2μ
2
4 − 20μ2μ8 + 200μ2

3μ4 − 20μ3μ7 − 10μ4μ6 − μ2
5

)
/n,

Var(C6) = ( − 30μ10μ2 + μ12 − 8100μ6
2 + 13500μ4

2μ4 + 39600μ3
2μ

2
3 − 2880μ3

2μ6

− 9720μ2
2μ3μ5 − 3600μ2

2μ
2
4 + 405μ2

2μ8 − 9600μ2μ
2
3μ4 + 840μ2μ3μ7 − 400μ4

3
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+ 216μ2μ
2
5 + 510μ2μ4μ6 + 440μ2

3μ6 + 1020μ3μ4μ5 − 40μ3μ9 + 225μ3
4

− 30μ4μ8 − 12μ5μ7 − μ2
6

)
/n,

Var(C7) = (
861μ10μ

2
2 − 70μ10μ4 − 70μ11μ3 − 42μ12μ2 + μ14 + 396900μ7

2 − 529200μ5
2μ4

− 1102500μ4
2μ

2
3 + 79380μ4

2μ6 + 299880μ3
2μ3μ5 + 176400μ3

2μ
2
4 − 10080μ3

2μ8 + 558600μ2
2μ

2
3μ4

− 33600μ2
2μ3μ7 − 29400μ2

2μ4μ6 − 10584μ2
2μ

2
5 + 137200μ2μ

4
3 − 43120μ2μ

2
3μ6

− 76440μ2μ3μ4μ5 + 2310μ2μ3μ9 − 14700μ2μ
3
4 + 1890μ2μ4μ8

+ 966μ2μ5μ7 + 343μ2μ
2
6 − 15680μ3

3μ5 − 14700μ2
3μ

2
4 + 1505μ2

3μ8 + 2590μ3μ4μ7

+ 2254μ3μ5μ6 + 1715μ2
4μ6 + 1911μ4μ

2
5 − 42μ5μ9 − 14μ6μ8 − μ2

7

)
/n,

Var(C8) = ( − 28560μ10μ
3
2 + 5600μ10μ2μ4 + 4256μ10μ

2
3 − 56μ10μ6 + 5376μ11μ2μ3 − 112μ11μ5

+ 1624μ12μ
2
2 − 140μ12μ4 − 112μ13μ3 − 56μ14μ2 + μ16 − 6350400μ8

2 + 12700800μ6
2μ4

+ 59270400μ5
2μ

2
3 − 2399040μ5

2μ6 − 15523200μ4
2μ3μ5 − 6174000μ4

2μ
2
4 + 322560μ4

2μ8

− 35280000μ3
2μ

2
3μ4 + 1626240μ3

2μ3μ7 + 1340640μ3
2μ4μ6 + 677376μ3

2μ
2
5 − 8467200μ2

2μ
4
3

+ 2759680μ2
2μ

2
3μ6 + 5597760μ2

2μ3μ4μ5 − 119840μ2
2μ3μ9 + 882000μ2

2μ
3
4 − 108360μ2

2μ4μ8

− 77952μ2
2μ5μ7 − 26656μ2

2μ
2
6 + 2007040μ2μ

3
3μ5 + 3684800μ2μ

2
3μ

2
4 − 160160μ2μ

2
3μ8

− 322560μ2μ3μ4μ7 − 257152μ2μ3μ5μ6 − 172480μ2μ
2
4μ6 − 178752μ2μ4μ

2
5 + 3808μ2μ5μ9

+ 1680μ2μ6μ8 + 512μ2μ
2
7 + 940800μ4

3μ4 − 71680μ3
3μ7 − 203840μ2

3μ4μ6 − 75264μ2
3μ

2
5

− 156800μ3μ
2
4μ5 + 8960μ3μ4μ9 + 6496μ3μ5μ8 + 4480μ3μ6μ7 − 4900μ4

4 + 5040μ2
4μ8

+ 9856μ4μ5μ7 + 4704μ4μ
2
6 + 6272μ2

5μ6 − 16μ7μ9 − μ2
8

)
/n,

Var
(C2

C1

)
=

(
− μ2

2

〈N〉2 + μ4

〈N〉2 − 2μ2μ3

〈N〉3 + μ3
2

〈N〉4
)/

n,

Var
(C3

C2

)
=

(
9μ2 − 6μ4

μ2
+ 6μ2

3

μ2
2

+ μ6

μ2
2

− 2μ3μ5

μ3
2

+ μ2
3μ4

μ4
2

)/
n,

Var

(
C4

C2

)
=

(
−9μ2

2 + 9μ4 + 40μ2
3

μ2
− 6μ6

μ2
− 8μ3μ5

μ2
2

+ 6μ2
4

μ2
2

+ μ8

μ2
2

+ 8μ2
3μ4

μ3
2

− 2μ4μ6

μ3
2

+ μ3
4

μ4
2

)/
n,

Var
(C5

C1

)
=

(
μ10

〈N〉2 + 900μ5
2

〈N〉2 − 900μ3
2μ4

〈N〉2 − 1000μ2
2μ

2
3

〈N〉2 + 160μ2
2μ6

〈N〉2 + 240μ2μ3μ5

〈N〉2 + 125μ2μ
2
4

〈N〉2

− 20μ2μ8

〈N〉2 + 200μ2
3μ4

〈N〉2 − 20μ3μ7

〈N〉2 − 10μ4μ6

〈N〉2 − μ2
5

〈N〉2 + 600μ4
2μ3

〈N〉3 − 60μ3
2μ5

〈N〉3 − 300μ2
2μ3μ4

〈N〉3

− 200μ2μ
3
3

〈N〉3 + 20μ2μ3μ6

〈N〉3 + 30μ2μ4μ5

〈N〉3 + 20μ2
3μ5

〈N〉3 − 2μ5μ6

〈N〉3 + 100μ3
2μ

2
3

〈N〉4 − 20μ2
2μ3μ5

〈N〉4 + μ2μ
2
5

〈N〉4
)/

n,

Var
(C6

C2

)
=

(
− 30μ10

μ2
+ μ12

μ2
2

− 3600μ4
2 + 5400μ2

2μ4 + 30000μ2μ
2
3 − 1800μ2μ6 − 8160μ3μ5 − 225μ2

4

+ 345μ8 − 3900μ2
3μ4

μ2
+ 840μ3μ7

μ2
− 120μ4μ6

μ2
+ 216μ2

5

μ2
+ 2300μ4

3

μ2
2

− 140μ2
3μ6

μ2
2

+ 240μ3μ4μ5

μ2
2

− 40μ3μ9

μ2
2

− 12μ5μ7

μ2
2

+ 30μ2
6

μ2
2

− 520μ3
3μ5

μ3
2

+ 20μ2
3μ8

μ3
2

+ 52μ3μ5μ6

μ3
2

− 2μ6μ8

μ3
2

+ 100μ4
3μ4

μ4
2

− 20μ2
3μ4μ6

μ4
2

+ μ4μ
2
6

μ4
2

)/
n,

Var
(C7

C1

)
=

(
861μ10μ

2
2

〈N〉2 − 70μ10μ4

〈N〉2 − 70μ11μ3

〈N〉2 − 42μ12μ2

〈N〉2 + μ14

〈N〉2 + 396900μ7
2

〈N〉2 − 529200μ5
2μ4

〈N〉2
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− 1102500μ4
2μ

2
3

〈N〉2 + 79380μ4
2μ6

〈N〉2 + 299880μ3
2μ3μ5

〈N〉2 + 176400μ3
2μ

2
4

〈N〉2 − 10080μ3
2μ8

〈N〉2

+ 558600μ2
2μ

2
3μ4

〈N〉2 − 33600μ2
2μ3μ7

〈N〉2 − 29400μ2
2μ4μ6

〈N〉2 − 10584μ2
2μ

2
5

〈N〉2 + 137200μ2μ
4
3

〈N〉2

− 43120μ2μ
2
3μ6

〈N〉2 − 76440μ2μ3μ4μ5

〈N〉2 + 2310μ2μ3μ9

〈N〉2 − 14700μ2μ
3
4

〈N〉2 + 1890μ2μ4μ8

〈N〉2

+ 966μ2μ5μ7

〈N〉2 + 343μ2μ
2
6

〈N〉2 − 15680μ3
3μ5

〈N〉2 − 14700μ2
3μ

2
4

〈N〉2 + 1505μ2
3μ8

〈N〉2 + 2590μ3μ4μ7

〈N〉2

+ 2254μ3μ5μ6

〈N〉2 + 1715μ2
4μ6

〈N〉2 + 1911μ4μ
2
5

〈N〉2 − 42μ5μ9

〈N〉2 − 14μ6μ8

〈N〉2 − μ2
7

〈N〉2 + 264600μ6
2μ3

〈N〉3

− 26460μ5
2μ5

〈N〉3 − 220500μ4
2μ3μ4

〈N〉3 + 1260μ4
2μ7

〈N〉3 − 235200μ3
2μ

3
3

〈N〉3 + 11760μ3
2μ3μ6

〈N〉3

+ 17640μ3
2μ4μ5

〈N〉3 + 47040μ2
2μ

2
3μ5

〈N〉3 + 44100μ2
2μ3μ

2
4

〈N〉3 − 420μ2
2μ3μ8

〈N〉3 − 840μ2
2μ4μ7

〈N〉3

− 1176μ2
2μ5μ6

〈N〉3 + 39200μ2μ
3
3μ4

〈N〉3 − 1120μ2μ
2
3μ7

〈N〉3 − 1960μ2μ3μ4μ6

〈N〉3 − 2352μ2μ3μ
2
5

〈N〉3

− 1470μ2μ
2
4μ5

〈N〉3 + 42μ2μ5μ8

〈N〉3 + 56μ2μ6μ7

〈N〉3 − 3920μ2
3μ4μ5

〈N〉3 − 2450μ3μ
3
4

〈N〉3 + 70μ3μ4μ8
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