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ABSTRACT

Network-based systems widely appear in different service, community, industrial, and economic systems such as
electric power, water supply, transportation, and telecommunication networks. Due to the significant role of such
systems in society, it is essential to have an effective plan to enhance the resilience of infrastructure networks
against disruption (e.g., natural disasters, malevolent attacks, or operational failures). In relation to the concept
of resilience, two relevant questions arise: (i) how does performance degrade after a disruption, or what is the
vulnerability of the system? and (ii) how rapid does the disrupted system return to the desired performance level,
or how can we characterize the system’s recoverability? To enhance the resilience of a system against disruption,
we address simultaneous actions of vulnerability reduction and recoverability enhancement through interdiction
model, particularly defender-attacker-defender (DAD) model. However, the proposed model is computationally
challenging to solve. To deal with this issue, we design a decomposition-based solution algorithm as a general
framework to optimally solve tri-level DAD models in more efficiently. The proposed solution technique is
demonstrated with the existing DAD model, namely a tri-level protection-interdiction-restoration model. To
define the critical components subject to protection and disruption, an efficient clustering technique is applied
which results in generating three sets of candidate components based on three centrality measures. We represent
an illustrative case study based on the system of interdependent infrastructure networks in Shelby County, TN,
for which we solve the model and assess the computational results for each set of candidate components. The
results indicate that the proposed solution algorithm substantially outperforms the traditional covering
decomposition method with regard to computational complexity, particularly for the higher budget scenarios.
Finally, we compare and analyze the results of the existing interdiction model, the protection-interdiction-
restoration formulation represented by M-I, with a new protection-interdiction-counteraction model, denoted
by M-II, in which the restoration level is not considered. Results suggest that although M-I is a comprehensive
interdiction model relative to M-II, it suffers substantially from computational complexity. Therefore, there exists
a tradeoff between employing a more comprehensive model with higher computational complexity and
neglecting the recovery process with the interdiction model.

1. Introduction

networks to function properly. Disruptions can be made worse when
multiple networks depend on each other (Chang, McDaniels, Mikawoz,

The occurrence of large-scale disruptions to critical infrastructure
networks (e.g., electric power, water supply, transportation) have
revealed how these systems are routinely under a host of threats, from
natural disasters to malevolent attacks to operational failure (Directive,
2003). In addition, infrastructure networks are not the only networks
that exist. Disruptions to infrastructure networks can impact a variety of
other networks, including, in particular, the community networks and
service networks that interact with and depend on infrastructure
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& Peterson, 2007; Mendonca & Wallace, 2006; Nurre, Cavdaroglu,
Mitchell, Sharkey, & Wallace, 2012; Rourke, 2006; Wallace, Mendonca,
Lee, & Mitchell, 2001). As such, there exists a continued interest in
critical infrastructure reliability and sustainability problems. Where
previous work in planning for disruptions to critical infrastructure net-
works emphasized prevention and protection, such planning now more
broadly captures the ability of infrastructure networks to withstand a
disruption and recovery timely from it. The ability of a system to
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withstand a disruption, adapt to, and recover from it is generally
referred to as resilience (Aven, 2011; Ayyub, 2014; Haimes, 2009; Hos-
seini, Barker, & Ramirez-Marquez, 2016). With this definition, resilience
is quantified with two primary measures (i) vulnerability: the drop in the
system performance following a disruptive event, and (ii) recoverability:
the restoration speed of the disrupted system to the desired performance
level. In any networked system, the occurrence of a disruptive event (i.
e., disconnection of nodes, links, or both) due to a failure or a malevolent
action could affect the performance of the system. Fig. 1 (Barker,
Ramirez-Marquez, & Rocco, 2013) depicts system performance, ¢(t),
before and after a disruption, underlining vulnerability and recoverability
as two critical planning dimensions of resilience.

Prior studies have addressed (i) vulnerability optimization models
for protecting network components such that the effect of a disruption
are mitigated (McCarter, Barker, Johansson, & Ramirez-Marquez, 2018;
Ramirez-Marquez, Rocco, & Barker, 2017), and (ii) recovery optimiza-
tion models for determining both optimal recovery strategies and crew
assignment to different recovery tasks (e.g., Almoghathawi, Barker, &
Albert, 2019; Gomez, Gonzélez, Baroud, & Bedoya-Motta, 2019;
Gonzalez, Duenas-Osorio, Medaglia, & Sanchez-Silva, 2016; Gonzalez,
Duenas-Osorio, Sanchez-Silva, & Medaglia, 2016; Morshedlou,
Gonzalez, & Barker, 2018; Nurre et al., 2012; Sharkey et al., 2015).
However, resilience is thought of as the combination of reducing
vulnerability and enhancing recoverability. And there exist a few
research studies assessed the system resilience by simultaneously
considering pre-disruption and post-disruption resource allocation for
the system of interdependent networks. For example, Ghorbani-Renani,
Gonzalez, Barker, and Morshedlou (2020) addressed this by proposing a
study of resilience interdiction, developing a tri-level protection-inter-
diction-restoration model that considers (i) a protection level to make
decisions to minimize network vulnerability, (ii) an interdiction level to
identify and pursue the most effective disruptions, and (iii) a restoration
level to recover the network after the. This resilience interdiction model,
which falls into the class of defender-attacker-defender (DAD) models,
can be used to simultaneously determine (i) the optimal resource allo-
cation to fortify the network components, (ii) a set of most critical ele-
ments through the system, and (iii) the optimal work crew assignment to
rapidly recover the disrupted system.

However, the proposed DAD model is computationally challenging
to solve. To address this issue, in this study we design a new
decomposition-based solution algorithm as a general framework to
optimally solve tri-level DAD models more efficiently. The proposed
solution technique is demonstrated with an existing resilience inter-
diction model developed by Ghorbani-Renani et al. (2020), with which
we compare the efficiency of the proposed algorithm with the existing

@ (tp

Computers & Industrial Engineering 153 (2021) 107085

exact solution method (covering decomposition method). However, due
to the general features of the tri-level DAD models, the computational
complexity of the algorithm grows exponentially in large-sized prob-
lems. Along with other factors (e.g., the complexity of the formulation
itself), the run time of the DAD models are highly sensitive to the
number of candidate components that can be interdicted and protected.
To deal with this issue, we generate different sets of candidate compo-
nents based on different centrality measures for disruption and protec-
tion. To derive these sets such that they represent a variety of different
components, we apply an agglomerative hierarchical clustering tech-
nique. In addition, we compare and analyze the results of the existing
resilience interdiction model (referring to Ghorbani-Renani et al.
(2020)) with the protection-interdiction-counteraction model in which
the restoration level is not considered. Note that terms related to the
disruptive agent such as attacker and interdictor are used interchange-
ably through this paper but could otherwise represent a worst-case
natural disaster or failure (Smith & Lim, 2008). Likewise, both labels
of protector and defender refer to the defending agent.

In summary, the main contribution of this study is to develop a novel
solution algorithm as a general framework to optimally solve a wide
variety of interdiction models (particularly DAD optimization). The
proposed solution approach is based on iteratively solving two bi-level
formulations derived from the original tri-level DAD model. The pro-
posed approach substantially outperforms the existing exact solution
technique, the covering decomposition method, with regard to compu-
tational complexity. We propose an efficient clustering technique for
identifying the set of critical components in the network and apply it on
the system of interdependent infrastructure networks in Shelby County,
TN as the case study. Furthermore, we analyze a new tri-level DAD
formulation in which the restoration of interdicted (disrupted) compo-
nents is not considered in the subsequent defender, and we compare the
results with the existing resilience interdiction model proposed by
Ghorbani-Renani et al. (2020).

The rest of the paper is structured as follows. In Section 2, a literature
review on interdiction models is performed. In Section 3, the general
framework of the tri-level formulation developed by Ghorbani-Renani
et al. (2020) is discussed in detail. Then, the proposed solution approach
for solving the DAD models is represented. An illustrative example is
provided in Section 4, based on the system of interdependent infra-
structure networks in Shelby County, TN. We applied the proposed so-
lution technique to the existing interdiction model developed by
Ghorbani-Renani et al. (2020) and performed a comparative analysis
with respect to the previously published solution method (covering
decomposition method). Additionally, we introduce an updated tri-level
protection-interdiction-counteraction formulation to assess the
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Fig. 1. System performance trajectory, ¢(t), following a disruptive event, adapted from Barker et al. (2013).
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resilience of the system under two DAD models, for which the proposed
solution technique is also used. Finally, Section 5 provides concluding
remarks and future work.

2. Previous work on interdiction models

Network-based systems widely appear in different service, commu-
nity, industrial, and economic systems such as electric power, water
supply, transportation, and telecommunication networks. Due to the
significant role of such systems in society, it is essential to have an
effective plan to enhance the resilience of infrastructure networks
against disruption (e.g., natural disasters, malevolent attacks, or oper-
ational failures) (Nurre et al., 2012; Sadeghi, Seifi, & Azizi, 2017).

The area of network interdiction has received attention for several
decades because of its widespread applications in different domains.
Table 1 provides a brief (and non-exhaustive) summary of previous
research work on different applications of interdiction models. Stack-
elberg (1952) formulated the basic interdiction problem as a Stackelberg
game implying a sequential game between two opposing forces known
as (i) the defender and (ii) the attacker, who are in a warlike conflict
(Motto, Arroyo, & Galiana, 2005; Salmeron et al., 2004, 2009). Broadly,
a Stackelberg game describes situations where the defender attempts to
maintain some level of the network performance (e.g., maximizing flow,
meeting demand at minimum cost, finding the shortest path) and an
intelligent attacker, on the other hand, invests some amount of resources
to disrupt or interdict the network (e.g., impeding some links, reducing
the network capacity, increasing the traversing time and cost) (Altner
et al., 2010; Fulkerson & Harding, 1977; Wollmer, 1964). Generally,
such a formulation tends to be bi-level problem, considering attacker
and defender actions in the form of max-min or min-max problems,
which are referred to as attacker-defender (AD) models in the literature
(Israeli & Wood, 2002).

Wollmer (1964) originally applied the interdiction model to a
network flow problem by removing links in which the maximum flow
between source and sink nodes is minimized. Thereafter, Israeli and
Wood (2002) applied the network interdiction problem to maximize the
shortest path between source and sink nodes in a directed network with
a given interdiction resource. Rad and Kakhki (2013) studied a dynamic
version of the network flow interdiction problem where the defender
maximizes the flow throughout the network in a certain time period, and
an attacker, on the other hand, removes links to minimize the maximum
flow within the same period. Salmeron, Wood, and Baldick (2004)

Table 1
Summary of different applications of interdiction model.

Research work Application

Ghare, Montgomery, and Turner (1971), McMasters
and Mustin (1970), Pan, Charlton, and Morton
(2003), and Patterson and Apostolakis (2007)

Alguacil, Delgadillo, and Arroyo (2014), Davarikia

Defense and military
applications

Power network

and Barati (2018), Lai, Illindala, and Subramaniam vulnerability
(2019), Lin and Bie (2018), Salmeron et al. (2004,
2009), Wu and Conejo (2017), Yao et al. (2007),
and Yuan et al. (2014)

Alderson et al. (2011), Brown et al. (2006), Ouyang
(2017), and Ouyang and Fang (2017)

Fathollahi-Fard, Hajiaghaei-Keshteli, and Mirjalili
(2018) and Fathollahi Fard and Hajaghaei-Keshteli
(2018)

Akbari-Jafarabadia, Tavakkoli-Moghaddam,
Mahmoodjanloo, and Rahimi (2016,Akbari-
Jafarabadi et al., 2017), Liberatore, Scaparra, and
Daskin (2011), Losada, Scaparra, and O’Hanley
(2012), and Mohammad, Fard, and Hajiaghaei-
keshteli (2018)

Baycik, Sharkey, and Rainwater (2018) and Nandi,
Medal, and Vadlamani (2016)

Brown, Carlyle, Harney, Skroch, and Wood (2009)

Borndorfer, Sagnol, and Schwartz (2016)

Critical infrastructure
network resilience
Supply chain resilience

Facility location problem

Cyber security

Project management
Toll control
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developed power grid interdiction model through the bi-level mathe-
matical formulation to identify critical system components with given
interdiction budget in which the outage of these components would
result in the maximum disruption to the system. Later, the AD model was
extended to defender-attacker-defender (DAD) model incorporating one
more operator action to determine the best pre-disruption defensive
strategy against the attacker’s decision (Alderson, Brown, Carlyle, &
Wood, 2011; Brown, Carlyle, & Wood, 2008). In this new model, the first
defender represents the system planner seeking to determine the best
protection plan against the most destructive attacker decision. By
introducing an additional level of interaction between the defender and
the attacker, the DAD model outperforms the AD formulation since the
system planner is able to (i) select the best protection strategy and (ii)
assess pre-disruption strategies by altering the defensive budget
(Alguacil et al., 2014; Brown, Carlyle, Salmerén, & Wood, 2006; Yao,
Edmunds, Papageorgiou, & Alvarez, 2007; Yuan et al., 2016). Recently,
interdiction models have begun to address both vulnerability reduction
and recoverability enhancement to prepare for and react to an adver-
sarial attack. Few works have incorporated the recovery process of
damaged components into a DAD formulation. For example, Ouyang
and Fang (2017) considered the repair planning of disrupted compo-
nents with given recovery resources in a DAD model. Prior works
generally considered the recovery duration of disrupted components as
parameters in the restoration process (Almoghathawi et al., 2019; Nurre
et al., 2012; Ouyang & Fang, 2017). However, in the resilience inter-
diction model proposed by Ghorbani-Renani et al. (2020), the time
required to repair the damaged components is not fixed and depends on
(i) the performance rate of the work crew, and (ii) the proportion of the
disruption (in the case of partial disruption). In addition, restoration
decision variables are time-indexed representing the schedule of work
crews through the recovery process.

Interdiction models or broadly multi-level problems are challenging
to solve. Therefore, considering the widespread applications of such
models, the development of efficient solution methods has received
attention in recent years. In this paper, we study the existing interdiction
model developed by Ghorbani-Renani et al. (2020) and solve it to
optimality by a new decomposition-based solution approach such that
the final solution is found by iteratively solving two bi-level formula-
tions derived from the original tri-level model. In addition, to deal with
the complexity of the model and the difficulty of considering all com-
ponents as possibilities for interdiction and protection, different sets of
candidate components are generated based on different topological
characteristics. The results are discussed for each set of candidate nodes.

3. Decomposition-based solution approach

For the illustrative purposes, the proposed solution technique is
demonstrated with the existing resilience interdiction model proposed
by Ghorbani-Renani et al. (2020), namely a tri-level protection-inter-
diction-restoration model, denoted by M-1. As such, we briefly introduce
a generalized depiction of M-I. Then, the proposed decomposition-based
solution approach is discussed in detail to solve M-I to optimality.

3.1. Tri-level formulation: protection-interdiction-restoration model (M-I)

Ghorbani-Renani et al. (2020) studied the resilience control
(enhancement) of interdependent infrastructure networks (e.g., electric
power, water supply, transportation) against adversaries using an
interdiction model. This problem was formulated as a tri-level DAD
formulation with a corresponding hierarchy of decisions, referred to as a
protection-interdiction-restoration model. This model includes a series
of nested optimization formulations controlled by a set of constraints
and decision variables in which the decision made at the top level affect
the decisions of other levels. The proposed resilience interdiction model
(M-I) aims to optimize the restoration of a system of interdependent
networks by minimizing the cumulative unmet demand over time by
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sequentially performing three levels, as depicted in Fig. 2: (i) the pro-
tection level to make the initial investment to minimize system
vulnerability (i.e., initial drop in the system performance), (ii) the
interdiction level to identify the most effective disruption, and (iii) the
restoration level to recover the system after the disruption. The first
level, or the protection level, allocates resources (how much and
where?) to harden the networks to minimize system vulnerability prior
to a disruption. As the defense strategy, protection is accomplished by
increasing the capacity of the network component or adding redundancy
to it. Through the second level, an intelligent attacker, who has complete
information about the network, intentionally interdicts the system. The
interdiction level, therefore, allocates resources to maximize the effects
of the disruption. This level does not necessarily require a human
“attacker” and could represent a worst-case natural disaster. Note that
the disruption (interdiction) takes the form of a reduction in the capacity
of the network components (either nodes or links). Finally, the network
flow problem and repair sequence of interdicted components is provided
in the third level, or the restoration level. The third level minimizes the
long-term effect after the disruption through network component re-
covery. The important parameter in the third level is the time to achieve
the total system recovery. The definition of the model sets, parameters,
and decision variables of the first and second levels of M-I are repre-
sented subsequently.

M-I deals with a system of interdependent networks defined by a set
of nodes connected with a set of links. In M-I, it is assumed that each
network is responsible for providing a specific type of service (a single
commodity) across the network and satisfies the demand nodes of the
network (e.g., gas network provides gas service, water supply provides
water requirements). M-I assumes that infrastructure networks follow
the general network flow problem. To briefly describe the general
formulation of M-I, assume a set K of infrastructure networks. Network
k € K is represented by Gk = (Nk A¥), where N¥ is the set of nodes
indexed by i € N, and A¥ is the set of links indexed by (i,j) € A* that
connect nodes. Nodes can be supply nodes (NXCN), demand nodes
(NK CN¥), and transshipment nodes (NSCN¥\{N% Nk }) such that N* N
Nk =@. Let S{.‘ and d{.‘ denote amount of supply and demand in nodes i €

Nk and i € N¥, respectively. Sets N"*CN* and A*cAF are candidate
nodes and links, respectively, in network k € K, that can be disrupted or
protected in the system of interdependent networks. For every node

i€ Nk, binary variables y¥ and z¥ represent the first defender and
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Fig. 2. Tri-level protection-interdiction-restoration process.
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attacker actions, respectively. Likewise, binary variables yfj and zg
represent the first defender and attacker actions for every link
(i,j) € A’%. There are known cardinality budgets available for protecting
and for disrupting the components denoted by parameters Bp and By,
respectively, suggesting that the protector could protect up to Bp com-
ponents and the attacker could interdict up to B; components in the

network. Also, binary variables F¥ and Fg show the functionality status

for every nodei € N'* and link (ij) € A’k, respectively. There is a known
flow capacity for every link (i,j) € A represented by u{; and decision

variable x{j shows flow through the associated link. Parameters 7%

represent the demand should be met at every node i € N*, where deci-
sion variables ¥ denote actual demand being met at node i € N©. Index
t € T provides the set of available time periods. The time unit (interval)
of the model is adjusted by the decision maker. Accordingly, the time
horizon of model is set based on the time unit (interval) selected. For
example, if the time interval is considered to be one working shift, the
time horizon of the model could be setto T = {1}, T ={1,2,---,5}, and
T=1{1,2,---,23} for one work day, one work week, and one work
month, respectively. Since time is considered to be discrete in M-I, the
required time units for restoring the disrupted components are rounded
up to the nearest integer value for the work crew assignment as repre-
sented by constraints (A24), (A25), (A27), and (A28) in the appendix.
Clearly, the smaller (more granular) the time interval that is selected,
the higher the resulting resolution. However, as the time interval be-
comes smaller, the computational complexity of the algorithm grows.
Demand nodes can be ranked with the aim of emphasizing on their
importance in a network. Therefore, parameters w;; show the weight of
demand node i € N at time t € T, which can be adjusted based on
different aspects including locations of the demand nodes (e.g., near
hospitals, shelters, and populated or more vulnerable areas). M-I ac-
counts for the physical interdependency of networks where the func-
tionality of a set of nodes in one or more networks enable the
functionality of a node in another network due to linkages. ¥ represents

interdependency set among networks such that ((i, k), (i, E) ) € ¥ de-

notes node i € N¥ in network k € K physically depends on node i € N in
network k € K to be operational, where N "\N¢ = @, Ak N Ak = gand vV
kkecK:k#k

To demonstrate various steps of the proposed solution algorithm, we
represent an abstract form of M-I as shown by Egs. (1)—(11). The tri-level
DAD model (M-I) aims to deliver the cumulative weighted fraction of
unmet demand over the planning horizon, such that this value is mini-
mized by the first defender, maximized by the attacker, and minimized
by the subsequent defender, as shown in Egs. (1) and (2). Constraints (3)
and (4) represent the budget restrictions for the first defender and
attacker decisions, respectively. Constraints (5)-(8) show the nature of
the decision variables for the first and second levels of M-I. Constraints
(9) and (10) deliver the functionality status of every node and link,
respectively. Set of constraints (11) corresponds to the recovery process
in M-I to plan the restoration of disrupted components in which to return
the system of networks to a stable operation as rapidly as possible. For
more details of this set of constraints, we refer the reader to the ap-
pendix, which includes the complete definition of the model parameters
and decision variables, as well as the complete form of M-I. Note that
although parameter M in constraints (A23), (A26), (A29), (A30), (A34),
and (A35) represents a big number, it need be only greater than the
maximum required time for restoring the disrupted components.

D ker Dient Wil
() =1 — | kK ient il VteT 1
Euat) (Zkel{ZieN‘wﬁ‘rlfic w
Sy = min ma Xq.ﬂlfxlﬁ;ngl(t) ®
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DDA DV <B ©)

kekK jenk keK (i jea

IBEDIDIEEL @
keK jeNk keK (i j)ea*

ye{0,1} VkeKk,VieN* (5)
yi€{0,1} VkeK,V(ij) e A* (6)
#e{0,1} VkeK,VieN* )
2 €{0,1} VkeK,V(ij)eA* (8
l+yf—z >F VkeKVieN* 9
L+y —2 > Fy Vke K, V(i,j) €A™ 10)
Constraints(A11) — (A44) an

The tri-level formulation is an extension of the bi-level model
comprising one more operator/defender action. This type of model, or
broadly multi-level problems, are nonconvex. Even in their simplest
form, they are challenging to solve (Bard, 1991; Hansen, Jaumard, &
Savard, 1992; Wood, 1993). Solution methods developed to solve such
complex problems can be categorized into reformulation and duality
(Alguacil et al., 2014; Saharidis, Conejo, & Kozanidis, 2013), decom-
position (Yao et al., 2007; Yuan, Zhao, & Zeng, 2014), and heuristic-
based approaches (Bier, Gratz, Haphuriwat, Magua, & Wierzbicki,
2007; Salmeron et al., 2004). Typically, exact solution methods for
solving multi-level models have various limitations from the modeling
point of view to computational complexity. In this regard, hybrid al-
gorithms incorporating exact solution algorithm and metaheuristics
method have been designed to cope with challenges related to multi-
level models (Akbari-Jafarabadi, Tavakkoli-Moghaddam, Mahmood-
janloo, & Rahimi, 2017). For example, Mahmoodjanloo, Parvasi, and
Ramezanian (2016) developed a hybrid solution approach consisting of
the genetic algorithm and enumeration method to solve the proposed
facility interdiction model. Other metaheuristic approaches have been
also applied to tackle multi-level models such as simulated annealing
(Parvasi et al., 2017) and tabu search (Aksen & Aras, 2012).

In this study, we designed a new exact solution algorithm, based on
decomposing the original tri-level model into two bi-level formulations,
namely (i) the master problem, and (ii) the subproblem, which provide
the lower and upper bounds for the model, respectively. Fig. 3 shows the
general framework of decomposing the tri-level protection-interdiction-
restoration formulation, denoted by M-I, into the master problem and
subproblem. By iteratively solving the two constructed problems, the
gap between two bounds is reduced until the final solution is found. The

details of constructing two bi-level problems are described
subsequently.
Tri-level
protection-interdiction-restoration
Fixing interdiction Fixing protection
decision variables decision variables

Bi-level
interdiction-restoration
(subproblem)

Bi-level
protection-restoration
(master problem)

Fig. 3. Decomposition framework of the tri-level resilience interdiction model.
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3.2. Master problem

As depicted in Fig. 3, the master-problem is constructed by fixing the
attacker decision variables in the original model, z<Z, where z is the
attacker decision. As such, the tri-level DAD model is transformed to the
bi-level min-min formulation as represented in constraints (12)-(18). By
solving the mater problem, the protection plan is determined, y<Yy,
which will be the input of the subproblem (likewise, y is the protector
decision). Since the master problem is a relaxed problem in comparison
with the original formulation, it provides a lower bound value for the
model.

min min Z{M,I(t) 12)

y nxFap T

DI D <B ek

keK jeNk keK (i j)ea*

¥ e{0,1} VkeKk,VieN* a9
yi €{0,1} Vk €K, V(i,j) € A" 15
1+ =2 > F VkeK,VieN* (16)
L4k =25 > F ke K V(i,j) e A a7
Constraints(A11) — (A44) 18)
Theorem 1. The master problem provides a valid lower bound for the tri-

level model (M-I).

Proof. By fixing the attacker decision variables (2) through the orig-
inal model, the master problem, which is a relaxed problem in com-
parison with the original tri-level DAD formulation, is constructed. Since
(i) the attacker aims to maximize the model and (ii) only a subset of all
possible attacker plans are considered, the master problem provides a
valid lower bound value for the entire tri-level DAD model.

3.3. Subproblem

On the other hand, by fixing the protector decision variables found
through the master problem, y<y, the subproblem is constructed as the
bi-level max-min formulation including attacker and second defender
(restoration) levels as represent in constraints (19)-(25). Note that the
subproblem is also a relaxed problem, and it provides an upper bound
value for the model. By solving the subproblem, the interdiction plan is
determined, z+Z%, which will be the input of the master problem.

max min ZCM,I(I) 19

z nxFap T

TYELY Y A <p 20)

keK jenk keK (ij)ea

#e{0,1} VkeK,VieN* (21)
2 €{0,1} VkeK,V(ij)eA* (22)
1+ - > F° vVkeKk,VieN* (23)
1455 -2 > Fb Vke KV(i,j) € A 24)
Constraints(A11) — (A44) (25)

Theorem 2. The subproblem provides a valid upper bound for the tri-level
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DAD model (M-I).

Proof. By fixing the protector decision variables (y) through the
original model, the subproblem, which is a relaxed problem in com-
parison with the original tri-level DAD formulation, is constructed. Since
(i) the protector aims to minimize the model and (ii) only a subset of all
possible protector plans are considered, the subproblem provides a valid
upper bound value for the entire tri-level DAD model.

3.4. Decomposition approach

Note that both master problem and subproblem are bi-level formu-
lations that often cannot be solved directly with available optimization
solvers. Therefore, further manipulations are required to make them
generic optimization models (e.g., single level optimization formula-
tions). As such, we integrate Benders decomposition with set-covering
decomposition to tackle the master problem and subproblem, respec-
tively, such that the bi-level min-min model generated through the
master problem can be transformed to a single minimization formula-
tion by implementing Benders decomposition method, which can be
solvable directly using available optimization solvers. To implement
Benders decomposition method, we define a set of attack plans that are
indexed by the algorithm iteration. Subsequently, the new set of deci-
sion variables for the given attacker decision indexed by iteration and
their corresponding constraints are added to master problem at every
iteration. For more information about implementing Benders decom-
position, we refer the reader to Yuan et al. (2014) and Zeng and Zhao
(2013).

By solving the master problem, the best solution for the defender
decision variables (y) are found which will be the input for the sub-
problem. Since the attacker decision variables are binary in this
formulation, the subproblem (the bi-level max-min formulation) can be
solved using the set-covering decomposition approach (Israeli & Wood,
2002), delivering the best attacker decision (z). Note that converting the
two levels of the subproblem into a single level by taking the dual of the
inner level is not applicable to this formulation since the restoration
level is a mixed integer problem and Karush-Kuhn-Tucker optimality
conditions are not satisfied in this situation (Israeli & Wood, 2002;
Wood, 1993). In addition, the covering decomposition algorithm, which
tackles both the master problem and subproblem using the set-covering
decomposition approach, is not efficient enough since it is significantly
time-consuming (Yuan et al., 2014). To implement the set-covering
approach for solving the subproblem, an inequality is added to the
second level of the interdiction model, which is a feasibility seeking
problem. This inequality forces the attacker to find at least one
component to be interdicted while subject to the available budget. Note
that the generated inequality at each iteration is distinct from the pre-
vious inequalities. Therefore, due to the budget restriction for the
attacker, at one iteration, the interdiction model cannot satisfy all in-
equalities added to the model, and it becomes infeasible. The set
covering algorithm is then terminated with the optimal attack plan
which serves as the input to Benders decomposition algorithm. Since the
interdictor tends to maximize the objective value, the amount of
disruption imposed to the system, at each iteration of set covering al-
gorithm, the best solution is recorded by comparing the objective value
of the restoration level. Note that at this level, both protection and
interdiction decision variables are known, so the restoration level can be
solved directly since it is a single level optimization model. For more
information about implementing the set-covering algorithm, we refer
the reader to Israeli and Wood (2002).

The proposed solution algorithm finds the optimal solution in a finite
number of iterations, as at each iteration the subproblem introduces an
effective (optimal) attacker plan associated with a given protection
scenario, while the master problem keeps expanding with the corre-
sponding new attack scenarios and finds the best (optimal) associated
protection plan. Since the number of components that can be attacked is
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limited, attack scenarios satisfying the attacker budget are finite. Simi-
larly, the protection budget and the number of components that can be
protected are limited. By iteratively generating a new set of variables
and constraints and solving the updated master problem, eventually the
upper and lower bound values converge, and the optimal solution is
obtained. Additional details on the proof of convergence for iterative
algorithms of this nature can be found in Zeng and Zhao (2013). Fig. 4
represents the general framework of the proposed solution algorithm.

Based on the above discussion for solving the master problem and
subproblem, the pseudocode representing the implementation steps of
the solution algorithm is provided in Table 2. Note that ¢ is the solution
gap set by the decision maker as the stopping criterion of the algorithm.
LB, UB, objyp, and objg, refer to the lower bound, upper bound, master
problem (MP), and subproblem (SP) objective values, respectively. RL
refers to the restoration level, where its corresponding objective value is
represented by objg, , and IL represents the interdiction level, which is a
feasibility seeking problem in this algorithm. At each iteration of algo-
rithm, the attacker plan is distinguished from previous plans as it is
indexed by the iteration index represented by c (e.g., 2°) and fed into
master problem. Note that the master problem is updated at each iter-
ation by receiving the new set of attacker decisions generated by the
subproblem. Mentioned previously, the interdictor tends to find the
most destructive plan by considering the current protection decision.
Therefore P _° is responsible for keeping the best interdictor solution in
its record by comparing obj,, with the previous best objective value
(referring to steps 13 and 14). Finally, y* and 2" denote the best pro-
tection and interdiction decisions, respectively. Note that the algorithm
is initialized by the preliminary feasible solution z<0, meaning that no
components are interdicted at this step.

To deal with the computational complexity of the proposed tri-level
protection-interdiction-restoration model (M-I), we proposed a
decomposition-based solution algorithm to optimally solve it more
efficiently. However, due to the features of the model, the computational
complexity of the algorithm grows exponentially for large-sized prob-
lems. Along with other factors (e.g., the complexity of the formulation
itself), the run time of the proposed model is highly sensitive to the
number of candidate components that can be interdicted and protected.
By increasing the number of candidate components, possible combina-
tions for interdiction and protection grow exponentially, which results
in increasing computational complexity. To deal with this issue, we
generate different sets of candidate components based on different
centrality measures for disruption and protection However, generated
sets most likely include numerous similar components. To derive sets
such that they represent a variety of different components, we apply an
agglomerative hierarchical clustering technique (Murtagh, 1983; Mur-
tagh & Contreras, 2011). To implement this clustering method, a prox-
imity matrix, which represents the distances between each point, is

| Initialize algorithm |

!

->| Solve master problem

‘ Protection decision variables
are fixed (y « )

| Solve subproblem

Interdiction decision variables
are fixed (z « 2)

Stopping
criterion?

Optimal solution is returned
yeyi,zez)

Fig. 4. The general framework of the proposed solution algorithm.
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Table 2
The pseudocode of implementation steps of the solution algorithm.
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A’k) then:

Step 1 Initialization: LB « —oo, UB « 400, and Z2¢ « 0, P¢ « —ooinc « 0
Step2 | While Z=2 > ¢ do:
Step 3 Solve MP and obtain its value objyp and protection decision ¥
Step 4 V"« 9,LB < objyp,c—c+1
Step 5 If attacker budget is enough to interdict all components (N "y
Step 6 51
Step 7 Solve RL for objective value objg;
Step 8 P¢ « 0bjg,; and go to Step 15
Step 9 While IL is feasible do:
Step 10 Add the following inequality to IL:
Z Z zF + Z Z zfi 21
kEK jenr¥|zk=0 KEK  (i,peark|zfi=0
Step 11 Solve IL, obtam interdiction decmon Z
Step 12 Solve RL and obtain its value objg;
Step 13 If objp, > P€ then:
Step 14 2« 2 ,P° < objg,
Step 15 objsp « P¢
Step 16 UB < min{UB, objsp}
Step 17 Return z°¢
Step 18 Update MP by creating a new set of decision variables and constraints
Step 19 | z* « 2€
Step 20 | Return y*, z* (optimal solutions with objective value objsp)

required. At the beginning, each set is assigned to an individual cluster.
Then, the closest pair of clusters are merged, and this step is repeated
until only one cluster remains. Since the clusters are merged at each
step, this type of clustering is also known as additive hierarchical
clustering.

4. Experimental results

To study the efficient solvability of the proposed solution algorithm,
we apply this formulation to the interdependent system of water, gas,
and power networks in Shelby County, TN, USA, where a set of nodes in
the water network depends on the power network to be functional and
the power network is dependent on the water network for cooling and
emission control. This system of interdependent networks includes 125
nodes and 164 links as depicted in Fig. 5 for each network separately
(Gonzalez, Duenas-Osorio, & Sanchez-Silva, et al., 2016). Note that
descriptions of the test network are adapted from Hernandez-Fajardo
and Duenas-Osorio (2011) and Song and Ok (2010), which offer a more
in-depth discussion of their interconnectedness.

We implemented the solution algorithm in Python 3.6.5 with the
Gurobi optimizer 8.0.1 for the optimization problem. Computational
results were conducted on a 64-bit operating system, Intel® Core™ i7-
6700 CPU @ 3.40 GHz 3.41 GHz desktop computer. Note that the
convergence ratio of upper bound and lower bound (e.g., the stopping
criterion of the algorithm) is set to 0.01, e.g., ¢ = 0.01.

[ Gas service areas
Gas distribution stations
Gas pipelines

W Water service areas
Water distribution stations
Water pipelines

; I

036 12 18 24 30

e —— KT\
036 12 18 24 30

(b)

4.1. Model parameters

The importance weight wX can be adjusted by decision makers to
prioritize the demand satisfaction in some nodes relative to others at
time t. This prioritization affects the restoration process of the disrupted
network by forcing the model to satisfy the demand in high-ranked
nodes prior to others (e.g., hospitals, populated areas, or vulnerable
communities might have priority to other nodes in a network). In this
study, since we aim to analyze the results derived from different sets of
candidate nodes, equal weights are assigned to the demand nodes. We
consider equal value for the restoration rate of the components. Note
that these parameters can vary by the network as they are indexed by k.
In this study, the restoration rate for each component is assumed similar
regardless of the type of work crews available at each network. How-
and /15,
work crews available at each network. In this case study, we assume that
the time interval is one working shift which includes 8 h, and the time
horizon of the model is chosen to be one working month defined as 23
working shifts, T = {1, 2, ---, 23}. Different scenarios account for the
resource available for protector and interdictor (Bp and By) as discussed
in the computational results section.

ever, the restoration rates, AX can be also indexed by the type of

4.2. Set of components subject to protection or interdiction

For the experimental purposes, we assume that nodes are the only
components that can be either protected or disrupted. To define the

[ Tributary Areas

@ 12kV Substations
A 23KV Substations
+ Intersection Point
W Gate Stations
— Transmission Line

Fig. 5. Graphical illustration of the (a) water, (b) gas, and (c) power networks (adapted from Gonzdlez et al., 2016b)).
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critical nodes subject to protection and disruption, an efficient clustering
technique is applied in this case study which results in generating three
sets of candidate nodes based on three centrality measures. The details
of deriving the set of critical nodes (i.e., candidate nodes subject to
protection or disruption) are described subsequently.

To generate different sets of candidate nodes subject to protection or
disruption, N°¥, we explore five main centrality measures to rank nodes
based on these measures separately: Degree, Betweenness, Closeness,
Katz, PageRank, and Load centralities (Newman, 2018). Note that the
interdependency relationships among networks (e.g., water, gas, power
networks) are considered as links, so the three networks are merged and
viewed as a single system for calculating above mentioned centrality
measures. To choose sets of candidate nodes including the most different
nodes in compared to other sets, we assess the proportion of similar
nodes delivered by each centrality measure, as shown in Table 3. Note
that for each set, we select the top high-ranked 15 nodes based on their
ranking provided by every centrality measure, accounting for 25% of the
total number of nodes.

To select sets of candidate nodes that generate sufficient differences
in the makeup of those candidate sets, we apply an agglomerative hi-
erarchical clustering technique (Murtagh, 1983; Murtagh & Contreras,
2011). To apply this clustering method, a proximity matrix, which
represents the distances between each point, is found, as shown in
Table 4.

At the beginning, we assign each set to an individual cluster. Then,
we merge the closest pair of clusters and repeat this step until only one
cluster remains. Since we merge the clusters at each step, this type of
clustering is also known as additive hierarchical clustering. Fig. 6 shows
the dendrogram representing different clusters of candidate nodes based
on the proximity matrix. The dashed horizontal line in Fig. 6 represents
the threshold distance of 0.5 chosen for this problem. Three clusters
result: one that represents the sets from Katz, Degree, and PageRank, a
second that contains the set found from Closeness centrality, and a third
representing sets from Load and Betweenness. From the first and third
clusters, PageRank and Load centrality measures are selected since they
are at the center of their corresponding clusters.

Therefore, Closeness, PageRank, and Load centrality measures are
selected as they generate sufficiently differences in the makeup of those
candidate sets. With regard to these selected sets built upon three cen-
trality measures, (i) Closeness centrality indicates how close a node is to
all other nodes in the network (Golbeck, 2013), (ii) PageRank centrality
measures the transitive influence or connectivity of a node in a network
(Needham & Hodler, 2019), and (iii) the Load centrality of a node is the
fraction of all shortest paths that pass through that node (Goh, Kahng, &
Kim, 2001).

Fig. 7 shows the map and topology of the interdependent system of
water, gas, and power networks in Shelby County, TN, where the no-
tation w, g, and p refer to water, gas, and power networks, respectively.
Note that the dashed lines in Fig. 7b represent the interdependency
relationship between water and power networks in this case study.

Table 3
The proportion of similar nodes.
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4.3. Computational results of M-I

In this subsection, we demonstrate the efficiency of the proposed
solution algorithm denoted by S-I. In addition, we discuss the compu-
tational results of M-I for (i) different sets of candidate nodes and (ii)
multiple work crews.

4.3.1. Performance of the solution algorithm

To demonstrate the efficient solvability of the proposed solution
approach, denoted by S-I, we compare its performance with an existing
exact solution algorithm, the covering decomposition method, denoted
by S-II (Israeli & Wood, 2002; Yao et al., 2007). Fig. 8 depicts the
computation speed of S-I with respect to S-II for different protector
budgets (Bp) and attacker budgets (B;). To be consistent in recording the
time, we track the solution time of S-I and S-II for similar set of candidate
nodes (Closeness centrality set). The trends generally indicate that S-I
surpasses S-II in terms of computation time. Particularly for the higher
budget scenarios, the performance of S-I considerably exceeds S-1I. For
example, for B = 4, S-I finds the optimal solution around 3.5 times
faster than S-II for Bp = 3, and this rate increases substantially to about 7
for Bp = 4.

Fig. 9 depicts the convergence behavior of the upper bound and
lower bound values in the S-I algorithm for the candidate nodes built
upon the closeness centrality set forBp =4 under different attacker
budgets. The trend shows that, as the algorithm iteration continues to
grow, the gap between the upper and lower bound values either de-
creases or remains the same until the tolerance gap is zero or sufficiently
small. As such, the whole algorithm is terminated, and the final solution
is returned. In addition, the number of algorithm iterations grows as the
complexity of the problem increases (in terms of the available budget),
which results in a longer computational time. In the initial iterations, the
drop in the upper bound values is substantial since the most effective
attack plans are sent to the master problem, and the master problem
finds an optimal protection decision in such a way that the least
disruption is imposed to the system. Therefore, as the algorithm itera-
tion grows, critical components are fortified, and the importance of the
components decreases (from the perspective of the attacker). Conse-
quently, in early iterations, we witness a noticeable improvement in the
solution as the gap between the upper bound and lower bound values
reduces rapidly. Then this improvement slows down until the conver-
gence ratio of upper bound and lower bound (i.e., the stopping criterion
of the algorithm, ¢) is reached and the final solution is found. Clearly, the
larger the convergence ratio that is selected by the decision maker, the
quicker the algorithm is terminated. As a result, the computational
complexity of the algorithm lessens considerably as it is also a function
of convergence ratio.

4.3.2. Computational results of M-I for different sets of candidate nodes
To compare the objective function value of each set of candidate
nodes, the algorithm is executed for every set separately under different
budget scenarios, the results of which are provided in Table 5. As the
base scenario, we solve the model assuming that a single work crew is
available for each network. Thereafter, different scenarios account for

Degree Betweenness  Closeness Katz PageRank Load
Degree 1 0.37 0.33 0.83 0.57 0.37
Betweenness 1 0.37 0.37 0.27 0.90
Closeness 1 0.43 0.27 0.30
Katz 1 0.60 0.40
PageRank 1 0.30
Load 1
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Table 4
The proximity matrix of different sets of candidate nodes.
Degree Betweenness Closeness Katz PageRank Load
Degree 0 0.63 0.67 0.17 0.43 0.63
Betweenness 0 0.63 0.63 0.73 0.10
Closeness 0 0.57 0.73 0.70
Katz 0 0.40 0.60
PageRank 0 0.70
Load 0
0.6
0.5
0.4
o
2
©
& 0.3
a
0.2
0.1
0.0
Betweenness Load Closeness PageRank Degree Katz
Set of candidate nodes
Fig. 6. The dendrogram of clustering different sets of candidate nodes.
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multiple crews for a selected number of budget scenarios, and the results
are discussed subsequently. In addition to the objective value of the
model (&y_;), we record the immediate drop in the system performance
following the attack, t = 1, when the restoration process has not yet
commenced, denoted by vy_; in Table 5.

From Table 5, the immediate drop in the system performance does
not reduce substantially as the protection budget increases. For example,
for B; = 4, although the protector budget increases from 3 to 4, the
reduction in system vulnerability is negligible. This is because in the
objective function of M-I in Eq. (A2), the recovery process over time is
also considered. Therefore, the optimal decision made by the attacker is

(b)

Fig. 7. The (a) map and (b) topology of the interdependent system of water, gas, and power networks in Shelby County, TN, USA.

not necessarily the one the decreases the performance of the system the
most at t = 1. Instead, the interdiction strategy is based upon maxi-
mizing the summation of loss over the time span of the model. Likewise,
the protector considers the total time required for the system to be fully
recovered to minimize the amount of loss over time. Therefore, the
protector does not only focus on vulnerability reduction immediately
after disruption, but also simultaneously considers the restoration pro-
cess of the system. As such, the solution returned by M-I allocates re-
sources to harden the system to simultaneously (i) mitigate its
vulnerability against disruptions, and (ii) minimize the long-term effect
after the disruption.
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Fig. 8. Computation speed of S-I with respect to S-II under different
budget scenarios.

Fig. 10 illustrates the trend of the objective value for M-I under
different sets of candidate nodes for protection budgets of 0—4. Clearly,
for a given protection budget, the objective value (&y;_;), standing for the
system resilience measure over time, deteriorates for all three sets of
candidate nodes as the attacker budget continues to increase. By
comparing five figures, it is revealed that by adding protection re-
sources, the system resilience measure over time regularly improves
from Fig. 10a to Fig. 10e. Note that the objective value for the set con-
structed based on the Load centrality measure is higher than other two
sets for protection budget 0-2. However, the objective value derived
from PageRank centrality set surpasses Load centrality set for protection
budget of 4. In addition, the objective value resulting from the set
constructed based on Closeness centrality measure is generally lower
than other two sets for all protection budget scenarios except for zero.
Therefore, it can be concluded that the set built upon Load centrality
measure is more critical since it imposes more loss to the system if they
are interdicted, followed by the PageRank centrality set and Closeness
centrality set which are ranked as the least critical sets, respectively, for
this case study.

4.3.3. Computational results of M-I for multiple work crews

One of the advantages of M M-I I is that multiple work crews can
operate simultaneously for each network for the recovery process. To
illustrate the broad capabilities of both model (M-I) and proposed so-
lution algorithm (S-I), we double and triple the available work crews at
each infrastructure network and compare the results of the model with
the base scenario in which a single work crew operates for every
network. The aim of this analysis is to study the impact of resource
(work crew) changes on the long-term effect of disruption. To be
consistent in obtaining the results, we track the objective function value
of similar set of candidate nodes (Closeness centrality set) for each
scenario of available work crew. With respect to the budget availability,
we solve the model for B; = 5 under two protection budgets (i.e., B = 5
and Bp = 0 and 1).

As mentioned in Section 1 and in reference to Fig. 1, network per-
formance at time t is represented with ¢(t) = 1 — {(t). Note that {(t) is
the weighted fraction of unmet demand at time t, as shown in Eq. (1).
Fig. 11 illustrates network performance trajectories for different sce-
narios of work crew (WC) availability. Discussed previously, in the
initial step, there is a drop in the performance of network followed by
the disruption represented by vy_; in Table 5. Then, the restoration
procedure begins until the whole system is fully recovered. Clearly,
considering multiple work crews expedites the restoration process as
multiple jobs can be operated in parallel, which results in earlier system
recovery. From Fig. 11 for both budget scenarios, the whole system
returns to its normal operation at time 7 and 5 for doubled resources and
tripled resources, respectively. However, the recovery process lasts until
time 11 for the single work crew scenario (base scenario). The trend of
recovery (the required time for restoring each disrupted component) is

10
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similar for all cases as the restoration rate for each component, /11-‘, is
assumed equal regardless of the type of work crews available at each
network. Note that the immediate drops in network performance for
Fig. 11a and b are vy = 0.36 and vy-; = 0.29, respectively. This dif-
ference is the result of changing the protection budget from 0 to 1, and
the attacker decision is changed accordingly. With respect to computa-
tional complexity, the proposed algorithm (S-I) performs efficiently for
all three scenarios of resource availability, and the differences among
computational times are not significant for three scenarios.

4.4. Tri-level Formulation: Protection-Interdiction-Counteraction model
(M-II)

As discussed in Section 3.1, the proposed tri-level model (M-I) ac-
counts for restoration level in the third level. To analyze the value of
simultaneous consideration of both pre-disruption investments (to
reinforce critical network components) and post-disruption resource
assignment and crew scheduling, we modify M-I to M-II such that the
system operator reacts to the disruption by solving an optimal network
flow problem to minimize the unmet demand ({y_p(t = 1)) without
taking into account the recovery process. We represent specific changes
to the model indices, parameters, decision variables, and constraints in
M-I to build up the new model (M-II).

Like M-I, we define ¢{;_;(t) as the weighted proportion of unmet
demand (relative to the met demand before the disruption), as shown in
Eq. (26). Then, the objective function of M-II is defined as Eq. (27),
including three successive actions: (i) the system planner minimizes the
unmet demand by reinforcing the network components before disrup-
tion, (ii) the interdictor maximizes the unmet demand by interdicting
the network components, and (iii) the system operator minimizes the
unmet demand by optimally sending the flow through the network after
the attack is observed. Since M-II does not include the recovery process
of the disrupted components, the time horizon of the model is consid-
ered one period (T = 1), representing the immediate drop in the system
performance following the attack. So, the objective function is denoted
by vm_n as shown in Eq. (27). Note that the entire parameters and de-
cision variables indexed by time (t € T) are also considered only for one-
time unit such that t = 1.

D ke Doient W?f”?f) VieT (26)

lval) =1- | %%
(1) Sk WAL,

VM- = min max mir} Cuon(t=1) 27)
y %,

Constraints (A11)-(A14), (A23)-(A35), and (A41)-(A44) in M-I are
removed as they correspond to the restoration level. Constraints (A20)-
(A22) are substituted with constraints (28)-(30), representing the
amount of positive flow through any given link is a function of the
functionality status of the corresponding link, along with its head and
tail nodes.

Xy <uFy V(i j) e AN Vke K (28)
Xy SupFr o V(i,j) € ASVie Nt Vke K (29
X <ubFS V(i) € ALY eNF Ve K (30)

Finally, constraint (A36) in M-I is replaced by constraints (31), rep-
resenting the physical interdependency among the networks of a system.
In particular, constraints (31) state that positive flow through a link is a
function of the functionality status of its corresponding related parent
nodes (in other networks).

k k -k
Xy < uph;

V(i,j) € A*Vi €

€Y or ((j.,k), (,z)) cv

Nk e KI((6,0), (1) )
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Table 5
Computational results of M-I for each set of candidate nodes (generated based on
different centrality measures) under different budget scenarios.

Protector Attacker Candidate node sets
budget (B budget (B
udget (Br) udget (B1) Closeness PageRank Load
[SYSEE VS VS R 7V BN SV S N VS
0 1 0.31 0.16 0.28 0.14 0.31 0.16
2 0.86 0.29 0.65 0.22 0.86 0.29
3 1.10 0.31 1.05 0.26 1.33 0.36
4 1.44 0.34 1.47 0.31 1.77 0.42
5 1.73 0.36 2.05 0.33 2.28 0.44
1 1 0.28 0.14 0.25 0.12 0.28 0.14
2 0.48 0.16 0.60 0.22 0.60 0.22
3 0.79 0.21 0.96 0.24 0.95 0.24
4 1.21 0.26 1.24 0.33 1.40 0.30
5 1.57 0.29 1.68 0.29 1.93 0.35
2 1 0.19 0.09 0.21 0.10 0.19 0.09
2 0.45 0.16 0.53 0.18 0.47 0.16
3 0.76 0.21 0.83 0.31 0.81 0.21
4 1.02 0.24 1.11 0.38 1.23 0.27
5 1.33 0.26 1.46 0.43 1.51 0.29
3 1 0.15 0.08 0.20 0.10 0.17 0.08
2 0.36 0.12 0.47 0.16 0.45 0.16
3 0.68 0.17 0.81 0.21 0.80 0.22
4 0.99 0.20 1.03 0.23 0.95 0.29
5 1.13 0.20 1.24 0.33 1.25 0.24
4 1 0.14 0.07 0.19 0.10 0.15 0.08
2 0.34 0.12 0.45 0.16 0.39 0.14
3 0.61 0.16 0.79 0.21 0.70 0.18
4 0.80 0.19 0.99 0.31 0.93 0.21
5 0.93 0.25 1.20 0.31 1.09 0.23
Note that 7%, x,, Ff, and Ff are the decision variables of the third

level in M-II. The computational results of M-II, and the computational
time comparison of M-I and M-II are discussed subsequently.

4.4.1. Computational results of M-II for different sets of candidate nodes

Table 6 shows computational results of M-II for each set of candidate
nodes under different budget scenarios. Although the immediate drop in
the system performance in M-I does not noticeably improve by
increasing the protection budget (referring to vy in Table 5), the sys-
tem vulnerability in M-II (referring to vy_y in Table 6) remarkably
continues to reduce as the protection budget increases. This is because in
the objective function of M-I, Eq. (27), the immediate drop in the sys-
tem performance is the only resilience component taken into account.
Therefore, the optimal decision made by the attacker is the one that
decreases the performance of the system the most att = 1. Likewise, the
protector only focuses on the vulnerability reduction immediately after
disruption in M-II. In addition, by comparing the objective values of two
models, &y _; and vy_i, under different budget scenarios, it is concluded
that the system that is fortified based on M-I is considerably more
resilient relative to M-II. These outcomes show the value of such a de-
cision support tool (M-I) aiming to make a system more resilient by
simultaneous consideration of (i) mitigating vulnerability and (ii)
minimizing the long-term effect after disruption.

Fig. 12 illustrates the trend of objective value changes for M-II (vy_y1)
under different sets of candidate nodes for protection budgets of 0—4. As
it can be seen from Fig. 12a to e, the highest objective value belongs to
the set created based on the PageRank centrality measure followed by
the Load and Closeness centrality measures, respectively. This suggests
that nodes in the PageRank set are more critical than other two sets in
this system in terms of imposing more loss to the system immediately
after a disruption if they are interdicted.

4.4.2. Computation time comparison of M-I and M-II
Table 7 provides the computational time of the algorithm for solving

12
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M-I and M-II under different budget scenarios. To be consistent in
recording the time, we track the solution time of M-I and M-II for similar
set of candidate nodes (Closeness centrality set). Fig. 13 illustrates the
computation time (min) of M-I (a) and M-II (b) along with the relative
speed of M-I in comparison with M-II (c) under different budget sce-
narios. The results suggest that there is an upward trend in computa-
tional burden of both M-I and M-II as the available budget continues to
increase. Note that the vertical axis units in Fig. 13a and b are different
since the computational time of two models are considerably variant (e.
g., the maximum computation time in M-I is 456.28 however this time is
55.43 for M-II). According to Fig. 13c, M-Il is significantly faster than M-
I for all budget scenarios since the complexity of M-I is noticeably more
than M-II (e.g., the number of decision variables and constraints).
However, for a given interdiction budget, there are some fluctuations in
the relative speed of M-I with respect to M-II as the protector budget
changes since the convergence speed of the algorithm reduces for some
specific budget scenarios.

5. Concluding remarks

Due to the growing dependency on critical infrastructure systems,
ensuring their resilience is a main concern as even a small failure in one
can cause considerable adverse impacts on community welfare and
economic productivity for extended periods (Kettl, 2013). Infrastructure
systems have complex structures that can be modeled as the network
where the commodity (service) running through each infrastructure
system represented by the flow. Interdiction models are widely applied
to address the vulnerability reduction of such systems under hazard of
an intelligent attack. In particular, the DAD model is considered as a
useful tool to guide the improvement of the system performance from
the beginning of a disruptive event to the total system recovery.

In this paper, we designed a new decomposition-based solution
approach as a general framework to optimally solve DAD models such
that the final solution is found by iteratively solving two bi-level for-
mulations derived from the original tri-level model. To illustrate the
efficient solvability of the proposed solution technique, we study the
existing interdiction model proposed by Ghorbani-Renani et al. (2020)
referred to as a protection-interdiction-restoration model (M-I). We
illustrated M-I for the system of interdependent networks in Shelby
County, TN, USA. The results indicate that the proposed solution algo-
rithm substantially outperforms the covering decomposition method
regarding the computational complexity. In addition, we generated
different sets of candidate components as possibilities for disruption and
protection based on different topological characteristics and using an
agglomerative hierarchical clustering technique to derive the most
vulnerable components. The results revealed that the set built upon the
Load centrality measure is more critical since it imposes more loss to the
system if interdicted, followed by the PageRank centrality set and
Closeness centrality set.

Furthermore, we studied a protection-interdiction-counteraction
model, denoted by M-I, to compare results and computational
complexity with respect to the original protection-interdiction-
restoration model (M-I). We solved M-II for three different sets of
candidate nodes built upon Closeness, PageRank, and Load centrality
measures. The results suggested that nodes in the PageRank set are more
critical than other two sets in terms of imposing more loss to the system
immediately after a disruption if they are interdicted. We can conclude
that since PageRank set includes nodes which link from other important
and link parsimonious nodes, or they are highly linked in this network,
their failures result in the higher immediate loss to this system.
Regarding the computation time, the results showed that although M-I is
a comprehensive interdiction model relative to M-II since it accounts for
both vulnerability reduction and recoverability enhancement, M-I is
significantly computationally challenging and an efficient solution al-
gorithm is required to solve such a complex model in a reasonable time.
However, M-I is an effective tool for providing pre-disruption
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Fig. 10. Objective value of M-I (£,_) for different sets of candidate nodes (generated based on different centrality measures) for protection budgets of (a) 0, (b) 1, (c)
2, (d) 3, and (e) 4.
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Fig. 11. Network performance ¢(t) of M-I as forB; = 5 under (a)Bp = 0 and (b)Bp = 1.
Table 6

Objective value of M-II (vy_p) for each set of candidate nodes (generated based on different centrality measures) under different

budget scenarios.

Protector budget (Bp) Attacker budget (B;)

Candidate node sets

Closeness PageRank Load

0 1 0.16 0.14 0.16
2 0.29 0.26 0.29

3 0.32 0.36 0.36

4 0.34 0.45 0.42

5 0.37 0.52 0.45

1 1 0.14 0.12 0.14
2 0.23 0.22 0.23

3 0.28 0.32 0.30

4 0.32 0.40 0.36

5 0.35 0.45 0.39

2 1 0.09 0.10 0.09
2 0.17 0.20 0.17

3 0.23 0.28 0.24

4 0.26 0.36 0.31

5 0.29 0.41 0.35

3 1 0.08 0.10 0.08
2 0.14 0.18 0.16

3 0.19 0.25 0.22

4 0.24 0.32 0.27

5 0.26 0.37 0.30

4 1 0.07 0.09 0.08
2 0.12 0.17 0.14

3 0.17 0.24 0.20

4 0.22 0.30 0.24

5 0.22 0.33 0.26

preparation decisions and post-disruption restoration planning. There-
fore, there exists a tradeoff between employing a more comprehensive
model with higher computational complexity or neglecting the recovery
process of disrupted system through the interdiction model.

Though interdiction models have widespread applications from
military to infrastructure networks along with other domains, they are
generally nonconvex problems and computationally challenging to
solve. Therefore, efficient solution methods are necessary to deal with
such complex problems. For future work, we plan to explore heuristic
solution techniques to overcome the computational complexity of
interdiction models. In addition, machine learning techniques could be
used to estimate the restoration schedule of disrupted components,
which could significantly improve the efficiency of the algorithm.

14

Furthermore, in the proposed model, an intelligent attacker with com-
plete information about the network intentionally interdicts the system.
The protector, on the other hand, defends (fortifies) the system in
response to such a prospective interdiction. Another future consider-
ation will explore the value of defender secrecy and deception for
defensive investments in the interdiction models.
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Table 7
Computational time of M-I and M-II under different budget scenarios.

Computers & Industrial Engineering 153 (2021) 107085

Protector budget (Bp) Attacker budget (By) Iy (min) 'y (min) ( FM_I)
l—‘M—ll
0 1 0.25 0.01 25.00
2 1.46 0.08 18.25
3 6.44 0.41 15.71
4 19.93 1.4 14.24
5 49.19 4.24 11.60
1 1 0.38 0.03 12.67
2 3.92 0.17 23.06
3 9.66 0.76 12.71
4 31.64 2.68 11.81
5 71.51 10.25 6.98
2 1 0.52 0.03 17.33
2 8.78 0.24 36.58
3 23.74 1.34 17.72
4 83.67 4.07 20.56
5 120.11 14.18 8.47
3 1 0.65 0.05 13.00
2 8.06 0.32 25.19
3 35.72 213 16.77
4 87.94 8.79 10.00
5 147.73 32.65 4.52
4 1 0.76 0.04 19.00
2 9.97 0.42 23.74
3 51.97 2.11 24.63
4 91.04 9.1 10.00
5 456.28 55.43 8.23
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Fig. 13. Computation time of M-I (a) and M-II (b) along with the relative speed of M-I with respect to M-II (c) under different budget scenarios.

16



N. Ghorbani-Renani et al. Computers & Industrial Engineering 153 (2021) 107085

Appendix A. Tri-level Formulation: Protection-Interdiction-Restoration model (M-I)

Assume a set K of infrastructure networks. Network k € K is defined by G* = (N¥, A*), where N* is the set of nodes and A* is the set of links that

connect nodes. Let R be the set of work crews available for the system of interdependent networks, where the subset R*CR indicates the work crews

that operate in network k € K. Tables A1-A3 outline the model indices, parameters, and decision variables, respectively. Note that all parameters of
the model are known and certain.

Objective function

D ke Doient whih

fua() =1 (SESTT) e (A1)
D kek 2ient Willls,
£yvop = min max min Z(M,l(t) (A2)
y z nxF.ap T
Table Al
Model sets and indices.
K Set of all infrastructure networks, indexed by k
Nk Set of all nodes in network k € K, indexed by i
Ak Set of all links in network k € K, indexed by (i.j)
Nk Set of supply nodes in network k € K such that N cN¥
N Set of demand nodes in network k € K such that NX CNk
N’g Set of transshipment nodes in network k € K such that NSQN"
Nk Set of nodes that can be either protected or interdicted in network k € K such thatN"*CN*
Ak Set of links that can be either protected or interdicted in network k € K such thatA’kcAk
Rk Set of work crews in network k € K, indexed byr
T Set of time periods, indexed byt
Table A2
Model parameters.
r/ﬁe Flow reaching node i € N in network k € K before the attack
wh Importance weight assigned to node i € N* in network k € K at timet € T
Bp Cardinality budget for the protector,Bp € Z"
By Cardinality budget for the interdictor,B; € Z"
sk Amount of supply in node i € NX in network k € K
d;‘ Amount of demand in node i € N* in network k € K
uf Capacity of link (i,j) € A* in network k € K
Pl Restoration rate of node i € N'* in network k € K,0 < 2f < 1
% Restoration rate of link (i,j) € A’*in network k € K,0 < 25 <1
M An arbitrarily large positive number

Table A3
Model decision variables.

r/{.‘t Amount of demand met at node i € N* in network k € K in time t € T, continuous

xk Flow on link(i,j) € A¥ in network k € K in time t € T, continous

¥k Equal to 1 if node i € N"¥in network k € K is protected, binary

yE Equal to 1 if link (i,f) € A’¥ in network k € K is protected, binary

2k Equal to 1 if node i € N°* in network k € Kis interdicted, binary

25 Equal to 1 if link (i,j) € A’* in network k € K is interdicted, binary

P‘i‘ Equal to 1 if node i € N°* in network k € K is functional, binary

F Equal to 1 if link (i,j) € A’* in network k € K is functional, binary

akr Equal to 1 if node i € N’* in network k € K is restored by work crew r € R¥in time t € T, binary
af;{ Equal to 1 if link (i,j) € A’* in network k € K is restored by work crew r € R¥in time t € T, binary
B Equal to 1 if node i € N'* in network k € K is reactivated at time t € T, binary

/igt Equal to 1 if link (i,j) € A’* in network k € K is reactivated at time t € T, binary
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