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Abstract

Neurons exhibit diverse intrinsic dynamics, which govern how they integrate synaptic inputs
to produce spikes. Intrinsic dynamics are often plastic during development and learning, but
the effects of these changes on stimulus encoding properties are not well known. To exam-
ine this relationship, we simulated auditory responses to zebra finch song using a linear-
dynamical cascade model, which combines a linear spectrotemporal receptive field with a
dynamical, conductance-based neuron model, then used generalized linear models to esti-
mate encoding properties from the resulting spike trains. We focused on the effects of a low-
threshold potassium current (K_t) that is present in a subset of cells in the zebra finch caudal
mesopallium and is affected by early auditory experience. We found that Kt affects both
spike adaptation and the temporal filtering properties of the receptive field. The direction of
the effects depended on the temporal modulation tuning of the linear (input) stage of the cas-
cade model, indicating a strongly nonlinear relationship. These results suggest that small
changes in intrinsic dynamics in tandem with differences in synaptic connectivity can have
dramatic effects on the tuning of auditory neurons.

Author summary

Experience-dependent developmental plasticity involves changes not only to synaptic
connections, but to voltage-gated currents as well. Using biophysical models, it is straight-
forward to predict the effects of this intrinsic plasticity on the firing patterns of individual
neurons, but it remains difficult to understand the consequences for sensory coding. We
investigated this in the context of the zebra finch auditory cortex, where early exposure to
a complex acoustic environment causes increased expression of a low-threshold potas-
sium current. We simulated responses to song using a detailed biophysical model and
then characterized encoding properties using generalized linear models. This analysis
revealed that this potassium current has strong, nonlinear effects on how the model
encodes the song’s temporal structure, and that the sign of these effects depend on the
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temporal tuning of the synaptic inputs. This nonlinearity gives intrinsic plasticity broad
scope as a mechanism for developmental learning in the auditory system.

Introduction

Neurons have diverse, nonlinear dynamics. Many brain regions contain multiple kinds of neu-
rons with different spike waveforms and spiking patterns [1-3], and there is substantial varia-
tion even within well-defined cell types [4-6]. Intrinsic dynamics can be modified by activity
and experience [7-9], which may be an important mechanism for learning [10]. This physio-
logical diversity has been known for many decades [11] and can be modeled on a detailed, bio-
physically realistic level [12, 13], but our understanding of how intrinsic dynamics affect
neural computations in many systems has remained surprisingly qualitative.

The complexity and nonlinearity of biophysical models makes it difficult to use them to
explain higher-order processes in the brain, at what Marr [14] termed the algorithmic and
computational levels. A simple, single-compartmental model that can produce common physi-
ological behaviors like bursting, adaptation, or rebound spiking, is a system of around ten or
more nonlinear differential equations, with fifty or more parameters [15, 16]. These parame-
ters correspond to specific aspects of the cell biology (such as membrane capacitance or
sodium channel density), which makes them easy to interpret and, in some cases, possible to
measure directly. However, the relationships between the parameters and the observable
behaviors of the neuron are highly nonlinear, making it difficult to constrain them statistically.
It is difficult and time-consuming to fit dynamical models to biological data [17-20], and there
is little consensus on the appropriate methods or even whether there are globally optimal solu-
tions [21]. Moreover, access to the intracellular voltage is needed, through a sharp or patch
electrode or using an optical sensor [22], which greatly limits the number of neurons that can
be modeled within the context of a circuit, and almost always requires the use of ex vivo prepa-
rations that cannot be presented with realistic stimuli.

As a consequence, many studies of function in neural systems have emphasized phenome-
nological models that omit most of the biophysical and dynamical features of spike generation
in exchange for computational tractability [23-26]. One of the simplest examples is the gener-
alized linear model (GLM), which represents spiking as an inhomogeneous Poisson process
with a conditional intensity that depends only on a linear function of the stimulus and spiking
response in the recent past [27]. In contrast to more realistic models, the GLM is a staple of sta-
tistics, with a well-defined likelihood function that is concave everywhere, guaranteeing that a
global optimum can be found [28]. The GLM also has established techniques for regulariza-
tion, which is necessary when stimuli have naturalistic (i.e., highly correlated) distributions
[29, 30].

Because of its simplicity and probabilistic formulation, a GLM can be thought of as a repre-
sentation of a neuron’s encoding properties; that is, an abstract view of how the cell transforms
sensory stimuli into spike trains. Surprisingly, although GLMs have been successfully used to
model encoding in a number of different sensory systems [27, 31], and there have been several
studies using GLMs to predict and characterize more complex spiking models [32-34], to our
knowledge there has not been any attempt to relate the GLM to more detailed, dynamical
models with realistic sensory inputs. As a result, it is difficult to predict how natural, pathologi-
cal, or experience-dependent variations in voltage-gated channels are likely to affect sensory
processing.
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In this study, we examined the relationship between intrinsic dynamics and encoding prop-
erties in the context of auditory processing in songbirds. Encoding models, including GLMs,
have been employed extensively to study this system [31, 35-38], but until recently, there have
been no data on the intracellular physiology of the constituent neurons. Using whole-cell
patch recordings from slices, we have found that the caudal mesopallium (CM), a cortical-level
auditory area [39, 40], has diverse, experience-dependent intrinsic dynamics [9, 41]. Most of
the putatively excitatory neurons fire repetitively when depolarized, but a substantial fraction
only fire at stimulus onsets. This phasic firing behavior is correlated with strong outward recti-
fication that activates at low voltages, and it can be pharmacologically converted to tonic firing
by blocking low-threshold potassium currents (Ky1). The proportion of phasic neurons
changes over development, reaching a peak around the age zebra finches begin to memorize
songs, but only in birds exposed to a complex acoustic environment. This experience-depen-
dent plasticity is correlated with changes in the expression of Kv1.1, a low-threshold potassium
channel [9].

The dependence of phasic firing on auditory experience suggests that intrinsic plasticity
(i.e., a change in the expression or properties of voltage-gated currents, rather than synaptic
currents) plays a critical role in development for songbirds, but for all the reasons noted above,
the functional significance remains unclear. Here, we took a simulation-based approach to ask
how changing the magnitude of low-threshold potassium currents in a dynamical model
would affect encoding properties, as estimated with a GLM. We simulated auditory responses
using a linear-dynamical cascade model [42], which combines a linear spectrotemporal recep-
tive field (RF) with a single-compartment biophysical model (Fig 1A). The linear stage of the
model consists of representative RFs based on the data and parametric model of Woolley et al.
[38], which are convolved with spectrograms of zebra finch song to generate an external driv-
ing current. Conceptually, this current represents a linear approximation of the summation
and filtering performed by the neuron’s dendrites on excitatory and inhibitory synaptic inputs.
The biophysical model we used includes sodium, high-threshold potassium, transient (A-type)
potassium, low-threshold potassium, and hyperpolarization-activated (h-type) currents, and it
can reproduce the responses of phasic and tonic CM neurons to step and broadband current
stimuli [41]. As shown previously, phasic firing in this model depends on a single parameter
that governs the maximal conductance of the low-threshold potassium current (gx; ) (Fig 1B
and 1C). We used the spike trains produced by these simulations to fit GLMs (Fig 2) and then
compared estimates for the RF and spike-history parameters to determine how K; 1 influenced
how the model was encoding the acoustic structure of the stimulus.

. B dynamical neuron model o
stimulus RF dv AA’JJ»'U"\/R/J\IW\}’\A
1 Dstim(t = =g,-(E—

i " tim () Cm g =01 (E1=V) fdf

= } . & +ana- M- Ena—v)| = L
Dnoise(t) +eee i EI E 1.‘!:" |== ci !

> ﬁm—) +I(2) R B BN

0 100 200 e

freq 500 ms

1. Linear-dynamical cascade model. (A) The linear stage of the model consists of the convolution of a stimulus with a

receptive field. The output of the convolution (Dgy;(#)) is combined with a stimulus-independent noise signal (D,jse())
with a 1/f spectral distribution. The sum of Dy;s(£) and Dgim(£) is converted to the input current I(¢) using a static
nonlinearity, ensuring that the model voltage remains within biologically realistic bounds. (B) I(f) enters into the
biophysical stage, which models membrane voltage dynamics as a system of ordinary differential equations. (C) The model
is numerically integrated to produce a simulated voltage trace. Multiple trials are simulated by keeping D;,,,(t) the same
from trial to trial, while drawing new values for D,,;c(1).

https://doi.org/10.1371/journal.pcbi.1008768.9001
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Fig 2. Schematic of parameter estimation for generalized linear model. The data to be fit comprise a stimulus,
which can be a univariate time series or a multivariate spectrogram (as shown here), and a spiking response. The
model represents the response as an inhomogeneous Poisson process with a conditional intensity that depends on the
convolution of the stimulus with a receptive field (K) and the convolution of the response with a spike-history filter,
which was parameterized as the sum of two exponential decays representing short-term (¢;) and long-term ()
adaptation or facilitation. Not shown is a constant offset w, which governs the baseline probability of firing, such that
higher values suppress the probability of spiking. These model parameters are estimated by regularized maximum
likelihood.

https://doi.org/10.1371/journal.pcbi.1008768.9002

Results
Univariate white-noise stimulus

As a proof of principle, we began with an example using a white-noise stimulus drawn from a
univariate Gaussian distribution. The absence of temporal correlations in this stimulus is ideal
for obtaining unbiased estimates of the GLM parameters, allowing us to determine how intrin-
sic dynamics affect encoding in a best-case scenario.

We generated data for fitting the GLM by providing 100 s of white noise as input to two lin-
ear-dynamical cascade (LDC) models that had the same RF but different dynamics. The
dynamical stage of the model was based on our previous work in the zebra finch caudal meso-
pallium [41, 42]. The tonic model lacks K| 1 and has a higher capacitance, whereas the phasic
model includes Kyt and has a lower capacitance (see Methods for parameter values). These
models reproduce the responses to step currents (Fig 3A) and broadband currents seen in
slices. Both LDC models produced similar responses to the white noise stimulus, but the phasic
model tended to have narrower peaks of activity (Fig 3B and 3C).

In general, parameter estimates are only interpretable to the extent that the model is a good
fit to the data. We checked the goodness of fit by comparing the responses of the LDC model
and the fitted GLM to a new white-noise stimulus. The output of the GLM was an excellent
prediction of the dynamical model’s response (Fig 3B and 3C). Indeed, the correlations
between the average firing rates for LDC data and GLM prediction (tonic: = 0.96; phasic:

r = 0.84) were comparable to the correlations between average rates of even and odd trials in
the data (tonic: r = 0.94; phasic: r = 0.90)—as good as could be expected given the intrinsic
variability of the data. Thus, at least for white-noise stimuli, the linear spike-history filter
and static nonlinearity of the GLM can closely approximate the dynamical nonlinearity of a

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008768 February 22, 2021 4/25


https://doi.org/10.1371/journal.pcbi.1008768.g002
https://doi.org/10.1371/journal.pcbi.1008768

PLOS COMPUTATIONAL BIOLOGY Nonlinear effects of intrinsic dynamics on temporal encoding

A tonic phasic B

A
"
\

o
| W‘“WV\/NI 50 mV

CR B

2

B e
kT

— tonic , — phésic
MI S 120mV. —GIm, p ) ' —GLM N !

3 L

‘ [
_— 1 _~—— 1100 pA ,\\ 2 A% | \_“\/\41\_1 \A |10 Hz
— 0 1000 2000 3000 O 1000 2000 3000
200 ms )
Time (ms)
D tonic E
Q i
— input ) tonic.
----- expected 0O — phasic
estimated 5
5}
Qo
(%2}
o
. o
-~ 60
3
S 45
3 a, 30
= .
2 phasic . 15 i
g . —— input
< L e expected 0
i\ —— estimated
0.9
0.6
0 9, 03 1
0.0 ) { @
-03
0 25 50 " — T T T j
5 6 7 8 9 0 15 30 45 60-0.30.0 0.3 0.6 0.9
Time (ms) w a a

1 2

Fig 3. GLM estimates for exemplar tonic and phasic models with univariate white-noise stimulus. (A) Voltage
responses of tonic and phasic models to high- and low-amplitude injected current steps (shown in bottom row). The
tonic model exhibits depolarization block to strong currents but fires repetitively to weak currents, whereas the phasic
model only fires a single spike to all suprathreshold current levels. (B) Top, response of the tonic dynamical model to a
white-noise stimulus. The input RF is shown in D. Middle, raster plots of spike times from 10 trials with the same
stimulus but varying I, ;s (#). Black ticks correspond to the output of the dynamical model and colored ticks are the
predictions of a GLM fit to a different set of data from this model. Bottom, spike rate histograms (bin size = 10 ms) for
50 trials from the dynamical model (black) and the GLM (yellow). Only a subset of the full test data is shown. (C) Like
B, but for the model with phasic dynamics. The stimulus, RF, and noise level were the same. (D) Estimated RFs from
the GLMs compared to the input RF of the dynamical model. To indicate posterior uncertainty in the estimates,
individual samples from the MCMC sampler are shown in light gray, and the median is overlaid in color. (E) Posterior
distributions of baseline firing rate (w) and spike-history filter parameters (o; and a,). The top panels in each column
show marginal distributions for individual parameters, and the panels in the lower left corner show joint distributions
for each pair of parameters. Note that more positive values of a; and @, correspond to stronger adaptation (i.e., a
negative correlation with past spiking).

https://doi.org/10.1371/journal.pcbi.1008768.9003

single-compartment biophysical model. This allows us to interpret the GLM parameters as
meaningful descriptions of the encoding properties of the more complex model.

The LDC and GLM both have receptive fields that are convolved with the stimulus to pro-
duce a signal that modulates the probability of spiking. When a GLM is fit using data from an
LDC model, we expect the estimated RF to resemble the RF used to generate the data, but not
exactly. Indeed, differences between the input and estimated RFs will reflect the effects of the
intrinsic dynamics. One expected effect is from the filtering properties of the membrane. In
the GLM, firing probability depends on a static, exponential function of the convolved stimu-
lus (Fig 2). In the LDC model, the output of the convolution enters as a current that contrib-
utes linearly to the derivative of the membrane voltage. The capacitance and conductance of
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the membrane act as an additional, lowpass filter, so we would expect the estimated RF to be a
lowpass-filtered version of the input RF. In the time domain, the effect of the membrane
would be to stretch the RF out in time. In fact, what we observed was that the estimated RFs
were either very close to the input RF (Fig 3D, top) or compressed in time (Fig 3D, bottom),
corresponding to a relative boosting of higher frequencies. This would not be possible for a
model with a purely passive membrane; therefore, it must be the active, voltage-gated currents
that are shifting the model’s temporal encoding properties. This temporal distortion, which is
consistent with the bandpass characteristics of Ky 1 [41, 43], will be explored further in subse-
quent analyses.

Intrinsic dynamics also affected the spike-history filter. Unlike the RF, the parameters for
the spike-history filter do not correspond to specific parameters in the LDC model; however,
we expect them to reflect the effects of currents that are activated by spiking. As seen in Fig
3E, the spike-history filter was stronger on both short (;) and long (,) timescales for data
from the tonic model compared to the phasic one. The posterior uncertainty in these parame-
ter estimates was low compared to the difference between dynamical models. This means
that the spiking patterns produced by phasic and tonic cells are sufficiently different, at least
for this kind of stimulus and amount of data, to observe changes largely caused by a single
biophysical parameter.

Multivariate birdsong stimulus

Having demonstrated that the GLM can be used to analyze the encoding properties of a
dynamical model, we turned to a more realistic scenario using natural birdsong as the stimu-
lus. The dynamics remained the same as in the white-noise case, but the linear stage was
replaced with a spectrotemporal RF. The stimulus, which consisted of 40 s of song from multi-
ple zebra finches, was converted to a spectrogram and convolved with the RF, summing across
spectral channels. This produced a univariate time series that entered into the dynamics as an
external current.

We used RFs that were representative of the diversity found in cortical-level auditory neu-
rons. RF structure can be analyzed in terms of the modulation transfer function (MTF), a 2-D
Fourier transform of the RF that shows its joint spectral and temporal tuning [44]. Most of the
neurons in the zebra finch primary auditory pallium have MTFs with power along either the
spectral or temporal axis, indicating that they can be tuned to narrow spectral bands or to
rapid modulations of the temporal envelope, but only rarely to both [38]. This distribution is
similar to the modulation spectrum of zebra finch song [44] and at least partly reflects the sta-
tistics of early auditory experience [45]. Here, we simulated responses using 60 synthetic RFs
drawn from this distribution [38]. Each RF was combined with the tonic and phasic dynamical
models, so that we could quantify the effects of K 1 across RF types and determine if there was
any interaction with RF structure.

As before, the simulated responses were used to estimate GLM parameters, but with two
modifications that were necessitated by the statistics of the birdsong stimuli. Like many other
natural stimuli, the amplitude envelope of birdsong is dominated by low frequencies [46]. For
our cascade model, these low-frequency temporal modulations result in long intervals when
I(¢) is strongly positive or negative, which in turn tends to drive the model to unrealistic volt-
age levels far outside the range that would be expected from the reversal potentials of typical
synaptic channels. To address this issue, we introduced a compressive static nonlinearity that
constrained the output of the convolution to biologically feasible values (see Methods). The
second issue with stimuli dominated by low frequencies is a statistical one. As has been known
for some time [29, 35], estimating the parameters of receptive field models when the stimulus
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is highly autocorrelated can lead to numerical instability and overfitting. To address this issue,
we used elastic-net regularization when estimating GLM parameters (see Methods).

We begin by examining three examples representative of the distribution. As will be seen,
the temporal characteristics of the input RF have a consistent effect on encoding properties, so
we have denoted these three examples in terms of their temporal modulation transfer func-
tions (tMTFs): wideband (WB), bandpass-low (BP-L), and bandpass-high (BP-H). These cate-
gories reflect two parameters in the equation we used to generate RFs (see Methods).
Wideband RFs have a temporal phase (P;) of zero, which results in only a single excitatory lobe
in the temporal profile and broad tuning in the temporal modulation frequency domain.
Bandpass RFs have a temporal phase of %, resulting in a suppressive/inhibitory lobe. BP-L and
BP-H are distinguished by the frequency modulation parameter (€2,), with lower values corre-
sponding to a broader temporal profile and tuning to slower modulations. As seen in Fig 4A—
4F, the fitted GLMs had good predictive performance for both the phasic and tonic models
and across all three input RFs, with high correlations between the spike rate histograms pro-
duced by the LDC and GL models to a novel birdsong stimulus. Thus, even with many more
parameters and an autocorrelated stimulus, the GLM is still a good tool for analyzing the
encoding properties of the dynamical models.

As with the white-noise case, the estimated RFs were qualitatively similar to the input RFs,
but with distortions in the temporal profile. Most of the estimated RFs appeared to be smeared
in time and with stronger and longer suppressive periods. Some of the distortions were consis-
tent across tonic and phasic models, but there were also differences between the two dynamical
models that reflect the effects of K; . We analyzed these effects by looking at the tMTFs, which
are calculated by summing the 2D Fourier transform of the RFs across the spectral dimension
(Fig 4G). These plots show how well the model neuron is able to encode temporal modulations
in the stimulus as a function of frequency. All of the estimated RFs were tuned to frequencies
below 100 Hz, which is about the fastest temporal modulation rate found in zebra finch song
[46]. Although some of the input RFs had the potential to represent faster modulations, these
frequencies were attenuated in the estimated RFs, probably because of the passive filtering
properties of the membrane and the statistics of the stimulus. The main differences between
the dynamical models were in the attenuation of low frequencies. Strikingly, the effects of the
dynamics on lowpass attenuation varied across RFs. For the WB input, the estimated tMTF
was more bandpass in the phasic model compared to the tonic model, while the opposite was
true for the BP-L and BP-H inputs. Thus, not only does K; t change the temporal encoding
properties of the neuron, but this effect is different depending on the filtering properties of the
inputs (i.e., the input tMTF).

The posterior distributions for the spike-history parameters were broader than for the
white-noise examples (Fig 4H), indicating that the estimates are more poorly constrained by
the data. This was expected, given that the stimulus was shorter and more correlated. Never-
theless, there was essentially no overlap between the posterior distributions for the tonic and
phasic versions of any of the example models, indicating that the GLM spike-history parame-
ters were sensitive to the biophysical dynamics. Furthermore, as the next section will show, the
trends in these examples were consistent across the larger sample of RFs.

As with the RF temporal structure, the spike-history filter parameters were affected by the
interaction of RF type and dynamics. In general, phasic models had stronger short-timescale
adaptation than tonic models, as indicated by larger values of o; (Fig 4F). This effect was in the
opposite direction from what we saw in the white-noise case (Fig 3E), where tonic neurons
had larger values of &; and . This discrepancy presumably reflects differences in the stimulus
statistics, because the white-noise example RF was qualitatively similar to the temporal profile
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Fig 4. GLM estimates for exemplar tonic and phasic models with zebra finch song stimuli. (A) Receptive field
parameters and responses for a model with tonic dynamics and a spectrally narrowband, temporally wideband RF. Top
left, input RF in the LDC model. Top right, estimated RF from GLM. The vertical scale bar denotes 1 kHz and the
horizontal 5 ms. Note the temporal smearing and the broad suppression at longer lags in the estimated RF. Middle,
examples of spiking responses to zebra finch song from the LDC model (top, black ticks) and the fitted GLM (bottom,
red). Bottom, corresponding spike rate histograms (50 trials) for the LDC and GLM (product-moment correlation: ryyp =
0.87). (B-C) RFs and responses for models with tonic dynamics and BP-L (B) or BP-H RFs (C), same format as in (A).
The GLM accurately predicted the firing rate of the LDC for these parameter values (rgp_1, = 0.94, rgp_ = 0.86). (D-F)
RFs and responses for models with the same RFs as in (A-C), but with phasic dynamics (ryg = 0.78, rgp_y = 0.90, rgp_py =
0.85). All prediction correlations were high considering the underlying spiking variability in the even and odd trials of the
LDC (product-moment correlations: tonicyg = 0.92, tonicgp 1 = 0.85, tonicgp_y = 0.82; phasicyp = 0.91, phasicgp 1 =
0.93, phasicpp g7 = 0.91). More detailed plots for each of the six example models can be found in Figs A-F in S1 Text. (G)
Temporal MTFs of input RFs, tonic model estimates, and phasic model estimates for each of the three input RFs. Power
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is normalized relative to the peak for each spectrum. The change in power at low frequencies, quantified as Al (see
Methods) was —0.08, 0.44, and -0.15 for tonic models and -0.03, 0.30, and -0.33 for phasic models. (H) Posterior
distributions of @ and o, comparing dynamical models for each RF.

https://doi.org/10.1371/journal.pchi.1008768.9004

of the example RFs. As has been reported previously, neuron models fit to white-noise stimuli
produce poor predictions to natural stimuli [29]. The white-noise GLMs produced good pre-
dictions because they were fit and tested with white-noise stimuli, but the parameter estimates
do not generalize to other kinds of stimuli. As noted above, a key feature of birdsong is that the
temporal envelope is dominated by low frequencies. These slow oscillations produce sustained
periods of excitation or inhibition that drive the dynamical model into regimes where adaptive
processes come more strongly into play. This nonlinear interaction between stimulus statistics
and dynamics likely also explains why the effect of Ky 1 varied across the example RFs: phasic
dynamics (i.e., increased Ky ) caused o, to increase for all three RFs, but only affected o, for
the BP-L RF.

Interaction of intrinsic dynamics and RF temporal filtering

Based on these examples, we hypothesized that the key contributor to these interactions was
the temporal profile of the input RF, in particular whether there was a negative lobe at longer
lags. In the modulation frequency domain, this lobe corresponds to bandpass filtering. The
parametric, Gabor-based model we used to generate the RFs [38] represents this feature by a
single parameter, the temporal phase (P,), which is 0 for the WB example and  for the BP-L
and BP-H examples. Approximately half (26/60) of the RFs in our larger sample, those with
modulation power primarily along the spectral axis, had P, of 0, whereas the RFs with power
along the temporal modulation axis (34/60) had P, of .

The performance of GLMs fit to data from the larger set of RFs was consistently good, with
high correlations between the spike-rate histograms of the LDC and GL models for the
tonicwg (r = 0.86 + 0.04), tonicgp (r = 0.90 £ .04), phasicyg (r = 0.75 £ 0.08), and phasicgp
(r =0.87 £ 0.05) groups, that were comparable to the correlations between the even and odd
trials of the LDC data for the tonicysg (r = 0.93 + 0.01), tonicgp (r = 0.84 £ 0.03), phasicyp
(r=0.92 + 0.02), and phasicgp (r = 0.90 + 0.02) models. Performance was slightly lower for the
phasicyp data, but the reason for this was not clear.

The results from the larger sample of RFs were consistent with our hypothesis. We looked
first at the effects of dynamics on RF temporal structure, specifically the extent to which the
estimated tMTF (which represents how the full LDC model encodes stimuli) was attenuated at
low frequencies compared to the input tMTF (Al). In Fig 4G, Al corresponds to the difference
between the black line and blue or yellow line at f= 0 with maximum power set to 1. Positive
values of Al indicate that the estimated RF is more bandpass (i.e., responds less to low-fre-
quency modulations) compared to the input RF. Negative values indicate that encoding of
lower frequencies is boosted. As shown in Fig 5, for models with WB temporal tuning, phasic
dynamics attenuated low frequencies, in comparison to the matching tonic models (LMM: b,
=0.02, b; = —0.11, n = 52). For neurons with BP temporal tuning, the effect was the opposite:
phasic dynamics caused low frequencies to be less attenuated compared to the matching tonic
models (b = —0.05, b; = 0.15, n = 68). In other words, across a broad range of RFs, K 1 consis-
tently causes neurons with broadly tuned inputs to become more selective for higher-fre-
quency features, but causes neurons that already have narrowly tuned inputs to become more
responsive to lower frequencies.

Similarly, just as we saw with the example models, the adaptation parameters also depended
on RF temporal structure and dynamics. As shown in Fig 6A, the general trend was for phasic
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Fig 5. Phasic dynamics attenuate low-frequency modulations for temporal wideband RFs but enhance them for
bandpass RFs. Lowpass attenuation was defined as the difference in the ratios between the power at f = 0 and the peak
power of the temporal modulation spectrum (as in Fig 4H) of the input RF and GLM estimated RF (Al; see Methods).
The y-axis shows the difference between this value for the input RF and the estimated RF. Positive values indicate that
the estimated RF is more bandpass in its temporal filtering properties compared to the input RF, while negative values
indicate the estimated RFs were more lowpass. For each RF, lowpass attenuation estimates for the phasic and tonic
models are connected by a black dotted line. The bold dotted line shows the differences in the mean lowpass
attenuation estimates (enlarged black dot) between RF types for a given model. The linear mixed effects model (LMM)
with the interaction between RF type and dynamics fits significantly better than the LMM with main effects only
(LMM: £*(1) = 19.04, p < 0.001).

https://doi.org/10.1371/journal.pchi.1008768.9005

models to have lower spontaneous firing rates and stronger adaptation, but there were some
differences in the effect of phasic dynamics on «, that depended on RF type. Models with pha-
sic dynamics had lower baseline firing rates (larger values of w; Fig 6B) compared to tonic
models (LMM: by = 9.08, b, = —1.29, n = 120), and models with WB RFs had lower baseline
rates compared to models with BP RFs (b, = —2.37, n = 120, Fig 6B). Similarly, models with
phasic dynamics had stronger short-term adaptation (;; Fig 6C) compared to tonic models
(bo =196.77, by = —=150.99, n = 120), and models with BP RFs had stronger adaptation than
models with WB RFs (b, = 1.21, n = 120). For both of these parameters, there was not a signifi-
cant interaction between model dynamics and RF type. However, there was an interaction for
longer-timescale adaptation (a,; Fig 6D). For WB RFs, a, was larger for phasic models com-
pared to tonic models (b, = 0.29, b; = —-0.49, n = 52), but for BP RFs, o, was larger for tonic

models (b,

0.48, b, = 0.19, n = 68). Note that in contrast to the white-noise example, @, esti-

mates were sometimes negative, which corresponds to a baseline facilitation (i.e., past spikes

are associated with an increased probability of firing).

Nonlinear, nonmonotonic effects of Kyt on encoding properties

Up to this point, intrinsic dynamics have been dichotomized into tonic and phasic firing. For
step currents, this dichotomy reflects a bifurcation in the dynamics: below a critical value of
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Fig 6. Firing rate and spike-history parameter estimates depend on RF structure and dynamics. (A) Point
estimates of w, @, and o, GLM parameters for phasic (blues) and tonic (yellows) models by RF type. Across the
diagonal are the marginal distributions for each of the parameters, with the joint distributions on the off-diagonal. (B)
Strip plot of parameter estimates showing paired phasic and tonic models (as in Fig 5). For each RF, the phasic and
tonic model parameter estimates are connected by a black dotted line. The bold dotted lines show the differences in the
mean parameter estimates between RF types for a given model. The LMM with main effects and an interaction was a
significantly better fit than an LMM with main effects only for o, (A1) = 72.00, p < 0.001), but not for w (LMM:

2°(1)=0.38, p = 0.54) or &y (4*(1) = 0.08, p = 0.78).
https://doi.org/10.1371/journal.pcbi.1008768.9006

gxr> spiking is repetitive, but above this value, it occurs only at the stimulus onset [15, 43]. For
broadband current stimuli, however, the effects of gx; r are more graded [41]. To test whether
Kt affects encoding properties in a continuous or binary manner, we simulated responses
using LDC models with values of gx; 1 that varied in steps of 1 nS over a range of 0 to 50 nS
(with capacitance kept constant at 60 pF), which encompasses the bifurcation in this model
from tonic to phasic firing. For simplicity, we used only the three example receptive fields

11/25
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Fig 7. Effects of low-threshold potassium conductance (gx; ) on GLM parameters are nonlinear and depend on
RF structure. (A) Correlation coefficients between the even and odd trials of the LDC model as a function of gx; r for
the three exemplar RFs. (B) Correlation coefficients between the spike-rate histograms of the LDC and GL models as a
function of gx; 1. (C-F) Lowpass attenuation, w, a;, and a, estimates as a function of gx; .

https://doi.org/10.1371/journal.pcbi.1008768.g007

shown in Fig 4 (WB, BP-L, and BP-H). Using the same birdsong stimulus, we fit GLMs to data
from these simulations and examined how lowpass attenuation and adaptation were affected.

The correlation between even and odd trials of the simulated data tended to increase with
gxrr (Fig 7A), which is consistent with our previous finding that K; 1 makes spike timing more
precise and less variable across trials [42]. In contrast, although the performance of the GLM
was good across all levels of gx; 1 (Fig 7B), it tended to decrease with larger gi; r values. This
suggests that the LDC model is more difficult to approximate with a GLM as additional volt-
age-gated conductances are added. Overall, the predicted spike trains remained highly accu-
rate, allowing resulting parameter estimates to be meaningfully interpreted.

Consistent with what we observed with dichotomized dynamics, the effects of K;r on RF
temporal structure, spontaneous firing rate, and adaptation depended on RF type (Fig 7C-7F).
With the exception of spontaneous firing rate (Fig 7D), the trajectories of the parameters as
gxrrincreased were nonlinear although approximately monotonic. However, there was little
evidence of bifurcation, which would have appeared as a sharp discontinuity between two sta-
ble regimes. These results confirm that the effects of intrinsic dynamics on encoding properties
are highly nonlinear, with a strong dependence on the statistics of the stimulus and the tuning
of the inputs.

Discussion

These data demonstrate how intrinsic dynamics can affect the temporal encoding properties of
cortical-level auditory neurons. Although this effect is not unexpected, to our knowledge it has
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not yet been quantitatively characterized. Our approach was to simulate zebra finch auditory
responses with a biophysically realistic linear-dynamical cascade model and then estimate
encoding properties using GLMs, which are statistically robust and easy to interpret. This
allowed us to modulate intrinsic dynamics by changing the parameter values that correspond
to specific cellular mechanisms and explore the effects on receptive fields and spike-history
adaptation.

We focused on a low-threshold potassium current (Ky 1), which is expressed in a subset of
neurons in zebra finch CM. In a previous study, we used broadband current injections to
show that Ky r affects temporal integration, causing neurons to become more coherent with
inputs at frequencies around the maximum temporal modulation rate of zebra finch song [41].
This effect is reproduced by the dynamical model used here. However, the current stimuli
used to build the model were artificial and unrepresentative of the stimulus-driven synaptic
activity CM neurons would receive in vivo. Thus, to predict how variation in K; 1 might affect
auditory responses to vocal communications in this species, we drove the dynamical model
with an injected current that was the result of convolving natural zebra finch song with a spec-
trotemporal RF, which we term the “input RF”. Input RFs, which represent a linear approxi-
mation of the processing performed by the neuron’s presynaptic partners and the dendritic
integration of excitatory and inhibitory synaptic currents, were randomly drawn from a pub-
lished distribution of RFs found in zebra finch Field L [38], the major source of ascending
auditory input to CM [39, 47]. This allowed us to predict which effects of the dynamics would
be consistent across the population and which would depend on tuning of the inputs.

Kyt has a nonlinear influence on how neurons encode stimuli

The estimated RFs, which we interpret as the features of the stimulus that neurons encode in
their spiking outputs, reflected the statistics of the stimulus, the filtering properties of the input
RFs, and the dynamics of spiking. Estimated RFs qualitatively resembled input RFs but were
distorted in time. Analyzing these distortions using temporal modulation transfer functions
(Fig 4), we found that most (71/120) of the model neurons were less responsive to high fre-
quencies (> 100 Hz) than their inputs; we expected this effect from the lowpass filtering associ-
ated with passive leak currents. Ky, in contrast, primarily affected low frequencies in the
tMTEF. To our surprise, the sign of the effect depended on the input tMTF, specifically how
broadly tuned it was. Wideband tMTFs became more bandpass, with stronger attenuation at
low frequencies. Bandpass tMTFs, however, became more lowpass, indicating that Ky was
effectively boosting responses to low frequencies in the stimulus.

This result is somewhat counterintuitive, but it is consistent with the high degree of nonlin-
earity phasic neurons exhibit for low-frequency inputs. Using slice recordings, we previously
showed that phasic and tonic CM neurons differ in their coherence between current input and
spiking output [41], with phasic neurons exhibiting lower coherence than tonic neurons for
frequencies below about 20 Hz. Because ideal linear time-invariant systems have coherence
values equal to unity for all frequencies [48], this result indicates that phasic neurons are more
nonlinear at low frequencies, but not the sign or magnitude of the nonlinearity (contra our
interpretation in that study). In other words, for some stimuli phasic neurons may boost low
frequencies while for other stimuli they may attenuate low frequencies. This is precisely the
effect we observed here.

Kyt has a nonlinear influence on how neurons adapt to prior activity

Kyt also affected the spike-history filter component of the GLM. Here the effects were more
consistent across RF types, though there was a weak but significant interaction for long-term
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adaptation (¢), such that WB neurons became more strongly adapting with phasic dynamics
and BP neurons became more facilitating (Fig 6B). Within the joint distribution of all the
spike-history parameters (w, o1, and a,; Fig 6A), there was there was a clear visual separation
in the population distributions of tonic and phasic neurons, such that one could potentially
infer whether a cell was tonic or phasic from the spike-history parameters alone. Thus, under
some circumstances it may be possible to use extracellular recordings to characterize intrinsic
dynamics.

When dynamical neuron models are stimulated with step currents, gx; ris a bifurcation
parameter with a critical value that determines whether the cell can spike repetitively (tonic fir-
ing) or not (phasic firing). We found that using more realistic currents, there is little evidence
of bifurcation in encoding properties, which changed smoothly as we varied gx; 1 (Fig 7).
These relationships nonetheless tended to be quite nonlinear, indicating that neurons can in
principle achieve dramatic changes in functional response properties with only small changes
in the expression or localization of a single type of channel.

Functional implications of Ky expression in the avian auditory system

Taken together, these results demonstrate that the encoding properties of auditory neurons
can be highly sensitive to changes in intrinsic dynamics arising from the inclusion or exclusion
of a single current. We recently showed that CM neurons express more Kv1.1 and become
more phasic during the peak of the critical period for song memorization, but only in finches
raised in the complex acoustic environment of a colony [9]. As suggested by our results here,
increased expression of a low-threshold potassium channel like Kv1.1 might help neurons to
filter out this kind of background noise by selectively suppressing responses to low-frequency
inputs in neurons that have broad temporal tuning. Such a mechanism could explain the
recent finding that in rats, exposure to dynamically modulated noise causes neurons in the pri-
mary auditory cortex to shift their tuning away from the spectrotemporal modulation frequen-
cies of the noise [49]. In this respect, Kyt may be serving an analogous function to the co-
tuned feedforward inhibitory inputs seen in mammalian auditory cortex [50, 51], but without
the need for a separate population of neurons. As we have speculated elsewhere, a cell-intrinsic
mechanism for filtering out background noise and increasing spike precision may be an
important complement to synaptic plasticity early in development when inhibitory circuits
and the reversal potential of inhibitory conductances are still stabilizing [9].

It is less clear to us why it would be useful for Kyt to boost low-frequency responses in neu-
rons that already have bandpass-tuned inputs; however, we note that this effect was consider-
ably more variable (compare the variance for BP and WB neurons in Fig 5). Moreover, it is not
yet known if the distribution of K; 1 expression in CM is independent of the distribution of
input temporal tuning. If expression of K; 1 depends on experience, and more proximately on
the statistics of presynaptic and postsynaptic activity, then its effects may be restricted to neu-
rons with specific tuning properties. Intracellular recordings to measure excitatory and inhibi-
tory RFs in CM neurons may be needed to determine if this is the case.

Model-based approaches to understanding how nonlinear mechanisms
affect sensory processing

This study complements other efforts to incorporate biologically realistic mechanisms into the
framework of linear-nonlinear cascade models. Early work in the auditory system demon-
strated how static nonlinearities in the summation of RF components alter the encoding
properties of stochastic spiking models [52]. More recent studies have added idealized repre-
sentations of dynamical mechanisms like excitatory and inhibitory conductances [53] or gain
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adaptation [54] to the linear-nonlinear framework, while retaining the ability to statistically
estimate the parameters of these model components and use them to predict biological data.
In comparison, our approach emphasizes realism, building on a detailed biophysical model of
intracellular voltage dynamics with pharmacologically and (in principle) genetically identifi-
able components. This realism comes at the cost of statistical tractability. We have addressed
this issue by using an entirely different but much simpler model to characterize the encoding
properties of the more complex model. Although this limits us to asking empirical questions,
there are many biological insights to be gained from an empirical approach.

Within this biophysically realistic framework, our analysis was limited to the effects of
manipulating a single biophysical parameter (gx;7) on encoding of a single kind of auditory
stimulus (zebra finch song). It is important to note that the nonlinearity of neuronal dynamics
means that our results are therefore only valid within the specific context of the other ionic
currents in the model. In a different cell type that expresses a different complement of currents,
Ky will interact with those currents differently and may have entirely different effects on sen-
sory coding. However, although the results may not generalize broadly, the approach can be
adapted widely, to other auditory areas and sensory systems that exhibit diverse or plastic
intrinsic dynamics. We have shown that GLMs can accurately predict the spiking responses of
more complex, more biophysically realistic models across different kinds of stimuli, receptive
fields, and dynamical regimes. Care is needed in interpreting the GLM parameter estimates,
which do not correspond to specific cellular mechanisms and are therefore not linear or inde-
pendent functions of the underlying dynamics. Given the nonlinear kinetics of most voltage-
gated currents, we expect that the relationships between intrinsic dynamics and encoding
properties will be complex and often counterintuitive in most systems, but that there will be
much to learn in each system about how intrinsic dynamics reflect the computational tasks
and constraints that need to be solved.

Methods
Stimulus design

For univariate white-noise models, the stimulus consisted of 100 s of Gaussian white noise
sampled at 1 kHz. For multivariate models, the stimulus consisted of zebra finch song motifs
recorded from 30 adult males in our colony. Each motif was normalized to the same RMS
amplitude and repeated twice, padding with at least 50 ms microphone noise at the beginning
to avoid transients in the convolution. The total duration of the stimulus was 63.7 s, of which
12.7 s was reserved for testing performance. Spectrograms of the stimuli were calculated using
a gammatone filter bank [55] with a window size of 2.5 ms and 20 spectral channels between
1.0 and and 8.0 kHz, and a step size of 1.0 ms.

Receptive field construction

The univariate white-noise receptive field was generated from the difference of two gamma
I (E)IU
1.5. Spectro-temporal receptive fields (RFs) were parameterized as the outer product of two
Gabor functions multiplied by a scalar amplitude:

RE(t,f) = AH(t) ® G(f),
H(t) = exp(—0.5[(t —1t,)/a,]’) - cos(2m - Q,(t — 1,) + P, (1)
G(f) = exp(—0.5][(f —fo)/af]Q) -cos(2m - Qi (f — fy) + Py).

functions (y(t) = exp (")) with time constants of 16 and 32 ms and an amplitude ratio of
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where H is the temporal dimension of the RF, G is the spectral dimension, ¢, is the latency, f; is
the peak frequency, o, and gyare the temporal and spectral bandwidths, €2, and Qyare the
temporal and spectral modulation frequencies, P, is the temporal phase (either 0 or 27), Pris
the frequency phase (set to 0 for all RFs), and A is the amplitude. The temporal dimension H
had a duration of 50 ms with a 1 ms resolution, while the frequency dimension G had 20
channels between 1 and 8 kHz. We generated 60 RFs by sampling randomly from the distribu-
tions given in [38] as representative of empirically recorded RFs in primary areas of the zebra
finch auditory pallium. The amplitude parameter A was initially set to 1 for all of the RFs, but
was adjusted to between 1.5-6 for 8/60 models so that they would fire at least at 1 Hz on
average.

Linear-dynamical cascade model

Auditory responses were simulated with a model consisting of a linear, time-invariant stage
whose output serves as an external driving current I(f) for a conductance-based, single-com-
partment dynamical stage [42].

The linear stage consists of a time-invariant receptive field (RF) that is convolved with the
stimulus. For the univariate white-noise stimuli, this was a simple 1-dimensional convolution.
For the song stimuli, each spectral channel was convolved with the corresponding channel of
the RF and the results were summed to produce a univariate time series. In each trial, the out-
put of the convolution Dg;,,(f) was added to a randomly generated signal D,,;.(t) with a spec-
tral power distribution of 1/fand a signal-to-noise ratio of 4. The total drive D(f) = Dy (f) +
Dyise(t) was unbounded. For the white-noise stimuli, this was not an issue, and drive was con-
verted to current I(t) with a constant scaling factor. However, for song stimuli D(¢) often
reached unrealistic values. Because spectral power is always positive, RFs with lowpass tempo-
ral characteristics tended to over-drive the neurons with long periods of net positive current.
Given that excitation and inhibition are generally balanced in the mammalian auditory cortex
[50], and that synaptic currents in biological neurons are limited by the reversal potentials of
sodium, potassium, and chloride, for song stimuli we therefore mean-centered D(f) and com-
pressed the resulting drive to obtain a more realistic current I(f):

U-L

16 =L+ 1+ exp(bD(t) + a)

(2)

where Uand L are the upper and lower bounds of input current respectively and free parame-
ters b and a control the slope and intercept of the logistic curve. U and L were calculated based
on the passive membrane properties of the model such that the model would not be driven
above 0 mV or below —100 mV, resulting in U = 97.5 pA and L = -32.5 pA. The free parame-
ters were estimated by minimizing the mean squared error between Eq 2 and the identity func-
tion rectified at Uand L to give b = —0.04 and a = 1.32. We also ran all the analyses without
mean-centering and compression. The results were qualitatively similar, indicating that the
model is robust to assumptions about the strength of the driving current. However, we only
report the results from the simulations with mean-centering and compression due to their
increased biological realism.

The voltage dynamics were based on a model of dorsal cochlear neurons [15] adapted for
tonic and phasic CM neurons by Chen and Meliza [9]. The component currents include an

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008768 February 22, 2021 16/25


https://doi.org/10.1371/journal.pcbi.1008768

PLOS COMPUTATIONAL BIOLOGY Nonlinear effects of intrinsic dynamics on temporal encoding

external driving current I(¢) and six intrinsic currents.

av

Cor= (B - V) ()
g (B, — V) (4)

8 (085 + 0.1513) (B — V) (5)
e hcin (B — V) (©)
Ry (B = V) o)
+g.h,(E, — V) (8)

+I(t) 9)

Each voltage-gated current depended on a maximal conductance gy, the reversal potential
for the ion species conducted by the channel Ex, and one or more gating variables (e.g., my,
hx). For all currents, the dynamics of the gating variables were defined by first-order kinetics;
for example,

dmNu _ mNuoc(V) B mNﬂ

a T o v (10)

This model can produce phasic or tonic responses to step currents depending on the value
of gxrr- When g ris low, the model neuron produces sustained responses to weak and mod-
erate depolarizations; when gx; 1 is high, the model only fires at the onset of the current step.
The principal model parameter values used here are shown in Table 1 (see [42] for a complete
list). Each RF was paired with a tonic and a phasic model. To examine how encoding proper-
ties change over the full range of gx; r values, we started with the tonic model parameters and
increased g from 0 nS to 50 nS in steps of 1 nS.

The dynamical model simulation code was generated using spyks (https://github.com/
melizalab/spyks; version 0.6.10), and the dynamics were integrated using a 5th-order Runge-
Kutta algorithm with an adaptive error tolerance of 1 x 10~> and an interpolated step size of
0.025 ms. The output of the integration was converted to spike times by thresholding the volt-
age at -20 mV.

Generalized linear models

A generalized linear model (GLM) [27, 31] was fit to the spike trains produced by the linear
dynamical cascade models (Fig 2). The conditional intensity of the model was given by:

M1) = exp(— + Kok x(t) + hx y(8)) (11)

where A(f) is the conditional intensity at time ¢, exp(—w) corresponds to the baseline firing
rate of the GLM, K is the RF, which is convolved with the song spectrogram x, and 4 is the
spike adaptation filter, which is convolved with the spike train history y,;;(t). Note that we use
f1* fo() to denote the convolution of two functions with respect to time. The full RF was a
20 x 50 matrix (20 spectral channels by 50 time bins of 1 ms). To reduce the number of param-
eters and avoid overfitting, K was parameterized with a rank-2 approximation; that is, the
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Table 1. Parameter values for biophysical models.

Parameter Tonic Phasic
C,. (pF) 60 40
E; (mV) -75 -75
g (nS) 1.3 1.3
En, (mV) 55 55
gna (nS) 750 750
Ex (mV) -82 -82
gkor (nS) 0 0
gxur (nS) 95 95
gkur (nS) 0 50
8km (nS) 0 0
gxa (nS) 30 30
E;, (mV) —43 —-43
g (nS) 0.5 0.5

Symbols: C,,, capacitance; E}, leak current reversal potential; g, leak conductance; En, sodium reversal potential; gy,
(maximum) sodium conductance; Ex, potassium reversal potential; gxpr, delayed-rectifier potassium conductance;
gxur> high-threshold potassium conductance; gx 1, low-threshold potassium conductance; gxar, M-type (slowly
activating) potassium conductance; gx4, A-type (slowly inactivating) potassium conductance; Ej, reversal potential
for h-type (hyperpolarization-activated, cation-nonselective) current; g, h-type conductance. Bold highlights

parameter differences in tonic and phasic models.

https://doi.org/10.1371/journal.pcbi.1008768.t001

product of a 20 x 2 spectral filter and a 2 x 50 temporal filter [56]. The parameter count in the
temporal dimension was further reduced by projecting into a basis set consisting of 12 raised
cosine functions [27]. This basis set achieves good temporal resolution in the time immediately
following a spike, with the resolution smoothly decreasing at long time intervals. The spike-
history filter 1 was parameterized in a basis set of two exponential functions:

h(e) = o, - exp() + - exp() (12)
T To
where 7; and 7, are time constants corresponding to short (10 ms) and long (200 ms) time-
scales, and a; and a, are the coefficients. This parameterization was chosen based on the mul-
tiadaptive timescale model, which is closely related to the GLM and has been shown to be
capable of reproducing a broad range of intrinsic dynamics [25, 57].
The GLMs were fit to data from the first 80% of the stimuli. The log-likelihood function of
the GLM is given by
n T
logL(0lt, ..., t,) = > logh(t]0) + / A(s]0)ds, (13)
i=0 0
where t; is the time of the ith spike, 7 is the number of spikes in the experiment, T is the final
time point of the experiment, and 0 represents the free parameters [58]. Because the stimulus
is highly correlated and the RF is expected to be sparse, we used elastic-net regularization to
constrain the RF parameter estimates. Elastic-net regularization is combination of ridge
regression and the least absolute shrinkage and selection operator (LASSO). Ridge regression
introduces an L, penalization parameter (v,) to account for multicollinearity, which is inher-

ently present in the highly correlated structure of the song spectrogram. The LASSO intro-
duces an L; penalization parameter (v;) to shrink small correlations to zero and acts as a
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feature selection algorithm, enforcing RF sparseness. A cost function was given by:
C= vkl + v, [[k[l, —logL(0lt, .- ,t,) (14)

where ||k||; and ||k||, are the L1-norm and L2-norm of K (reshaped into a 1-D vector), respec-
tively. Since the log-likelihood function is concave and is guaranteed to be free of local maxima
[28], we simultaneously estimated the parameters (w, K, @3, ,) by minimizing the cost func-
tion, which was done by using the nonlinear conjugate gradient method scipy function
‘fmin_ncg’ (version 1.3.0) [59]. Theano (version 1.0.4) [60] was used to symbolically derive the
gradient and Hessian of the cost function and dynamically generate C code to evaluate them.
The regularization coefficients (v;, v,) and the factorization rank D were chosen using 4-fold
cross-validation on the estimation data.

We quantified the uncertainty in the maximume-likelihood estimates (w, K, o, a,) by sam-
pling from the joint posterior distribution p(0|to, . . ., t,,) < p(O)L(8|to, . . ., t,) using emcee (ver-
sion 2.2.1), a Python implementation of an affine-invariant ensemble Markov chain Monte
Carlo sampler [61]. The log of the prior probability p(6) was set to the elastic-net penalty (Eq
14) using the values of v, and v, obtained through cross-validation, and the log-likelihood was
asin Eq (13). An ensemble of 1000 chains was initialized with random values centered around
the maximum-likelihood estimate and given a burn-in of 2500-6000 steps. After this period,
each chain was sampled one more time to give a set of 1000 independent samples from p(0|t,,
... 1,). For population-level analyses, the final value of the GLM (w, K, ¢, @,) parameters
were the median value of their respective posterior distributions due to the symmetric bell-
shaped curve of the posteriors. These values were very close to the initial ML point estimates,
so we did not sample from the posterior for the analyses shown in Fig 7.

To quantify performance, we generated posterior predictive distributions of spike trains
from the fitted GLMs, with time discretized to A = 0.5 ms. At such short time scales, the condi-
tional rate A(f) - A could be approximated as a Bernoulli trial at each time bin which was used
to produce spike train responses from the GLMs. In each trial, we drew a sample from the pos-
terior distribution, so the intertrial variability reflects not only the intrinsic variance of the Ber-
noulli distribution but the uncertainty in the parameter estimates as well. Performance was
quantified as the product-moment correlation between the spike-rate histograms (50 trials, 10
ms bins) for the data and the prediction on the 20% of the stimulus reserved for testing. As a
baseline measure of intrinsic variability, we calculated the product-moment correlation
between even and odd trials in the data (i.e., from the linear-dynamical cascade model); how-
ever, we did not explicitly correct performance scores.

Lowpass attenuation

The estimated RF parameters were projected back into a linear time basis and reshaped into a
20 x 50 matrix. To obtain the temporal modulation transfer function (tMTF), a 2-dimensional
Fourier transform was performed on the RF, summing across the spectral dimension (includ-
ing positive and negative frequencies). The Fourier transform was calculated using the numpy
package in Python, with zero-padding and the application of a Hanning window in the tempo-
ral profile to avoid edge effects. RF lowpass attenuation was quantified as:

Al=—0 -0 (15)

where Py is the power for the zero frequency of the input tMTF, P,,,,, is the maximum power
of the input tMTF, P, is the power at the zero frequency of the estimated tMTF, and P, is the
maximum power of the estimated tMTF. Positive values of Al indicate that the estimated RF
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Table 2. Results of Al LMM comparison.

Model AIC

Variance Components -22.33
+ Main Effects -21.49
+ Interaction -38.53

BIC

-13.99
-7.55
-21.80

2°(df) p-value
3.15(2) 0.21
19.04 (1) <0.001

Reductions in AIC and BIC, as well as statistically significant chi-squared tests indicated that the LMM with main effects and interaction was the best candidate model

for describing the data.

https://doi.org/10.1371/journal.pcbi.1008768.1002

responds more weakly to low modulation frequencies compared to the input RF, whereas neg-

ative values indicate that the estimated RF is more responsive to low frequencies.

Linear mixed-effects models

Given the nested, repeated-measures nature of the experimental design (each input RF was
used with tonic and phasic dynamical models), we used a random-intercepts LMM with input
RF as a random effect. All LMMs were estimated using the Ime4 (version 1.1.21) R package,
which does not return p-values for parameter estimates due to unreliability issues [62]. To
determine statistical significance, we therefore took a model-comparison approach where
nested LMMs of increasing complexity were compared against each other. Three candidate
models were fit: random effects (variance components) only, random effects and main fixed
effects, and random effects with main effects and interactions. Restricted maximum likelihood
(REML) parameter estimation gives unbiased LMM estimates, however the LMMs cannot be
compared as nested models [63] and we therefore used maximum likelihood estimation
(MLE) to generate LMMs. Candidate LMMs were compared across three fit statistics: AIC,
BIC, and chi-squared. Lower values of AIC and BIC indicate better relative fit. The null
hypothesis of the chi-squared test is that the more complicated model is not a better fit to the
data than the less complicated model. See Tables 2-5 for LMM comparison results.

The variance-components model was given by the equation:

yi=byt+u+e;
u ~ N (0,3,) (16)
e; ~ N(0,0,)

where y;; is the observed value of the dependent variable for the ith type of neuron model
(tonic or phasic) and jth input RF type (WB or BP), by is a fixed intercept, u; is the value of the
random intercept of the jth RF type, and e;; is the error term for the for the LMM. Both u; and
e;; are assumed to be normally distributed with a mean of zero and a constant variance of o2

Table 3. Results of @ LMM comparison.

Model AIC

Variance Components 436.95
+ Main Effects 277.91
+ Interaction 279.53

BIC

445.31
291.85
296.25

2(df) p-value
163.04 (2) <0.001
0.38 (1) 0.54

There were reductions in AIC and BIC, as well as statistically significant chi-squared tests for the main effects model compared to the variance components model.

However, there were increases in AIC and BIC, as well as a non-statistically significant chi-squared test for the main effects and interaction model. Therefore, the LMM

with main effects only was the best candidate model for describing the data.

https://doi.org/10.1371/journal.pcbi.1008768.t003
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Table 4. Results of &; LMM comparison.

Model AIC

Variance Components 1471.30
+ Main Effects 1395.60
+ Interaction 1397.50

BIC
1479.60
1409.50
1414.30

2°(df) p-value
79.65 (2) <0.001
0.08 (1) 0.76

There were reductions in AIC and BIC, as well as statistically significant chi-squared tests for the main effects model compared to the variance components model.

However, there were increases in AIC and BIC, as well as a non-statistically significant chi-squared test for the main effects and interaction model. Therefore, the LMM

with main effects only was the best candidate model for describing the data.

https://doi.org/10.1371/journal.pcbi.1008768.t004

Table 5. Results of @, LMM comparison.

Model AIC

Variance Components 80.70
+ Main Effects 18.78
+ Interaction -51.21

BIC
89.06
32.72
-34.49

72(df) p-value
65.91 (2) <0.001
72.00 (1) <0.001

Reductions in AIC and BIC, as well as statistically significant chi-squared tests indicated that the LMM with main effects and interaction was the best candidate model

for describing the data.

https://doi.org/10.1371/journal.pcbi.1008768.t005

and ¢ respectively. This LMM essentially tests if the differences we see in the dependent vari-

able are solely due to the random effects of each input RF rather than neuron model or RF
type. For all LMM analyses, tonic neuron models and BP RFs were coded as 1, and phasic neu-

ron models and WB RFs were coded as 0.

The main-effects model was given by the equation:

Yy =by+b,M;,+b,R +u +e; (17)

where y;;, by, uj, and e;; are defined identically as above, b, is the fixed effect of M;, the ith neu-
ron model type, and b, is the fixed effect for Rj, the jth input RF type.

The interactions model is identical to the main-effects model, with the addition of a fixed
effect b; of the multiplicative interaction between neuron model and RF type, with the equa-

tion given by:

y; = by +b,M, + b,R, + bMR +u, + e, (18)

If the interactions model was found to be the best fit to the data, simple-effects models were
estimated using REML since these LMM:s were not compared to any other candidate models.
Simple effects models were calculated by subsetting the data by RF type and estimating a LMM
with RF as a random intercept and neuron model type as a fixed effect. For each RF type, the
LMM equation is given by:

Vi = b1)+b1Mi+uj+eij (19)

Supporting information

S1 Text. Details of GLM estimates for exemplar tonic and phasic models shown in Fig 4A-
4F. The six figures have are in the same order as the examples in Fig 4 and have the same for-
mat as each other: (a) Left, input RF in the LDC model. Right, estimated RF from GLM. A
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novel birdsong stimulus was used to compare GLM performance to output of LDC model,
with 5s of the spectrogram shown in (b). Voltage traces of LDC model in response to stimulus
for a single trial are shown in (c) with corresponding Ky 1 current (d). Spike trains for all 50 tri-
als are shown in (e), with black corresponding to the LDC model and red to the GLM. PSTHs
shown in (f).

(PDF)
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