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This study proposes efficient solution methods to solve interdependent restoration planning and crew routing
problems. The solutions provide reliable restoration plans regardless of the size and structure of disrupted
infrastructure networks. We propose a relaxed mixed integer linear programming (MILP) model and two heu-
ristic algorithms to find efficient feasible initial solutions for the restoration routing problem. We also propose a
local search heuristic algorithm to find a near-optimal solution using the results obtained from the proposed
model. Using electric power, water, and gas infrastructure network instances from Shelby County, TN, the
computational results corroborate the efficacy of the mathematical formulation and shows that the heuristic
algorithm obtains optimal or near-optimal solutions. In particular, we apply the sequence of the relaxed model,
initial solution algorithm, and the local search algorithm for 62 scenarios with different magnitudes of disruption
and different numbers of restoration crews. Analyzing the performance of the local search algorithm, we confirm
the advantages of using the initial solution algorithm in producing the restoration schedules with reliable and
relatively low total restoration time, particularly for large size problems. The observations also reveal how the
scattering intensity in the distribution of disrupted locations affects the performance of relaxed models, and

consequently, the integrated heuristic.

1. Introduction

Infrastructure networks, including power grids, water pipelines, and
gas networks, are the backbone of the nation connecting businesses,
communities, and residents (American Society of Civil Engineers, 2017).
They have been subject to the effects of aging as explained by the steady
D+ grade of the U.S. energy sector since 1988 (American Society of Civil
Engineers, 2017). These aging structures, coupled with increasing
storms and severe weather, have weakened the reliability of infra-
structure networks before disruptive events, intensified their vulnera-
bility to disruptive events, and lengthened their restoration process after
disruptive events. As such, planning for their resilience is an important
area of study.

Vugrin and Camphouse (2011) describe resilience capacity with
three components: absorptive capacity, adaptive capacity, and restor-
ative capacity. The absorptive capacity is the extent to which an infra-
structure network can withstand the negative effect of a disruptive
event. An example of absorptive capacity is the optimization methods

employed in power grid networks to prevent large scale cascading
blackouts before the occurrence of disruptions (Bienstock & Mattia,
2007). The adaptive capacity is the extent to which an infrastructure
network can be adapted to a new condition after disruptions by tem-
porary means. The short-term robust adaptive strategies implemented to
the infrastructure network immediately after disruptions is a pertinent
example (Lempert & Groves, 2010). The restorative capacity is the extent
to which an infrastructure network is recovered in a long-term manner.

Previous research has attempted to introduce planning strategies for
different components of resilience capacity in energy sectors (Bienstock
& Mattia, 2007; Nan & Sansavini, 2017; Nurre et al., 2012), drinking
water and wastewater (D’Ambrosio & Leone, 2015; Nurre et al., 2012),
and transport and emergency response (Celik et al., 2015). Research has
also explored the interdependency between multiple infrastructure
sectors (Barker et al., 2017; Gonzélez et al., 2016; Sharkey et al., 2015;
Gonzalez et al., 2017). Little is known about incorporating work crew
routing in restorative capacity planning models. Morshedlou et al.
(2018) proposed two mixed integer programming (MIP) formulations
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that combine the restoration crew scheduling problem with its associ-
ated vehicle routing problem to minimize crew movement time in the
transport network. Each disrupted component exhibits specific charac-
teristics, including the level of disruption, the rate of restoration, the
importance in the network, and the increase in restoration rate when the
next crew joins the process.

The current research is a natural extension of the restoration crew
routing model proposed by Morshedlou et al. (2018). We offer two
contributions to the existing literature. First, we propose a new mixed
integer linear programming (MILP) model with a density-based spatial
clustering of applications with a noise (DBSCAN)-based Mapping and
Solution Algorithm (Algorithm 1). This helps obtain reliable lower
bounds and upper bounds for the restoration routing problem while
providing efficient feasible initial solutions using the outputs of a
relaxed formulation. Second, acknowledging the NP-hard nature of
routing and scheduling problems, we propose a local search heuristic
algorithm to efficiently obtain a near-optimal feasible solution for large
scale problems. We study the performance of the heuristic algorithm
using the MILP and heuristic model results and illustrate them on small,
medium, and large size problems. Examples represent individual power,
water, and gas grid transmission networks in Shelby County, TN, and we
study the interdependency of each infrastructure network and its
counterpart routing network connecting disrupted locations.

The remainder of the paper is structured as follows. Section 2 reviews
the literature of infrastructure network formulations focusing on
restorative capacity and restoration arc routing problems. Section 3
formulates the relaxed MILP with summaries of the original model
proposed by Morshedlou et al. (2018) in Appendix A. Section 4 presents
a heuristic model to obtain lower bounds and upper bounds of the MILP
model as well as a heuristic algorithm to obtain a near-optimal feasible
solution aligned with restoration policies. Section 5 illustrates the use of
the formulations and heuristic algorithm with realistic electric power,
water, and gas networks in Shelby County, TN. We discuss the compu-
tational results and perform sensitivity analyses associated with the
illustrative case study to showcase the efficacy of the proposed heuristic
algorithm under diverse circumstances. Section 6 concludes the study by
summarizing the major finding, the limitations of the study, and future
research avenues.

2. Methodological background

In problems related to restoration planning, the aim is to find the
sequence of disrupted network components assigned to and scheduled
for each restoration crew such that network performance is improved at
each time period of the restoration horizon. Within the context of
network restoration, most studies focus on optimizing network flow
balance by assigning and scheduling restoration crews to disrupted
components, regardless of their geographical location and physical ac-
cess. This category of problems is referred to as infrastructure network
design and scheduling models. Limited restoration resources are allo-
cated to disrupted components to maximize the weighted delivered re-
sidual flow in each time period (Arab et al., 2015; Nurre & Sharkey,
2014; Nurre et al., 2012; Sanci & Daskin, 2019). The nature of resto-
ration scheduling problems is NP-hard, meaning the exact solution
methods cannot find an optimal restoration schedule for large scale
disruption scenarios. To find near-optimal solutions in a timely manner,
previous research focused on heuristic and estimation algorithms,
including a dispatching rule heuristic (Nurre et al., 2012), reduced-order
linear representation (Gonzdlez et al., 2017), decomposition algorithm
(Ouyang & Fang, 2017; Ghorbani-Renani et al., 2020), and conversion
algorithm (Tan et al., 2019).

Other approaches modeled networks with multiple echelons, such as
supply chain networks that consist of a transport echelon (Carvalho
et al., 2012; Caunhye et al., 2020; Hishamuddin et al., 2013) and pro-
duction and inventory echelon (Carvalho et al., 2012; Davis et al.,
2021). Research also investigated these networks from protection
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(Behzadi et al., 2020; Behzadi et al., 2020; Carvalho et al., 2012; Dixit
et al., 2020; Davis et al., 2021; Mao et al., 2020; Li et al., 2020) and
restoration (Dixit et al., 2020; Mao et al., 2020) perspectives. The
interdependency between restoration time and the routing time of crews
was studied with a new class of problems referred to as multiple resto-
ration crew routing problems. This was accompanied by efficient solu-
tion approaches as mathematical formulations were too complex to
solve with exact solution methods. They include iterated greedy-
randomized constructive procedures (Duque et al., 2016), ant colony
algorithms (Kim et al., 2018; Shin et al., 2019), the Branch-and-Benders-
cut approaches (Moreno, Munari, & Alem, 2020b), distributed optimi-
zation approaches (Su et al., 2019), Benders decomposition approaches
(Moreno, Alem, Gendreau, & Munari, 2020a), consecutive heuristic
approaches (Pamukcu & Balcik, 2020), tabu search algorithms
(Pamukcu & Balcik, 2020), L-shape algorithms (Sanci & Daskin, 2021),
rich local search algorithms (Akbari et al., 2021), and constructive
heuristic and a simulated annealing algorithms (Atsiz et al., 2021).

Within the context of network restoration, in which crews are dis-
patched to disrupted network components through a routing network,
studies mainly focused on road restoration, where the road network
represents the lifeline infrastructure, such as debris or snow removal.
These studies may differ from general infrastructure network restoration
from two perspectives. First, disruptions may cause network compo-
nents to become physically inaccessible for restoration crews. Second,
incorporating the travel time between each pair of disrupted locations in
the model may change the best restoration schedule. In this context,
studies aim to find the restoration routing schedule that maximizes the
connectivity of a disrupted network, or particularly access to different
network components, in the minimum required time. As restoration
routing problems are known to be NP-hard, novel solution approaches
have been proposed to solve large scale problems in a timely manner,
including dynamic path-based models (Aksu & Ozdamar, 2014),
relaxation-based constructive algorithms (Kasaei & Salman, 2016;
Ozdamar et al., 2014), Lagrangian relaxation (Akbari & Salman, 2017;
Faturechi & Miller-Hooks, 2014), p-median (Iloglu & McLay, 2018), and
Markov decision process under incomplete information (Celik et al.,
2015). Maya Duque et al. (2016) and Celik (2017) offer comprehensive
overviews of relatively recent advancements.

The proposed solution approaches in the current research stand apart
from the previous studies as they are adaptable to a variety of in-
frastructures and restoration methodologies. We introduce a construc-
tive heuristic algorithm that uses a local-search algorithm to improve
the coordinated restoration routes obtained from the relaxed form of the
original formulations.

3. Problem formulation

The proposed mathematical formulation involves two undirected
networks: (1) physical lifeline infrastructure network and (2) the routing
network. The physical lifeline infrastructure network (e.g., electric
power) is represented by an undirected network G = (N,A), where N is
the set of nodes and A is the set of links. There are a set of supply nodes
(N,CN), a set of demand nodes (N_CN), and a set of transshipment
nodes (N_CEN). Each supply node i € N, has a fixed supply capacity o; in
each time period, and each demand node i € N_ has a fixed demand
requirement b; in each time. Assume E is a set of possible disruptive
events. Prior to disruption / € E at time tj, each link has a baseline
capacity, uj,, and a baseline flow value, fj,, calculated to satisfy all
demand nodes in each period, calculated to satisfy all demand nodes in
each period. Considering the flow capacity of each link, we aim to
transfer flow from supply nodes to demand nodes and satisfy the total
amount of demand. To prioritize demand nodes, the flow reaching each
node, i € N_, is given a weight of w; such that the more important a
demand node is (e.g., located in a more populated area), the greater the
weight assigned to it. Following a disruption at time ¢4, there is a set of
network components (links and nodes) that are adversely impacted.
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Network G (N, A) before disruption ¢

Residual network G(N, A/Aj) after
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Routing network G, = (N, Ap)

disruption ¢

Fig. 1. Small illustrative example of the restoration crew routing problem.

Since any node can be represented as a pair of nodes and a link, we
consider the disrupted components as a subset of links (A,CA). Each
disrupted link has a new capacity, u,, which can take any value less
than uj,. The network G = (N, A) changes to G = (N,A/A)) also referred
to as the residual network, where Nis the set of nodes and A/A), is the set
of operational links.

The routing network is represented by a complete undirected graph

G, = (N/,Z/>, where N, = {1, ---,n} is the set of disrupted locations

and A, is the set of links connecting each pair of locations. The routing
network connects all disrupted locations in the infrastructure network
G = (N,A). There is a set of depots NyCN, from which the restoration
crews are distributed, a set of nodes N, /Np that represent the disrupted
locations on disrupted links A, CA in graph G = (N,A). A dummy sink
node n+1 is also considered to be where all restoration routes end. K is
the set of restoration crews that are distributed through the complete

graph G, = (N/.,K/) such that all disrupted links (i,j) € A, in the

infrastructure network, or their counterpart nodes in the routing
network, i € N, are fully restored. Parameter |K| is the number of crews
available to work on disrupted links in each period.

Each restoration crew can travel on each link (i,j) in both directions
with the same travel time C5- More than one crew can visit node i € N,

and the maximum number of crews that can be assigned to node i is |L|,
where |L| < |K|. Without loss of generality, we assume that no crew visits
node i € N, unless it is assigned to restore that corresponding node.
Fig. 1 illustrates a small example of infrastructure network G prior to
disruption /, network G after the disruption, and the counterpart
restoration routing network G,, including a representation of parameter
characteristics for each state of the network.

The objective function of the proposed model is to maximize a
measure of resilience over the restoration horizon (Henry & Ramirez-
Marquez, 2012). We define the flow reaching to demand node i € N_
as ¢y, and calculate it as the summation of flow reaching directly from

transmission and supply nodes to demand nodes ¢;; =3,y Un- fiie- The

network performance at time t=1,--, T is the total weighted flow
reaching demand nodes ) ;. wig;,, where w; refers to the prioritization
weight assigned to each demand node. Before disruption 7, the total

weighted demand is satisfied and equals 3,y wipy =
> ien. wiZjENAUN: fiit,- After the disruption, the total satisfied weighted
demand across the residual network equals .y wigy, =

DoieN WiZje}\uUN, fjir, and can be any number from zero (completely
disrupted) to .y Wiy, (completely operational).

The measure of resilience is a time-dependent ratio of the cumulative
network restoration progress at each time peri-
0d,> iy Withir — 2 ien Willitys to total performance loss,
Y ieN_ Wi, — 2 ien_ Wigir,- The progress of restoration is measured by the
increase in the total weighted flow. Eq. (1) calculates the measure of
resilience at each period. ;v wig;, refers to the total weighted flow
reaching demand nodes before the disruption at to, and ).y Wiy,

Table 1
Parameters and variables used in the model formulation.

Indices

A Set of links, where A, CA is the set of disrupted links

N Set of nodes, where N, EN is the set of supply nodes, N_CN, is the set of
demand nodes, and N_CN is the set of transmission nodes

A, Set of routing links

N, Set of routing nodes, where NpCN,, is the set of depots, and N, /Np, is
the set of routing nodes (disrupted locations)

K Set of restoration crews

L Set of allowable crews working on a node simultaneously

to Time immediately prior to disruption/

tg Time after the end of disruptions

Parameters

2 Restoration time of link (i,j) € A, visited by crewk € K

T Restoration horizon limit

Ui, Baseline capacity of link(i,j) €

fiito Baseline flow on link(i,j) € A

0; Capacity of supplieri € N,

b; Capacity of demand nodei € N_

Wi, Capacity of disrupted link(i,j) € A,

T Recovery horizon limit

Variables

fije Continuous variable, flow on link (i,j) € A, in the residual network at
timet

Pie Continuous variable, total flow reaching demand node i € N_at timet

Okt Binary variable, equal to 1 if k € K crews recover link (i,j) € A, at time

t (Binary Active Model)

refers to the total weighted flow when the full loss of network perfor-
mance is felt at the time t.

ZieN, Wi(pird
Dien Wi,

D ien Wi —
ZieN, Wi@i, —

D,,,(t |/ ) = (1)

Appendix A represents the original formulations for restoration
routing problems in detail. From the original model in Appendix A, the
integration of the crew routing problem and the restorative capacity
problem, along with the incorporation of the dynamic restoration pro-
cess of each node, complicates the required execution time to solve both
models. The execution time is positively correlated with the complexity
of the model, and consequently, the complexity level of the model is
positively correlated with the number of binary variables in the model.
We measure the complexity level of the model by O(|N|* x |K| x |A| x T),

where |NJ* x |K| x |A] x T is the number of binary variables in the
original model. Here, |N| is the number of disrupted locations, |K] is the
number of crews,|A| is the number of links, and T is the length of time
horizon. The complexity of the original models increases the solution
time drastically. To utilize the model in large scale problems, we propose
effective bounds and heuristic solution approaches that reach to the
near-optimal solution in a timely manner.

This Section proposes a relaxed formulation for restoration routing
problems with multiple crews assigned to each disrupted location.
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Restoration Routing Problem Evolution

DBSCAN Based Tracking
Algorithm (1)
(Section 4.1)

Relaxed MILP model
(Section 3.1)

)

) |

Near Optimal Bound
Algorithm (1)

Restoration Crew Routing
Algorithm (2)
(Section 4.1)

(Section 4.2)

Single/Multiple Crew
Assignment

(Constant Restoration Time) (Constant Restoration Time)

Single/Multi Crew Assignment

Multiple Crew Assignment
(Dynamic Restoration Time)

Multi Crew Assignment
(Constant Restoration Time)

Contribution

* Prioritize denser disruption
areas that are nearer to
restoration resources

*Minimizing the Infeasible
Solutions by Minimizing the
Prolonged Routes

*Optimal Restoration Time for
Each Disrupted Location

*Number of Assigned Crews to
Each Disrupted Location

« Feasible Routes for Each
Individual Crew

*The Start, Duration, and
Completion time of the
Restoration Process for Each
Individual Components

«Near Optimal Routes for Each
Individual Crew

*Near Optimal Restoration
Timing for Each Individual
Component

Fig. 2. Methodology flowchart of proposed models and their interdependencies.

Considering the restoration horizon, the proposed model, determines (i)
the lower bound when it can only assign one crew to each disrupted
component and (ii) the upper bound when it can assign multiple crews
to each disrupted component. The proposed model maximizes the
resilience measure in each period by incorporating the timing of resto-
ration tasks as well as the number of assigned crews to each disrupted
component, though the model cannot track the routing time of each
crew individually.

3.1. Mixed linear integer programming formulation

The model identifies the start and completion time of restoration of
each disrupted component. The model can only track the number of
assigned crews considered in the models rather than specifying which
crew is assigned to the node individually. We propose the mathematical
formulation with the parameters and variables summarized in Table 1.

T
maXZDv’(’) @
P
wa* Zf/zzﬁoz VieN, t=1,-,T 3
J(ij)eA Ji(ii)eA
Zﬁjt— Zﬁn:O VieN_,t=1,--T @
Ji(ij)eA J:iji)eA
Zfijt— Zﬁn=—¢it VieN_,t=1,---T )
Ji(ij)eA ji(ij)eA
0<¢,<b VieN_,t=1,--T ©
wy, <fi <uwy, V(i,j) €Ajt=1,--T e
! P B

i, < fii < szlakij.su[jm V(i,j) €A t=1,T ®
d >

Yan <1 Vg ea, ©
s=1

pi-1

N =0 Y(ij) €A, VkeK 10)
t=1

o) |

1+ T kaw, < |K| Y(i,j) €A, t=1,-,T

k=1 s=t
(1)

Egs. (3)-(8) are network flow balance constraints that send flow from

supply nodes to the demand nodes through transshipment nodes and
control the flow over the entire network. Eq. (3) ensures that the flow
sent from each supply node i € N, does not exceed its capacity. Eq. (4)
requires that it must pass transmission nodes to reach demand nodes in
subsequent steps. Eq. (5) calculates the amount of flow reaching each
demand nodei € N_. Eq. (6) ensures that the flow reaching each demand
node will not exceed the capacity of that demand node. Eq. (7) ensures
that the flow on any particular link will not exceed the capacity of that
link. In Eq. (8), the flow on each link (i,j) € A,, whether disrupted or
restored, does not exceed the capacity of that link. Eq. (9) ensures that
each disrupted link receives restoration services no more than once. Eq.
(10) ensures that no link restoration process is completed before its
required restoration time. Eq. (11) ensures that no more than |K|
restoration crews can work on disrupted components in each period.

4. Solution approach

Regarding the routing sequence and time, we propose a DBSCAN-
based Mapping and Solution Algorithm (Algorithm 1) to minimize
infeasible solutions using spatial clustering techniques as well as con-
structing efficient feasible initial solutions for the heuristic algorithm.
Algorithm 1 prioritizes the restoration schedule of disrupted locations
more densely found in affected areas relative to scattered locations in
remote areas. We introduce a new linear constraint in Eq. (12) to include
such clusters into the relaxed formulation. The updated model di-
minishes the size of the problem to O(|A,|x |K|x T), which is a
manageable number of constraints for medium sized problem instances.

To find an efficient initial solution, Algorithm 1 uses greedy tech-
niques to provide (i) feasible routes for each crew and (ii) dynamic
restoration time for each disrupted component with more than one
assigned crew. The Restoration Crew Routing Heuristic Algorithm (Al-
gorithm 2) uses the output of Algorithm 1 along with local search pro-
cedures to find feasible near-optimal solutions for large-scale problems.
The flowchart in Fig. 2 portrays each model, its contribution, and con-
nections to other proposed formulations for the ease of reading.

4.1. Discussion of DBSCAN-based Mapping and solution Algorithm

While benefiting from the simplicity of the relaxed formulations, two
concerns may arise: (i) there is no control over the routing time of each
crew due to long routes and (ii) the arrival time of each restoration crew
assigned to a disrupted component might be different from the arrival
time of other crews assigned to that component. Indeed, there might be
cases where an assigned crew arrives after the restoration process of a
disrupted component is completed by other crews. To eliminate both
concerns, we propose a DBSCAN-based Mapping and Solution Algo-
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Disrupted Locations

Route of crew k3

—— Route of crew k;

|:| No. of assigned crews in each time period
Total No. of working crew < |K|

— Route of crew k,

Fig. 3. Minimum distance-earliest release procedure for five disrupted locations and three restoration crews: (a) the Relaxed restoration problem optimal solution
(input to the procedure), and (b) the route of each restoration crew (output of the procedure).

rithm, Algorithm 1 in Appendix B, which follows seven steps:

e Step 1: Use the DBSCAN method to cluster disrupted components
that are spatially near one another to decrease the chance of pro-
longed or infeasible routes.

Step 2: Rank the clusters based on the aggregate betweenness cen-
_ i ;

=2 J)E@lu’;#“’, over their

E}&N/ /Np Zh:ND (1 ")

‘ND

trality of links included in each cluster,I¢,

average distance from depots, D¢, = . Here, fy;,, is

X ’N/ /ND
the flow on link (h,j) € C; in cluster C; before the disruptive event,
and uy, is the capacity of link (h, j) after the disruption. Distance d(1,,
I,) is the distance between the spatial location of link (h,j), shown by
its counterpart node v € N,/Np in the routing network,l,, and the
spatial location of depot, o € Np, I,. We call this measurement the
total priority index IT°%.

Step 3: Implement Eq. (12) to distribute crews through the clustered
network. The clusters with higher IE‘;‘"‘] are prioritized to receive

restoration services. D*™ is the set of sorted clusters in D¢, and D" €
D™ represent each cluster of disrupted components where z =1, -,
|Dsort| — 1

T T
SN aunt—ph) <23 YT (e —pl) V(i,h) € DYz

=1 kekK =1 keK (ij)eDm

1 . ‘D.mrt‘ -1

(12)

)

By recovering the most important links, this strategy guarantees a
strong upper bound while it prevents crews assigned to disrupted loca-
tions with unrealistically heterogenous distances from one another. As
the proposed model does not provide the trajectory of each individual
crew, Algorithm 1 uses greedy techniques to provide a feasible route for
each individual crew. The result of Algorithm 1 is the initial solution for
the proposed heuristic algorithm.

e Step 4: Assign and direct each crew to the next nearest disrupted
location immediately after it finishes the preceding restoration task.

e Step 5: Identify disrupted locations i € N,/Np to which multiple
crews are assigned, or where a; = 1,k € K,k > 1.

e Step 6: Track the arrival time of each corresponding crew.

Table 2
The sequential assignment table and its corresponding dictionary.

Crew  Sequenced disrupted Sequenced timing of disrupted locations
locations restoration activities
1 b b e b ~k Xk ~k
11 12 1ny Sy » RIS S Aﬂ’;n,
. ok
/)kbn’ B 7oz
Tk

T b1z

2 b: b b RN RN RN

21 22 n; Doy » R \\bu, A’ﬁn,

/}{;2\ By T
c 7k
7y bzl b

K| b b e b ~k ~k ek

K] K1 K|2 Kl Sown Sta> Sbing
¢ s
By B P
Zk ok _
7 b1 7 b2 7 ]l;

KIng|

e Step 7: Delete the late crews from the schedule of corresponding
disrupted locations.

The relaxed model outcome provides the time sequence of the
restoration process of disrupted links and the number of crews assigned
to each disrupted link as shown in Fig. 3a. Following solving the relaxed
formulation, Fig. 3b illustrates how Algorithm 1 (Appendix B) calculates
the arrival time of assigned crew k € K to disrupted locationi € N,/Np,
the processing time of each disrupted location i € N,/Np, and the
routing time of each crew k € K. Algorithm 1 eliminates infeasible
routes due to (i) the arrival of a crew at a disrupted location after the
completion of its restoration process and (ii) the presence of a crew at
two different disrupted locations simultaneously (i.e., cycle sub-graph
formation (Morshedlou et al., 2018)).

Each row of Table 2 illustrates the sequence of disrupted links
scheduled to crew k € K and its counterpart sequenced arrival, resto-
ration, and departure times. Here, by, is the ™ link (i, j) € A, visited by
crew k € K, and |K] is the total number of rows. Its corresponding set of
values represents the ith disrupted location in the schedule of crew
k € K, and its corresponding set of values is a vector which includes time
when crew k € K starts ("bkh)’ proceeds (A’ h), and ends (.7 ’ljkh) the
restoration process of byy.



N. Morshedlou et al.

[ Tributary Areas

® 12kV Substations
A 23kV Substations
4 Intersection Point
B Gate Stations
— Transmission Line

e KM
036 12 18 24 30

(@

[ Gas service areas
Gas distribution stations
Gas pipelines

11/3
A

s KIT!
036 12 18 24 30

Computers & Industrial Engineering 161 (2021) 107626

Il Water service areas
Water distribution stations
Water pipelines
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Fig. 4. Graphical representations of the (a) power grid transmission, (b) water, and (c) gas networks at a transmission level in Shelby County, TN (Gonzalez

et al., 2016).

4.2. A heuristic for the restorative capacity routing problem

In the context of enhancing restorative capacity, solving large in-
stances in a shorter solution time is of great importance. We propose the
Restoration Routing Local Search heuristic algorithm (Algorithm 2) using
the feasible solution obtained from Algorithm 1, which is the sequential
assignment depicted in Table 2. Algorithm 2 uses four procedures to
obtain a near-optimal feasible solution for large-scale problems: (1)
Shorten Routes, (2) Add Crew, (3) Remove Crew, and (4) Change
Assignment.

Procedure Shorten Routes: Consider the routes and routing times in
Table 2. This procedure is defined in two steps:

e Step 1: Find the route with the maximum routing time.

e Step 2: Among the crews that complete their routes sooner, check if
there is any crew that can join the restoration time of the last node in
the route and shortens the processing time of the node.

Procedure Add Crew: Consider the routes and routing times gener-
ated in Table 2. This procedure is defined in three steps:

e Step 1: Find the route with maximum routing time.

e Step 2: Among nodes on the route, find the one with the maximum
weighted processing time, referred to as the bottleneck node. The
weight of each node represents the betweenness centrality of that
node.

Step 3: Check if there is a crew working on a nearby node that can
join the restoration process of the bottleneck node and improve the
processing time. The routing time of the prolonged schedule must not
exceed the maximum routing time.

Procedure Remove Crew: This procedure is defined in three steps:

Step 1: Among nodes with more than one crew assigned to their
restoration process, choose a node with the minimum weighted
processing time, also called the least important node.

Step 2: Among the assigned crews, chose the one that works on the
immediate succeeding node located in// the minimum distance of
the least important node.

Step 3: Ensure that removing the crew from the schedule of the least
important node does not worsen the maximum restoration time.

Procedure Change Assignment: This procedure is a hybrid of Add
Crew and Remove Crew procedures.

The output leads to an improvement in the measure of total network
resilience in each period representing: (i) shorter processing time for
some disrupted links, (ii) shorter routing time for some restoration
crews, and (iii) a change in the restoration schedule of each crew. The
integration of procedures forms an easily implementable heuristic al-
gorithm to obtain a near-optimal feasible solution.

5. Illustrative examples: power, water, and gas networks

To examine the efficacy of the proposed model and the heuristic
algorithms, we employ three realistic data sets based on power grid
transmission, water, and gas networks in Shelby County, TN. Located in
the New Madrid Seismic Zone, Shelby County has over 650,000 and is
home to Memphis. As illustrated in Fig. 4, the power network consists of
289 components (125 nodes and 164 links), the water network consists
of 120 components (49 nodes and 71 links), and the gas network consists
of 33 components (16 nodes and 17 links). Adapted from Gonzalez et al.
(2016), we consider four disruption scenarios / = Mg, M7, Mg, Mg over
each network with the disruption levels E = {/ = Mg(Mild),
/= My (Moderate), / = Mg(High), and/ = My(Severe)} with an average
disruption of 6%, 9%, 17%, and 23% of all network components,
respectively. The disruptions are selected among 6%, 9%, 17%, and 23%
of the most critical network components (i.e., the network components
with the highest proportional flow) in the disruption levels Mg, M7, Ms,
and My, respectively. The distance between each pair of disrupted lo-
cations is the shortest unblocked path obtained through ArcGIS and
Google Earth. Each crew travels the shortest undisrupted path between
each pair of consecutive locations on its restoration routing schedule.
After a disruptive event, each restoration crew starts its route from its
original depot. Without loss of generality, we eliminate the effect of the
spatial distribution of depots on the routing schedule of crews by
assuming that a depot has a distance equals zero from each disrupted
location. Each disrupted location may experience a certain level of
disruption and require a specific time interval to be restored, depending
on the number of crews assigned to that component. The restoration
time horizon is considered to be 150 time periods. For crews that may
leave a disrupted location in the middle of its restoration process and
after their restoration task is finished, we consider each processing time
as a function of that corresponding component’s characteristics.

For the infrastructure networks shown in Fig. 4, we evaluate the
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Table 3
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Solution time, percentage gap, and restoration time for the relaxed model (upper and lower bounds) and after implementing Algorithm 1 for the power network.

Ins. / K| Relaxed model, single crew lower bound Relaxed model, multiple crew upper bound Algorithm 1
CPU Gap (%) T CPU Gap (%) T CPU Gap (%) T
1 M (10) 2 1 0 50 6 0.01 38 10 0.02 45
2 3 1 0 46 6 0.24 29 3 0 30
3 4 1 0 38 7 0.03 27 1 0.01 28
4 5 1 0 36 8 0.05 20 2 0 22
5 M, (15) 2 5 0 50 1 0 52 0 0 58
6 3 5 0 47 1 0 39 0 0 39
7 4 5 0 47 1 0.01 30 0 0 31
8 5 5 0 42 1 0.01 25 0 0 27
9 M;(28) 2 35 0.04 38 145 0.09 60 66 0.16 64
10 3 35 0.03 28 21 0.05 45 450 0.04 49
11 4 50 0.04 23 24 0.04 38 325 0.04 40
12 5 75 0.01 23 20 0.04 30 690 0.04 34
13 6 65 0.02 23 35 0.01 29 925 0.04 31
14 7 25 0.01 20 29 0.01 25 825 0.02 27
15 M, (30) 2 852 0.95 79 3180 1 127 3600 2.2 129
16 3 809 0.38 49 3600 0.6 91 3600 0.9 90
17 4 545 0.39 42 3600 0.45 69 3597 0.3 68
18 5 579 0.19 36 3600 0.3 58 3600 0.47 60
19 6 1271 0.11 30 3600 0.1 51 3600 0.54 50
20 7 1143 0.12 23 3600 0.1 48 3600 0.2 45
Table 4

Solution time, percentage gap, and restoration time for the relaxed model (upper and lower bounds) and after implementing Algorithm 1 for the water network.

Ins. / K] Relaxed model, single crew lower bound Relaxed model, multiple crew upper bound Algorithm 1
CPU Gap (%) T CPU Gap (%) T CPU Gap (%) T

21 Mi(8) 2 1 0 132 145 0.01 144 150 0.09 145
22 3 1 0 89 235 0.05 88 150 0.09 88
23 4 3 0 77 73 0.01 89 73 0.01 84
24 5 4 0 63 633 0.01 79 126 0.13 78
25 6 8 0 63 492 0.01 76 45 0.44 49
26 7 5 0 51 384 0 73 7 0.01 45
27 M;(13) 2 4 0 183 800 0.03 189 575 0.02 189
28 3 10 0 137 375 0.03 123 951 0 129
29 4 16 0 100 375 0.03 123 1870 0.01 116
30 5 9 0 89 771 0.02 82 1304 0.01 104
31 6 17 0 89 1228 0.2 80 3551 0.01 100
32 7 19 0 55 3600 5.5 79 3600 0.2 94
33 M;s(25) 2 560 0 277 3600 2.79 272 3600 6 277
34 3 45 0.01 217 3600 0.96 177 3600 1.15 154
35 4 134 0.06 170 3600 0.96 104 3600 0.96 107
36 5 479 0 134 3600 0.96 102 3600 0.56 90
37 6 504 0 118 3600 0 79 3600 0.12 81
38 7 700 0 104 3600 2.75 65 2375 0.16 39
39 M,y(30) 2 785 0.01 418 1624 19 399 3600 10 398
40 3 992 0 287 3600 7 257 3600 2.66 196
41 4 2271 0 216 1624 3 138 3600 0.7 116
42 5 2045 0 171 1793 6 106 3600 0.25 93
43 6 1064 0 145 3600 0 81 3600 0.45 82
44 7 2745 0 126 3600 0 75 3600 0.46 76

performance of the proposed model, and Algorithm 1 on 62 instances (i.
e., four disruption scenarios for each infrastructure network) with the
percentage of disruptions varying between 6% and 23% of network
components with high flow. Tables 3-5 shows the computational
experiment. According to Tables 3-5, at least two and at most seven
crews are dispatched through the network to recover disrupted com-
ponents. [ number of crews can be assigned to a disrupted location,
wherel = {1,2,---,7}. If Lnumber of crews works one disrupted location,
it is recovered at the rate of A; units per each time period, where
A1 > A

5.1. Empirical observations

As expected, the results in Tables 3-5 show that a greater number of
disrupted components result in a drastic increase in the solution time of
the restoration problem and a greater optimality gap in a specific

solution time horizon (e.g., one hour). However, results in Tables 3-5
suggest that the total restoration time resulting from solving Algorithm 1
is greater than the total restoration time obtained from solving the
relaxed model. This is the result of employing DBSCAN technique in
Algorithm 1 to divide the disrupted components under disruption sce-
narios Mg, M7, Mg, and Mo, into (i) 7(1), 8(1), 10(1.5), and 14(1.9)
clusters for the power network, (ii) 8(1), 10(1.3), 17(1.8), and 13(2.2)
for the water network, and (iii) 2(1), 5(1), 7(1.3), and 7(1.3) for the gas
network (with the average number of components in each cluster found
in the parentheses). The application of these clusters in Eq. (12) limits
the choices of the model for the next best set of disrupted components to
restore. This is because no disrupted component from the clusters farther
from the depots can be restored unless all disrupted components in the
clusters nearer to depots are restored. The situation will be exacerbated
if the number of disrupted components in nearer clusters is less than the
number of available crews. Therefore, the optimal solution of Algorithm
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Table 5
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Solution time, percentage gap, and restoration time for the relaxed model (upper and lower bounds) and after implementing Algorithm 1 for the gas network.

Ins. /7 K| Relaxed model, single crew lower bound Relaxed model, multiple crew upper bound Algorithm 1
CPU Gap (%) T CPU Gap (%) T CPU Gap(%) T

45 Ms(3) 2 0 0 43 0 0 51 0 0 51
46 3 0 0 34 0 0 38 0 0 38
47 M;(5) 2 0 0 71 0 0 88 0 0 88
48 3 0 0 58 0 0 63 0 0 63
49 4 0 0 47 0 0 64 0 0 64
50 5 0 0 47 0 0 56 0 0 56
51 Ms(8) 2 0 0 100 3 0 97 3 0 97
52 3 0 0 81 2.60 0 81 2.36 0 81
53 4 0.3 0 57 3 0 70 3 0 70
54 5 0.75 0 57 2.78 0 56 2.57 0 56
55 6 0.06 0 49 2.70 0 46 2.99 0 46
56 7 0.34 0 40 3 0 46 3 0 46
57 Mo(10) 2 0.96 0 87 3 0 94 3 0 94
58 3 0.64 0 63 3 0 81 3 0 81
59 4 1.31 0 50 2.80 0 75 2.33 0 75
60 5 1.37 0 43 3 0 65 3 0 65
61 6 1.40 0 39 2.51 0 56 3.05 0 56
62 7 1.16 0 38 3 0 50 3 0 50

1 is a lower bound for the optimal solution of the relaxed model.

For Tables 3-5, the first four columns on the left show the type of
network, the number of instances, the level of the disruption, 7, and the
number of crews engaged into the network restoration process, K|,
respectively. The next three columns indicate the results related to the
single crew assignment (lower bound), multiple crew assignment (upper
bound), and Algorithm 1. For each, the CPU time, the optimality gap,
and the completion time of the restoration process of each disrupted
network instances are provided. To solve these formulations, Gurobi 8
was used, along with Python 2.7.14. The reported CPU time is in seconds
and all instances were tested on an Intel® Core i7-7500U CPU @ 2.70
GHz 2.90 GHz (two processor) with 32 GB RAM.

5.2. Computational results for heuristic approach

The optimal solution for the restoration routing problem with single
crew assignment provides a lower bound for the original problem. We
employ Algorithm 1 for each problem instance in Tables 3-5 to incor-
porate the routing time of each restoration crew into the optimal solu-
tions for the relaxed single and multiple crew assignment models. For
each problem instance, the output of Algorithm 1 is a feasible initial
solution that provides an upper bound for the original problem. Using
these initial solutions, Algorithm 2 modifies the solution obtained from
Algorithm 1 to find a near-optimal solution for the original problem.
Morshedlou et al. (2018) solved the original model, the solution for
which appears in Appendix C for comparison. Fig. 5 compares the tra-
jectory of total restoration time for the original model by Morshedlou
et al. (2018), the relaxed model under single crew assignment assump-
tion, Algorithm 1, as well as for Algorithm 2 when applied to the mul-
tiple crew assignment model and Algorithm 1. The algorithm is applied
to the power (Fig. 5a), water (Fig. 5b), and gas (Fig. 5¢) network in-
stances in Shelby County, TN. The green, yellow, orange, and red areas
indicate the trajectory of total restoration time under the disruption
scenario levels Mg, M7, Mg, and My, respectively.

In a one-hour CPU time, the solution of the original problem results
in an optimality gap of 9.36, 7.58, and 1.92, for the power, water, and
gas networks, respectively. As shown in Fig. 5a-c, the model cannot
solve My problem instances for water and power networks. Employing
Algorithm 2, the initial solutions obtained from the relaxed model
enhance by 5.90%, 3.82%, and 7.88%, with an average of 23.38, 12.69,
and 26.18 s, respectively, for the power, water, and gas network in-
stances. As for Algorithm 1, these values change to 7.49%, 8.94%, and
8.76%, with an average of 17.10, 16.39, and 6.70 s, respectively. As
shown in Fig. 5, compared with the original model, the application of

Algorithm 2 on the output of Algorithm 1 results in reliable near-optimal
solutions. The results can be used as substitutes for the exact solutions in
large-scale problems where the model fails to reach a reliable restoration
planning schedule in a timely manner.

Fig. 5 shows that, on average, Algorithm 1 results in a shorter total
restoration time than its counterpart relaxed model. However, some
fluctuations seen in the behavior of the model prevent the ubiquity of
such results. We can interpret this behavioral abnormality as a function
of the dependency on the spatial location of the disrupted component.
Fig. 6 illustrates the spatial distribution of disrupted component for
power, water, and gas networks under disruption scenarios Mg, M7, Mg,
and M. Observations from Fig. 5 and Fig. 6 confirm that high scattering
intensity (i.e., scenarios Mg and M7 for power, water, and gas networks
in Fig. 6) disturbs the performance of Algorithm 1, resulting in greater
restoration time than expected. As the spatial distribution of disrupted
components becomes more congregated (scenarios Mg and My for
power, water, and gas networks in Fig. 5), the performance of Algorithm
1 enhances considerably and results in a lower average restoration time
as compared to the other proposed models, as shown especially with
scenarios Mg and My in Fig. 5.

6. Concluding remarks

We proposed a new heuristic algorithm for the infrastructure
network restoration routing problem to encompass realistic assumptions
and contexts. Integrating the post disruption resilience problem and
routing problems, we demonstrated that the restoration assignment and
schedule represented in basic infrastructure network restoration models
might not be feasible in realistic contexts as they do not consider (i) the
travel time of a crew between each pair of assigned disrupted locations,
and (ii) the difference in arrival time of each assigned crew to a dis-
rupted location. Disregarding these two conditions results in the resto-
ration schedules that include a crew potentially present in two different
locations at the same time or a crew that reaches a disrupted location
after its restoration process is completed. This research addressed these
limitations by formulating:

e A relaxed restoration crew assignment restoration model to identify
the efficient lower and upper bounds for the original problems;

o A DBSCAN-based Mapping and Solution Algorithm (Algorithm 1) to
cluster disrupted locations, prioritize these clusters based on their
average importance rather than their distance from depots, and
assign components to crews accordingly; and
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Fig. 5. The trajectory of total restoration time for the original model, relaxed model considering single crew assignment, the application of Algorithm 2 on the
multiple crew assumption, and Algorithm 1 Formulations for the (a) power, (b) water, and (c) gas network instances in Shelby County, TN. The green, yellow, orange,
and red zones indicate the trajectory of restoration time under the disruption scenario levels Mg, M7, Mg, and My, respectively.

e A local search algorithm to improve the initial solution and obtain
optimal or near-optimal solutions in a reasonable time.

We tested the relaxed model using instances derived from realistic
case studies from power, water, and gas grid networks in Shelby County.
We applied the sequence of the relaxed model, initial solution algorithm
(Algorithm 1), and the local search algorithm (Algorithm 2) for 62
scenarios with different magnitude of disruptions (Mg, M7, Mg, and My)
and different numbers of restoration crews ranging from 2 to 7. The key
practical findings are encapsulated in the following:

e Algorithm 1 provides the initial solutions that help local search
heuristic reaches improved solutions in the same given solution time.

o The local search algorithm provides reliable solutions in reasonable
time regardless of the initial solution that is given to it.

e The scattering intensity in the distribution of disrupted locations
upgrades the performance of the relaxed model.

e The scattering intensity in the distribution of disrupted locations
downgrades the performance of the Algorithm 1.

e The performance of Algorithm 1 overcomes the exact formulation in
highly congregated locations.

This research compared the proposed heuristic approach with the
exact solution and tried to find efficient bounds for the original model
that also serve as efficient thresholds to validate the proposed heuristics
along with the original model. This calls attention to further research on
the comparison between Algorithm 2 and other existing heuristic algo-
rithms to corroborate the efficiency of the algorithm under the cir-
cumstances that differ from those considered in this research. Along
with that, this study has room to improve with further research. The
routing network itself could be disrupted and disconnected physically in
several locations, making it impossible for the crews to reach some
disrupted locations. In representing this issue, the crews restoring a non-
transport infrastructure must wait for the crews restoring the trans-
portation infrastructure to open some blocked paths. Finally, some
restoration crews might finish their restoration process earlier than
others and leave the disruption component which they are assigned to
before its restoration process is completed. In these cases, methods can
be developed to improve the performance of the heuristic algorithm
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Fig. 6. Spatial location of disrupted component for power, water, and gas networks under disruption scenarios 6, 7, 8, and 9.
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Appendix A

A.l. Notations

There is a maximum number of crews,v;, that can be sent from each depot,i € Np. For each disrupted locationi € N, /Np , z% is a binary variable
that equals 1 if I = {1, ---,|L|}number of crews visit the corresponding location, and 0 otherwise. For the directed routing network, x;;, is a binary
variable that equals 1 if restoration crew k € K travels from node i € N, to nodej € N, /Np|J(n+1), and 0 otherwise. The arrival time of each assigned
crew k € K at disrupted location i € N, /Np is a binary variable fﬁ , which equals 1 if t is the arrival time of crew k to node i, and 0 otherwise. The
completion time of the restoration process associated with each disrupted link (i,j) € A’, or its counterpart node in routing network, i € N, /Np, is a
continuous variable, [)’%, where 1 is the number of restoration crews assigned to node i € N, /Np. The maximum processing time of each nodei € N, /Np

equals to pi,1 when only one crew is assigned to that corresponding node, and p% is the restoration time of node i when I crews are assigned to it. All start

10
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Table A1

Notation for the original restoration routing problems.

Infrastructure and routing

network notation

2z x>z

&

(n+1)

>

{1, L}

{1, T}
Parameters

b;
0;
M

Decision variables

i

Set of nodes in networkG = (N,A)

Set of links in networkG = (N,A)

Set of disrupted links in networkG = (N,A)

Set of nodes in networkG = (N,A)

Set of nodes in network G = (N, A) corresponding to
disrupted links in networkG = (N,A)

Set of depots from which recovery crews commence
their routes

Dummy sink node where the path of all restoration
crews ends

Set of links in network G = (N, A) that connect the
nodes corresponding to disrupted links in
networkG = (N,A)

Set of restoration crews, where |K| is the total
number of crews working during the restoration
horizon

Set of restoration crews assigned to each node

i€ Ny, where L is the maximum number of crews
that can be assigned to each disrupted component

Set of time periods in the restoration horizon

The maximum number of vehicles sent from

depoti € Np

The processing time of nodei € Ny when [ crews are
assigned to it

The progress of restoration process of nodei € Ny
per time unit, when [ crews are working on it

The traveling time from node ito node j,(i,j) € A
The binary parameter equals to 1 if node i € N, isa
counterpart to link (i,j) € A’, and 0 otherwise
Capacity of node i € N, or its corresponding link (i,
j) € A, before the disruptive event

Capacity of node i € Ny, or its corresponding link (i,
j) € A', immediately after the disruptive event
Capacity of demand nodei € N_

Capacity of supply nodei € N..

Very large number

Binary variable equals to 1 if crewk € K travels
link(i,j) € A

Binary variable equals to 1 if [ € L restoration crews
are assigned to nodei € N, /Np

Binary variable equals to 1 if crew k € K arrives to
node i € N, /Np at timet

Binary variable equals to 1 if the Ith crew arrives to
node i € N, /Np at timet

Continuous variable representing the completion
time of the restoration process associated with node
i when [ crews are assigned

Integer variable representing the flow on link (i,j) €
A at timet

Integer variable representing the flow reaching to
demand node i € N_ at timet

Binary variable equals to 1 if restoration task on link
(1,j) finishes at timet

Integer variable representing the flow of restoration
crew k € K on link(i,j) € A,

Computers & Industrial Engineering 161 (2021) 107626

the restoration process at the same time. Starting from its originating depot, each crew travels a specific route, which is a sequence of disrupted
locations and ends in the dummy sink node (n + 1). The restoration time of each disrupted link (i,j) € A" depends on the characteristics of that link, its
level of disruption, the number of restoration crews assigned to it, and the arrival time of each restoration crew to that link.

To relate the two aforementioned networks, Oy is a binary parameter equal to 1 if node i € N, /N in the routing network is a counterpart to the

disrupted location on link (i,j) € A" in the infrastructure network, and 0 otherwise. After the completion of the restoration process of each disrupted
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Fig. Al. Illustration of the dynamic restoration process when three crews are assigned to a disrupted location, (a) the first crew arrives at the disrupted location at
time t1, (b) the second crew joins the process at time t2, and (c) the third crew joins the other two crews at time t3.

node i € N, /Ny in the routing network, its counterpart link (i,j) € A’ (Giﬁ = 1) returns to its fully operational status in the infrastructure network. To
formulate this fact mathematically, we first present a binary variable ay, that equals 1 if the restoration task on link (i,j) € A’ finishes at time t with the
link becoming fully operational again, and otherwise 0. Then the model relates the operations on the routing network and the infrastructure network
as follows: assume [ restoration crews are assigned to disrupted node i € N,/Np in the routing network and complete the restoration task of that

corresponding location at time ﬂf In the infrastructure network, the disrupted link (i,j) € A’, the counterpart of disrupted node i € N, /Np, is recovered

and becomes operational at the exact time ﬂf Therefore, binary variable a;; equals 1 at Time t = [ﬂf] Table A1 explains the notation in detail.

A.2. Dynamic restoration process

The traveling times on links in the routing network are heterogeneous and depending on the length of the links. Therefore, the arrival time of
restoration crews assigned to node i € Ny are not necessarily the same. In this section, we explain how to calculate the processing time of each

disrupted link (i,j) € A, or its counterpart node i € N, /Np, when [ crews are assigned to it, yet they may not start their restoration tasks at the same
time.

Fig. A1 illustrates the restoration process of the disrupted node i € N, and how adding the next crew to the process affects the restoration time of
node i € N, /Np. After a disruptive event, node i € N,, or its corresponding link (i,j) € A" in network G = (N,A), is considered disrupted if its post-
disruption capacity (4; in network G or uy, in network G), is less than its pre-disruption capacity (y;, in network or u, in network G), and
consequently (u;, —u;, ) units of capacity must be restored. Each assigned crew arrives to node iattimet = 1,---, T, which might be different from the
arrival time of other assigned crews. In the mathematical model, to signal the sequential arrival of the assigned crews, we introduce glit as a binary

variable equal to 1 if the Ith crew arrives to node i at time t. When the first crew (ko € K) arrives at node i € N,/N, at time t;, gilt

1
restoration process immediately. If the first crew is the only crew assigned to node i, as shown in Fig. Ala, it completes the restoration process at time,
=t + pl1 One crew progresses through the restoration process of node i € N, /Np by /121 percent of restoration work per time. Therefore, for node

= 1, it starts the

5w = . 1 . . . 5. . .

i€ N,/Np, there is ﬁi.l p; = (u;, — uz,) amount of restoration work that must be accomplished until node i is fully operational. If another crew joins the

restoration process, it must arrive before the completion of the restoration process, glzt =1lwheret; <t <t + pi,1 . When the next crew (k; € K) joins
2

the process, shown in Fig. Alb, it accelerates the remaining restoration requirements, /1;.1 (tn + p% —t), by /If percent of restoration work per time,

where /I? > /111

2 .
The required time for the remaining restoration task is - (tl -&-pi,1 —t2>, and the updated completion time of the restoration task to t, = t, +

P :
> <t1 +p;_1 7t2). Again, if another crew joins the restoration process of node i, as shown in Fig. Alc, it must arrive before the completion of the

A
restoration process, gﬁ = 1lwhere tp <t3 <ty + = (t1 eri1 —tz). When the next crew (ks), joins the restoration process, it accelerates the remained
3 ;

1
i

P
ty+p! —t;) —t3), by the rate of 13, where 13 >12. The updated remained restoration time is
L 4 L 1

restoration task, liz(tz-i- =

22 1

2 a . 72 2 . .
7‘3 (tz +k (tl + pg — fz) —t3 > , and its corresponding completion time ist; =t3 + & (tz +k (t1 + pg — tz) —t3 ) . In general, the completion time of the

12
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restoration process of node i when I crews are assigned to it is calculated with Eq. (A.1), where ¢ is the arrival time of the jth crew to node i, and

therefore t; is the arrival time of the last (Ith) crew, and /111 is the rate of restoration after the jth crew joins the restoration process.

Apt 4T = YA
A

B=n+ (A1)

We implement the dynamic restoration process into the model by defining /i% in Eq. (A.2), where Zletgét is the arrival time of jth crew to Node i.

Each restoration task on each link should be processed without interruption. All assigned crews work on a disrupted location until its restoration
process is completed.

=1 gjxT I gjmI=T
;o a | ﬂ;-lp% + Z/‘:I%Ez:ltgét - ijzﬂ{,- Z::ltgg,
ﬂ? - Z[gir + ﬂ.l

t=1 i

(A.2)

Note two important conditions: First, the restoration time of a disrupted node might end before the arrival of some assigned restoration crews. The
model eliminates the redundant routes to already recovered nodes by rescheduling the late crews to the nearest unrecovered or under recovery nodes.
Second, the addition of more crews does not necessarily shorten the restoration time of a disrupted node. The model eliminates excessive crew
assignment by distributing ineffective crews to the nodes capable being restored faster as the number of assigned crews increases. Both strategies are
developed through the effort of the model to maximize the satisfied demand in each time period of restoration horizon by restoring the maximum
number of disrupted nodes in the minimum time horizon. For the first condition, this requires minimizing the time when en route idle crews visiting
already restored disrupted nodes. For the second condition, this requires assigning idle crews to ongoing restoration tasks.

A.3. Mathematical model
Morshedlou et al. (2019) presented a mixed integer formulation for the restoration routing problem. The objective is to maximize the cumulative

enhancement in the infrastructure network resilience in each period by measuring the restoration progress of the network (i.e., the total flow reaching
demand nodes in each time period after a disruption).

max ZT: b, (1]7) (A.3)
=1

;Z}:eﬁ/ /ﬁom)ezx% =v; VieNp A9

Zaeﬁ,/m 1):@)62’% <1 YjeN,/NpU(n+1),keK (A.5)

D w1 EN/(n+1).keK (A.6)

Zaeﬁ,:a;)ex"ﬁwn =1 kek (A7)

D e, Sy Zgzg%wl)z(i J)E;x,% =0 Yj€N,/Np,keK (A.8)

Egs. (A.4)-(A.8) are crew routing flow balance equations. Eq. (A.3) ensures that v; crews are dispatched from depot i € Np. Egs. (A.5)-(A.6) and
guarantee than each crew k € K visits each disrupted link (i,j) € A’, or its counterpart node i € N, /N, at most once. All crews finish their route by
reaching to dummy sink node (n + 1), according to Eq. (A.7). Flow balance is incorporated into the model with Eq. (A.8), by which the number of
arrivals to each node i € N,» must equal the number of departures from it.

,
k _ k PN N
I Zﬁ Vj € N/ /Np,k € K (1.9
p
T L _ o
NN # =Nt YieN,/Npl=1,L (A.10)
kek 1=1 =1
L — — —
Y 4<1 VieN,/Np (A11)

=1

In Eq. (A.9), only the crews that are scheduled to restore node i € N, /Nj, visit that corresponding node. Eq. (A.10) ensures that if crews are assigned
tonode i € N, /N then they must visit that node during the restoration time horizon. Eq. (A.11) requires that the number of crews assigned to each
disrupted node i € N, /N;, cannot be changed during the restoration process.

T
Zn;zc,.—,+ﬂ§—M(1—;%)—M(1—z§) VieN,/Np,i=1,Lkeck (A.12)
t=1

L — J— —
YA => g VieN/Npt=1,T (A.13)
kek =1
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T T L
Dot > Ztgé,—M(l -y z;1> VieN,/Np,l=2,L (A.14)
t=1 =1

I=l+1

T L
Zzggj‘ < /f§+M<1 — Z z,?) Vie N,/Np,l=1,,L (A.15)
=1 I=l+1

Egs. (A.12)-(A.15) calculate the dynamic restoration process. Eq. (A.12) calculates the arrival time of restoration crews scheduled to each node
i€ N,/Np and eliminate the existence of infeasible routes including subtours. Eq. (A.13) sequences the assigned crews to each node i € Ny . If crew
k € K is visiting node i € N, its arrival time is put in a set of sequenced arrival time of crews assigned to that node. Eq. (A.13) ensures that the total
number of crews assigned to each nodei € N, /Np is equal to the total number of sequenced arrival times associated with that node. Egs. (A.14)—(A.15)
defines the time windows in which the second, third, and finally Ith crew must arrive if [ crews, [ = 1,---,L, are scheduled to node i € N, /Np.

Do fu— D fu<or VieN, 1=1.T (A.16)
Ji(ij)ea Ji(ii)eA

D fu— Y fu=0 VieN_t=1,-T (A.17)
Ji(ij)ea Ji(ii)eA

Zfijf— Zfﬁf: —@; VieEN_,t=1,-T (A.18)
J(ij)eA Ji(ij)eA

0<¢,<b VieN_,t=1,-T (A.19)
Uijty Sﬁ'jt < Uijt, v(lJ) € Aal = 17 ) T (A'ZO)

Egs. (A.16)—(A.20) are network flow balance constraints that send flow from supply nodes, through transshipment nodes, to the demand nodes and
control the flow over the entire network. Eq. (A.16) ensures that the flow sent from each supply node i € N, does not exceed its capacity. When
network flow enters a transshipment node, Eq. (A.17) requires that it must leave that node to reach demand nodes in subsequent steps. Eq. (A.18)
calculates the amount of flow reaching each demand Node i € N_. Eq. (A.19) ensures that the flow reaching to each demand node will not exceed the
capacity of that demand node. In Eq. (A.20), the flow on each Link (i,j) € A does not exceed the capacity of that link.

Wi, <fu <3 g, V(Qj) €A t=1,T (A21)
,
da <1 V(ij)eA (A.22)
s=1
T j— — N
3 say > p —M(l —zg) —M(l —e,ﬁ) Vh e N, /NoW(i,j) €A k€ K (A.23)
s=1
d={01}Vi=1,-L, VieN,/Np (A.24)
Vi€ N,/Np, ke K
g ={0,1} I=1 .../étil i T (A.25)
X ={0,1} (i.j)eAkek (A.26)
9, >0 ieN_,t=1,--T (A.27)
ap =1{0,1},f; >0 keK, (i,j) €At=1,--T (A.28)

Similar to Eq. (A.20), in Eq. (A.21), the flow on each link (i,j) € A’, whether disrupted or restored, does not exceed the capacity of that link. Eq.
(A.22) ensures that each disrupted link receives restoration services no more than once. Eq. (A.23) relates the routing network (G) operations to the
progress in the infrastructure network performance, G. This equation calculates the time when each disrupted link (i,j) € A’ becomes fully operational

after the completion of its restoration process. The formulation has O(|K|x|N|* x |T]) binary decision variables.

Appendix B

B.1. DBSCAN-based Mapping and Solution Algorithm

Algorithm 1. (DBSCAN-based Mapping and Solution Algorithm)

Input:

LeZve NA-/ — Spatial location of disrupted components
I, € Z,0 € Np — Spatial location of depots

fujt, — Predisruption flow on component(h,j) € A,

uy;, — Postdisruption capacity of component(h,j) € A,

(continued on next page)
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(continued)

1: Solve DBSCAN (G = (N,Z,), ', &, MinPts)

n

N,(i) : {jld(i,j) < € }— the epsilon neighborhood is the disrupted locations within a radius of ¢ from an object
d(i,j) is the distance between disrupted location (i,j) € A,

3 MinPts— the epsilon neighborhood of an object contains at least MinPts of disrupted locations

4: C;={ }- an empty cluster

5: for each n € N do:

6: mark n as visited

7 N.(n) = {m|d(n,m) <e}U{n}

8 if |[N.(n)| < MinPts do:

9: mark n as NOISE

10: else:

11: Open C;as the next cluster

12: Cien

13: for each disrupted location m € N in N, (n) do:
14: if m is not visited do:

15: mark m as visited

16: N.(m) = {h|d(m,h) < e} U{m}

17: if [N, (m) | > MinPts do:

18: N, (n)<N,(n) UN,(m)

19: if m is not a member of any cluster do:

20: Cij<m

21: for each cluster, C; € DBSCAN(G = (ITI‘Z( ) ,-7), do

f hjt=0

22: Ie, = Y hjjec: (The aggregate importance measure of disrupted components in each cluster)

Upjt,
DoVeR, b (h)es 2mociy Al Lo) _
23:  Dp =Y (1)) (RJ)€C1 oMo 77 ©7 (The average distance of each cluster from depots o € Np)
Np| x [N,
4
I
24: ol = D& (The priority index associated with each cluster C;)
Ci

25: end for

26: Sort clusters by D¢, in non-dicreasing order and put them in a list of listsD*"*
27: Add Eq. (12) to the formulation and solve the relaxed model

28: Represent the output of the relaxed model as:

290 A = {i: gk tlna = @ P + Lag = 1k = 1 KL i€ Nyt = 1,7}

A includes the disrupted locations, their corresponding No. of assigned crews, k, and the time their restoration time

begins, t
30: L= {k:ilk =1,-|K|,i € Np} where L is the last updated location of each crew
Cp,D
on r R s
Dy : : : .. :
i oD o
D _ Cp;D o Cp, |1 Dy |INg|
31: ¢c= |M i cip N b
1 Cip, w n LA
. 1 ) o
— N, |D _ N, |D
O, 11 N ‘ﬁu‘ R R

Dji € Np is the index of depots from where the crews start their routes
|K] is the total number of crews
¢ is the traveling time between each pair of location in Ny U Np.
Min Distance-Earliest Release Procedure
32: Lijge< Lig.CL default dictionary of the location of idle crews
33: Lpusy<LpusySL  default dictionary of the location of busy crews
Ligie<Ligie €L default dictionary of the location of idle crews
34: A<{i: %5, 77,8 [L € Ny, the time the process J; = starts, %; = proceeds, :
number of assigned crews}
35: 7« default list of lists with 1, ---, [K| lists each 7 = {hy|the lth node in the schedule of crew k}
36: Temp < empty dictionary
37:  Sort yi;based on t in non-increasing order and update array A

= ends, §; =

i

38 Lige<L
39: fb,,sy<—L —Lide
40: K «|Ligel

41: while A # @ do
42: while Ly, # @ do

43: Find the nextl where |Lig.| > A[l][1]

44: fork =1,-,A[l[1] do

45: Finds the next crew with min .7 + ¢j jisi(a keys()) 1
J€Ligte[x]

46: ifk=1do

47: Sl

(continued on next page)

15



N. Morshedlou et al. Computers & Industrial Engineering 161 (2021) 107626

(continued)
48: H o1
49: 3‘;<—,‘/‘j +¢;
50: LD
51: T3 +Pg
52: Lbusy<Lpusy + nexterew: i
53: Ligie < Ligie —nextcrew: i
54: else
55: J-temp—7j + ¢
Elimination Procedure
56: if 3_temp < .7; do
57: o148
58: i

!

59: B temp —3; +

(77— 3-temp) iy,
T &

i

A (/‘1 - ;\Ltemp)ii‘“,?l
60: Fied-temp + |——
i,
61: Lpusy < Lpusy —mextcrew: i
62: Ligie < Ligie —nextcrew: i
63: end if
64: end if

65: end for
66 Ali]« 13 7, 73 )
67: Temp « Temp —Templi]
68: A—A—Afl
69: end while
70:  Lige—A[ argmin A H 23]
ieAkeys( )
71: Output Completed dictionaries: A, and /7 (Shown in Table 2)

Table C1
The original restoration routing problem solution for the power network in
Shelby County, TN.

Ins. / (Number of disrupted links) K

Original restoration routing problem

CPU  Gap(%) T

1 M;s (10) 2 8.1 0.07 57
2 3 9.77 0.03 49
3 4 354 0.01 153
4 5 3600 0.03 129
5 M; (15) 2 3600 0.3 78
6 3 3600 0.6 58
7 4 3600 3 120
8 5 3600 3 138
9 Mg (28) 2 3600 3.5 137
10 3 3600 2.5 96
11 4 3600 3 87
12 5 3600 2.7 61
13 6 3600 4.14 166
14 7 3600 12.1 191
15 My (30) 2 3600 12.03 184
16 3 3600 7.76 180
17 4 3600 18.31 196
18 5 3600 7.3 187
19 6 3600 3 160
20 7 3600 19.1 171

B.1. Heuristic Algorithm for Restoration Crew Routing Problem

Algorithm 2. (Heuristic Algorithm for Restoration Crew Routing Problem)

Input: B, .7, P, and the solution of Algorithm 1

1: Apply the Shorten Routes procedure Vk € K.

2: Apply the Change Routes procedure Vk € K.

3: Apply the Add Crew procedure for utmost Vk € K.

(continued on next page)
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Table C2

(continued)
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4: Apply the Remove Crew procedure Vk € K
5: any of Shorten Routes, Add Crew, and Remove Crew, Change Routes is applicable for the current solution.

If No: the current solution is the output of the Heuristic Algorithm

If Yes: check the application of at least one of steps 1,2,3, and 4 to provide a better upper bound for the current solution
7: Repeat step 5.

The original restoration routing problem solution for the water network in
Shelby County, TN.

Ins. / (Number of disrupted links) K| Original model
CPU Gap(%) T
21 M, (10) 2 3600 2.45 220
22 3 3600 2.48 137
23 4 3600 1.2 166
24 5 3600 3.28 208/284
25 6 3600 2.42 89/101
26 7 3600 1.67 193/213
27 M; (15) 2 3600 10.7 247
28 3 3600 11.3 211
29 4 3600 9.6 203
30 5 3600 10 184
31 Ms (28) 2 3600 9.5 252
32 3 3600 10.1 222/252
33 4 3600 - -
34 5 3600 - -
35 6 3600 13 390
36 7 3600 14.1 381
37 M, (30) 2 3600 10.9 255
38 3 3600 9.3 219
39 4 3600 - -
40 5 3600 - -
41 6 3600 - -
42 7 3600 - -
Table C3
The original restoration routing problem solution for the gas network in Shelby
County, TN.
Ins. / (Number of disrupted links) K| Original model
CPU Gap (%) T
43 Ms (3) 2 8.1 0.07 57
44 3 9.77 0.03 49
45 M; (5) 2 354 0.01 153
46 3 3600 0.03 129
47 4 3600 0.3 78
48 5 3600 0.6 58
49 Mg (8) 2 3600 3 120
50 3 3600 3 138
51 4 3600 3.5 137
52 5 3600 2.5 96
53 6 3600 3 87
54 7 3600 2.7 61
55 M, (10) 2 3600 4.14 166
56 3 3600 121 191
57 4 3600 12.03 184
58 5 3600 7.76 180
59 6 3600 18.31 196
60 7 3600 7.3 187
Appendix C

See Tables C1-C3.
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