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Abstract
Critical infrastructure networks, including water, power, communication, and transportation, among others, are neces-
sary to society’s functionality. In recent years, the threat of different types of disruptions to such infrastructure networks
has become an increasingly important problem to address. Due to existing interdependencies, damage to a small area of
one of the networks could have far-reaching effects on the ability to meet demand across the entire system. Common
disruption scenarios include, among others, intentional malevolent attacks, natural disasters, and random failures. Similar
works have focused on only one type of scenario, but combining a variety of disruptions may lead to more realistic
results. Additionally, the concept of social vulnerability, which describes an area’s ability to prepare for and respond to a
disruption, must be included. This should promote not only the protection of the most at-risk components but also
ensure that socially vulnerable communities are given adequate resources. This work provides a decision making frame-
work to determine the allocation of defensive resources that accounts for all these factors. Accordingly, we propose a
multi-objective mathematical model with the objectives of: (i) minimizing the vulnerability of a system of interdependent
infrastructure networks, and (ii) minimizing the total cost of the resource allocation strategy. Moreover, to account for
uncertainty in the proposed model, this paper incorporates a means to address robustness in finding the most adaptable
network protection plan to reduce the vulnerability of the system of interdependent networks to a variety of disruption
scenarios. The proposed work is illustrated with an application to social vulnerability and interdependent power, gas,
and water networks in Shelby County, Tennessee.
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Introduction

In the past few decades, regions across the world have
been affected by numerous disruptions (i.e. natural dis-
asters and human-made attacks) that result in direct
and indirect costs. Many of these disruptions (e.g. the
recent devastation of Hurricane Maria on Puerto Rico
in 2017) not only cause severe physical damage but also
impact society’s perception of the government’s ability
to prepare for and respond to disruptions. An extensive
analysis of the costs of such disruptions performed by
Al Kazimi and Mackenzie1 suggests that not only has
the average cost risen in recent years but that these
costs can reach up to hundreds of billions of dollars.
For example, earthquakes are responsible for anywhere
from $100million to $100 billion in losses to both

commercial and residential areas.1 Terrorist attacks,
while less common and more frequently localized in
terms of target areas, can be just as costly, causing sub-
stantial damages.1 Furthermore, in a recent report for
the Department of Homeland Security (DHS), the
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National Consortium for the Study of Terrorism and
Responses to Terrorism classifies attacks by target type
and shows that 75% of attacks focus on critical infra-
structure networks.2

From these reports, it is clear that disruptive events
pose a significant risk to infrastructure in the U.S. and
across the world. Critical infrastructure networks are
defined as service and utility networks that are consid-
ered necessary for society to function.3 Critical infra-
structure networks include energy, water,
transportation, and communication systems, among
many others on which all aspects of our society – from
the public to government and businesses – depend.
With the growth of technology in recent years, the defi-
nition of critical infrastructure networks has expanded
to include cyber-based systems. Examples of cyber-
related advances in power grid networks include
software installations in control centers, specialized
hardware in substations, and smart elements transfor-
mers. While these advances, and the desire to make
such networks more efficient, have improved overall
functionality, they come at a cost and ‘‘have created
new vulnerabilities to equipment failure, human error,
weather and other natural causes, and physical and
cyber attacks. Addressing these vulnerabilities will
necessarily require flexible, evolutionary approaches’’
to ensure that both the infrastructure itself and the
population in potentially at-risk areas are protected.3

This problem was stated in the Directive nearly 20 years
ago, and it is even more pressing today due to higher
levels of interaction and interdependency among differ-
ent infrastructure networks.

Interdependency can be defined as a ‘‘bidirectional
relationship between two infrastructure networks
through which the state of each infrastructure influ-
ences or is correlated to the state of the other.’’4 Such a
relationship between components of different networks
increases the complexity of the network system as a
whole. Consequently, damage to a section of one infra-
structure network could have far-reaching effects on
other networks as high vulnerability in even a small
number of components might have significant adverse
potential. To combat this vulnerability, a defensive
strategy (e.g. fortifying network components, con-
structing redundant components) that concentrates on
susceptible components can be implemented. Such a
strategy could help in increasing the overall strength of
the infrastructure networks to adapt to the negative
impacts of disruptions and recover from them in a
timely manner (i.e. to become resilient infrastructure
networks5).

However, these infrastructure networks do not exist
on their own; they exist because society relies upon
them to enable economic productivity, health, and a
way of life. As such, understanding the broader societal
impacts of infrastructure disruptions is important when
determining the allocation of resources to reduce infra-
structure vulnerability. This is particularly true when
different members of the community may experience

the same disruption to lifeline services in different ways
based on their inability to cope, or their social
vulnerability.6,7

Complementing recent work in managing and miti-
gating infrastructure risk,8–10 this paper aims to pro-
vide a decision making framework that can be used to
determine the allocation of defensive resources to a sys-
tem of interdependent infrastructure networks that (i)
is robust to a variety of disruption scenarios, and (ii)
considers the impact to socially vulnerable groups of
the disruption scenarios.

The objectives of the model are to (i) minimize the
vulnerability of a system of interdependent infrastruc-
ture networks, and (ii) minimize the total cost of the
resource allocation strategy (which is comprised of the
amount of defensive resources selected to each compo-
nent and the unit cost of the resource at each compo-
nent). Moreover, uncertainty is an important
consideration in the proposed model as the location
and impact of the disruption are derived from a set of
disruptive scenarios, thus this paper incorporates a
means to address robustness in finding the most adap-
table network protection plan to reduce the vulnerabil-
ity of the interdependent networks.

The remainder of this paper is organized as follows.
A background of the problem is presented in the fol-
lowing section with a discussion of relevant previous
work. Next, the proposed model formulation is pro-
vided with an illustrative example of a real system of
interdependent networks in Shelby County, TN.
Finally, concluding remarks are given, including some
insights for how decision makers might manage a pro-
tection plan for a system of interdependent infrastruc-
ture networks.

Methodological background

This section discusses some of the prior work in the lit-
erature related to our proposed decision making frame-
work as well as how concepts of resilience and social
vulnerability are incorporated.

Vulnerability and resilience

In the field of disaster planning and recovery, the term
resilience can take on a variety of meanings.11

Resilience is generally defined as the ability of an entity
or system to withstand, adapt to, and recover from a
disruptive event in a timely manner.3 This research
employs the framework adapted from Henry and
Ramirez-Marquez,12 depicted in Figure 1 to visualize
and measure resilience. Figure 1 illustrates the perfor-
mance u tð Þ of the system before, during, and after
some disruptive event, noting that resilience is a func-
tion of a particular initiating disruptive event. Here,
resilience is a function of vulnerability, or the amount
that u tð Þ decreases in the disruption period,13–15 and of
recoverability, or for the trajectory of u tð Þ that the sys-
tem takes on to return to acceptable performance.16–18
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The model proposed here focuses on decreasing vulner-
ability by enacting preemptive defensive measures prior
to the disruptive event (between t0 and te) and is there-
fore independent of time.

Network protection allocation

Defensive resources refer to equipment and crews that
secure and protect network components against mal-
evolent attacks. In power networks, examples of defen-
sive resources include equipment and crews that (i)
replace existing transformers with transformers that
have more interchangeability across the utility’s service
territory, (ii) harden transmission lines and towers, cir-
cuit breakers, and servers, (iii) restrict the physical
accessibility to critical facilities by segregating them
into protected zones, and (iv) expand visual barriers,
such as tall and opaque defensive fences.19 For gas net-
works, these defensive resources may fortify and secure
gas pipelines by building redundant counterpart pipe-
line paths and increase the physical restriction of com-
pressor stations. Finally, defensive resource examples
in water networks includes hardening water purifica-
tion facilities against disruptions, segregating water
storage facilities (e.g. reservoirs, water tanks, and water
towers), and building redundant water pipes.

A number of works have focused on the allocation
of defense resources to reduce the vulnerability of net-
works. Qiao et al.20 examine security budgets applied
to a water supply network under intentional physical,
cyber, or biological disruptions. Assuming the attacker
has knowledge of the network and will target compo-
nents whose disruption will cause the most damage, the
defender allocates resources so that the attack will be
costly to carry out. Bier et al.21 propose a computa-
tional model to determine the optimal defense resource
allocation plan which minimizes the adverse effects of
malevolent attacks. Using the measures of target
attractiveness (e.g. expected property damage, compo-
nent criticality, and expected fatalities), their model
prioritizes target valuations and allocates the security

budget effectively. Mo et al.22 introduce a dynamic
resource allocation strategy that balances protecting
existing components and building new ones to increase
the redundancy with the goal of minimizing the total
disruption to the network. To decrease the probability
of network disruption, they consider the most probable
attack time, uncertainties of attack time, and disruption
probability to evaluate the ability of the network to
survive the attack. Using game theory approaches,
Zhang et al.23 propose an analytical equilibrium to
study how the risk preferences of the attacker and
defender, particularly in allocating defense resources,
affect a player’s behavior in the equilibrium. In com-
parison with models that consider the attacker to be
risk neutral, this model results in a lower expected dis-
ruption, specifically when the attacker is assumed to be
risk seeking. Feng et al.24 introduce a Bayesian game-
theoretic method to model different types of attacks,
allocate limited resources optimally, and consequently
minimize the expected network performance loss. They
demonstrate the applicability and efficiency of the
model by comparing the expected loss of different
defensive strategies. Ramirez-Marquez et al.25 devise a
multi-objective problem that balances network vulner-
ability and protection resources, finding a Pareto-opti-
mal set of protection strategies for each of several
attacks. They then evaluate the effectiveness of each
strategy to all other attacks, ultimately ranking all stra-
tegies according to their robustness across attacks using
a multi-criteria decision analysis technique. McCarter
et al.26 expand upon this idea for multi-commodity net-
works. Several other works have explored protection
allocation models,27–30 including a review of attack and
defense strategy models is provided by Hausken and
Levitin.31

Interdependent networks

As the importance of studying infrastructure resilience
has grown, so too has the literature on the resilience of
interdependent infrastructure networks (e.g. Buldyrev

Figure 1. Network performance over time (adapted from Henry and Ramirez-Marquez12).
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et al.,32 Buldyrev et al.,33 Schneider et al.,34 Holden
et al.,35 Garas,36 Almoghathawi and Barker37 and
Ghorbani-Renani et al.38). Research has also focused
on both dimensions of resilience (i.e. vulnerability and
recoverability) that are highlighted in Figure 1.

With regard to measuring vulnerability in interde-
pendent networks, as well as strategies to reduce vulner-
ability, Wang et al.39 analyze interdependent network
responses to different link disruption scenarios and pro-
pose a ranking method for protecting critical compo-
nents. Wu et al.40 assess the structural and functional
vulnerability of interdependent networks with two types
of interdependencies: physical and geographical. They
demonstrate the applicability of their proposed metho-
dology to a variety of infrastructure networks and dis-
ruption scenarios, as well as insights into vulnerability
mitigation strategies (e.g. defense resource allocation).
Using game theory approaches, Hausken41 analyzes
two interdependent systems to study how the failure of
one or both systems may affect defense plans and subse-
quent attack strategies. Focusing on spatially localized
attacks, Ouyang42 proposed two strategies, including
protecting vulnerable components and building new
component to increase the redundancy of network, to
enhance interdependent network resilience.

A number of recent works have focused on the reco-
verability dimension of resilience, primarily in modeling
work crew assignment and scheduling for restoring
interdependent networks.43–46 As the recoverability
dimension of resilience is not the focus of this paper, we
highlight only Almoghathawi et al.,47 as it serves as the
foundation for the vulnerability model proposed here,
which considers the same resilience quantification
approach proposed by Henry and Ramirez-Marquez.12

Almoghathawi et al.47 describe a system of interdepen-
dent critical infrastructure networks subjected to a range
of disruption scenarios, proposing a multi-objective
model to determine a restoration strategy (order of dis-
rupted components and schedule of work crews) to
restore the networks. They use the e-constraint method
to balance cost and resilience objectives, the latter of
which is based on concepts in Figure 1.

Social vulnerability

Measure of social vulnerability often depend on the
characteristics of the community under study. Age, level
of income, average level of education, population, hous-
ing structure, and geographical neighborhood are among
the factors that affect the vulnerability of the corre-
sponding community. For example, those with lower
incomes often live in mobile homes and poorly con-
structed houses which are vulnerable to disruptions.48

The majority of the works in resilience from a com-
munity perspective present a qualitative analysis and
the conceptual framework of the dynamics between
physical infrastructure networks and the society.49–52

The concept of community resilience is common among
earthquake hazards research,53–55 though more recent

work has explored the difference among community
characteristics in other settings.56 In particular, we
focus on resource allocation for protecting interdepen-
dent networks with vulnerable populations in mind.

Social vulnerability describes how social factors and
inequalities (e.g. economic disparities, access to emer-
gency services, and political representation), affect a com-
munity’s ability to respond to and recover from some
disruptive events.57 In the context of critical infrastruc-
ture systems, socially vulnerable areas are those in which
communities may be most negatively impacted by a lack
of critical services and resources during times of disrup-
tion. Cutter et al.57 developed a method to assign a quan-
titative Social Vulnerability Index (SoVI) score across the
U.S. by county using 29 demographic, housing, and eco-
nomic data that are publicly available through the U.S.
Census. A simplification of the SoVI method, referred to
as SoVI-Lite and developed for the U.S. Army Corps of
Engineers, provides a quicker, less technical method for
hazard planners.58 SoVI-Lite also allows for the index to
be more easily scaled down to determine scores within
smaller geographical units for an individual county and
uses a smaller set of variables determined to be the most
relevant to the specific region of study.

With regard to the relationship among physical
infrastructure networks and society, Cavalieri et al.59

propose a multi-criteria decision analysis framework
that measures the impact of interdependent physical
infrastructure network disruptions on social losses,
focusing on the displaced population level of that area.
Franchin60 developed a seismic vulnerability hazard to
analyze multiple large interacting systems concurrently
and their inherent uncertainty. However, the model
adopts a fixed and predetermined evaluation sequence.
Ellingwood et al.61 present a virtual community testbed
to relate infrastructure networks with a community net-
work, defining natural hazards to which the infrastruc-
ture networks are exposed and the population
demographics which are required for the assessment of
potential post-disruption impacts.

This paper offers an integrated framework to ana-
lyze the vulnerability of interdependent physical net-
works from the perspective of the social vulnerability
of the corresponding affected areas. Uncertainty is an
important consideration in the model, as it can arise in
the presence of a malevolent attack, which could be
based on various (and unknown to the defender) moti-
vations (e.g. surrounding population, connectivity of a
component, the capacity of the component, random).
Therefore, this paper incorporates a means to address
robustness in finding the most adaptable network pro-
tection planning to reduce interdependent network vul-
nerability to a variety of disruption scenarios.

Proposed decision making framework

This section provides the variables and parameters for
the interdependent networks, the optimization model
that aims to minimize the effects of the disruption while
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simultaneously minimizing costs, and the robust deci-
sion making approach that measures the efficacy of
protection strategies for different disruption scenarios
(i.e. natural disasters (spatial), random, intentional
malevolent attacks (capacity-based and degree-based)).
The optimization model of this paper is inspired by the
interdependent restoration model proposed by
Almoghathawi et al.47.

Definitions and notation

The mathematical model deals with components in a
set K of interdependent networks.Nk and Ak are the sets
of nodes and links, respectively, in network k 2 K.
Subsets of Nk in network k 2 K include supply and
demand nodes, Nk

s and Nk
d, respectively. In network

k 2 K, For node i 2 Nk
s in network k 2 K, the available

supply is bki , and for node i 2 Nk
d, the demand that must

be met is bki . Each link from node i 2 Nk to node j 2 Nk

in network k 2 K has a capacity of ckij. Within the sets
of nodes and links, N

0k and A
0k are the subsets of dis-

rupted nodes and links, respectively, in network k 2 K.
The performance of network k 2 K is measured by the
maximum flow,

P
i2Nk

d
bki , that reaches demand nodes.

For node i 2 Nk
d in network k 2 K, the reduction from

this maximum flow, or slack, is ski and has an associated
unit cost of pki . When the flows into the demand node
sum to bki , s

k
i =0. The unit cost of allocation resources

for a node or a link in network k 2 K is qki and rkij,
respectively. As some of the networks may be more crit-
ical to a community’s functionality, the importance of
network k 2 K is represented by mk. The importance of
network k 2 K is defined based on three factors: (i) the
number of networks that depend on network k 2 K, (ii)
the level of dependency among network k 2 K and
other dependant networks (i.e. the number of compo-
nents in other networks that depends on the operability
of components in network k 2 K), and (iii) the amount
of demand that is covered by network k 2 K (e.g. total
number of residential, commercial, and industrial cus-
tomers). Moreover, the SoVI rank (i.e. 1, 2, or 3, as dis-
cussed in Section 4.1) for demand node i 2 Nk

d in
network k 2 K is represented by vki . Hence, the por-
posed model considers two weights, which are discussed
in Section 3.3 and further in the case study: (i) the
importance of network k 2 K, mk and (ii) the social
vulnerability of the location around demand node
i 2 Nk

d, v
k
i .

Contest function

As McCarter et al.26 demonstrate, the vulnerability of a
component in a network subjected to some disruption
scenario can be found using a contest function. In gen-
eral, contest functions are used when multiple players
exert effort to win a prize. This can include events such
as elections, sports games, and military combat.62 The
outcome r 2 0, 1ð Þ of such a function can either repre-
sent the probability that a player wins the prize or the

percentage of the prize a player wins, depending on the
nature of the prize and event for which the function is
employed.63 Different contest functions have been
developed to describe different contest situations.
However, considering attacks, or disruptions in general,
the two most common contest functions are the ratio
form and difference form proposed by Levitin and
Hausken.64 Both forms take as input the amount of dis-
ruption and defense resources assigned to a given com-
ponent. The value of the output is dependent on how
the relation between the two amounts is defined in the
function; it is either based on the ratio of the disruption
and defense inputs or the magnitude of difference
between them. The different form of contest functions,
shown in equations (1) and (2), is commonly applied to
scenarios in which a defender is determining resource
amounts to combat an intentional attack but can be
used in other defense allocation circumstances (e.g.
guarding against natural disasters).

uki gki , d
k
i

� �
=

gki �dki
gk
i

if gki . 0

0 if gki =0

(
ð1Þ

wk
ij hkij, f

k
ij

� �
=

hkij�fkij
hk
ij

if hkij . 0

0 if hkij =0

8<
: ð2Þ

This paper considers a set of attack resources, g, hð Þ�l,
associated with disruptive event �l 2 1, . . . , �Lf g, where
�L is the total number of possible disruptive events.
Each attack resource is assigned to network compo-
nents to disrupt them intentionally. Examples of attack
resources include the equipment and labor for (i) shoot-
ing transmission towers, (ii) sabotaging support bolts in
high-power transmission lines, (iii) rupturing natural
gas pipelines, and (iv) contaminating service reservoirs
in water networks. Vector g consists of elements gki that
refer to the amount of resources assigned to disrupt
node i 2 Nk in network k 2 K, and vector h consists of
elements hkij that refer to the amount of resources
assigned to disrupt link i, jð Þ 2 Ak in network k 2 K.
The defender employs the defense strategy d, fð Þl to
minimize the vulnerability of the interdependence net-
works, where l 2 1, . . . ,Lf g is the index of the L
defense strategies. Similar to attack strategies, d con-
sists of elements dki that refer to the amounts of
resources assigned to protect node i 2 Nk in network
k 2 K, and f consists of elements fkij that refer to the
amount of resources assigned to protect link i, jð Þ 2 Ak

in network k 2 K.
Shown in equation (1), for each disruptive event

�l 2 1, . . . , �Lf g, the vulnerability of a node in network
k 2 K, uki , is calculated for some assumed attack (or
disruption) resources gki and allocation of defense
resources dki if the component is included in that dis-
ruption scenario (if the value for the disruption amount
is greater than zero). If the node is not disrupted, its
vulnerability is zero. Likewise, the vulnerability of a
link in network k 2 K, wk

ij, is a function of attack
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resources hkij and defense resources fkij is calculated with
the contest function in equation (2). If a defender does
not allocate any resources to a component it is com-
pletely disrupted, and its capacity is reduced to zero. If
equal amounts of disruption and defense resources are
assigned to a component, the vulnerability is zero, and
the component’s capacity is unaffected. It is assumed
that the defense allocation is no more than the attack
allocation. The expected value for a component’s func-
tionality in a disruption scenario can be estimated by
multiplying its pre-disruption supply by 1� uki for
nodes and capacity by 1� wk

ij for links.
Figure 2 is the graphical representation of two inter-

dependent networks before disruption, Figure 2(a),
after assigning defense resources, Figure 2(b), and after
attack resources are assigned to disrupt nodes and
links, Figure 2(c). As Figure 2(a) indicates, in both net-
works 1 and 2, the flow starts from supply nodes (nodes
1, 2, and 3), distributes through the network, and
reaches to demand nodes (nodes 11,12, and 13). The
interdependencies among the components of the two
networks are shown by the black dashed arrow. The
node/link located at the end of the arrow is the one on
which other node/link depends. In Figure 2(b), defense
resources are distributed through each network to be
assigned to nodes and links. For example, in network 1
the amount of defense resources d12, d

1
5, and d17 are

assigned to nodes 2, 5, and 7, respectively, and the
amount of defensive resources f11, 8 and f16, 9 are assigned
to links 1, 8ð Þ and 6, 9ð Þ. As we see in Figure 2(c), the
attack resources are distributed through the network to
disrupt nodes and links. For example, in network 2,

attack resources of amounts g23, g
2
6, and g210 are assigned

to nodes 1, 6, and 10, and the attack resources of h23, 6,
h25, 8, h

2
5, 9, and h28, 10 are assigned to links 3, 6ð Þ, 5, 8ð Þ,

5, 9ð Þ, and 8, 10ð Þ to disable them. Mentioned previ-
ously in equations (1) and (2), if the amount of defense
resources assigned to a node or link (e.g. d17, f

2
5, 8) is

equal the amount of attack resources assigned to that
corresponding node or link (e.g. g17, h

2
5, 8), that node or

link remains unharmed.

Objective functions

There are multiple objective functions of the proposed
model. The first objective of the model, shown in equa-
tion (3), minimizes the vulnerability in the system of
interdependent infrastructure networks, as measured by
the weighted unmet demand in the system. Slack ski is
weighted by (i) the social vulnerability vki of the location
around demand node i 2 Nk

d and by (ii) the importance
mk of network k. The weights encourage defensive
resources first to be allocated to susceptible compo-
nents whose removal would cause the most harm, func-
tionally and socially, in terms of unmet demand. The
quantity S in the denominator represents the total
amount of weighted demand that is met in the undis-
rupted scenario.

min

P
k2K

P
i2Nk

d
mkvki s

k
i

S

" #
ð3Þ

The competing objective shown in equation (4) mini-
mizes the total cost of the resource allocation strategy

Figure 2. Graphic representation of two interdependent networks: (a) before disruptions, (b) after assigning defense resources,
and (c) after attack resources are distributed throughout the networks.
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d, fð Þ, which is comprised of: (i) the amount of defensive
resources selected to each of the nodes and links in the
disruption scenario, and (ii) the unit cost of the resource
at each component.

min
X
k2K

X
i2Nk

qki d
k
i +

X
k2K

X
i, jð Þ2Lk

rkijf
k
ij

2
4

3
5 ð4Þ

Constraints

Constraints (5) through (7) are the flow conservation
constraints at each node: the sum of flows out of sup-
ply node i 2 Nk

s cannot exceed bki , the sum of the flows,
xkij, out of transition node i 2 Nkn Nk

s ,N
k
d

� �
must be

equal to the sum of the flows, xkji, into that correspond-
ing node, and the sum of flows into a demand node
i 2 Nk

d, combined with the amount of slack, ski , at that
node must be equal to the demand (maximum perfor-
mance), respectively. Constraint (8) ensures that the
flow across any link is no more than the link capacity.
Constraints (9) through (11) consider link capacity for
disrupted components whose capacity has been reduced
by a disruption, where the flow between nodes i and j
cannot be greater than the disrupted performance level
of either node, or the disrupted capacity of the link
itself. The interdependency of the networks in the sys-
tem is captured by C as shown in constraint (12),
where i, kð Þ, �i, �k

� �� �
2 C denotes that if node �i 2 N

�k in
network �k 2 K depends physically on node i 2 Nk in
network k 2 K, then node �i 2 N

�k must be at least as
vulnerable as node i 2 Nk. Finally, constraints (13)
through (18) represent the nature of the decision
variables.X

i, jð Þ2Ak

xkij4bki , 8i 2 Nk
s , k 2 K ð5Þ

X
i, jð Þ2Ak

xkij �
X
j, ið Þ2Ak

xkji =0, 8i 2 Nkn Nk
s ,N

k
d

� �
, k 2 K

ð6ÞX
i, jð Þ2Ak

xkji + ski = bki , 8i 2 Nk
d, k 2 K ð7Þ

xkij � ckij40, 8 i, jð Þ 2 Ak, k 2 K ð8Þ

xkij � 1� uki
� �

ckij40, 8 i, jð Þ 2 Ak, i 2 Nk, k 2 K ð9Þ

xkij � 1� ukj

� �
ckij40, 8 i, jð Þ 2 Ak, j 2 Nk, k 2 K ð10Þ

xkij � 1� wk
ij

� �
ckij40, 8 i, jð Þ 2 A

0k, k 2 K ð11Þ

uki � u
�k
�i 40, 8 i, kð Þ, �i, �k

� �� �
2 C ð12Þ

ski ø 0, 8i 2 Nk
d, k 2 K ð13Þ

xkij ø 0, 8 i, jð Þ 2 Lk, k 2 K ð14Þ

uki ø 0, 8i 2 Nk, k 2 K ð15Þ
wk
ij ø 0, 8 i, jð Þ 2 Lk, k 2 K ð16Þ

dki ø 0, 8i 2 Nk, k 2 K ð17Þ

fkij ø 0, 8 i, jð Þ 2 Lk, k 2 K ð18Þ

The e-constraint method65 is used to generate a Pareto
set for the multi-objective problem by setting one of the
objectives to be at most e in a constraint, then generat-
ing different solutions to the remaining single objective
problem by varying the value of e. The first objective is
constrained by a given value of e representing the maxi-
mum allowable vulnerability, as seen in equation (19).
While a number of approaches have been proposed to
generate a Pareto set,66 we make use of the e-constraint
method due to its popularity in the multi-objective opti-
mization literature.67,68 The e-constraint method has
shown to have advantages in generating efficient solu-
tions relative to other approaches (e.g. the weighting
method69). Further, note that e represents a tangible
value to decision makers, and such tangibility is not
always available in other approaches for generating
Pareto sets.70P

k2K
P

i2Nk
d
mkvki s

k
i

S
4e ð19Þ

Solution robustness

For each disruption scenario, �l, a Pareto set of defense
strategies that balance the cost of defense resource allo-
cation and network vulnerability reduction is gener-
ated. Once the set of Pareto-optimal solutions has been
found for one disruption scenario, each solution is eval-
uated to determine which is the most robust with
respect to all other scenarios regarding maximizing the
weighted residual network flow (i.e. flow in the net-
work after a disruption). To evaluate the effectiveness
of solutions across the different disruption scenarios, a
multi-criteria decision analysis technique is used.

The Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS),71 the multi-criteria decision
analysis technique, ranks strategies across M weighted
criteria. The TOPSIS formulation is based on the idea
of a compromise solution, where strategies are ranked
according to how close they are from the best case and
how far they are from the worst case. In this implemen-
tation, M= �L+1, representing the vulnerability asso-
ciated with each attack scenario as well as the cost
associated with implementing the strategy. Value ylm
represents the evaluation of defense strategy l for the
criterion m 2 1, . . . ,Mf g.

Because the criteria have different units, the first step
of TOPSIS is to standardize the evaluations with a stan-
dardization formula72 like the one shown in equation
(20). The standardized value is denoted by alm.

alm =
ylm �min

l
ylm

max
l

ylm �min
l

ylm
, 8m=1, . . . ,M ð20Þ

Next, weights,vm, are applied to the standardized val-
ues, as shown in equation (21), such that more
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important criteria have greater influence on the solu-
tion ranking.

bnm =vmanm ð21Þ

After that, the minimum values of vulnerability and
cost evaluations are sought based on the standardized
and weighted values obtained by equation (21) Hence,
the positive ideal solution (PIS) and negative ideal solu-
tion (NIS) are found as the best-case (minimum value
in criteria performance) and the worst-case (maximum
in criteria performance), respectively, across strategies
for each criterion. The formulas for calculating these
two values are shown in equations (22) and (23).

PIS= b+
1 , . . . ,b+

m , . . . ,b+
M

� �
= min

l
b+
l1 , . . . , min

l
b+
lm, . . . , min

l
b+
lM

� 	 ð22Þ

NIS= b�
1 , . . . ,b

�
m, . . . ,b

�
M

� �
= max

l
b�
l1, . . . , max

l
b�
lm, . . . , max

l
b�
lM

� 	
ð23Þ

In next step, we compare the solutions to both PIS and
NIS conditions and sort them according to their simila-
rities to PIS. In other words, for each defense strategy,
the best solution has the greatest Euclidean distance
from the worst condition (g�

n ) and the least distance
from the best condition (g+

n ).73 The distances of each
candidate solution to the PIS and NIS are found using

the Euclidian distance function in equations (24) and
(25).

g+
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m=1

blm � b+
m

� �2
vuut 8l=1, . . . ,L ð24Þ

g�
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m=1

blm � b�
m

� �2
vuut 8l=1, . . . ,L ð25Þ

The two distance measures are then combined into a
single closeness coefficient using equation (26). The
coefficients are ranked, and larger coefficients (i.e.
larger d+l values) represent strategies that are closer,
based on Euclidean distance, to the PIS and furthest
from the NIS. In this way, a compromise solution is
sought.

d+l =
g�
l

g+
l + g�

l

ð26Þ

Case study: Interdependent networks,
Shelby County, TN

This section details an application of the proposed
framework on a system of critical infrastructure net-
works in Shelby County, TN. The interdependent
water, gas, and power networks are found in González
et al.44 and illustrated in Figure 3. The set of networks
contains a total of 125 nodes and 328 links, with other
characteristics found in Table 1. From González

Figure 3. Critical (a) water, (b) gas, and (c) power infrastructure networks of Shelby County, TN and (d) their physical
interdependencies respectively (adapted from González et al.44).

Lobban et al. 805



et al.,44 we use the data related to the capacity of sup-
ply and demand nodes, the flow capacity of links in
each network, and the dependency between compo-
nents of different networks. Here, supply nodes include
generators in the power network, drainage basins and
raw water collecting points in the water network, and
production stations for the gas network. For demand
nodes, we consider final step-down transformers in the
power network, service reservoirs in the water network,
and liquefied natural gas storage tanks in the gas net-
work. Finally, transmission nodes may refer to trans-
mission substations in the power network, balancing
reservoir in the water network, and compressor stations
in the gas network. Note that all the links in Figure 3
are assumed to be bidirectional and are counted twice
in Table 1. In this paper, we refer to maximum flow as
the amount of electricity (in megawatts), natural gas (in
cubic feet), and water (in cubic feet per second) that
reach respective demand nodes at each time period
aligned with the capacity and structure of each of those
corresponding networks. There are two significant
interdependencies of interest: (i) geographical interde-
pendencies between the water and gas networks know-
ing that both networks are co-located underground,44

where two infrastructure networks are geographically
interdependent if they are affected by the same local
disruptive event,4 and (ii) physical interdependencies
betweenthe water and power networks. In general, the
water network depends on the power network for oper-
ation and the power network might depend on the
water network for cooling and emission control.74,75

However, for the case study considered in this paper,
there exists only a physical dependency between the
water and power networks as the water network
depends on the power network. Though the proposed
model can consider any physical interdependence
among infrastructure networks, the gas and power net-
works are not physically interdependent in the consid-
ered case study, as shown in Table 1.

We consider four disruption scenarios, discussed in
detail in Almoghathawi et al.,47 to analyze the perfor-
mance of the optimal protection strategies: (i)
‘‘Spatial,’’ where the attack is based on the population
surrounding the network components (e.g. disrupting
the power transmission lines or water reservoirs in
more populated areas), (ii) ‘‘Degree,’’ where the nodes
with the highest degree of connectivity are disrupted
(e.g. disrupting highly connected electricity transmis-
sion substations or natural gas compressor stations),
(iii) ‘‘Capacity,’’ where the links with the highest

capacity are disrupted (e.g. disrupting primary trans-
mission line in power networks, distribution mains in
water networks, and refined gas transmission line com-
ing out of refinery plants), and (iv) ‘‘Random,’’ where
components are disrupted chosen based on random
selection. To generate the disruption scenarios, we use
Python 27 on an Intel Core� i7-7500U CPU 2.90GHz
(with 32 GB RAM). We also use Gurobi 8.1.0 on
Python 27 to solve the multi-objective model optimally.

Social vulnerability by block group

The SoVI scores are calculated at the block group level
for Shelby County using the SoVI-Lite methodology
that was developed for the Mississippi Valley Region,
in which the county resides. For a community that lives
in a specific region, a higher level of socioeconomic sta-
tus (e.g. income, political power) enhances the resilience
of that community to disruption (i.e. a decrease social
vulnerability by some value), as presumably resources
enable it to withstand disruptions and recover from
losses quickly. On the other hand, living in rural areas
increases the vulnerability due to lower income and
more financially dependent on location-based resources
(e.g. farming and fishing). Also, living in high-density
areas complicates the evacuation process57). Due to the
high margin of error in US Census data at the block
group level, the generalized categories of Low,
Moderate, and High social vulnerability (ratings of 1,
2, and 3, respectively), are adopted instead. These rat-
ings are found by standardizing the scores and assign-
ing a rating of 1 to block groups for which the SoVI
score is less than 20.5, a rating of 2 to block groups
for which the SoVI score is between 20.5 and 0.5, and
3 to block groups for which the SoVI score is above
0.5. The final distribution of social vulnerability in the
county, graphically depicted in Figure 4, is 31% block
groups with a low rating (i.e. rating of 1), 47% with a
moderate rating (i.e. rating of 2), and 22% with a high
social vulnerability rating (i.e. rating of 3).

Computational results

The importance of network k 2 K was chosen such thatP
k2K mk =1. Discussed in the previous section, the

SoVI rank for demand node i 2 Nk
d in network k 2 K,

represented by vki , takes on scores 1, 2, and 3, to repre-
sent low, moderate, and high social vulnerability,
respectively. It was assumed here that the social vulner-
ability of the serviced community commanded a higher

Table 1. Network properties of the Shelby County networks.

Network Total nodes Supply nodes Demand nodes Total links Interdependent links

Water 49 34 15 142 46
Gas 16 2 13 34 0
Power 60 37 23 152 46
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weighting value relative to network importance, though
any scheme could be used by a decision maker.

Table 2 shows the ‘‘no allocation’’ state for each dis-
ruption scenario, where ‘‘Total cost’’ is the sum of: (i)
the allocation costs (which have been forced to zero in
this run), and (ii) the costs of unmet demands, as shown
in equation (27). That is, the first and second terms of
equation (27) represent the allocation costs, while the
third term represents the cost of unmet demand. To
find the system vulnerability, or the weighted propor-
tional slack, caused by a given disruption, the objective
function was changed to minimize slack and a con-
straint to set the allocation amount to zero was added.
For the purposes of this case study pki , the cost of
unmet demand for each node, was constant across the
nodes and networks at $500, while qki and rkij, the cost
of resource allocation for nodes and links, respectively,
were randomly generated from a uniform distribution
between $50 and $150.

T=
X
k2K

X
i2Nk

qki d
k
i +

X
k2K

X
i, j2Ak

rkijf
k
ij+

X
k2K

X
i2Nk

d

pki s
k
i ð27Þ

Understandably, the ‘‘Spatial’’ and ‘‘Random’’ disrup-
tion scenarios result in lower total costs and vulnerabil-
ities, see Table 2, because the components affected did
not necessarily contribute significantly to the perfor-
mance of the system of interdependent infrastructure
networks (i.e. meeting required demand). On the other
hand, the malevolent attack disruption scenarios (i.e.
capacity-based, ‘‘Capacity,’’ and degree-based,

‘‘Degree’’ disruption scenarios) result in higher values
for total costs and vulnerability, as shown in Table 2,
which indicate the criticality of the disrupted network
components to the system of interdependent networks
due to their influence on the performance of their indi-
vidual networks as well as the whole system.

Pareto-optimal solutions. Recall that there are competing
objectives representing vulnerability and protection
costs, and recall that equation (19) serves as the e con-
straint representing the vulnerability objective. We con-
sider 20 values of e 2 [0,1] for each of the four
disruption scenarios, which result in a total of 80
potential solutions (excluding the ‘‘do nothing’’ solu-
tion in which no resources are allocated). Thus, a set of
Pareto-optimal solutions is obtained, and the resulting
Pareto-optimal frontier in Figure 5 shows the compet-
ing vulnerability and protection cost values for each of
the 20 solutions found for each disruption scenario.

As expected, devoting more resources toward pro-
tection would result in lower vulnerability (i.e. weighted
proportional slack) in the networks. Figure 5 shows
that while the capacity-based disruption scenario has
higher costs at the lower values of weighted propor-
tional slack, the degree-based disruption scenario
results in the highest costs for the majority of the curve.
Moreover, it shows that the spatial and random disrup-
tion scenarios result in extremely similar curves, with
the former having a lower initial (no-allocation) level
of vulnerability and resulting in slightly lower costs.
However, the overall shapes of the curves are similar
across all four disruption scenarios; at the shallower
end of the curve, particularly for degree-based, propor-
tional slack ø 0:6, and capacity based, proportional
slack ø 0:5, disruptions, a decrease in slack can be
achieved at a small increase in cost. Furthermore, at
the steeper end of the curve, proportional slack 40:1, a
larger expenditure is needed the same percentage
decrease in slack, indicating that the decrease may not
be worth the additional funds required. From Figure 5,
we conclude that protecting the connectivity of the net-
work, regardless of the capacity of protected compo-
nents, costs more than protecting the maximum flow
paths in the network. This means that networks with
high levels of connectivity, such as small-world and
scale-free networks, are more vulnerable to degree-
based attacks and must be protected in hubs with the

Table 2. Cost and slack in disrupted networks with no allocation.

Scenario Total cost Vulnerability Slack

Water network Gas network Power network

Spatial $727,000 0.375 238 379 837
Random $887,000 0.428 148 838 788
Capacity $1,222,000 0.608 222 1000 1222
Degree $1,345,500 0.768 921 586 1184

Figure 4. The distribution of social vulnerability indices over
the block groups in Shelby County, TN.
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highest level of degree centrality multiplied by neigh-
borhood connectivity (i.e. the connectivity of neighbor-
ing nodes around a given node) of those corresponding
hubs. Also, non-hierarchical mesh networks, such as
routing and wireless networks, are more vulnerable to
capacity-based attacks, and thus protecting maximum
flow paths is the most beneficial.

Solution robustness. The allocation amount for each
Pareto-optimal solution in each disruption scenario
(i.e. spatial, random, capacity-based, and degree-based
disruption scenarios) was used as the allocation for
each of the other three scenarios to determine how well
that allocation would perform in other disruptions. For
example, each allocation that produced a Pareto-
optimal solution in the spatial scenario was then input

into the random, capacity, and degree scenarios to
determine how well it reduced vulnerability in the other
scenarios. This yielded the evaluation seen in Figures 6
to 9. Figure 6 suggests that the allocation solutions
from the spatial scenario are not especially effective for
the three other kinds of disruptive scenarios, as the
frontiers generated for random, capacity, and degree
disruptions are substantially different from the frontier
for the spatial scenario. Further, the vulnerability is
substantially worse for degree and capacity disruptions
with practically no reduction in vulnerability for
increasing resource allocation. We see a similar lack of
robustness in Figure 7 for the solutions generated by
the random scenario. That is, the solutions for the spa-
tial and random disruption scenarios were largely inef-
fective in terms of robustness. This is likely because
these two scenarios do not represented the targeted
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Figure 5. Pareto-optimal frontier for cost and vulnerability objectives.
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Figure 6. Robustness of spatial scenario solutions on cost and vulnerability objectives.
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scenarios that the degree and capacity scenarios pro-
vide. Planning for degree and capacity-based scenarios,
what one might expect from a malevolent attack, show
a better ability at reducing vulnerability for the other
scenarios as well, as shown in Figures 8 and 9. Based
on this particular example, it appears that protection
schemes aimed at reducing network vulnerability to a
malevolent attack are better at reducing vulnerability
for other scenarios as well. Note that the weighted pro-
portional slack level for the other three scenarios on
which the solutions are being tested remains steady
despite more money being put into defensive allocation,
as illustrated in all the figures.

Also, the solutions of the capacity-based disruption
scenario, illustrated in Figure 8, offer an improvement

over those for the spatial and random scenarios, espe-
cially with the degree-based disruption scenario. At an
allocation cost of approximately $145,000, when the
slopes of the capacity-based and degree-based disrup-
tion scenarios begin to level out, the system vulnerabil-
ity is 0.091 and 0.531, respectively. While the latter is
still an undesirably high level of vulnerability, it does
show improvement over the initial vulnerability of the
system under the degree-based disruption of 0.768, as
shown in Figure 8.

Furthermore, with regards to the solution of the
degree-based disruption scenario, shown in Figure 9, the
spatial and random disruption scenarios are practically
entirely unaffected. However, the capacity-based sce-
nario responds to the solutions of the degree-based
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Figure 7. Robustness of random scenario solutions on cost and vulnerability objectives.
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disruption scenario almost as well as the degree-based
scenario did with the capacity-based solutions, see
Figures 8 and 9. The vulnerability for the capacity-based
disruption scenario drops gradually but consistently
from its initial value of 0.608 to 0.424 at a corresponding
allocation cost of $50,000 before it plateaus, as shown in
Figure 9. This indicates that there may be more overlap
in the set of disrupted components between the capacity-
based and degree-based disruption scenarios than with
the other two disruption scenarios, that is, spatial and
random disruption scenarios. From Figures 6 to 9, we
observe that degree based protection strategies are more
aligned with capacity-based protection plans. Therefore,
in cases where financial limitations might not allow the
optimal protection of networks with certain levels of
connectivity, such as small-world and scale-free net-
works, a capacity-based protection plan may result in a
relatively good solution.

Robustness ranking. Figures 6 to 9 show that the solu-
tions of the capacity-based and degree-based disruption
scenarios slightly outperform the solutions resulting

from the other two scenarios: the capacity- and
degree-based allocations result in a more effective reduc-
tion in vulnerability across the other scenarios. This con-
clusion is confirmed in the TOPSIS evaluation in Table
3, as all the highest ranked defensive strategies are from
the solutions of the capacity-based and degree-based dis-
ruption scenarios. However, none of the strategies are
able to adequately decrease vulnerability across more
than one disruption scenario, as shown in Figures 6 to
9. This can likely be attributed to the high distinction
between the sets of components targeted; even when
assigning defense resources to nodes and links reduces
the vulnerability of the network by 90–95%, in compari-
son to the situation where no defense operation is taken
place, for one disruption scenario, indicating that nearly
all the disrupted components have sufficient resources,
the disrupted components for another disruption sce-
nario remain highly vulnerable.

In the TOPSIS results, the trade-off between reduc-
ing slack and reducing cost is seen. For example, the
Cap-17 strategy is ranked higher than Cap-18 strategy
even though the slack is lower for all four disruption
scenarios, as shown in Table 3. The allocation cost in
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Figure 9. Robustness of degree -based scenario solutions on cost and vulnerability objectives.

Table 3. Top eight solutions based on TOPSIS rankings; strategies are named by the scenario for and the run order in which they
were originally solved.

Strategy S + Rank Disruption scenario Allocation cost

Spatial Random Capacity Degree

Cap—17 0.413 1 0.337 0.386 0.115 0.531 $144,936
Cap—18 0.411 2 0.327 0.382 0.077 0.512 $185,290
Cap—15 0.411 3 0.341 0.401 0.192 0.533 $102,886
Cap—16 0.410 4 0.341 0.401 0.154 0.532 $121,103
Cap—14 0.404 5 0.345 0.401 0.230 0.558 $88,355
Deg—18 0.399 6 0.370 0.419 0.405 0.061 $165,102
Deg—19 0.398 7 0.370 0.419 0.398 0.030 $195,028
Deg—17 0.397 8 0.370 0.419 0.419 0.091 $142,405
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the latter is too high to justify the relatively small
decreases, see Table 3. We also observe the same result
for Cap-15 and Cap-16 as the allocation cost in the lat-
ter is too high to justify the lower slack it produces
against Capacity and Degree disruption scenario.
Although the allocation cost plays a critical role in
ranking defense strategies, the considerable decrease in
vulnerability, between 0.7 to 0.1, prioritizes the defense
strategies despite their high allocation cost.

Concluding remarks

In summary, it is difficult to build a robust resilience
model that can cover a wide variety of attacks as dis-
ruptions may not be predictable and tractable as some
natural catastrophes, such as hurricanes and tornados.
Nevertheless, our proposed methodology provides a
framework for decision makers to compare the effec-
tiveness of allocation strategies for disruptions to a sys-
tem of interdependent networks. Additionally, the
proposed framework offers a way to include social vul-
nerability into disaster planning and management,
which is a crucial dimension that many previous works
do not represent. The resilience of both the infrastruc-
ture and the community must be incorporated in disas-
ter planning so that the system will be optimally
fortified at its weakest points following the occurrence
of disruption occurs. While protecting critical infra-
structure networks is undeniably important, it is good
if they are still susceptible to attack in the areas in
which people depend on them most.

In the course of this research, multiple limitations
and opportunities for continuing improvements and
expansions were identified. First, the overall accuracy
of the model can be increased by gaining a better
understanding of the component attributes, such as the
cost of resource allocation and capacity or demand at
each location. Handling the uncertainty of these attri-
butes, and the sensitivity of decisions to this uncer-
tainty, is a topic of on-going effort. Second, different
kinds of contest functions, which could be chosen as a
result of the empirical study of the effectiveness of
defender and attacker resources, could produce differ-
ent results. Finally, weights based of off the likelihood
of each disruption scenario or the stakeholders’ prefer-
ences for one criterion over another could be incorpo-
rated into the TOPSIS calculations. For example, if
defenders have estimated that a capacity-based attack
is more likely than an earthquake striking a given area
(i.e. spatial disruption), the weights used in TOPSIS
could reflect such information and influence the higher
ranked strategies to include best protected strategies
for the network in capacity-based disruption scenarios.
Protection-minded decision makers may also consider
vulnerability reduction more important than cost, or
vice-versa. Even if the probability of disruption is rela-
tively low, there are non-monetary costs, like a
decreased sense of security in the public or loss of trust

in the government and emergency services, that could
occur in the event of an attack or natural disaster. If
decision makers are more concerned with these qualita-
tive costs than the quantitative costs of resource alloca-
tion, the vulnerability criteria can be weighted higher
than the cost criterion to allow strategies with high
costs but less damage to the networks to be ranked
high. These changes would help represent the reality of
the situation more accurately and could incorporate
opinions of the community, government agencies, and
infrastructure workers.

An important direction for future work is to con-
sider the coverage, closeness, spread, and spacing of
non-dominated solutions in the Pareto frontier. These
analyses might help to realize how far the results might
end up from optimal solutions in non-ideal conditions.
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