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A B S T R A C T   

This study proposes efficient solution methods to solve interdependent restoration planning and crew routing 
problems. The solutions provide reliable restoration plans regardless of the size and structure of disrupted 
infrastructure networks. We propose a relaxed mixed integer linear programming (MILP) model and two heu
ristic algorithms to find efficient feasible initial solutions for the restoration routing problem. We also propose a 
local search heuristic algorithm to find a near-optimal solution using the results obtained from the proposed 
model. Using electric power, water, and gas infrastructure network instances from Shelby County, TN, the 
computational results corroborate the efficacy of the mathematical formulation and shows that the heuristic 
algorithm obtains optimal or near-optimal solutions. In particular, we apply the sequence of the relaxed model, 
initial solution algorithm, and the local search algorithm for 62 scenarios with different magnitudes of disruption 
and different numbers of restoration crews. Analyzing the performance of the local search algorithm, we confirm 
the advantages of using the initial solution algorithm in producing the restoration schedules with reliable and 
relatively low total restoration time, particularly for large size problems. The observations also reveal how the 
scattering intensity in the distribution of disrupted locations affects the performance of relaxed models, and 
consequently, the integrated heuristic.   

1. Introduction 

Infrastructure networks, including power grids, water pipelines, and 
gas networks, are the backbone of the nation connecting businesses, 
communities, and residents (American Society of Civil Engineers, 2017). 
They have been subject to the effects of aging as explained by the steady 
D+ grade of the U.S. energy sector since 1988 (American Society of Civil 
Engineers, 2017). These aging structures, coupled with increasing 
storms and severe weather, have weakened the reliability of infra
structure networks before disruptive events, intensified their vulnera
bility to disruptive events, and lengthened their restoration process after 
disruptive events. As such, planning for their resilience is an important 
area of study. 

Vugrin and Camphouse (2011) describe resilience capacity with 
three components: absorptive capacity, adaptive capacity, and restor
ative capacity. The absorptive capacity is the extent to which an infra
structure network can withstand the negative effect of a disruptive 
event. An example of absorptive capacity is the optimization methods 

employed in power grid networks to prevent large scale cascading 
blackouts before the occurrence of disruptions (Bienstock & Mattia, 
2007). The adaptive capacity is the extent to which an infrastructure 
network can be adapted to a new condition after disruptions by tem
porary means. The short-term robust adaptive strategies implemented to 
the infrastructure network immediately after disruptions is a pertinent 
example (Lempert & Groves, 2010). The restorative capacity is the extent 
to which an infrastructure network is recovered in a long-term manner. 

Previous research has attempted to introduce planning strategies for 
different components of resilience capacity in energy sectors (Bienstock 
& Mattia, 2007; Nan & Sansavini, 2017; Nurre et al., 2012), drinking 
water and wastewater (D’Ambrosio & Leone, 2015; Nurre et al., 2012), 
and transport and emergency response (Çelik et al., 2015). Research has 
also explored the interdependency between multiple infrastructure 
sectors (Barker et al., 2017; González et al., 2016; Sharkey et al., 2015; 
González et al., 2017). Little is known about incorporating work crew 
routing in restorative capacity planning models. Morshedlou et al. 
(2018) proposed two mixed integer programming (MIP) formulations 
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that combine the restoration crew scheduling problem with its associ
ated vehicle routing problem to minimize crew movement time in the 
transport network. Each disrupted component exhibits specific charac
teristics, including the level of disruption, the rate of restoration, the 
importance in the network, and the increase in restoration rate when the 
next crew joins the process. 

The current research is a natural extension of the restoration crew 
routing model proposed by Morshedlou et al. (2018). We offer two 
contributions to the existing literature. First, we propose a new mixed 
integer linear programming (MILP) model with a density-based spatial 
clustering of applications with a noise (DBSCAN)-based Mapping and 
Solution Algorithm (Algorithm 1). This helps obtain reliable lower 
bounds and upper bounds for the restoration routing problem while 
providing efficient feasible initial solutions using the outputs of a 
relaxed formulation. Second, acknowledging the NP-hard nature of 
routing and scheduling problems, we propose a local search heuristic 
algorithm to efficiently obtain a near-optimal feasible solution for large 
scale problems. We study the performance of the heuristic algorithm 
using the MILP and heuristic model results and illustrate them on small, 
medium, and large size problems. Examples represent individual power, 
water, and gas grid transmission networks in Shelby County, TN, and we 
study the interdependency of each infrastructure network and its 
counterpart routing network connecting disrupted locations. 

The remainder of the paper is structured as follows. Section 2 reviews 
the literature of infrastructure network formulations focusing on 
restorative capacity and restoration arc routing problems. Section 3 
formulates the relaxed MILP with summaries of the original model 
proposed by Morshedlou et al. (2018) in Appendix A. Section 4 presents 
a heuristic model to obtain lower bounds and upper bounds of the MILP 
model as well as a heuristic algorithm to obtain a near-optimal feasible 
solution aligned with restoration policies. Section 5 illustrates the use of 
the formulations and heuristic algorithm with realistic electric power, 
water, and gas networks in Shelby County, TN. We discuss the compu
tational results and perform sensitivity analyses associated with the 
illustrative case study to showcase the efficacy of the proposed heuristic 
algorithm under diverse circumstances. Section 6 concludes the study by 
summarizing the major finding, the limitations of the study, and future 
research avenues. 

2. Methodological background 

In problems related to restoration planning, the aim is to find the 
sequence of disrupted network components assigned to and scheduled 
for each restoration crew such that network performance is improved at 
each time period of the restoration horizon. Within the context of 
network restoration, most studies focus on optimizing network flow 
balance by assigning and scheduling restoration crews to disrupted 
components, regardless of their geographical location and physical ac
cess. This category of problems is referred to as infrastructure network 
design and scheduling models. Limited restoration resources are allo
cated to disrupted components to maximize the weighted delivered re
sidual flow in each time period (Arab et al., 2015; Nurre & Sharkey, 
2014; Nurre et al., 2012; Sanci & Daskin, 2019). The nature of resto
ration scheduling problems is NP-hard, meaning the exact solution 
methods cannot find an optimal restoration schedule for large scale 
disruption scenarios. To find near-optimal solutions in a timely manner, 
previous research focused on heuristic and estimation algorithms, 
including a dispatching rule heuristic (Nurre et al., 2012), reduced-order 
linear representation (González et al., 2017), decomposition algorithm 
(Ouyang & Fang, 2017; Ghorbani-Renani et al., 2020), and conversion 
algorithm (Tan et al., 2019). 

Other approaches modeled networks with multiple echelons, such as 
supply chain networks that consist of a transport echelon (Carvalho 
et al., 2012; Caunhye et al., 2020; Hishamuddin et al., 2013) and pro
duction and inventory echelon (Carvalho et al., 2012; Davis et al., 
2021). Research also investigated these networks from protection 

(Behzadi et al., 2020; Behzadi et al., 2020; Carvalho et al., 2012; Dixit 
et al., 2020; Davis et al., 2021; Mao et al., 2020; Li et al., 2020) and 
restoration (Dixit et al., 2020; Mao et al., 2020) perspectives. The 
interdependency between restoration time and the routing time of crews 
was studied with a new class of problems referred to as multiple resto
ration crew routing problems. This was accompanied by efficient solu
tion approaches as mathematical formulations were too complex to 
solve with exact solution methods. They include iterated greedy- 
randomized constructive procedures (Duque et al., 2016), ant colony 
algorithms (Kim et al., 2018; Shin et al., 2019), the Branch-and-Benders- 
cut approaches (Moreno, Munari, & Alem, 2020b), distributed optimi
zation approaches (Su et al., 2019), Benders decomposition approaches 
(Moreno, Alem, Gendreau, & Munari, 2020a), consecutive heuristic 
approaches (Pamukcu & Balcik, 2020), tabu search algorithms 
(Pamukcu & Balcik, 2020), L-shape algorithms (Sanci & Daskin, 2021), 
rich local search algorithms (Akbari et al., 2021), and constructive 
heuristic and a simulated annealing algorithms (Atsiz et al., 2021). 

Within the context of network restoration, in which crews are dis
patched to disrupted network components through a routing network, 
studies mainly focused on road restoration, where the road network 
represents the lifeline infrastructure, such as debris or snow removal. 
These studies may differ from general infrastructure network restoration 
from two perspectives. First, disruptions may cause network compo
nents to become physically inaccessible for restoration crews. Second, 
incorporating the travel time between each pair of disrupted locations in 
the model may change the best restoration schedule. In this context, 
studies aim to find the restoration routing schedule that maximizes the 
connectivity of a disrupted network, or particularly access to different 
network components, in the minimum required time. As restoration 
routing problems are known to be NP-hard, novel solution approaches 
have been proposed to solve large scale problems in a timely manner, 
including dynamic path-based models (Aksu & Özdamar, 2014), 
relaxation-based constructive algorithms (Kasaei & Salman, 2016; 
Özdamar et al., 2014), Lagrangian relaxation (Akbari & Salman, 2017; 
Faturechi & Miller-Hooks, 2014), p-median (Iloglu & McLay, 2018), and 
Markov decision process under incomplete information (Çelik et al., 
2015). Maya Duque et al. (2016) and Çelik (2017) offer comprehensive 
overviews of relatively recent advancements. 

The proposed solution approaches in the current research stand apart 
from the previous studies as they are adaptable to a variety of in
frastructures and restoration methodologies. We introduce a construc
tive heuristic algorithm that uses a local-search algorithm to improve 
the coordinated restoration routes obtained from the relaxed form of the 
original formulations. 

3. Problem formulation 

The proposed mathematical formulation involves two undirected 
networks: (1) physical lifeline infrastructure network and (2) the routing 
network. The physical lifeline infrastructure network (e.g., electric 
power) is represented by an undirected network G = (N,A), where N is 
the set of nodes and A is the set of links. There are a set of supply nodes 
(N+⫅N), a set of demand nodes (N−⫅N), and a set of transshipment 
nodes (N=⫅N). Each supply node i ∈ N+ has a fixed supply capacity oi in 
each time period, and each demand node i ∈ N− has a fixed demand 
requirement bi in each time. Assume E is a set of possible disruptive 
events. Prior to disruption l ∈ E at time t0, each link has a baseline 
capacity, uijt0 , and a baseline flow value, fijt0 , calculated to satisfy all 
demand nodes in each period, calculated to satisfy all demand nodes in 
each period. Considering the flow capacity of each link, we aim to 
transfer flow from supply nodes to demand nodes and satisfy the total 
amount of demand. To prioritize demand nodes, the flow reaching each 
node, i ∈ N−, is given a weight of wi such that the more important a 
demand node is (e.g., located in a more populated area), the greater the 
weight assigned to it. Following a disruption at time td, there is a set of 
network components (links and nodes) that are adversely impacted. 
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Since any node can be represented as a pair of nodes and a link, we 
consider the disrupted components as a subset of links (A’

l ⫅A). Each 
disrupted link has a new capacity, uijtd , which can take any value less 
than uijt0 . The network G = (N, A) changes to G = (N, A/A’

l ) also referred 
to as the residual network, where Nis the set of nodes and A/A’

l is the set 
of operational links. 

The routing network is represented by a complete undirected graph 

Gl =

(

Nl , Al

)

, where Nl = {1, ⋯, n} is the set of disrupted locations 

and Al is the set of links connecting each pair of locations. The routing 
network connects all disrupted locations in the infrastructure network 
G = (N, A). There is a set of depots ND⫅Nl from which the restoration 
crews are distributed, a set of nodes Nl /ND that represent the disrupted 
locations on disrupted links A’

l ⫅A in graph G = (N, A). A dummy sink 
node n +1 is also considered to be where all restoration routes end. K is 
the set of restoration crews that are distributed through the complete 

graph Gl =

(

Nl , Al

)

such that all disrupted links (i, j) ∈ A’
l in the 

infrastructure network, or their counterpart nodes in the routing 
network, i ∈ Nl , are fully restored. Parameter |K| is the number of crews 
available to work on disrupted links in each period. 

Each restoration crew can travel on each link 
(

i, j
)

in both directions 

with the same travel time cij. More than one crew can visit node i ∈ Nl 

and the maximum number of crews that can be assigned to node i is |L|, 
where |L| ≤ |K|. Without loss of generality, we assume that no crew visits 
node i ∈ Nl unless it is assigned to restore that corresponding node. 
Fig. 1 illustrates a small example of infrastructure network G prior to 
disruption l , network G after the disruption, and the counterpart 
restoration routing network Gl , including a representation of parameter 
characteristics for each state of the network. 

The objective function of the proposed model is to maximize a 
measure of resilience over the restoration horizon (Henry & Ramirez- 
Marquez, 2012). We define the flow reaching to demand node i ∈ N−

as φit, and calculate it as the summation of flow reaching directly from 
transmission and supply nodes to demand nodes φit =

∑
j∈N+

⋃
N=

fjit. The 

network performance at time t = 1, ⋯, T is the total weighted flow 
reaching demand nodes 

∑
i∈N−

wiφit, where wi refers to the prioritization 
weight assigned to each demand node. Before disruption l , the total 
weighted demand is satisfied and equals 

∑
i∈N−

wiφit0 =
∑

i∈N−
wi

∑
j∈N+

⋃
N=

fjit0 . After the disruption, the total satisfied weighted 

demand across the residual network equals 
∑

i∈N−
wiφitd =

∑
i∈N−

wi
∑

j∈N+

⋃
N=

fjitd and can be any number from zero (completely 

disrupted) to 
∑

i∈N−
wiφit0 

(completely operational). 
The measure of resilience is a time-dependent ratio of the cumulative 

network restoration progress at each time peri
od,

∑
i∈N−

wiφit −
∑

i∈N−
wiφitd , to total performance loss, 

∑
i∈N−

wiφit0 −
∑

i∈N−
wiφitd . The progress of restoration is measured by the 

increase in the total weighted flow. Eq. (1) calculates the measure of 
resilience at each period. 

∑
i∈N−

wiφit0 
refers to the total weighted flow 

reaching demand nodes before the disruption at t0, and 
∑

i∈N−
wiφitd 

refers to the total weighted flow when the full loss of network perfor
mance is felt at the time td. 

Ðφ(t|l ) =

∑
i∈N−

wiφit −
∑

i∈N−
wiφitd∑

i∈N−
wiφit0 −

∑
i∈N−

wiφitd
(1) 

Appendix A represents the original formulations for restoration 
routing problems in detail. From the original model in Appendix A, the 
integration of the crew routing problem and the restorative capacity 
problem, along with the incorporation of the dynamic restoration pro
cess of each node, complicates the required execution time to solve both 
models. The execution time is positively correlated with the complexity 
of the model, and consequently, the complexity level of the model is 
positively correlated with the number of binary variables in the model. 
We measure the complexity level of the model by O(|N|

2
× |K| × |A| × T), 

where |N|
2

× |K| × |A| × T is the number of binary variables in the 
original model. Here, |N| is the number of disrupted locations,|K| is the 
number of crews,|A| is the number of links, and T is the length of time 
horizon. The complexity of the original models increases the solution 
time drastically. To utilize the model in large scale problems, we propose 
effective bounds and heuristic solution approaches that reach to the 
near-optimal solution in a timely manner. 

This Section proposes a relaxed formulation for restoration routing 
problems with multiple crews assigned to each disrupted location. 

Network  before disruption  Residual network  after 

disruption 

Routing network 

Fig. 1. Small illustrative example of the restoration crew routing problem.  

Table 1 
Parameters and variables used in the model formulation.  

Indices  

A  Set of links, where A’
l ⫅A is the set of disrupted links  

N  Set of nodes, where N+⫅N is the set of supply nodes, N−⫅N, is the set of 
demand nodes, and N=⫅N is the set of transmission nodes  

Al  Set of routing links 

Nl  Set of routing nodes, where ND⫅Nl , is the set of depots, and Nl /ND, is 
the set of routing nodes (disrupted locations)  

K  Set of restoration crews 
L  Set of allowable crews working on a node simultaneously 
t0  Time immediately prior to disruptionl  

td  Time after the end of disruptions 
Parameters  
pk

ij  Restoration time of link (i, j) ∈ A’
l visited by crewk ∈ K  

T  Restoration horizon limit 
uijt0  Baseline capacity of link(i, j) ∈

fijt0  Baseline flow on link(i, j) ∈ A  
oi  Capacity of supplieri ∈ N+

bi  Capacity of demand nodei ∈ N−

uijtd  Capacity of disrupted link(i, j) ∈ A’
l  

T  Recovery horizon limit 
Variables  
fijt  Continuous variable, flow on link (i, j) ∈ A’

l in the residual network at 
timet  

φit  Continuous variable, total flow reaching demand node i ∈ N−at timet  
αkijt  Binary variable, equal to 1 if k ∈ K crews recover link (i, j) ∈ A’

l at time 
t (Binary Active Model)   
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Considering the restoration horizon, the proposed model, determines (i) 
the lower bound when it can only assign one crew to each disrupted 
component and (ii) the upper bound when it can assign multiple crews 
to each disrupted component. The proposed model maximizes the 
resilience measure in each period by incorporating the timing of resto
ration tasks as well as the number of assigned crews to each disrupted 
component, though the model cannot track the routing time of each 
crew individually. 

3.1. Mixed linear integer programming formulation 

The model identifies the start and completion time of restoration of 
each disrupted component. The model can only track the number of 
assigned crews considered in the models rather than specifying which 
crew is assigned to the node individually. We propose the mathematical 
formulation with the parameters and variables summarized in Table 1. 

max
∑T

t=1
Ðφ(t) (2)  

∑

j:(i,j)∈A

fijt −
∑

j:(j,i)∈A

fjit ≤ oi ∀i ∈ N+, t = 1, ⋯, T (3)  

∑

j:(i,j)∈A

fijt −
∑

j:(j,i)∈A

fjit = 0 ∀i ∈ N=, t = 1, ⋯, T (4)  

∑

j:(i,j)∈A

fijt −
∑

j:(i,j)∈A

fjit = − φit ∀i ∈ N−, t = 1, ⋯, T (5)  

0 ≤ φit ≤ bi ∀i ∈ N−, t = 1, ⋯, T (6)  

uijtd ≤ fijt ≤ uijt0 ∀(i, j) ∈ A, t = 1, ⋯, T (7)  

uijtd ≤ fijt ≤
∑t

s=1
αkijsuijt0 ∀(i, j) ∈ A’

l , t = 1, ⋯, T (8)  

∑T

s=1
αijs ≤ 1 ∀(i, j) ∈ A’

l (9)  

∑
pk

ij−1

t=1
αkijt = 0 ∀(i, j) ∈ A’

l , ∀k ∈ K (10)  

∑K

k=1

∑T

s=t

⎛

⎝1 +

⎢
⎢
⎢
⎣

t −
(

s − pk
ij + 1

)

M

⎥
⎥
⎥
⎦

⎞

⎠kαkijs ≤ |K| ∀(i, j) ∈ A’
l , t = 1, ⋯, T

(11) 

Eqs. (3)–(8) are network flow balance constraints that send flow from 

supply nodes to the demand nodes through transshipment nodes and 
control the flow over the entire network. Eq. (3) ensures that the flow 
sent from each supply node i ∈ N+ does not exceed its capacity. Eq. (4) 
requires that it must pass transmission nodes to reach demand nodes in 
subsequent steps. Eq. (5) calculates the amount of flow reaching each 
demand node i ∈ N−. Eq. (6) ensures that the flow reaching each demand 
node will not exceed the capacity of that demand node. Eq. (7) ensures 
that the flow on any particular link will not exceed the capacity of that 
link. In Eq. (8), the flow on each link (i, j) ∈ A’

l , whether disrupted or 
restored, does not exceed the capacity of that link. Eq. (9) ensures that 
each disrupted link receives restoration services no more than once. Eq. 
(10) ensures that no link restoration process is completed before its 
required restoration time. Eq. (11) ensures that no more than |K|

restoration crews can work on disrupted components in each period. 

4. Solution approach 

Regarding the routing sequence and time, we propose a DBSCAN- 
based Mapping and Solution Algorithm (Algorithm 1) to minimize 
infeasible solutions using spatial clustering techniques as well as con
structing efficient feasible initial solutions for the heuristic algorithm. 
Algorithm 1 prioritizes the restoration schedule of disrupted locations 
more densely found in affected areas relative to scattered locations in 
remote areas. We introduce a new linear constraint in Eq. (12) to include 
such clusters into the relaxed formulation. The updated model di
minishes the size of the problem to O(|A’

l | × |K| × T), which is a 
manageable number of constraints for medium sized problem instances. 

To find an efficient initial solution, Algorithm 1 uses greedy tech
niques to provide (i) feasible routes for each crew and (ii) dynamic 
restoration time for each disrupted component with more than one 
assigned crew. The Restoration Crew Routing Heuristic Algorithm (Al
gorithm 2) uses the output of Algorithm 1 along with local search pro
cedures to find feasible near-optimal solutions for large-scale problems. 
The flowchart in Fig. 2 portrays each model, its contribution, and con
nections to other proposed formulations for the ease of reading. 

4.1. Discussion of DBSCAN-based Mapping and solution Algorithm 

While benefiting from the simplicity of the relaxed formulations, two 
concerns may arise: (i) there is no control over the routing time of each 
crew due to long routes and (ii) the arrival time of each restoration crew 
assigned to a disrupted component might be different from the arrival 
time of other crews assigned to that component. Indeed, there might be 
cases where an assigned crew arrives after the restoration process of a 
disrupted component is completed by other crews. To eliminate both 
concerns, we propose a DBSCAN-based Mapping and Solution Algo

Fig. 2. Methodology flowchart of proposed models and their interdependencies.  
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rithm, Algorithm 1 in Appendix B, which follows seven steps:  

• Step 1: Use the DBSCAN method to cluster disrupted components 
that are spatially near one another to decrease the chance of pro
longed or infeasible routes. 

• Step 2: Rank the clusters based on the aggregate betweenness cen
trality of links included in each cluster,ICi =

∑
(h,j)∈Ci

fhjt0
uhjtd

, over their 

average distance from depots, DCi =

∑
j∈Nl /ND

∑
h∈ND

d(lj ,lh)
⃒
⃒
⃒ND

⃒
⃒
⃒×

⃒
⃒
⃒Nl /ND

⃒
⃒
⃒

. Here, fhjt0 is 

the flow on link (h, j) ∈ Ci in cluster Ci before the disruptive event, 
and uhjtd is the capacity of link (h, j) after the disruption. Distance d(lν,

lo) is the distance between the spatial location of link (h,j), shown by 
its counterpart node υ ∈ Nl /ND in the routing network,lν, and the 
spatial location of depot, o ∈ ND, lo. We call this measurement the 
total priority index ITotal

Ci
.  

• Step 3: Implement Eq. (12) to distribute crews through the clustered 
network. The clusters with higher ITotal

Ci 
are prioritized to receive 

restoration services. Dsort is the set of sorted clusters in DCi and Dsort
z ∈

Dsort represent each cluster of disrupted components where z = 1,⋯,

|Dsort | − 1. 

∑T

t=1

∑

k∈K
αklht(t − pk

lh) ≤
∑T

t=1

∑

k∈K

∑

(i,j)∈Dsort
z

αkijt(t − pk
ij) ∀(l, h) ∈ Dsort

z+1z

= 1, ⋯, |Dsort
| − 1 (12) 

By recovering the most important links, this strategy guarantees a 
strong upper bound while it prevents crews assigned to disrupted loca
tions with unrealistically heterogenous distances from one another. As 
the proposed model does not provide the trajectory of each individual 
crew, Algorithm 1 uses greedy techniques to provide a feasible route for 
each individual crew. The result of Algorithm 1 is the initial solution for 
the proposed heuristic algorithm.  

• Step 4: Assign and direct each crew to the next nearest disrupted 
location immediately after it finishes the preceding restoration task.  

• Step 5: Identify disrupted locations i ∈ Nl /ND to which multiple 
crews are assigned, or where αkijt = 1,k ∈ K,k > 1.  

• Step 6: Track the arrival time of each corresponding crew.  

• Step 7: Delete the late crews from the schedule of corresponding 
disrupted locations. 

The relaxed model outcome provides the time sequence of the 
restoration process of disrupted links and the number of crews assigned 
to each disrupted link as shown in Fig. 3a. Following solving the relaxed 
formulation, Fig. 3b illustrates how Algorithm 1 (Appendix B) calculates 
the arrival time of assigned crew k ∈ K to disrupted location i ∈ Nl /ND, 
the processing time of each disrupted location i ∈ Nl /ND, and the 
routing time of each crew k ∈ K. Algorithm 1 eliminates infeasible 
routes due to (i) the arrival of a crew at a disrupted location after the 
completion of its restoration process and (ii) the presence of a crew at 
two different disrupted locations simultaneously (i.e., cycle sub-graph 
formation (Morshedlou et al., 2018)). 

Each row of Table 2 illustrates the sequence of disrupted links 
scheduled to crew k ∈ K and its counterpart sequenced arrival, resto
ration, and departure times. Here, bkh is the hth link (i, j) ∈ A’

l visited by 
crew k ∈ K, and |K| is the total number of rows. Its corresponding set of 
values represents the ith disrupted location in the schedule of crew 
k ∈ K, and its corresponding set of values is a vector which includes time 
when crew k ∈ K starts (Ik

bkh
), proceeds (B k

bkh
), and ends (F k

bkh
) the 

restoration process of bkh. 

Fig. 3. Minimum distance-earliest release procedure for five disrupted locations and three restoration crews: (a) the Relaxed restoration problem optimal solution 
(input to the procedure), and (b) the route of each restoration crew (output of the procedure). 

Table 2 
The sequential assignment table and its corresponding dictionary.  

Crew Sequenced disrupted 
locations 

Sequenced timing of disrupted locations 
restoration activities 

1 b11  b12  ⋯  b1n1  I
k
b11

,

B k
b11

,

F k
b11  

I
k
b12

,

B k
b12

,

F k
b12  

⋯  I
k
b12

, B k
b12

,

F k
b12  

2 b21  b22  ⋯  b1n2  I
k
b21

,

B k
b21

,

F k
b21  

I
k
b22

,

B k
b22

,

F k
b22  

⋯  I
k
b22

, B k
b22

,

F k
b22  

⋮  ⋯  
|K| b|K|1  b|K|2  ⋯  b|K|n|K| I

k
b|K|1

,

B k
b|K|1

,

F k
b|K|1  

I
k
b|K|2

,

B k
b|K|2

,

F k
b|K|2  

⋯  I
k
b|K|n|K|

,

B k
b|K|n|K|

,

F k
b|K|n|K|
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4.2. A heuristic for the restorative capacity routing problem 

In the context of enhancing restorative capacity, solving large in
stances in a shorter solution time is of great importance. We propose the 
Restoration Routing Local Search heuristic algorithm (Algorithm 2) using 
the feasible solution obtained from Algorithm 1, which is the sequential 
assignment depicted in Table 2. Algorithm 2 uses four procedures to 
obtain a near-optimal feasible solution for large-scale problems: (1) 
Shorten Routes, (2) Add Crew, (3) Remove Crew, and (4) Change 
Assignment. 

Procedure Shorten Routes: Consider the routes and routing times in 
Table 2. This procedure is defined in two steps:  

• Step 1: Find the route with the maximum routing time.  
• Step 2: Among the crews that complete their routes sooner, check if 

there is any crew that can join the restoration time of the last node in 
the route and shortens the processing time of the node. 

Procedure Add Crew: Consider the routes and routing times gener
ated in Table 2. This procedure is defined in three steps:  

• Step 1: Find the route with maximum routing time.  
• Step 2: Among nodes on the route, find the one with the maximum 

weighted processing time, referred to as the bottleneck node. The 
weight of each node represents the betweenness centrality of that 
node.  

• Step 3: Check if there is a crew working on a nearby node that can 
join the restoration process of the bottleneck node and improve the 
processing time. The routing time of the prolonged schedule must not 
exceed the maximum routing time. 

Procedure Remove Crew: This procedure is defined in three steps:  

• Step 1: Among nodes with more than one crew assigned to their 
restoration process, choose a node with the minimum weighted 
processing time, also called the least important node.  

• Step 2: Among the assigned crews, chose the one that works on the 
immediate succeeding node located in// the minimum distance of 
the least important node.  

• Step 3: Ensure that removing the crew from the schedule of the least 
important node does not worsen the maximum restoration time. 

Procedure Change Assignment: This procedure is a hybrid of Add 
Crew and Remove Crew procedures. 

The output leads to an improvement in the measure of total network 
resilience in each period representing: (i) shorter processing time for 
some disrupted links, (ii) shorter routing time for some restoration 
crews, and (iii) a change in the restoration schedule of each crew. The 
integration of procedures forms an easily implementable heuristic al
gorithm to obtain a near-optimal feasible solution. 

5. Illustrative examples: power, water, and gas networks 

To examine the efficacy of the proposed model and the heuristic 
algorithms, we employ three realistic data sets based on power grid 
transmission, water, and gas networks in Shelby County, TN. Located in 
the New Madrid Seismic Zone, Shelby County has over 650,000 and is 
home to Memphis. As illustrated in Fig. 4, the power network consists of 
289 components (125 nodes and 164 links), the water network consists 
of 120 components (49 nodes and 71 links), and the gas network consists 
of 33 components (16 nodes and 17 links). Adapted from González et al. 
(2016), we consider four disruption scenarios l = M6, M7, M8, M9 over 
each network with the disruption levels E = {l = M6(Mild),

l = M7(Moderate), l = M8(High), andl = M9(Severe)} with an average 
disruption of 6%, 9%, 17%, and 23% of all network components, 
respectively. The disruptions are selected among 6%, 9%, 17%, and 23% 
of the most critical network components (i.e., the network components 
with the highest proportional flow) in the disruption levels M6, M7, M8, 
and M9, respectively. The distance between each pair of disrupted lo
cations is the shortest unblocked path obtained through ArcGIS and 
Google Earth. Each crew travels the shortest undisrupted path between 
each pair of consecutive locations on its restoration routing schedule. 
After a disruptive event, each restoration crew starts its route from its 
original depot. Without loss of generality, we eliminate the effect of the 
spatial distribution of depots on the routing schedule of crews by 
assuming that a depot has a distance equals zero from each disrupted 
location. Each disrupted location may experience a certain level of 
disruption and require a specific time interval to be restored, depending 
on the number of crews assigned to that component. The restoration 
time horizon is considered to be 150 time periods. For crews that may 
leave a disrupted location in the middle of its restoration process and 
after their restoration task is finished, we consider each processing time 
as a function of that corresponding component’s characteristics. 

For the infrastructure networks shown in Fig. 4, we evaluate the 

Fig. 4. Graphical representations of the (a) power grid transmission, (b) water, and (c) gas networks at a transmission level in Shelby County, TN (González 
et al., 2016). 
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performance of the proposed model, and Algorithm 1 on 62 instances (i. 
e., four disruption scenarios for each infrastructure network) with the 
percentage of disruptions varying between 6% and 23% of network 
components with high flow. Tables 3–5 shows the computational 
experiment. According to Tables 3–5, at least two and at most seven 
crews are dispatched through the network to recover disrupted com
ponents. l number of crews can be assigned to a disrupted location, 
where l = {1,2,⋯,7}. If l number of crews works one disrupted location, 
it is recovered at the rate of λl units per each time period, where 
λl+1 ≥ λl. 

5.1. Empirical observations 

As expected, the results in Tables 3–5 show that a greater number of 
disrupted components result in a drastic increase in the solution time of 
the restoration problem and a greater optimality gap in a specific 

solution time horizon (e.g., one hour). However, results in Tables 3–5 
suggest that the total restoration time resulting from solving Algorithm 1 
is greater than the total restoration time obtained from solving the 
relaxed model. This is the result of employing DBSCAN technique in 
Algorithm 1 to divide the disrupted components under disruption sce
narios M6, M7, M8, and M9, into (i) 7(1), 8(1), 10(1.5), and 14(1.9) 
clusters for the power network, (ii) 8(1), 10(1.3), 17(1.8), and 13(2.2) 
for the water network, and (iii) 2(1), 5(1), 7(1.3), and 7(1.3) for the gas 
network (with the average number of components in each cluster found 
in the parentheses). The application of these clusters in Eq. (12) limits 
the choices of the model for the next best set of disrupted components to 
restore. This is because no disrupted component from the clusters farther 
from the depots can be restored unless all disrupted components in the 
clusters nearer to depots are restored. The situation will be exacerbated 
if the number of disrupted components in nearer clusters is less than the 
number of available crews. Therefore, the optimal solution of Algorithm 

Table 3 
Solution time, percentage gap, and restoration time for the relaxed model (upper and lower bounds) and after implementing Algorithm 1 for the power network.  

Ins. l  |K| Relaxed model, single crew lower bound Relaxed model, multiple crew upper bound Algorithm 1 

CPU Gap (%) T CPU Gap (%) T CPU Gap (%) T 

1 M6(10)  2 1 0 50 6 0.01 38 10 0.02 45 
2 3 1 0 46 6 0.24 29 3 0 30 
3 4 1 0 38 7 0.03 27 1 0.01 28 
4 5 1 0 36 8 0.05 20 2 0 22 
5 M7(15)  2 5 0 50 1 0 52 0 0 58 
6 3 5 0 47 1 0 39 0 0 39 
7 4 5 0 47 1 0.01 30 0 0 31 
8 5 5 0 42 1 0.01 25 0 0 27 
9 M8(28)  2 35 0.04 38 145 0.09 60 66 0.16 64 
10 3 35 0.03 28 21 0.05 45 450 0.04 49 
11 4 50 0.04 23 24 0.04 38 325 0.04 40 
12 5 75 0.01 23 20 0.04 30 690 0.04 34 
13 6 65 0.02 23 35 0.01 29 925 0.04 31 
14 7 25 0.01 20 29 0.01 25 825 0.02 27 
15 M9(30)  2 852 0.95 79 3180 1 127 3600 2.2 129 
16 3 809 0.38 49 3600 0.6 91 3600 0.9 90 
17 4 545 0.39 42 3600 0.45 69 3597 0.3 68 
18 5 579 0.19 36 3600 0.3 58 3600 0.47 60 
19 6 1271 0.11 30 3600 0.1 51 3600 0.54 50 
20 7 1143 0.12 23 3600 0.1 48 3600 0.2 45  

Table 4 
Solution time, percentage gap, and restoration time for the relaxed model (upper and lower bounds) and after implementing Algorithm 1 for the water network.  

Ins. l  |K| Relaxed model, single crew lower bound Relaxed model, multiple crew upper bound Algorithm 1 

CPU Gap (%) T  CPU Gap (%) T  CPU Gap (%) T  

21 M6(8)  2 1 0 132 145 0.01 144 150 0.09 145 
22 3 1 0 89 235 0.05 88 150 0.09 88 
23 4 3 0 77 73 0.01 89 73 0.01 84 
24 5 4 0 63 633 0.01 79 126 0.13 78 
25 6 8 0 63 492 0.01 76 45 0.44 49 
26 7 5 0 51 384 0 73 7 0.01 45 
27 M7(13)  2 4 0 183 800 0.03 189 575 0.02 189 
28 3 10 0 137 375 0.03 123 951 0 129 
29 4 16 0 100 375 0.03 123 1870 0.01 116 
30 5 9 0 89 771 0.02 82 1304 0.01 104 
31 6 17 0 89 1228 0.2 80 3551 0.01 100 
32 7 19 0 55 3600 5.5 79 3600 0.2 94 
33 M8(25)  2 560 0 277 3600 2.79 272 3600 6 277 
34 3 45 0.01 217 3600 0.96 177 3600 1.15 154 
35 4 134 0.06 170 3600 0.96 104 3600 0.96 107 
36 5 479 0 134 3600 0.96 102 3600 0.56 90 
37 6 504 0 118 3600 0 79 3600 0.12 81 
38 7 700 0 104 3600 2.75 65 2375 0.16 39 
39 M9(30)  2 785 0.01 418 1624 19 399 3600 10 398 
40 3 992 0 287 3600 7 257 3600 2.66 196 
41 4 2271 0 216 1624 3 138 3600 0.7 116 
42 5 2045 0 171 1793 6 106 3600 0.25 93 
43 6 1064 0 145 3600 0 81 3600 0.45 82 
44 7 2745 0 126 3600 0 75 3600 0.46 76  

N. Morshedlou et al.                                                                                                                                                                                                                           



Computers & Industrial Engineering 161 (2021) 107626

8

1 is a lower bound for the optimal solution of the relaxed model. 
For Tables 3–5, the first four columns on the left show the type of 

network, the number of instances, the level of the disruption, l , and the 
number of crews engaged into the network restoration process, |K|, 
respectively. The next three columns indicate the results related to the 
single crew assignment (lower bound), multiple crew assignment (upper 
bound), and Algorithm 1. For each, the CPU time, the optimality gap, 
and the completion time of the restoration process of each disrupted 
network instances are provided. To solve these formulations, Gurobi 8 
was used, along with Python 2.7.14. The reported CPU time is in seconds 
and all instances were tested on an Intel® Core i7-7500U CPU @ 2.70 
GHz 2.90 GHz (two processor) with 32 GB RAM. 

5.2. Computational results for heuristic approach 

The optimal solution for the restoration routing problem with single 
crew assignment provides a lower bound for the original problem. We 
employ Algorithm 1 for each problem instance in Tables 3–5 to incor
porate the routing time of each restoration crew into the optimal solu
tions for the relaxed single and multiple crew assignment models. For 
each problem instance, the output of Algorithm 1 is a feasible initial 
solution that provides an upper bound for the original problem. Using 
these initial solutions, Algorithm 2 modifies the solution obtained from 
Algorithm 1 to find a near-optimal solution for the original problem. 
Morshedlou et al. (2018) solved the original model, the solution for 
which appears in Appendix C for comparison. Fig. 5 compares the tra
jectory of total restoration time for the original model by Morshedlou 
et al. (2018), the relaxed model under single crew assignment assump
tion, Algorithm 1, as well as for Algorithm 2 when applied to the mul
tiple crew assignment model and Algorithm 1. The algorithm is applied 
to the power (Fig. 5a), water (Fig. 5b), and gas (Fig. 5c) network in
stances in Shelby County, TN. The green, yellow, orange, and red areas 
indicate the trajectory of total restoration time under the disruption 
scenario levels M6, M7, M8, and M9, respectively. 

In a one-hour CPU time, the solution of the original problem results 
in an optimality gap of 9.36, 7.58, and 1.92, for the power, water, and 
gas networks, respectively. As shown in Fig. 5a-c, the model cannot 
solve M9 problem instances for water and power networks. Employing 
Algorithm 2, the initial solutions obtained from the relaxed model 
enhance by 5.90%, 3.82%, and 7.88%, with an average of 23.38, 12.69, 
and 26.18 s, respectively, for the power, water, and gas network in
stances. As for Algorithm 1, these values change to 7.49%, 8.94%, and 
8.76%, with an average of 17.10, 16.39, and 6.70 s, respectively. As 
shown in Fig. 5, compared with the original model, the application of 

Algorithm 2 on the output of Algorithm 1 results in reliable near-optimal 
solutions. The results can be used as substitutes for the exact solutions in 
large-scale problems where the model fails to reach a reliable restoration 
planning schedule in a timely manner. 

Fig. 5 shows that, on average, Algorithm 1 results in a shorter total 
restoration time than its counterpart relaxed model. However, some 
fluctuations seen in the behavior of the model prevent the ubiquity of 
such results. We can interpret this behavioral abnormality as a function 
of the dependency on the spatial location of the disrupted component. 
Fig. 6 illustrates the spatial distribution of disrupted component for 
power, water, and gas networks under disruption scenarios M6, M7, M8, 
and M9. Observations from Fig. 5 and Fig. 6 confirm that high scattering 
intensity (i.e., scenarios M6 and M7 for power, water, and gas networks 
in Fig. 6) disturbs the performance of Algorithm 1, resulting in greater 
restoration time than expected. As the spatial distribution of disrupted 
components becomes more congregated (scenarios M8 and M9 for 
power, water, and gas networks in Fig. 5), the performance of Algorithm 
1 enhances considerably and results in a lower average restoration time 
as compared to the other proposed models, as shown especially with 
scenarios M8 and M9 in Fig. 5. 

6. Concluding remarks 

We proposed a new heuristic algorithm for the infrastructure 
network restoration routing problem to encompass realistic assumptions 
and contexts. Integrating the post disruption resilience problem and 
routing problems, we demonstrated that the restoration assignment and 
schedule represented in basic infrastructure network restoration models 
might not be feasible in realistic contexts as they do not consider (i) the 
travel time of a crew between each pair of assigned disrupted locations, 
and (ii) the difference in arrival time of each assigned crew to a dis
rupted location. Disregarding these two conditions results in the resto
ration schedules that include a crew potentially present in two different 
locations at the same time or a crew that reaches a disrupted location 
after its restoration process is completed. This research addressed these 
limitations by formulating:  

• A relaxed restoration crew assignment restoration model to identify 
the efficient lower and upper bounds for the original problems;  

• A DBSCAN-based Mapping and Solution Algorithm (Algorithm 1) to 
cluster disrupted locations, prioritize these clusters based on their 
average importance rather than their distance from depots, and 
assign components to crews accordingly; and 

Table 5 
Solution time, percentage gap, and restoration time for the relaxed model (upper and lower bounds) and after implementing Algorithm 1 for the gas network.  

Ins. l  |K| Relaxed model, single crew lower bound Relaxed model, multiple crew upper bound Algorithm 1 

CPU Gap (%) T  CPU Gap (%) T  CPU Gap(%) T  

45 M6(3)  2 0 0 43 0 0 51 0 0 51 
46 3 0 0 34 0 0 38 0 0 38 
47 M7(5)  2 0 0 71 0 0 88 0 0 88 
48 3 0 0 58 0 0 63 0 0 63 
49 4 0 0 47 0 0 64 0 0 64 
50 5 0 0 47 0 0 56 0 0 56 
51 M8(8)  2 0 0 100 3 0 97 3 0 97 
52 3 0 0 81 2.60 0 81 2.36 0 81 
53 4 0.3 0 57 3 0 70 3 0 70 
54 5 0.75 0 57 2.78 0 56 2.57 0 56 
55 6 0.06 0 49 2.70 0 46 2.99 0 46 
56 7 0.34 0 40 3 0 46 3 0 46 
57 M9(10)  2 0.96 0 87 3 0 94 3 0 94 
58 3 0.64 0 63 3 0 81 3 0 81 
59 4 1.31 0 50 2.80 0 75 2.33 0 75 
60 5 1.37 0 43 3 0 65 3 0 65 
61 6 1.40 0 39 2.51 0 56 3.05 0 56 
62 7 1.16 0 38 3 0 50 3 0 50  
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• A local search algorithm to improve the initial solution and obtain 
optimal or near-optimal solutions in a reasonable time. 

We tested the relaxed model using instances derived from realistic 
case studies from power, water, and gas grid networks in Shelby County. 
We applied the sequence of the relaxed model, initial solution algorithm 
(Algorithm 1), and the local search algorithm (Algorithm 2) for 62 
scenarios with different magnitude of disruptions (M6, M7, M8, and M9) 
and different numbers of restoration crews ranging from 2 to 7. The key 
practical findings are encapsulated in the following:  

• Algorithm 1 provides the initial solutions that help local search 
heuristic reaches improved solutions in the same given solution time.  

• The local search algorithm provides reliable solutions in reasonable 
time regardless of the initial solution that is given to it.  

• The scattering intensity in the distribution of disrupted locations 
upgrades the performance of the relaxed model.  

• The scattering intensity in the distribution of disrupted locations 
downgrades the performance of the Algorithm 1.  

• The performance of Algorithm 1 overcomes the exact formulation in 
highly congregated locations. 

This research compared the proposed heuristic approach with the 
exact solution and tried to find efficient bounds for the original model 
that also serve as efficient thresholds to validate the proposed heuristics 
along with the original model. This calls attention to further research on 
the comparison between Algorithm 2 and other existing heuristic algo
rithms to corroborate the efficiency of the algorithm under the cir
cumstances that differ from those considered in this research. Along 
with that, this study has room to improve with further research. The 
routing network itself could be disrupted and disconnected physically in 
several locations, making it impossible for the crews to reach some 
disrupted locations. In representing this issue, the crews restoring a non- 
transport infrastructure must wait for the crews restoring the trans
portation infrastructure to open some blocked paths. Finally, some 
restoration crews might finish their restoration process earlier than 
others and leave the disruption component which they are assigned to 
before its restoration process is completed. In these cases, methods can 
be developed to improve the performance of the heuristic algorithm 

Fig. 5. The trajectory of total restoration time for the original model, relaxed model considering single crew assignment, the application of Algorithm 2 on the 
multiple crew assumption, and Algorithm 1 Formulations for the (a) power, (b) water, and (c) gas network instances in Shelby County, TN. The green, yellow, orange, 
and red zones indicate the trajectory of restoration time under the disruption scenario levels M6, M7, M8, and M9, respectively. 
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efficiently. However, additional work is needed to consider instances 
where parameters are subject to uncertainty. 

Regardless of the limitations identified, this work can assist decision- 
makers gain analytical perspectives on the critical transportation- 
related factors affecting the performance of a restoration schedule. 
The proposed models reflect how the scattering intensity, and the dis
tribution of disruptions affect the number of required crews and the 
average number of assigned locations to each crew. The results also help 
track the prepositioning candidates for crew depots with a high level of 
access under different disruptions scenarios. 
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Appendix A 

A.1. Notations 

There is a maximum number of crews,vi, that can be sent from each depot, i ∈ ND. For each disrupted location i ∈ Nl /ND , zl
i 
is a binary variable 

that equals 1 if l = {1, ⋯, |L|}number of crews visit the corresponding location, and 0 otherwise. For the directed routing network, xijk, is a binary 
variable that equals 1 if restoration crew k ∈ K travels from node i ∈ Nl to node j ∈ Nl /ND

⋃
(n +1), and 0 otherwise. The arrival time of each assigned 

crew k ∈ K at disrupted location i ∈ Nl /ND is a binary variable τk
it
, which equals 1 if t is the arrival time of crew k to node i, and 0 otherwise. The 

completion time of the restoration process associated with each disrupted link (i, j) ∈ A’, or its counterpart node in routing network, i ∈ Nl /ND, is a 
continuous variable, βl

i, where l is the number of restoration crews assigned to node i ∈ Nl /ND. The maximum processing time of each node i ∈ Nl /ND 

equals to p1
i 

when only one crew is assigned to that corresponding node, and pl
i 
is the restoration time of node i when l crews are assigned to it. All start 

Power Water Gas

Fig. 6. Spatial location of disrupted component for power, water, and gas networks under disruption scenarios 6, 7, 8, and 9.  
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the restoration process at the same time. Starting from its originating depot, each crew travels a specific route, which is a sequence of disrupted 
locations and ends in the dummy sink node (n + 1). The restoration time of each disrupted link (i, j) ∈ A’ depends on the characteristics of that link, its 
level of disruption, the number of restoration crews assigned to it, and the arrival time of each restoration crew to that link. 

To relate the two aforementioned networks, θiji is a binary parameter equal to 1 if node i ∈ Nl /ND in the routing network is a counterpart to the 
disrupted location on link (i, j) ∈ A’ in the infrastructure network, and 0 otherwise. After the completion of the restoration process of each disrupted 

Table A1 
Notation for the original restoration routing problems.  

Infrastructure and routing 
network notation  

N  Set of nodes in networkG = (N,A)

A  Set of links in networkG = (N, A)

A’  Set of disrupted links in networkG = (N, A)

N  Set of nodes in networkG = (N,A)

NA’  Set of nodes in network G = (N, A) corresponding to 
disrupted links in networkG = (N, A)

ND  Set of depots from which recovery crews commence 
their routes 

(n + 1) Dummy sink node where the path of all restoration 
crews ends 

A  Set of links in network G = (N, A) that connect the 
nodes corresponding to disrupted links in 
networkG = (N, A)

K  Set of restoration crews, where |K| is the total 
number of crews working during the restoration 
horizon  

{1, ⋯, L} Set of restoration crews assigned to each node 
i ∈ NA’ , where L is the maximum number of crews 
that can be assigned to each disrupted component  

{1, ⋯, T} Set of time periods in the restoration horizon 
Parameters  
vi  The maximum number of vehicles sent from 

depoti ∈ ND  

pl
i  

The processing time of nodei ∈ NA’ when l crews are 
assigned to it  

λl
i  

The progress of restoration process of nodei ∈ NA’ 

per time unit, when l crews are working on it  
cij  The traveling time from node ito node j,(i, j) ∈ A  
θiji  The binary parameter equals to 1 if node i ∈ NA’ is a 

counterpart to link (i, j) ∈ A’, and 0 otherwise  
uite  Capacity of node i ∈ NA’ , or its corresponding link (i,

j) ∈ A’, before the disruptive event  
uitd  Capacity of node i ∈ NA’ , or its corresponding link (i,

j) ∈ A’, immediately after the disruptive event  
bi  Capacity of demand nodei ∈ N−

oi  Capacity of supply nodei ∈ N+

M  Very large number 
Decision variables  
xk

ij  
Binary variable equals to 1 if crewk ∈ K travels 
link(i, j) ∈ A  

zl
i  

Binary variable equals to 1 if l ∈ L restoration crews 
are assigned to nodei ∈ Nl /ND  

τk
it  

Binary variable equals to 1 if crew k ∈ K arrives to 
node i ∈ Nl /ND at timet  

gl
it  

Binary variable equals to 1 if the lth crew arrives to 
node i ∈ Nl /ND at timet  

βl
i  

Continuous variable representing the completion 
time of the restoration process associated with node 
i when l crews are assigned  

fijt  Integer variable representing the flow on link (i, j) ∈

A at timet  
φit  Integer variable representing the flow reaching to 

demand node i ∈ N− at timet  
αijt  Binary variable equals to 1 if restoration task on link 

(i, j) finishes at timet  

fk
ij  

Integer variable representing the flow of restoration 
crew k ∈ K on link(i, j) ∈ Al   
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node i ∈ Nl /ND in the routing network, its counterpart link (i, j) ∈ A’(θiji = 1) returns to its fully operational status in the infrastructure network. To 
formulate this fact mathematically, we first present a binary variable αijt that equals 1 if the restoration task on link (i, j) ∈ A’ finishes at time t with the 
link becoming fully operational again, and otherwise 0. Then the model relates the operations on the routing network and the infrastructure network 
as follows: assume l restoration crews are assigned to disrupted node i ∈ Nl /ND in the routing network and complete the restoration task of that 
corresponding location at time βl

i. In the infrastructure network, the disrupted link (i,j) ∈ A’, the counterpart of disrupted node i ∈ Nl /ND, is recovered 

and becomes operational at the exact time βl
i. Therefore, binary variable αijt equals 1 at Time t =

[
βl

i

]
. Table A1 explains the notation in detail. 

A.2. Dynamic restoration process 

The traveling times on links in the routing network are heterogeneous and depending on the length of the links. Therefore, the arrival time of 
restoration crews assigned to node i ∈ NA’ are not necessarily the same. In this section, we explain how to calculate the processing time of each 
disrupted link (i, j) ∈ A’, or its counterpart node i ∈ Nl /ND, when l crews are assigned to it, yet they may not start their restoration tasks at the same 
time. 

Fig. A1 illustrates the restoration process of the disrupted node i ∈ N, and how adding the next crew to the process affects the restoration time of 
node i ∈ Nl /ND. After a disruptive event, node i ∈ Nl , or its corresponding link (i, j) ∈ A’ in network G = (N, A), is considered disrupted if its post- 
disruption capacity (uitd 

in network G or uijtd in network G), is less than its pre-disruption capacity (uit0 
in network or uijt0 in network G), and 

consequently (uite −uitd ) units of capacity must be restored. Each assigned crew arrives to node i at time t = 1,⋯,T, which might be different from the 
arrival time of other assigned crews. In the mathematical model, to signal the sequential arrival of the assigned crews, we introduce gl

it 
as a binary 

variable equal to 1 if the lth crew arrives to node i at time t. When the first crew (k2 ∈ K) arrives at node i ∈ Nl /ND at time t1, g1
it1

= 1, it starts the 

restoration process immediately. If the first crew is the only crew assigned to node i, as shown in Fig. A1a, it completes the restoration process at time, 
t’
1 = t1 + p1

i
. One crew progresses through the restoration process of node i ∈ Nl /ND by λ1

i percent of restoration work per time. Therefore, for node 

i ∈ Nl /ND, there is λ1
i p1

i
= (uitl

− uitd ) amount of restoration work that must be accomplished until node i is fully operational. If another crew joins the 
restoration process, it must arrive before the completion of the restoration process, g2

it2
= 1where t1 ≤ t2 < t1 + p1

i
. When the next crew (k1 ∈ K) joins 

the process, shown in Fig. A1b, it accelerates the remaining restoration requirements, λ1
i (t1 + p1

i
− t2), by λ2

i percent of restoration work per time, 

where λ2
i > λ1

i . 

The required time for the remaining restoration task is 
λ1

i
λ2

i

(
t1 +p1

i
−t2

)
, and the updated completion time of the restoration task to t’

2 = t2 +

λ1
i

λ2
i

(
t1 +p1

i
−t2

)
. Again, if another crew joins the restoration process of node i, as shown in Fig. A1c, it must arrive before the completion of the 

restoration process, g3
it3

= 1where t2 ≤ t3 < t2 +
λ1

i
λ2

i

(
t1 +p1

i
−t2

)
. When the next crew (k5), joins the restoration process, it accelerates the remained 

restoration task, λ2
i (t2 +

λ1
i

λ2
i

(
t1 + p1

i
− t2

)
− t3), by the rate of λ3

i , where λ3
i > λ2

i . The updated remained restoration time is 

λ2
i

λ3
i

(

t2 +
λ1

i
λ2

i

(
t1 + p1

i
− t2

)
−t3

)

, and its corresponding completion time is t’
3 = t3 +

λ2
i

λ3
i

(

t2 +
λ1

i
λ2

i

(
t1 + p1

i
− t2

)
−t3

)

. In general, the completion time of the 

Fig. A1. Illustration of the dynamic restoration process when three crews are assigned to a disrupted location, (a) the first crew arrives at the disrupted location at 
time t1, (b) the second crew joins the process at time t2, and (c) the third crew joins the other two crews at time t3. 

N. Morshedlou et al.                                                                                                                                                                                                                           



Computers & Industrial Engineering 161 (2021) 107626

13

restoration process of node i when l crews are assigned to it is calculated with Eq. (A.1), where tj is the arrival time of the jth crew to node i, and 
therefore tl is the arrival time of the last (lth) crew, and λj

i 
is the rate of restoration after the jth crew joins the restoration process. 

βl
i = tl +

λ1
i p1

i +
∑l−1

j=1λj
i
tj −

∑l
j=2λj−1

i
tj

λl
i

(A.1) 

We implement the dynamic restoration process into the model by defining βl
i in Eq. (A.2), where 

∑T
t=1tgj

it 
is the arrival time of jth crew to Node i. 

Each restoration task on each link should be processed without interruption. All assigned crews work on a disrupted location until its restoration 
process is completed. 

βl
i =

∑T

t=1
tgl

it +
λ1

i p1
i

+
∑l−1

j=1λj
i

∑T
t=1tgj

it
−

∑l
j=2λj−1

i

∑T
t=1tgj

it

λl
i

(A.2) 

Note two important conditions: First, the restoration time of a disrupted node might end before the arrival of some assigned restoration crews. The 
model eliminates the redundant routes to already recovered nodes by rescheduling the late crews to the nearest unrecovered or under recovery nodes. 
Second, the addition of more crews does not necessarily shorten the restoration time of a disrupted node. The model eliminates excessive crew 
assignment by distributing ineffective crews to the nodes capable being restored faster as the number of assigned crews increases. Both strategies are 
developed through the effort of the model to maximize the satisfied demand in each time period of restoration horizon by restoring the maximum 
number of disrupted nodes in the minimum time horizon. For the first condition, this requires minimizing the time when en route idle crews visiting 
already restored disrupted nodes. For the second condition, this requires assigning idle crews to ongoing restoration tasks. 

A.3. Mathematical model 

Morshedlou et al. (2019) presented a mixed integer formulation for the restoration routing problem. The objective is to maximize the cumulative 
enhancement in the infrastructure network resilience in each period by measuring the restoration progress of the network (i.e., the total flow reaching 
demand nodes in each time period after a disruption). 

max
∑T

t=1
Ðφ(t|l ) (A.3)  

∑

k∈K

∑

j:∈N l /ND :(i,j)∈A
xk

ij = vi ∀i ∈ ND (A.4)  

∑

i:∈N l /(n+1):(i,j)∈A
xk

ij ≤ 1 ∀j ∈ N l /ND ∪ (n + 1), k ∈ K (A.5)  

∑

j:∈N l /ND :(i,j)∈A
xk

ij ≤ 1 ∀i ∈ N l /(n + 1), k ∈ K (A.6)  

∑

i:∈N l :(i,j)∈A
xk

i(n+1)
= 1 k ∈ K (A.7)  

∑

i:∈N l /(n+1):(i,j)∈A
xk

ij −
∑

i:∈Nl

ND
∪(n+1):(i,j)∈A

xk
ji = 0 ∀j ∈ N l /ND, k ∈ K (A.8) 

Eqs. (A.4)–(A.8) are crew routing flow balance equations. Eq. (A.3) ensures that vi crews are dispatched from depot i ∈ ND. Eqs. (A.5)–(A.6) and 
guarantee than each crew k ∈ K visits each disrupted link (i, j) ∈ A’, or its counterpart node i ∈ Nl /ND, at most once. All crews finish their route by 
reaching to dummy sink node (n + 1), according to Eq. (A.7). Flow balance is incorporated into the model with Eq. (A.8), by which the number of 
arrivals to each node i ∈ NA’ must equal the number of departures from it. 

∑

i:∈N l /(n+1):(i,j)∈A
xk

ij =
∑T

t=1
τk

jt ∀j ∈ N l /ND, k ∈ K (A.9)  

∑

k∈K

∑T

t=1
τk

it =
∑L

l=1
lzl

i ∀i ∈ N l /ND, l = 1, ⋯, L (A.10)  

∑L

l=1
zl

i ≤ 1 ∀i ∈ N l /ND (A.11) 

In Eq. (A.9), only the crews that are scheduled to restore node i ∈ Nl /ND visit that corresponding node. Eq. (A.10) ensures that if crews are assigned 
to node i ∈ Nl /ND then they must visit that node during the restoration time horizon. Eq. (A.11) requires that the number of crews assigned to each 
disrupted node i ∈ Nl /ND cannot be changed during the restoration process. 

∑T

t=1
tτk

jt ≥ cij + βl
i − M(1 − xk

ij) − M
(

1 − zl
i

)
∀i ∈ N l /ND, l = 1, ⋯, L, k ∈ K (A.12)  

∑

k∈K
τk

it =
∑L

l=1
gl

it ∀i ∈ N l /ND, t = 1, ⋯, T (A.13)  

N. Morshedlou et al.                                                                                                                                                                                                                           



Computers & Industrial Engineering 161 (2021) 107626

14

∑T

t=1
tgl+1

it ≥
∑T

t=1
tgl

it − M

(

1 −
∑L

l=l+1

zi
l

)

∀i ∈ N l /ND, l = 2, ⋯, L (A.14)  

∑T

t=1
tgl+1

it ≤ βl
i + M

(

1 −
∑L

l=l+1

zi
l

)

∀i ∈ N l /ND, l = 1, ⋯, L (A.15) 

Eqs. (A.12)–(A.15) calculate the dynamic restoration process. Eq. (A.12) calculates the arrival time of restoration crews scheduled to each node 
i ∈ Nl /ND and eliminate the existence of infeasible routes including subtours. Eq. (A.13) sequences the assigned crews to each node i ∈ NA’ . If crew 
k ∈ K is visiting node i ∈ NA’ , its arrival time is put in a set of sequenced arrival time of crews assigned to that node. Eq. (A.13) ensures that the total 
number of crews assigned to each node i ∈ Nl /ND is equal to the total number of sequenced arrival times associated with that node. Eqs. (A.14)–(A.15) 
defines the time windows in which the second, third, and finally lth crew must arrive if l crews, l = 1, ⋯,L, are scheduled to node i ∈ Nl /ND. 
∑

j:(i,j)∈A

fijt −
∑

j:(j,i)∈A

fjit ≤ oi ∀i ∈ N+, t = 1, ⋯, T (A.16)  

∑

j:(i,j)∈A

fijt −
∑

j:(j,i)∈A

fjit = 0 ∀i ∈ N=, t = 1, ⋯, T (A.17)  

∑

j:(i,j)∈A

fijt −
∑

j:(i,j)∈A

fjit = − φit ∀i ∈ N−, t = 1, ⋯, T (A.18)  

0 ≤ φit ≤ bi ∀i ∈ N−, t = 1, ⋯, T (A.19)  

uijtd ≤ fijt ≤ uijt0 ∀(i, j) ∈ A, t = 1, ⋯, T (A.20) 

Eqs. (A.16)–(A.20) are network flow balance constraints that send flow from supply nodes, through transshipment nodes, to the demand nodes and 
control the flow over the entire network. Eq. (A.16) ensures that the flow sent from each supply node i ∈ N+ does not exceed its capacity. When 
network flow enters a transshipment node, Eq. (A.17) requires that it must leave that node to reach demand nodes in subsequent steps. Eq. (A.18) 
calculates the amount of flow reaching each demand Node i ∈ N−. Eq. (A.19) ensures that the flow reaching to each demand node will not exceed the 
capacity of that demand node. In Eq. (A.20), the flow on each Link (i, j) ∈ A does not exceed the capacity of that link. 

uijtd ≤ fijt ≤
∑t

s=1
αijsuijt0 ∀(i, j) ∈ A’, t = 1, ⋯, T (A.21)  

∑T

s=1
αijs ≤ 1 ∀(i, j) ∈ A’ (A.22)  

∑T

s=1
sαijs ≥ βl

i − M
(

1 − zl
i

)
− M

(
1 − θiji

)
∀h ∈ N l /ND∀(i, j) ∈ A’, k ∈ K (A.23)  

zl
i = {0, 1}∀l = 1, ⋯, L, ∀i ∈ N l /ND (A.24)  

gl
it = {0, 1}

∀i ∈ N l /ND, k ∈ K
l = 1, ⋯, Lt = 1, ⋯, T

(A.25)  

xk
ij = {0, 1} (i, j) ∈ A, k ∈ K (A.26)  

φit > 0 i ∈ N−, t = 1, ⋯, T (A.27)  

αkijt = {0, 1}, fijt > 0 k ∈ K, (i, j) ∈ A, t = 1, ⋯, T (A.28) 

Similar to Eq. (A.20), in Eq. (A.21), the flow on each link (i, j) ∈ A’, whether disrupted or restored, does not exceed the capacity of that link. Eq. 
(A.22) ensures that each disrupted link receives restoration services no more than once. Eq. (A.23) relates the routing network (G) operations to the 
progress in the infrastructure network performance, G. This equation calculates the time when each disrupted link (i, j) ∈ A’ becomes fully operational 
after the completion of its restoration process. The formulation has O(|K|×|N|

4
× |T|) binary decision variables. 

Appendix B 

B.1. DBSCAN-based Mapping and Solution Algorithm 

Algorithm 1. (DBSCAN-based Mapping and Solution Algorithm)   

Input: 
lv ∈ L , v ∈ NA’

l 
→ Spatial location of disrupted components  

lo ∈ L , o ∈ ND → Spatial location of depots  
fhjt0 → Predisruption flow on component(h, j) ∈ A’

l  

uhjtd → Postdisruption capacity of component(h, j) ∈ A’
l  

(continued on next page) 
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(continued ) 

1: Solve DBSCAN (G =

(

N, Al

)

, L , ε,MinPts)  

2: Nε(i) : {j|d(i, j) ≤ ε }→ the epsilon neighborhood is the disrupted locations within a radius of ε from an object  
d(i, j) is the distance between disrupted location (i, j) ∈ Al  

3: MinPts→ the epsilon neighborhood of an object contains at least MinPts of disrupted locations  
4: Ci = { }→ an empty cluster  
5: for each n ∈ N do:  
6: mark n as visited  
7: Nε(n) = {m|d(n, m) ≤ ε } ∪ {n}

8: if |Nε(n)| < MinPts do:  
9: mark n as NOISE  
10: else: 
11: Open Cias the next cluster  
12: Ci←n  
13: for each disrupted location m ∈ N in Nε(n) do:  
14: if m is not visited do:  
15: mark m as visited  
16: Nε(m) = {h|d(m, h) ≤ ε } ∪ {m}

17: if |Nε(m) | ≥ MinPts do:  
18: Nε(n)←Nε(n) ∪ Nε(m)

19: if m is not a member of any cluster do:  
20: Ci←m  

21: for each cluster, Ci ∈ DBSCAN(G =

(

N, Ael

)

, L ), do  

22: ICi =
∑

(h,j)∈Ci

fhjt=0

uhjtd 

(The aggregate importance measure of disrupted components in each cluster)  

23: DCi =

∑
v∈NA’ ,v≈(h,j),(h,j)∈Ci

∑
o∈ND

d(lv , lo)

⃒
⃒
⃒
⃒ND

⃒
⃒
⃒
⃒ ×

⃒
⃒
⃒
⃒
⃒
NA’

el

⃒
⃒
⃒
⃒
⃒

(The average distance of each cluster from depots o ∈ ND)  

24: ITotal
Ci

=
ICi

DCi 

(The priority index associated with each cluster Ci)  

25: end for 
26: Sort clusters by DCi in non-dicreasing order and put them in a list of listsDsort  

27: Add Eq. (12) to the formulation and solve the relaxed model 
28: Represent the output of the relaxed model as: 

29: A =
{

i : [γkit , k, t]
⃒
⃒
⃒γkit = αkit −pki + 1, αkit = 1, k = 1, ⋯, |K|, i ∈ NA’ , t = 1, ⋯, T}

A includes the disrupted locations, their corresponding No. of assigned crews, k, and the time their restoration time 
begins, t  

30: L= {k : i|k = 1, ⋯, |K|, i ∈ ND} where L is the last updated location of each crew  

31: c =

D1
⋮

D⃒
⃒
⃒ND

⃒
⃒
⃒

1
⋮

|NA’ |

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cD1D1

⋮
⋯
⋱

cD1D⃒
⃒
⃒ND

⃒
⃒
⃒

⋮

cD11
⋮

⋯
⋱

cD1 |NA’ |

⋮

cD1D⃒
⃒
⃒ND

⃒
⃒
⃒

c1D1

⋯
⋯

cD1D⃒
⃒
⃒ND

⃒
⃒
⃒

c1D⃒
⃒
⃒ND

⃒
⃒
⃒

cD⃒
⃒
⃒ND

⃒
⃒
⃒

1

c11

⋯
⋯

cD⃒
⃒
⃒ND

⃒
⃒
⃒

|NA’ |

c1|NA’ |

⋮
c

|NA’ |D1

⋱
⋯

⋮
c

|NA’ |D⃒
⃒
⃒ND

⃒
⃒
⃒

⋮
c

|NA’ |1

⋱
⋯

⋮
c

|NA’ |D⃒
⃒
⃒ND

⃒
⃒
⃒

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Dii ∈ ND is the index of depots from where the crews start their routes  
|K| is the total number of crews  
c is the traveling time between each pair of location in NA’ ∪ ND.  

Min Distance-Earliest Release Procedure 
32: Lidle← Lidle⫅L default dictionary of the location of idle crews  
33: Lbusy←Lbusy⫅L default dictionary of the location of busy crews  

Lidle←Lidle⫅L default dictionary of the location of idle crews  
34: Λ←{i :

[
Ii, B i, F i, Ki

]⃒
⃒i ∈ NA’ , the time the process Ii = starts, B i = proceeds, F i = ends, Ki =

number of assigned crews}
35: H ← default list of lists with 1, ⋯, |K| lists each H k = {hkl|the lth node in the schedule of crew k}

36: Temp ← empty dictionary  
37: Sort γkijtbased on t in non-increasing order and update array A  

38: Lidle←L  
39: Lbusy←L −Lidle  

40: K ←|Lidle|

41: while A ∕= ∅ do  
42: while Lidle ∕= ∅ do  

43: Find the nextl where 
⃒
⃒
⃒
⃒Lidle

⃒
⃒
⃒
⃒ ≥ A[l][1]

44: for k = 1, ⋯, A[l][1] do  
45: Finds the next crew with min

j∈Lidle [κ]

F j + cj,list(A.keys())[l]

46: if k = 1 do  
47: Ki←1  

(continued on next page) 
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(continued ) 

48: H κ←i  
49: Ii←F j + cji  

50: B i←pki  
51: F i←Ii + pki  

52: Lbusy←Lbusy + nextcrew: i  
53: Lidle←Lidle −nextcrew: i  
54: else 
55: I temp←F j + cji  

Elimination Procedure 
56: if I temp < F i do  
57: Ki←1+Ki  

58: H κ←i  

59: B i←I temp −Ii +

[(
F i − I temp

)
λiKi−1

λiKi

]

60: F i←I temp +

[(
F i − I temp

)
λiKi −1

λiKi

]

61: Lbusy←Lbusy −nextcrew: i  
62: Lidle←Lidle −nextcrew: i  
63: end if 
64: end if 
65: end for 

66: Λ
[
i
]
← [Ii, B i, F i, Ki]  

67: Temp ← Temp −Temp[i]
68: A←A −A[l]
69: end while 

70: Lidle←Λ[ argmin
i∈Λ.keys( )

Λ
[
i
]
[2]][3]

71: Output Completed dictionaries: Λ, and H (Shown in Table 2)    

B.1. Heuristic Algorithm for Restoration Crew Routing Problem 

Algorithm 2. (Heuristic Algorithm for Restoration Crew Routing Problem)   

Input: B, F , P, and the solution of Algorithm 1  
1: Apply the Shorten Routes procedure ∀k ∈ K.  
2: Apply the Change Routes procedure ∀k ∈ K.  
3: Apply the Add Crew procedure for utmost ∀k ∈ K.  

(continued on next page) 

Table C1 
The original restoration routing problem solution for the power network in 
Shelby County, TN.  

Ins. l (Number of disrupted links)  |K| Original restoration routing problem 

CPU Gap(%) T 

1 M6 (10)  2 8.1 0.07 57 
2 3 9.77 0.03 49 
3 4 354 0.01 153 
4 5 3600 0.03 129 
5 M7 (15)  2 3600 0.3 78 
6 3 3600 0.6 58 
7 4 3600 3 120 
8 5 3600 3 138 
9 M8 (28)  2 3600 3.5 137 
10 3 3600 2.5 96 
11 4 3600 3 87 
12 5 3600 2.7 61 
13 6 3600 4.14 166 
14 7 3600 12.1 191 
15 M9 (30)  2 3600 12.03 184 
16 3 3600 7.76 180 
17 4 3600 18.31 196 
18 5 3600 7.3 187 
19 6 3600 3 160 
20 7 3600 19.1 171  
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(continued ) 

4: Apply the Remove Crew procedure ∀k ∈ K  
5: any of Shorten Routes, Add Crew, and Remove Crew, Change Routes is applicable for the current solution. 

If No: the current solution is the output of the Heuristic Algorithm 
If Yes: check the application of at least one of steps 1,2,3, and 4 to provide a better upper bound for the current solution 

7: Repeat step 5.   

Appendix C 

See Tables C1-C3. 

Table C2 
The original restoration routing problem solution for the water network in 
Shelby County, TN.  

Ins. l (Number of disrupted links)  |K| Original model 

CPU Gap(%) T 

21 M6 (10)  2 3600 2.45 220 
22 3 3600 2.48 137 
23 4 3600 1.2 166 
24 5 3600 3.28 208/284 
25 6 3600 2.42 89/101 
26 7 3600 1.67 193/213 
27 M7 (15)  2 3600 10.7 247 
28 3 3600 11.3 211 
29 4 3600 9.6 203 
30 5 3600 10 184 
31 M8 (28)  2 3600 9.5 252 
32 3 3600 10.1 222/252 
33 4 3600 – – 
34 5 3600 – – 
35 6 3600 13 390 
36 7 3600 14.1 381 
37 M9 (30)  2 3600 10.9 255 
38 3 3600 9.3 219 
39 4 3600 – – 
40 5 3600 – – 
41 6 3600 – – 
42 7 3600 – –  

Table C3 
The original restoration routing problem solution for the gas network in Shelby 
County, TN.  

Ins. l (Number of disrupted links)  |K| Original model 

CPU Gap (%) T  

43 M6 (3)  2 8.1 0.07 57 
44 3 9.77 0.03 49 
45 M7 (5)  2 354 0.01 153 
46 3 3600 0.03 129 
47 4 3600 0.3 78 
48 5 3600 0.6 58 
49 M8 (8)  2 3600 3 120 
50 3 3600 3 138 
51 4 3600 3.5 137 
52 5 3600 2.5 96 
53 6 3600 3 87 
54 7 3600 2.7 61 
55 M9 (10)  2 3600 4.14 166 
56 3 3600 12.1 191 
57 4 3600 12.03 184 
58 5 3600 7.76 180 
59 6 3600 18.31 196 
60 7 3600 7.3 187  
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Su, Z., Jamshidi, A., Núñez, A., Baldi, S., & De Schutter, B. (2019). Integrated condition- 
based track maintenance planning and crew scheduling of railway networks. 
Transportation Research Part C: Emerging Technologies, 105, 359–384. 

Tan, Y., Qiu, F., Das, A. K., Kirschen, D. S., Arabshahi, P., & Wang, J. (2019). Scheduling 
post-disaster repairs in electricity distribution networks. IEEE Transactions on Power 
Systems, 34(4), 2611–2621. 

Vugrin, E. D., & Camphouse, R. C. (2011). Infrastructure resilience assessment through 
control design. International Journal of Critical Infrastructure, 7(3), 240–260. 

N. Morshedlou et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0360-8352(21)00530-1/h0005
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0005
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0005
http://www.infrastructurereportcard.org/oklahoma/oklahoma-overview/
http://www.infrastructurereportcard.org/oklahoma/oklahoma-overview/
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0015
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0015
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0015
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0020
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0020
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0020
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0025
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0025
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0025
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0030
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0030
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0035
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0035
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0035
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0040
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0040
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0040
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0045
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0045
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0050
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0050
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0055
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0055
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0055
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0060
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0060
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0065
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0065
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0065
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0070
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0070
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0075
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0075
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0075
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0080
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0080
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0085
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0085
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0085
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0085
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0090
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0090
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0090
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0095
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0095
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0095
https://doi.org/10.1016/j.ress.2020.106907
https://doi.org/10.1016/j.ress.2020.106907
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0105
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0105
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0105
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0110
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0110
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0110
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0115
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0115
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0115
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0120
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0120
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0120
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0125
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0125
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0125
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0130
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0130
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0135
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0135
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0135
https://doi.org/10.1016/j.ijpe.2019.107529
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0145
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0145
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0150
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0150
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0150
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0165
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0165
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0165
https://doi.org/10.1016/j.cor.2020.104935
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0170
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0170
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0175
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0175
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0180
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0180
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0180
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0185
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0185
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0185
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0190
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0190
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0190
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0195
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0195
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0195
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0200
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0200
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0200
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0205
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0205
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0205
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0210
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0210
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0210
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0215
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0215
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0215
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0220
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0220
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0225
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0225
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0225
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0230
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0230
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0230
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0235
http://refhub.elsevier.com/S0360-8352(21)00530-1/h0235

	A heuristic approach to an interdependent restoration planning and crew routing problem
	1 Introduction
	2 Methodological background
	3 Problem formulation
	3.1 Mixed linear integer programming formulation

	4 Solution approach
	4.1 Discussion of DBSCAN-based Mapping and solution Algorithm
	4.2 A heuristic for the restorative capacity routing problem

	5 Illustrative examples: power, water, and gas networks
	5.1 Empirical observations
	5.2 Computational results for heuristic approach

	6 Concluding remarks
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Declaration of Competing Interest
	A.1 Notations
	A.2 Dynamic restoration process
	A.3 Mathematical model

	Appendix B A.3 Mathematical model
	B.1 DBSCAN-based Mapping and Solution Algorithm
	B.1 Heuristic Algorithm for Restoration Crew Routing Problem

	Appendix C B.1 Heuristic Algorithm for Restoration Crew Routing Problem
	References


