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A B S T R A C T   

Network-based systems widely appear in different service, community, industrial, and economic systems such as 
electric power, water supply, transportation, and telecommunication networks. Due to the significant role of such 
systems in society, it is essential to have an effective plan to enhance the resilience of infrastructure networks 
against disruption (e.g., natural disasters, malevolent attacks, or operational failures). In relation to the concept 
of resilience, two relevant questions arise: (i) how does performance degrade after a disruption, or what is the 
vulnerability of the system? and (ii) how rapid does the disrupted system return to the desired performance level, 
or how can we characterize the system’s recoverability? To enhance the resilience of a system against disruption, 
we address simultaneous actions of vulnerability reduction and recoverability enhancement through interdiction 
model, particularly defender-attacker-defender (DAD) model. However, the proposed model is computationally 
challenging to solve. To deal with this issue, we design a decomposition-based solution algorithm as a general 
framework to optimally solve tri-level DAD models in more efficiently. The proposed solution technique is 
demonstrated with the existing DAD model, namely a tri-level protection-interdiction-restoration model. To 
define the critical components subject to protection and disruption, an efficient clustering technique is applied 
which results in generating three sets of candidate components based on three centrality measures. We represent 
an illustrative case study based on the system of interdependent infrastructure networks in Shelby County, TN, 
for which we solve the model and assess the computational results for each set of candidate components. The 
results indicate that the proposed solution algorithm substantially outperforms the traditional covering 
decomposition method with regard to computational complexity, particularly for the higher budget scenarios. 
Finally, we compare and analyze the results of the existing interdiction model, the protection-interdiction- 
restoration formulation represented by M-I, with a new protection-interdiction-counteraction model, denoted 
by M-II, in which the restoration level is not considered. Results suggest that although M-I is a comprehensive 
interdiction model relative to M-II, it suffers substantially from computational complexity. Therefore, there exists 
a tradeoff between employing a more comprehensive model with higher computational complexity and 
neglecting the recovery process with the interdiction model.   

1. Introduction 

The occurrence of large-scale disruptions to critical infrastructure 
networks (e.g., electric power, water supply, transportation) have 
revealed how these systems are routinely under a host of threats, from 
natural disasters to malevolent attacks to operational failure (Directive, 
2003). In addition, infrastructure networks are not the only networks 
that exist. Disruptions to infrastructure networks can impact a variety of 
other networks, including, in particular, the community networks and 
service networks that interact with and depend on infrastructure 

networks to function properly. Disruptions can be made worse when 
multiple networks depend on each other (Chang, McDaniels, Mikawoz, 
& Peterson, 2007; Mendonça & Wallace, 2006; Nurre, Cavdaroglu, 
Mitchell, Sharkey, & Wallace, 2012; Rourke, 2006; Wallace, Mendonça, 
Lee, & Mitchell, 2001). As such, there exists a continued interest in 
critical infrastructure reliability and sustainability problems. Where 
previous work in planning for disruptions to critical infrastructure net
works emphasized prevention and protection, such planning now more 
broadly captures the ability of infrastructure networks to withstand a 
disruption and recovery timely from it. The ability of a system to 
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withstand a disruption, adapt to, and recover from it is generally 
referred to as resilience (Aven, 2011; Ayyub, 2014; Haimes, 2009; Hos
seini, Barker, & Ramirez-Marquez, 2016). With this definition, resilience 
is quantified with two primary measures (i) vulnerability: the drop in the 
system performance following a disruptive event, and (ii) recoverability: 
the restoration speed of the disrupted system to the desired performance 
level. In any networked system, the occurrence of a disruptive event (i. 
e., disconnection of nodes, links, or both) due to a failure or a malevolent 
action could affect the performance of the system. Fig. 1 (Barker, 
Ramirez-Marquez, & Rocco, 2013) depicts system performance, φ(t), 
before and after a disruption, underlining vulnerability and recoverability 
as two critical planning dimensions of resilience. 

Prior studies have addressed (i) vulnerability optimization models 
for protecting network components such that the effect of a disruption 
are mitigated (McCarter, Barker, Johansson, & Ramirez-Marquez, 2018; 
Ramirez-Marquez, Rocco, & Barker, 2017), and (ii) recovery optimiza
tion models for determining both optimal recovery strategies and crew 
assignment to different recovery tasks (e.g., Almoghathawi, Barker, & 
Albert, 2019; Gomez, González, Baroud, & Bedoya-Motta, 2019; 
González, Dueñas-Osorio, Medaglia, & Sánchez-Silva, 2016; González, 
Dueñas-Osorio, Sánchez-Silva, & Medaglia, 2016; Morshedlou, 
González, & Barker, 2018; Nurre et al., 2012; Sharkey et al., 2015). 
However, resilience is thought of as the combination of reducing 
vulnerability and enhancing recoverability. And there exist a few 
research studies assessed the system resilience by simultaneously 
considering pre-disruption and post-disruption resource allocation for 
the system of interdependent networks. For example, Ghorbani-Renani, 
González, Barker, and Morshedlou (2020) addressed this by proposing a 
study of resilience interdiction, developing a tri-level protection-inter
diction-restoration model that considers (i) a protection level to make 
decisions to minimize network vulnerability, (ii) an interdiction level to 
identify and pursue the most effective disruptions, and (iii) a restoration 
level to recover the network after the. This resilience interdiction model, 
which falls into the class of defender-attacker-defender (DAD) models, 
can be used to simultaneously determine (i) the optimal resource allo
cation to fortify the network components, (ii) a set of most critical ele
ments through the system, and (iii) the optimal work crew assignment to 
rapidly recover the disrupted system. 

However, the proposed DAD model is computationally challenging 
to solve. To address this issue, in this study we design a new 
decomposition-based solution algorithm as a general framework to 
optimally solve tri-level DAD models more efficiently. The proposed 
solution technique is demonstrated with an existing resilience inter
diction model developed by Ghorbani-Renani et al. (2020), with which 
we compare the efficiency of the proposed algorithm with the existing 

exact solution method (covering decomposition method). However, due 
to the general features of the tri-level DAD models, the computational 
complexity of the algorithm grows exponentially in large-sized prob
lems. Along with other factors (e.g., the complexity of the formulation 
itself), the run time of the DAD models are highly sensitive to the 
number of candidate components that can be interdicted and protected. 
To deal with this issue, we generate different sets of candidate compo
nents based on different centrality measures for disruption and protec
tion. To derive these sets such that they represent a variety of different 
components, we apply an agglomerative hierarchical clustering tech
nique. In addition, we compare and analyze the results of the existing 
resilience interdiction model (referring to Ghorbani-Renani et al. 
(2020)) with the protection-interdiction-counteraction model in which 
the restoration level is not considered. Note that terms related to the 
disruptive agent such as attacker and interdictor are used interchange
ably through this paper but could otherwise represent a worst-case 
natural disaster or failure (Smith & Lim, 2008). Likewise, both labels 
of protector and defender refer to the defending agent. 

In summary, the main contribution of this study is to develop a novel 
solution algorithm as a general framework to optimally solve a wide 
variety of interdiction models (particularly DAD optimization). The 
proposed solution approach is based on iteratively solving two bi-level 
formulations derived from the original tri-level DAD model. The pro
posed approach substantially outperforms the existing exact solution 
technique, the covering decomposition method, with regard to compu
tational complexity. We propose an efficient clustering technique for 
identifying the set of critical components in the network and apply it on 
the system of interdependent infrastructure networks in Shelby County, 
TN as the case study. Furthermore, we analyze a new tri-level DAD 
formulation in which the restoration of interdicted (disrupted) compo
nents is not considered in the subsequent defender, and we compare the 
results with the existing resilience interdiction model proposed by 
Ghorbani-Renani et al. (2020). 

The rest of the paper is structured as follows. In Section 2, a literature 
review on interdiction models is performed. In Section 3, the general 
framework of the tri-level formulation developed by Ghorbani-Renani 
et al. (2020) is discussed in detail. Then, the proposed solution approach 
for solving the DAD models is represented. An illustrative example is 
provided in Section 4, based on the system of interdependent infra
structure networks in Shelby County, TN. We applied the proposed so
lution technique to the existing interdiction model developed by 
Ghorbani-Renani et al. (2020) and performed a comparative analysis 
with respect to the previously published solution method (covering 
decomposition method). Additionally, we introduce an updated tri-level 
protection-interdiction-counteraction formulation to assess the 

Fig. 1. System performance trajectory, φ(t), following a disruptive event, adapted from Barker et al. (2013).  
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resilience of the system under two DAD models, for which the proposed 
solution technique is also used. Finally, Section 5 provides concluding 
remarks and future work. 

2. Previous work on interdiction models 

Network-based systems widely appear in different service, commu
nity, industrial, and economic systems such as electric power, water 
supply, transportation, and telecommunication networks. Due to the 
significant role of such systems in society, it is essential to have an 
effective plan to enhance the resilience of infrastructure networks 
against disruption (e.g., natural disasters, malevolent attacks, or oper
ational failures) (Nurre et al., 2012; Sadeghi, Seifi, & Azizi, 2017). 

The area of network interdiction has received attention for several 
decades because of its widespread applications in different domains. 
Table 1 provides a brief (and non-exhaustive) summary of previous 
research work on different applications of interdiction models. Stack
elberg (1952) formulated the basic interdiction problem as a Stackelberg 
game implying a sequential game between two opposing forces known 
as (i) the defender and (ii) the attacker, who are in a warlike conflict 
(Motto, Arroyo, & Galiana, 2005; Salmeron et al., 2004, 2009). Broadly, 
a Stackelberg game describes situations where the defender attempts to 
maintain some level of the network performance (e.g., maximizing flow, 
meeting demand at minimum cost, finding the shortest path) and an 
intelligent attacker, on the other hand, invests some amount of resources 
to disrupt or interdict the network (e.g., impeding some links, reducing 
the network capacity, increasing the traversing time and cost) (Altner 
et al., 2010; Fulkerson & Harding, 1977; Wollmer, 1964). Generally, 
such a formulation tends to be bi-level problem, considering attacker 
and defender actions in the form of max-min or min-max problems, 
which are referred to as attacker-defender (AD) models in the literature 
(Israeli & Wood, 2002). 

Wollmer (1964) originally applied the interdiction model to a 
network flow problem by removing links in which the maximum flow 
between source and sink nodes is minimized. Thereafter, Israeli and 
Wood (2002) applied the network interdiction problem to maximize the 
shortest path between source and sink nodes in a directed network with 
a given interdiction resource. Rad and Kakhki (2013) studied a dynamic 
version of the network flow interdiction problem where the defender 
maximizes the flow throughout the network in a certain time period, and 
an attacker, on the other hand, removes links to minimize the maximum 
flow within the same period. Salmeron, Wood, and Baldick (2004) 

developed power grid interdiction model through the bi-level mathe
matical formulation to identify critical system components with given 
interdiction budget in which the outage of these components would 
result in the maximum disruption to the system. Later, the AD model was 
extended to defender-attacker-defender (DAD) model incorporating one 
more operator action to determine the best pre-disruption defensive 
strategy against the attacker’s decision (Alderson, Brown, Carlyle, & 
Wood, 2011; Brown, Carlyle, & Wood, 2008). In this new model, the first 
defender represents the system planner seeking to determine the best 
protection plan against the most destructive attacker decision. By 
introducing an additional level of interaction between the defender and 
the attacker, the DAD model outperforms the AD formulation since the 
system planner is able to (i) select the best protection strategy and (ii) 
assess pre-disruption strategies by altering the defensive budget 
(Alguacil et al., 2014; Brown, Carlyle, Salmerón, & Wood, 2006; Yao, 
Edmunds, Papageorgiou, & Alvarez, 2007; Yuan et al., 2016). Recently, 
interdiction models have begun to address both vulnerability reduction 
and recoverability enhancement to prepare for and react to an adver
sarial attack. Few works have incorporated the recovery process of 
damaged components into a DAD formulation. For example, Ouyang 
and Fang (2017) considered the repair planning of disrupted compo
nents with given recovery resources in a DAD model. Prior works 
generally considered the recovery duration of disrupted components as 
parameters in the restoration process (Almoghathawi et al., 2019; Nurre 
et al., 2012; Ouyang & Fang, 2017). However, in the resilience inter
diction model proposed by Ghorbani-Renani et al. (2020), the time 
required to repair the damaged components is not fixed and depends on 
(i) the performance rate of the work crew, and (ii) the proportion of the 
disruption (in the case of partial disruption). In addition, restoration 
decision variables are time-indexed representing the schedule of work 
crews through the recovery process. 

Interdiction models or broadly multi-level problems are challenging 
to solve. Therefore, considering the widespread applications of such 
models, the development of efficient solution methods has received 
attention in recent years. In this paper, we study the existing interdiction 
model developed by Ghorbani-Renani et al. (2020) and solve it to 
optimality by a new decomposition-based solution approach such that 
the final solution is found by iteratively solving two bi-level formula
tions derived from the original tri-level model. In addition, to deal with 
the complexity of the model and the difficulty of considering all com
ponents as possibilities for interdiction and protection, different sets of 
candidate components are generated based on different topological 
characteristics. The results are discussed for each set of candidate nodes. 

3. Decomposition-based solution approach 

For the illustrative purposes, the proposed solution technique is 
demonstrated with the existing resilience interdiction model proposed 
by Ghorbani-Renani et al. (2020), namely a tri-level protection-inter
diction-restoration model, denoted by M-I. As such, we briefly introduce 
a generalized depiction of M-I. Then, the proposed decomposition-based 
solution approach is discussed in detail to solve M-I to optimality. 

3.1. Tri-level formulation: protection-interdiction-restoration model (M-I) 

Ghorbani-Renani et al. (2020) studied the resilience control 
(enhancement) of interdependent infrastructure networks (e.g., electric 
power, water supply, transportation) against adversaries using an 
interdiction model. This problem was formulated as a tri-level DAD 
formulation with a corresponding hierarchy of decisions, referred to as a 
protection-interdiction-restoration model. This model includes a series 
of nested optimization formulations controlled by a set of constraints 
and decision variables in which the decision made at the top level affect 
the decisions of other levels. The proposed resilience interdiction model 
(M-I) aims to optimize the restoration of a system of interdependent 
networks by minimizing the cumulative unmet demand over time by 

Table 1 
Summary of different applications of interdiction model.  

Research work Application 

Ghare, Montgomery, and Turner (1971), McMasters 
and Mustin (1970), Pan, Charlton, and Morton 
(2003), and Patterson and Apostolakis (2007) 

Defense and military 
applications 

Alguacil, Delgadillo, and Arroyo (2014), Davarikia 
and Barati (2018), Lai, Illindala, and Subramaniam 
(2019), Lin and Bie (2018), Salmeron et al. (2004, 
2009), Wu and Conejo (2017), Yao et al. (2007), 
and Yuan et al. (2014) 

Power network 
vulnerability 

Alderson et al. (2011), Brown et al. (2006), Ouyang 
(2017), and Ouyang and Fang (2017) 

Critical infrastructure 
network resilience 

Fathollahi-Fard, Hajiaghaei-Keshteli, and Mirjalili 
(2018) and Fathollahi Fard and Hajaghaei-Keshteli 
(2018) 

Supply chain resilience 

Akbari-Jafarabadia, Tavakkoli-Moghaddam, 
Mahmoodjanloo, and Rahimi (2016,Akbari- 
Jafarabadi et al., 2017), Liberatore, Scaparra, and 
Daskin (2011), Losada, Scaparra, and O’Hanley 
(2012), and Mohammad, Fard, and Hajiaghaei- 
keshteli (2018) 

Facility location problem 

Baycik, Sharkey, and Rainwater (2018) and Nandi, 
Medal, and Vadlamani (2016) 

Cyber security 

Brown, Carlyle, Harney, Skroch, and Wood (2009) Project management 
Borndörfer, Sagnol, and Schwartz (2016) Toll control  
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sequentially performing three levels, as depicted in Fig. 2: (i) the pro
tection level to make the initial investment to minimize system 
vulnerability (i.e., initial drop in the system performance), (ii) the 
interdiction level to identify the most effective disruption, and (iii) the 
restoration level to recover the system after the disruption. The first 
level, or the protection level, allocates resources (how much and 
where?) to harden the networks to minimize system vulnerability prior 
to a disruption. As the defense strategy, protection is accomplished by 
increasing the capacity of the network component or adding redundancy 
to it. Through the second level, an intelligent attacker, who has complete 
information about the network, intentionally interdicts the system. The 
interdiction level, therefore, allocates resources to maximize the effects 
of the disruption. This level does not necessarily require a human 
“attacker” and could represent a worst-case natural disaster. Note that 
the disruption (interdiction) takes the form of a reduction in the capacity 
of the network components (either nodes or links). Finally, the network 
flow problem and repair sequence of interdicted components is provided 
in the third level, or the restoration level. The third level minimizes the 
long-term effect after the disruption through network component re
covery. The important parameter in the third level is the time to achieve 
the total system recovery. The definition of the model sets, parameters, 
and decision variables of the first and second levels of M-I are repre
sented subsequently. 

M-I deals with a system of interdependent networks defined by a set 
of nodes connected with a set of links. In M-I, it is assumed that each 
network is responsible for providing a specific type of service (a single 
commodity) across the network and satisfies the demand nodes of the 
network (e.g., gas network provides gas service, water supply provides 
water requirements). M-I assumes that infrastructure networks follow 
the general network flow problem. To briefly describe the general 
formulation of M-I, assume a set K of infrastructure networks. Network 
k ∈ K is represented by Gk =

(
Nk, Ak)

, where Nk is the set of nodes 
indexed by i ∈ Nk, and Ak is the set of links indexed by (i, j) ∈ Ak that 
connect nodes. Nodes can be supply nodes (Nk

+⊆Nk), demand nodes 
(Nk

−⊆Nk), and transshipment nodes (Nk
0⊆Nk\

{
Nk

+, Nk
−

}
) such that Nk

+ ∩

Nk
− = ∅. Let Sk

i and dk
i denote amount of supply and demand in nodes i ∈

Nk
+ and i ∈ Nk

−, respectively. Sets N’k⊆Nk and A’k⊆Ak are candidate 
nodes and links, respectively, in network k ∈ K, that can be disrupted or 
protected in the system of interdependent networks. For every node 
i ∈ N’k, binary variables yk

i and zk
i represent the first defender and 

attacker actions, respectively. Likewise, binary variables yk
ij and zk

ij 

represent the first defender and attacker actions for every link 
(i, j) ∈ A’k. There are known cardinality budgets available for protecting 
and for disrupting the components denoted by parameters BP and BI, 
respectively, suggesting that the protector could protect up to BP com
ponents and the attacker could interdict up to BI components in the 
network. Also, binary variables Fk

i and Fk
ij show the functionality status 

for every node i ∈ N’k and link (i,j) ∈ A’k, respectively. There is a known 
flow capacity for every link (i, j) ∈ Ak represented by uk

ij and decision 
variable xk

ij shows flow through the associated link. Parameters ηk
ite 

represent the demand should be met at every node i ∈ Nk
−, where deci

sion variables ηk
i denote actual demand being met at node i ∈ Nk

−. Index 
t ∈ T provides the set of available time periods. The time unit (interval) 
of the model is adjusted by the decision maker. Accordingly, the time 
horizon of model is set based on the time unit (interval) selected. For 
example, if the time interval is considered to be one working shift, the 
time horizon of the model could be set to T = {1}, T = {1,2,⋯,5}, and 
T = {1, 2, ⋯, 23} for one work day, one work week, and one work 
month, respectively. Since time is considered to be discrete in M-I, the 
required time units for restoring the disrupted components are rounded 
up to the nearest integer value for the work crew assignment as repre
sented by constraints (A24), (A25), (A27), and (A28) in the appendix. 
Clearly, the smaller (more granular) the time interval that is selected, 
the higher the resulting resolution. However, as the time interval be
comes smaller, the computational complexity of the algorithm grows. 
Demand nodes can be ranked with the aim of emphasizing on their 
importance in a network. Therefore, parameters wk

it show the weight of 
demand node i ∈ Nk

− at time t ∈ T, which can be adjusted based on 
different aspects including locations of the demand nodes (e.g., near 
hospitals, shelters, and populated or more vulnerable areas). M-I ac
counts for the physical interdependency of networks where the func
tionality of a set of nodes in one or more networks enable the 
functionality of a node in another network due to linkages. Ψ represents 

interdependency set among networks such that 
(

(i, k),
(

i, k
) )

∈ Ψ de

notes node i ∈ Nk in network k ∈ K physically depends on node i ∈ Nk in 
network k ∈ K to be operational, where Nk ∩ Nk = ∅, Ak ∩ Ak = ∅ and ∀
k,k ∈ K : k ∕= k. 

To demonstrate various steps of the proposed solution algorithm, we 
represent an abstract form of M-I as shown by Eqs. (1)–(11). The tri-level 
DAD model (M-I) aims to deliver the cumulative weighted fraction of 
unmet demand over the planning horizon, such that this value is mini
mized by the first defender, maximized by the attacker, and minimized 
by the subsequent defender, as shown in Eqs. (1) and (2). Constraints (3) 
and (4) represent the budget restrictions for the first defender and 
attacker decisions, respectively. Constraints (5)–(8) show the nature of 
the decision variables for the first and second levels of M-I. Constraints 
(9) and (10) deliver the functionality status of every node and link, 
respectively. Set of constraints (11) corresponds to the recovery process 
in M-I to plan the restoration of disrupted components in which to return 
the system of networks to a stable operation as rapidly as possible. For 
more details of this set of constraints, we refer the reader to the ap
pendix, which includes the complete definition of the model parameters 
and decision variables, as well as the complete form of M-I. Note that 
although parameter M in constraints (A23), (A26), (A29), (A30), (A34), 
and (A35) represents a big number, it need be only greater than the 
maximum required time for restoring the disrupted components. 

ζM−I(t) = 1 −

( ∑
k∈K

∑
i∈Nk

−
wk

itηk
it

∑
k∈K

∑
i∈Nk

−
wk

itηk
ite

)

∀t ∈ T (1)  

ξM−I = min
y

max
z

min
η,x,F,α,β

∑

t∈T
ζM−I(t) (2) 

Minimize the disruption

Components to be defendedPr
ot

ec
tio

n
le

ve
l

Maximize the disruption

Components to be disrupted

In
te

rd
ic
tio

n
le

ve
l

Minimize the disruption

Recovery trajectory

Re
st
or

ati
on

le
ve

l

select:

select:

determine:

Fig. 2. Tri-level protection-interdiction-restoration process.  
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∑

k∈K

∑

i∈N’k

yk
i +

∑

k∈K

∑

(i,j)∈A’k

yk
ij ≤ BP (3)  

∑

k∈K

∑

i∈N’k

zk
i +

∑

k∈K

∑

(i,j)∈A’k

zk
ij ≤ BI (4)  

yk
i ∈ {0, 1} ∀k ∈ K, ∀i ∈ N’k (5)  

yk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A’k (6)  

zk
i ∈ {0, 1} ∀k ∈ K, ∀i ∈ N’k (7)  

zk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A’k (8)  

1 + yk
i − zk

i ≥ Fk
i ∀k ∈ K, ∀i ∈ N’k (9)  

1 + yk
ij − zk

ij ≥ Fk
ij ∀k ∈ K, ∀(i, j) ∈ A’k (10)  

Constraints(A11) − (A44) (11) 

The tri-level formulation is an extension of the bi-level model 
comprising one more operator/defender action. This type of model, or 
broadly multi-level problems, are nonconvex. Even in their simplest 
form, they are challenging to solve (Bard, 1991; Hansen, Jaumard, & 
Savard, 1992; Wood, 1993). Solution methods developed to solve such 
complex problems can be categorized into reformulation and duality 
(Alguacil et al., 2014; Saharidis, Conejo, & Kozanidis, 2013), decom
position (Yao et al., 2007; Yuan, Zhao, & Zeng, 2014), and heuristic- 
based approaches (Bier, Gratz, Haphuriwat, Magua, & Wierzbicki, 
2007; Salmeron et al., 2004). Typically, exact solution methods for 
solving multi-level models have various limitations from the modeling 
point of view to computational complexity. In this regard, hybrid al
gorithms incorporating exact solution algorithm and metaheuristics 
method have been designed to cope with challenges related to multi- 
level models (Akbari-Jafarabadi, Tavakkoli-Moghaddam, Mahmood
janloo, & Rahimi, 2017). For example, Mahmoodjanloo, Parvasi, and 
Ramezanian (2016) developed a hybrid solution approach consisting of 
the genetic algorithm and enumeration method to solve the proposed 
facility interdiction model. Other metaheuristic approaches have been 
also applied to tackle multi-level models such as simulated annealing 
(Parvasi et al., 2017) and tabu search (Aksen & Aras, 2012). 

In this study, we designed a new exact solution algorithm, based on 
decomposing the original tri-level model into two bi-level formulations, 
namely (i) the master problem, and (ii) the subproblem, which provide 
the lower and upper bounds for the model, respectively. Fig. 3 shows the 
general framework of decomposing the tri-level protection-interdiction- 
restoration formulation, denoted by M-I, into the master problem and 
subproblem. By iteratively solving the two constructed problems, the 
gap between two bounds is reduced until the final solution is found. The 
details of constructing two bi-level problems are described 
subsequently. 

3.2. Master problem 

As depicted in Fig. 3, the master-problem is constructed by fixing the 
attacker decision variables in the original model, z←ẑ, where z is the 
attacker decision. As such, the tri-level DAD model is transformed to the 
bi-level min-min formulation as represented in constraints (12)–(18). By 
solving the mater problem, the protection plan is determined, y←ŷ, 
which will be the input of the subproblem (likewise, y is the protector 
decision). Since the master problem is a relaxed problem in comparison 
with the original formulation, it provides a lower bound value for the 
model. 

min
y

min
η,x,F,α,β

∑

t∈T
ζM−I(t) (12)  

∑

k∈K

∑

i∈N’k

yk
i +

∑

k∈K

∑

(i,j)∈A’k

yk
ij ≤ BP (13)  

yk
i ∈ {0, 1} ∀k ∈ K, ∀i ∈ N’k (14)  

yk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A’k (15)  

1 + yk
i − ẑk

i ≥ Fk
i ∀k ∈ K, ∀i ∈ N’k (16)  

1 + yk
ij − ẑk

ij ≥ Fk
ij ∀k ∈ K, ∀(i, j) ∈ A’k (17)  

Constraints(A11) − (A44) (18)  

Theorem 1. The master problem provides a valid lower bound for the tri- 
level model (M-I). 

Proof. By fixing the attacker decision variables (ẑ) through the orig
inal model, the master problem, which is a relaxed problem in com
parison with the original tri-level DAD formulation, is constructed. Since 
(i) the attacker aims to maximize the model and (ii) only a subset of all 
possible attacker plans are considered, the master problem provides a 
valid lower bound value for the entire tri-level DAD model. 

3.3. Subproblem 

On the other hand, by fixing the protector decision variables found 
through the master problem, y←ŷ, the subproblem is constructed as the 
bi-level max-min formulation including attacker and second defender 
(restoration) levels as represent in constraints (19)–(25). Note that the 
subproblem is also a relaxed problem, and it provides an upper bound 
value for the model. By solving the subproblem, the interdiction plan is 
determined, z←ẑ, which will be the input of the master problem. 

max
z

min
η,x,F,α,β

∑

t∈T
ζM−I(t) (19)  

∑

k∈K

∑

i∈N’k

zk
i +

∑

k∈K

∑

(i,j)∈A’k

zk
ij ≤ BI (20)  

zk
i ∈ {0, 1} ∀k ∈ K, ∀i ∈ N’k (21)  

zk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A’k (22)  

1 + ŷk
i − zk

i ≥ Fk
i ∀k ∈ K, ∀i ∈ N’k (23)  

1 + ŷk
ij − zk

ij ≥ Fk
ij ∀k ∈ K, ∀(i, j) ∈ A’k (24)  

Constraints(A11) − (A44) (25)  

Theorem 2. The subproblem provides a valid upper bound for the tri-level 

Tri-level 
protection-interdiction-restoration

Bi-level 
protection-restoration

(master problem)

Bi-level 
interdiction-restoration

(subproblem)

Fixing interdiction 
decision variables

Fixing protection 
decision variables

Fig. 3. Decomposition framework of the tri-level resilience interdiction model.  
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DAD model (M-I). 

Proof. By fixing the protector decision variables (ŷ) through the 
original model, the subproblem, which is a relaxed problem in com
parison with the original tri-level DAD formulation, is constructed. Since 
(i) the protector aims to minimize the model and (ii) only a subset of all 
possible protector plans are considered, the subproblem provides a valid 
upper bound value for the entire tri-level DAD model. 

3.4. Decomposition approach 

Note that both master problem and subproblem are bi-level formu
lations that often cannot be solved directly with available optimization 
solvers. Therefore, further manipulations are required to make them 
generic optimization models (e.g., single level optimization formula
tions). As such, we integrate Benders decomposition with set-covering 
decomposition to tackle the master problem and subproblem, respec
tively, such that the bi-level min-min model generated through the 
master problem can be transformed to a single minimization formula
tion by implementing Benders decomposition method, which can be 
solvable directly using available optimization solvers. To implement 
Benders decomposition method, we define a set of attack plans that are 
indexed by the algorithm iteration. Subsequently, the new set of deci
sion variables for the given attacker decision indexed by iteration and 
their corresponding constraints are added to master problem at every 
iteration. For more information about implementing Benders decom
position, we refer the reader to Yuan et al. (2014) and Zeng and Zhao 
(2013). 

By solving the master problem, the best solution for the defender 
decision variables (y) are found which will be the input for the sub
problem. Since the attacker decision variables are binary in this 
formulation, the subproblem (the bi-level max-min formulation) can be 
solved using the set-covering decomposition approach (Israeli & Wood, 
2002), delivering the best attacker decision (z). Note that converting the 
two levels of the subproblem into a single level by taking the dual of the 
inner level is not applicable to this formulation since the restoration 
level is a mixed integer problem and Karush-Kuhn-Tucker optimality 
conditions are not satisfied in this situation (Israeli & Wood, 2002; 
Wood, 1993). In addition, the covering decomposition algorithm, which 
tackles both the master problem and subproblem using the set-covering 
decomposition approach, is not efficient enough since it is significantly 
time-consuming (Yuan et al., 2014). To implement the set-covering 
approach for solving the subproblem, an inequality is added to the 
second level of the interdiction model, which is a feasibility seeking 
problem. This inequality forces the attacker to find at least one 
component to be interdicted while subject to the available budget. Note 
that the generated inequality at each iteration is distinct from the pre
vious inequalities. Therefore, due to the budget restriction for the 
attacker, at one iteration, the interdiction model cannot satisfy all in
equalities added to the model, and it becomes infeasible. The set 
covering algorithm is then terminated with the optimal attack plan 
which serves as the input to Benders decomposition algorithm. Since the 
interdictor tends to maximize the objective value, the amount of 
disruption imposed to the system, at each iteration of set covering al
gorithm, the best solution is recorded by comparing the objective value 
of the restoration level. Note that at this level, both protection and 
interdiction decision variables are known, so the restoration level can be 
solved directly since it is a single level optimization model. For more 
information about implementing the set-covering algorithm, we refer 
the reader to Israeli and Wood (2002). 

The proposed solution algorithm finds the optimal solution in a finite 
number of iterations, as at each iteration the subproblem introduces an 
effective (optimal) attacker plan associated with a given protection 
scenario, while the master problem keeps expanding with the corre
sponding new attack scenarios and finds the best (optimal) associated 
protection plan. Since the number of components that can be attacked is 

limited, attack scenarios satisfying the attacker budget are finite. Simi
larly, the protection budget and the number of components that can be 
protected are limited. By iteratively generating a new set of variables 
and constraints and solving the updated master problem, eventually the 
upper and lower bound values converge, and the optimal solution is 
obtained. Additional details on the proof of convergence for iterative 
algorithms of this nature can be found in Zeng and Zhao (2013). Fig. 4 
represents the general framework of the proposed solution algorithm. 

Based on the above discussion for solving the master problem and 
subproblem, the pseudocode representing the implementation steps of 
the solution algorithm is provided in Table 2. Note that ε is the solution 
gap set by the decision maker as the stopping criterion of the algorithm. 
LB, UB, objMP, and objSP refer to the lower bound, upper bound, master 
problem (MP), and subproblem (SP) objective values, respectively. RL 
refers to the restoration level, where its corresponding objective value is 
represented by objRL, and IL represents the interdiction level, which is a 
feasibility seeking problem in this algorithm. At each iteration of algo
rithm, the attacker plan is distinguished from previous plans as it is 
indexed by the iteration index represented by c (e.g., ẑc) and fed into 
master problem. Note that the master problem is updated at each iter
ation by receiving the new set of attacker decisions generated by the 
subproblem. Mentioned previously, the interdictor tends to find the 
most destructive plan by considering the current protection decision. 
Therefore P c is responsible for keeping the best interdictor solution in 
its record by comparing objRL with the previous best objective value 
(referring to steps 13 and 14). Finally, y* and z* denote the best pro
tection and interdiction decisions, respectively. Note that the algorithm 
is initialized by the preliminary feasible solution z←0, meaning that no 
components are interdicted at this step. 

To deal with the computational complexity of the proposed tri-level 
protection-interdiction-restoration model (M-I), we proposed a 
decomposition-based solution algorithm to optimally solve it more 
efficiently. However, due to the features of the model, the computational 
complexity of the algorithm grows exponentially for large-sized prob
lems. Along with other factors (e.g., the complexity of the formulation 
itself), the run time of the proposed model is highly sensitive to the 
number of candidate components that can be interdicted and protected. 
By increasing the number of candidate components, possible combina
tions for interdiction and protection grow exponentially, which results 
in increasing computational complexity. To deal with this issue, we 
generate different sets of candidate components based on different 
centrality measures for disruption and protection However, generated 
sets most likely include numerous similar components. To derive sets 
such that they represent a variety of different components, we apply an 
agglomerative hierarchical clustering technique (Murtagh, 1983; Mur
tagh & Contreras, 2011). To implement this clustering method, a prox
imity matrix, which represents the distances between each point, is 

Start

Initialize algorithm

Solve master problem

Solve subproblem

EndYesStopping
criterion?

No

Protection decision variables 
are fixed 

Interdiction decision variables 
are fixed 

Optimal solution is returned

Fig. 4. The general framework of the proposed solution algorithm.  
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required. At the beginning, each set is assigned to an individual cluster. 
Then, the closest pair of clusters are merged, and this step is repeated 
until only one cluster remains. Since the clusters are merged at each 
step, this type of clustering is also known as additive hierarchical 
clustering. 

4. Experimental results 

To study the efficient solvability of the proposed solution algorithm, 
we apply this formulation to the interdependent system of water, gas, 
and power networks in Shelby County, TN, USA, where a set of nodes in 
the water network depends on the power network to be functional and 
the power network is dependent on the water network for cooling and 
emission control. This system of interdependent networks includes 125 
nodes and 164 links as depicted in Fig. 5 for each network separately 
(González, Dueñas-Osorio, & Sánchez-Silva, et al., 2016). Note that 
descriptions of the test network are adapted from Hernandez-Fajardo 
and Dueñas-Osorio (2011) and Song and Ok (2010), which offer a more 
in-depth discussion of their interconnectedness. 

We implemented the solution algorithm in Python 3.6.5 with the 
Gurobi optimizer 8.0.1 for the optimization problem. Computational 
results were conducted on a 64-bit operating system, Intel® Core™ i7- 
6700 CPU @ 3.40 GHz 3.41 GHz desktop computer. Note that the 
convergence ratio of upper bound and lower bound (e.g., the stopping 
criterion of the algorithm) is set to 0.01, e.g., ε = 0.01. 

4.1. Model parameters 

The importance weight wk
it can be adjusted by decision makers to 

prioritize the demand satisfaction in some nodes relative to others at 
time t. This prioritization affects the restoration process of the disrupted 
network by forcing the model to satisfy the demand in high-ranked 
nodes prior to others (e.g., hospitals, populated areas, or vulnerable 
communities might have priority to other nodes in a network). In this 
study, since we aim to analyze the results derived from different sets of 
candidate nodes, equal weights are assigned to the demand nodes. We 
consider equal value for the restoration rate of the components. Note 
that these parameters can vary by the network as they are indexed by k. 
In this study, the restoration rate for each component is assumed similar 
regardless of the type of work crews available at each network. How
ever, the restoration rates, λk

i and λk
ij, can be also indexed by the type of 

work crews available at each network. In this case study, we assume that 
the time interval is one working shift which includes 8 h, and the time 
horizon of the model is chosen to be one working month defined as 23 
working shifts, T = {1, 2, ⋯, 23}. Different scenarios account for the 
resource available for protector and interdictor (BP and BI) as discussed 
in the computational results section. 

4.2. Set of components subject to protection or interdiction 

For the experimental purposes, we assume that nodes are the only 
components that can be either protected or disrupted. To define the 

Table 2 
The pseudocode of implementation steps of the solution algorithm.  

Fig. 5. Graphical illustration of the (a) water, (b) gas, and (c) power networks (adapted from González et al., 2016b)).  

N. Ghorbani-Renani et al.                                                                                                                                                                                                                     



Computers & Industrial Engineering 153 (2021) 107085

8

critical nodes subject to protection and disruption, an efficient clustering 
technique is applied in this case study which results in generating three 
sets of candidate nodes based on three centrality measures. The details 
of deriving the set of critical nodes (i.e., candidate nodes subject to 
protection or disruption) are described subsequently. 

To generate different sets of candidate nodes subject to protection or 
disruption, N’k, we explore five main centrality measures to rank nodes 
based on these measures separately: Degree, Betweenness, Closeness, 
Katz, PageRank, and Load centralities (Newman, 2018). Note that the 
interdependency relationships among networks (e.g., water, gas, power 
networks) are considered as links, so the three networks are merged and 
viewed as a single system for calculating above mentioned centrality 
measures. To choose sets of candidate nodes including the most different 
nodes in compared to other sets, we assess the proportion of similar 
nodes delivered by each centrality measure, as shown in Table 3. Note 
that for each set, we select the top high-ranked 15 nodes based on their 
ranking provided by every centrality measure, accounting for 25% of the 
total number of nodes. 

To select sets of candidate nodes that generate sufficient differences 
in the makeup of those candidate sets, we apply an agglomerative hi
erarchical clustering technique (Murtagh, 1983; Murtagh & Contreras, 
2011). To apply this clustering method, a proximity matrix, which 
represents the distances between each point, is found, as shown in 
Table 4. 

At the beginning, we assign each set to an individual cluster. Then, 
we merge the closest pair of clusters and repeat this step until only one 
cluster remains. Since we merge the clusters at each step, this type of 
clustering is also known as additive hierarchical clustering. Fig. 6 shows 
the dendrogram representing different clusters of candidate nodes based 
on the proximity matrix. The dashed horizontal line in Fig. 6 represents 
the threshold distance of 0.5 chosen for this problem. Three clusters 
result: one that represents the sets from Katz, Degree, and PageRank, a 
second that contains the set found from Closeness centrality, and a third 
representing sets from Load and Betweenness. From the first and third 
clusters, PageRank and Load centrality measures are selected since they 
are at the center of their corresponding clusters. 

Therefore, Closeness, PageRank, and Load centrality measures are 
selected as they generate sufficiently differences in the makeup of those 
candidate sets. With regard to these selected sets built upon three cen
trality measures, (i) Closeness centrality indicates how close a node is to 
all other nodes in the network (Golbeck, 2013), (ii) PageRank centrality 
measures the transitive influence or connectivity of a node in a network 
(Needham & Hodler, 2019), and (iii) the Load centrality of a node is the 
fraction of all shortest paths that pass through that node (Goh, Kahng, & 
Kim, 2001). 

Fig. 7 shows the map and topology of the interdependent system of 
water, gas, and power networks in Shelby County, TN, where the no
tation w, g, and p refer to water, gas, and power networks, respectively. 
Note that the dashed lines in Fig. 7b represent the interdependency 
relationship between water and power networks in this case study. 

4.3. Computational results of M-I 

In this subsection, we demonstrate the efficiency of the proposed 
solution algorithm denoted by S-I. In addition, we discuss the compu
tational results of M-I for (i) different sets of candidate nodes and (ii) 
multiple work crews. 

4.3.1. Performance of the solution algorithm 
To demonstrate the efficient solvability of the proposed solution 

approach, denoted by S-I, we compare its performance with an existing 
exact solution algorithm, the covering decomposition method, denoted 
by S-II (Israeli & Wood, 2002; Yao et al., 2007). Fig. 8 depicts the 
computation speed of S-I with respect to S-II for different protector 
budgets (BP) and attacker budgets (BI). To be consistent in recording the 
time, we track the solution time of S-I and S-II for similar set of candidate 
nodes (Closeness centrality set). The trends generally indicate that S-I 
surpasses S-II in terms of computation time. Particularly for the higher 
budget scenarios, the performance of S-I considerably exceeds S-II. For 
example, for BI = 4, S-I finds the optimal solution around 3.5 times 
faster than S-II for BP = 3, and this rate increases substantially to about 7 
for BP = 4. 

Fig. 9 depicts the convergence behavior of the upper bound and 
lower bound values in the S-I algorithm for the candidate nodes built 
upon the closeness centrality set forBP = 4 under different attacker 
budgets. The trend shows that, as the algorithm iteration continues to 
grow, the gap between the upper and lower bound values either de
creases or remains the same until the tolerance gap is zero or sufficiently 
small. As such, the whole algorithm is terminated, and the final solution 
is returned. In addition, the number of algorithm iterations grows as the 
complexity of the problem increases (in terms of the available budget), 
which results in a longer computational time. In the initial iterations, the 
drop in the upper bound values is substantial since the most effective 
attack plans are sent to the master problem, and the master problem 
finds an optimal protection decision in such a way that the least 
disruption is imposed to the system. Therefore, as the algorithm itera
tion grows, critical components are fortified, and the importance of the 
components decreases (from the perspective of the attacker). Conse
quently, in early iterations, we witness a noticeable improvement in the 
solution as the gap between the upper bound and lower bound values 
reduces rapidly. Then this improvement slows down until the conver
gence ratio of upper bound and lower bound (i.e., the stopping criterion 
of the algorithm, ε) is reached and the final solution is found. Clearly, the 
larger the convergence ratio that is selected by the decision maker, the 
quicker the algorithm is terminated. As a result, the computational 
complexity of the algorithm lessens considerably as it is also a function 
of convergence ratio. 

4.3.2. Computational results of M-I for different sets of candidate nodes 
To compare the objective function value of each set of candidate 

nodes, the algorithm is executed for every set separately under different 
budget scenarios, the results of which are provided in Table 5. As the 
base scenario, we solve the model assuming that a single work crew is 
available for each network. Thereafter, different scenarios account for 

Table 3 
The proportion of similar nodes.  
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multiple crews for a selected number of budget scenarios, and the results 
are discussed subsequently. In addition to the objective value of the 
model (ξM−I), we record the immediate drop in the system performance 
following the attack, t = 1, when the restoration process has not yet 
commenced, denoted by νM−I in Table 5. 

From Table 5, the immediate drop in the system performance does 
not reduce substantially as the protection budget increases. For example, 
for BI = 4, although the protector budget increases from 3 to 4, the 
reduction in system vulnerability is negligible. This is because in the 
objective function of M-I in Eq. (A2), the recovery process over time is 
also considered. Therefore, the optimal decision made by the attacker is 

not necessarily the one the decreases the performance of the system the 
most at t = 1. Instead, the interdiction strategy is based upon maxi
mizing the summation of loss over the time span of the model. Likewise, 
the protector considers the total time required for the system to be fully 
recovered to minimize the amount of loss over time. Therefore, the 
protector does not only focus on vulnerability reduction immediately 
after disruption, but also simultaneously considers the restoration pro
cess of the system. As such, the solution returned by M-I allocates re
sources to harden the system to simultaneously (i) mitigate its 
vulnerability against disruptions, and (ii) minimize the long-term effect 
after the disruption. 

Table 4 
The proximity matrix of different sets of candidate nodes.  

Fig. 6. The dendrogram of clustering different sets of candidate nodes.  

(a) (b)

Fig. 7. The (a) map and (b) topology of the interdependent system of water, gas, and power networks in Shelby County, TN, USA.  
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Fig. 10 illustrates the trend of the objective value for M-I under 
different sets of candidate nodes for protection budgets of 0–4. Clearly, 
for a given protection budget, the objective value (ξM−I), standing for the 
system resilience measure over time, deteriorates for all three sets of 
candidate nodes as the attacker budget continues to increase. By 
comparing five figures, it is revealed that by adding protection re
sources, the system resilience measure over time regularly improves 
from Fig. 10a to Fig. 10e. Note that the objective value for the set con
structed based on the Load centrality measure is higher than other two 
sets for protection budget 0–2. However, the objective value derived 
from PageRank centrality set surpasses Load centrality set for protection 
budget of 4. In addition, the objective value resulting from the set 
constructed based on Closeness centrality measure is generally lower 
than other two sets for all protection budget scenarios except for zero. 
Therefore, it can be concluded that the set built upon Load centrality 
measure is more critical since it imposes more loss to the system if they 
are interdicted, followed by the PageRank centrality set and Closeness 
centrality set which are ranked as the least critical sets, respectively, for 
this case study. 

4.3.3. Computational results of M-I for multiple work crews 
One of the advantages of M M-I I is that multiple work crews can 

operate simultaneously for each network for the recovery process. To 
illustrate the broad capabilities of both model (M-I) and proposed so
lution algorithm (S-I), we double and triple the available work crews at 
each infrastructure network and compare the results of the model with 
the base scenario in which a single work crew operates for every 
network. The aim of this analysis is to study the impact of resource 
(work crew) changes on the long-term effect of disruption. To be 
consistent in obtaining the results, we track the objective function value 
of similar set of candidate nodes (Closeness centrality set) for each 
scenario of available work crew. With respect to the budget availability, 
we solve the model for BI = 5 under two protection budgets (i.e., BI = 5 
and BP = 0 and 1). 

As mentioned in Section 1 and in reference to Fig. 1, network per
formance at time t is represented with φ(t) = 1 − ζ(t). Note that ζ(t) is 
the weighted fraction of unmet demand at time t, as shown in Eq. (1). 
Fig. 11 illustrates network performance trajectories for different sce
narios of work crew (WC) availability. Discussed previously, in the 
initial step, there is a drop in the performance of network followed by 
the disruption represented by νM−I in Table 5. Then, the restoration 
procedure begins until the whole system is fully recovered. Clearly, 
considering multiple work crews expedites the restoration process as 
multiple jobs can be operated in parallel, which results in earlier system 
recovery. From Fig. 11 for both budget scenarios, the whole system 
returns to its normal operation at time 7 and 5 for doubled resources and 
tripled resources, respectively. However, the recovery process lasts until 
time 11 for the single work crew scenario (base scenario). The trend of 
recovery (the required time for restoring each disrupted component) is 

similar for all cases as the restoration rate for each component, λk
i , is 

assumed equal regardless of the type of work crews available at each 
network. Note that the immediate drops in network performance for 
Fig. 11a and b are νM−I = 0.36 and νM−I = 0.29, respectively. This dif
ference is the result of changing the protection budget from 0 to 1, and 
the attacker decision is changed accordingly. With respect to computa
tional complexity, the proposed algorithm (S-I) performs efficiently for 
all three scenarios of resource availability, and the differences among 
computational times are not significant for three scenarios. 

4.4. Tri-level Formulation: Protection-Interdiction-Counteraction model 
(M-II) 

As discussed in Section 3.1, the proposed tri-level model (M-I) ac
counts for restoration level in the third level. To analyze the value of 
simultaneous consideration of both pre-disruption investments (to 
reinforce critical network components) and post-disruption resource 
assignment and crew scheduling, we modify M-I to M-II such that the 
system operator reacts to the disruption by solving an optimal network 
flow problem to minimize the unmet demand (ζM−II(t = 1)) without 
taking into account the recovery process. We represent specific changes 
to the model indices, parameters, decision variables, and constraints in 
M-I to build up the new model (M-II). 

Like M-I, we define ζM−II(t) as the weighted proportion of unmet 
demand (relative to the met demand before the disruption), as shown in 
Eq. (26). Then, the objective function of M-II is defined as Eq. (27), 
including three successive actions: (i) the system planner minimizes the 
unmet demand by reinforcing the network components before disrup
tion, (ii) the interdictor maximizes the unmet demand by interdicting 
the network components, and (iii) the system operator minimizes the 
unmet demand by optimally sending the flow through the network after 
the attack is observed. Since M-II does not include the recovery process 
of the disrupted components, the time horizon of the model is consid
ered one period (T = 1), representing the immediate drop in the system 
performance following the attack. So, the objective function is denoted 
by νM−II as shown in Eq. (27). Note that the entire parameters and de
cision variables indexed by time (t ∈ T) are also considered only for one- 
time unit such that t = 1. 

ζM−II(t) = 1 −

( ∑
k∈K

∑
i∈Nk

−
wk

itηk
it

∑
k∈K

∑
i∈Nk

−
wk

itηk
ite

)

∀t ∈ T (26)  

νM−II = min
y

max
z

min
η,x,F

ζM−II(t = 1) (27) 

Constraints (A11)-(A14), (A23)-(A35), and (A41)-(A44) in M-I are 
removed as they correspond to the restoration level. Constraints (A20)– 
(A22) are substituted with constraints (28)-(30), representing the 
amount of positive flow through any given link is a function of the 
functionality status of the corresponding link, along with its head and 
tail nodes. 

xk
ij1 ≤ uk

ijF
k
ij ∀(i, j) ∈ A’k, ∀k ∈ K (28)  

xk
ij1 ≤ uk

ijF
k
i ∀(i, j) ∈ Ak, ∀i ∈ N’k, ∀k ∈ K (29)  

xk
ij1 ≤ uk

ijF
k
j ∀(i, j) ∈ Ak, ∀j ∈ N’k, ∀k ∈ K (30) 

Finally, constraint (A36) in M-I is replaced by constraints (31), rep
resenting the physical interdependency among the networks of a system. 
In particular, constraints (31) state that positive flow through a link is a 
function of the functionality status of its corresponding related parent 
nodes (in other networks). 

xk
ij1 ≤ uk

ijFi
k ∀(i, j) ∈ Ak, ∀i ∈ N’k, ∀k, k ∈ K|

(
(i, k),

(
i, k

) )

∈ Ψ or
(

(j, k),
(

i, k
) )

∈ Ψ (31) 
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Fig. 8. Computation speed of S-I with respect to S-II under different 
budget scenarios. 

N. Ghorbani-Renani et al.                                                                                                                                                                                                                     



Computers & Industrial Engineering 153 (2021) 107085

11

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7

Lower bound Upper bound
Iteration

O
bj

ec
tiv

e 
va

lu
e

(a)

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11

Lower bound Upper bound
Iteration

O
bj

ec
tiv

e 
va

lu
e

(b)

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

Lower bound Upper bound
Iteration

O
bj

ec
tiv

e 
V

al
ue

(c)

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25
Lower bound Upper bound Iteration

O
bj

ec
tiv

e 
va

lu
e

(d)

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23
Lower bound Upper bound

Iteration

O
bj

ec
tiv

e 
va

lu
e

(e)

Fig. 9. Convergence trend of upper bound and lower bound values in S-I algorithm as forBP = 4 under (a)BI = 1, (b) BI = 2, (c) BI = 3, (d) BI = 4, and (e) BI = 5.  
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Note that ηk
i1, xk

ij1, Fk
i , and Fk

ij are the decision variables of the third 
level in M-II. The computational results of M-II, and the computational 
time comparison of M-I and M-II are discussed subsequently. 

4.4.1. Computational results of M-II for different sets of candidate nodes 
Table 6 shows computational results of M-II for each set of candidate 

nodes under different budget scenarios. Although the immediate drop in 
the system performance in M-I does not noticeably improve by 
increasing the protection budget (referring to νM−I in Table 5), the sys
tem vulnerability in M-II (referring to νM−II in Table 6) remarkably 
continues to reduce as the protection budget increases. This is because in 
the objective function of M-II, Eq. (27), the immediate drop in the sys
tem performance is the only resilience component taken into account. 
Therefore, the optimal decision made by the attacker is the one that 
decreases the performance of the system the most at t = 1. Likewise, the 
protector only focuses on the vulnerability reduction immediately after 
disruption in M-II. In addition, by comparing the objective values of two 
models, ξM−I and νM−II, under different budget scenarios, it is concluded 
that the system that is fortified based on M-I is considerably more 
resilient relative to M-II. These outcomes show the value of such a de
cision support tool (M-I) aiming to make a system more resilient by 
simultaneous consideration of (i) mitigating vulnerability and (ii) 
minimizing the long-term effect after disruption. 

Fig. 12 illustrates the trend of objective value changes for M-II (νM−II) 
under different sets of candidate nodes for protection budgets of 0–4. As 
it can be seen from Fig. 12a to e, the highest objective value belongs to 
the set created based on the PageRank centrality measure followed by 
the Load and Closeness centrality measures, respectively. This suggests 
that nodes in the PageRank set are more critical than other two sets in 
this system in terms of imposing more loss to the system immediately 
after a disruption if they are interdicted. 

4.4.2. Computation time comparison of M-I and M-II 
Table 7 provides the computational time of the algorithm for solving 

M-I and M-II under different budget scenarios. To be consistent in 
recording the time, we track the solution time of M-I and M-II for similar 
set of candidate nodes (Closeness centrality set). Fig. 13 illustrates the 
computation time (min) of M-I (a) and M-II (b) along with the relative 
speed of M-I in comparison with M-II (c) under different budget sce
narios. The results suggest that there is an upward trend in computa
tional burden of both M-I and M-II as the available budget continues to 
increase. Note that the vertical axis units in Fig. 13a and b are different 
since the computational time of two models are considerably variant (e. 
g., the maximum computation time in M-I is 456.28 however this time is 
55.43 for M-II). According to Fig. 13c, M-II is significantly faster than M- 
I for all budget scenarios since the complexity of M-I is noticeably more 
than M-II (e.g., the number of decision variables and constraints). 
However, for a given interdiction budget, there are some fluctuations in 
the relative speed of M-I with respect to M-II as the protector budget 
changes since the convergence speed of the algorithm reduces for some 
specific budget scenarios. 

5. Concluding remarks 

Due to the growing dependency on critical infrastructure systems, 
ensuring their resilience is a main concern as even a small failure in one 
can cause considerable adverse impacts on community welfare and 
economic productivity for extended periods (Kettl, 2013). Infrastructure 
systems have complex structures that can be modeled as the network 
where the commodity (service) running through each infrastructure 
system represented by the flow. Interdiction models are widely applied 
to address the vulnerability reduction of such systems under hazard of 
an intelligent attack. In particular, the DAD model is considered as a 
useful tool to guide the improvement of the system performance from 
the beginning of a disruptive event to the total system recovery. 

In this paper, we designed a new decomposition-based solution 
approach as a general framework to optimally solve DAD models such 
that the final solution is found by iteratively solving two bi-level for
mulations derived from the original tri-level model. To illustrate the 
efficient solvability of the proposed solution technique, we study the 
existing interdiction model proposed by Ghorbani-Renani et al. (2020) 
referred to as a protection-interdiction-restoration model (M-I). We 
illustrated M-I for the system of interdependent networks in Shelby 
County, TN, USA. The results indicate that the proposed solution algo
rithm substantially outperforms the covering decomposition method 
regarding the computational complexity. In addition, we generated 
different sets of candidate components as possibilities for disruption and 
protection based on different topological characteristics and using an 
agglomerative hierarchical clustering technique to derive the most 
vulnerable components. The results revealed that the set built upon the 
Load centrality measure is more critical since it imposes more loss to the 
system if interdicted, followed by the PageRank centrality set and 
Closeness centrality set. 

Furthermore, we studied a protection-interdiction-counteraction 
model, denoted by M-II, to compare results and computational 
complexity with respect to the original protection-interdiction- 
restoration model (M-I). We solved M-II for three different sets of 
candidate nodes built upon Closeness, PageRank, and Load centrality 
measures. The results suggested that nodes in the PageRank set are more 
critical than other two sets in terms of imposing more loss to the system 
immediately after a disruption if they are interdicted. We can conclude 
that since PageRank set includes nodes which link from other important 
and link parsimonious nodes, or they are highly linked in this network, 
their failures result in the higher immediate loss to this system. 
Regarding the computation time, the results showed that although M-I is 
a comprehensive interdiction model relative to M-II since it accounts for 
both vulnerability reduction and recoverability enhancement, M-I is 
significantly computationally challenging and an efficient solution al
gorithm is required to solve such a complex model in a reasonable time. 
However, M-I is an effective tool for providing pre-disruption 

Table 5 
Computational results of M-I for each set of candidate nodes (generated based on 
different centrality measures) under different budget scenarios.  

Protector 
budget (BP)  

Attacker 
budget (BI)  

Candidate node sets 

Closeness PageRank Load 

ξM−I  νM−I  ξM−I  νM−I  ξM−I  νM−I  

0 1 0.31 0.16 0.28 0.14 0.31 0.16 
2 0.86 0.29 0.65 0.22 0.86 0.29 
3 1.10 0.31 1.05 0.26 1.33 0.36 
4 1.44 0.34 1.47 0.31 1.77 0.42 
5 1.73 0.36 2.05 0.33 2.28 0.44  

1 1 0.28 0.14 0.25 0.12 0.28 0.14 
2 0.48 0.16 0.60 0.22 0.60 0.22 
3 0.79 0.21 0.96 0.24 0.95 0.24 
4 1.21 0.26 1.24 0.33 1.40 0.30 
5 1.57 0.29 1.68 0.29 1.93 0.35  

2 1 0.19 0.09 0.21 0.10 0.19 0.09 
2 0.45 0.16 0.53 0.18 0.47 0.16 
3 0.76 0.21 0.83 0.31 0.81 0.21 
4 1.02 0.24 1.11 0.38 1.23 0.27 
5 1.33 0.26 1.46 0.43 1.51 0.29  

3 1 0.15 0.08 0.20 0.10 0.17 0.08 
2 0.36 0.12 0.47 0.16 0.45 0.16 
3 0.68 0.17 0.81 0.21 0.80 0.22 
4 0.99 0.20 1.03 0.23 0.95 0.29 
5 1.13 0.20 1.24 0.33 1.25 0.24  

4 1 0.14 0.07 0.19 0.10 0.15 0.08 
2 0.34 0.12 0.45 0.16 0.39 0.14 
3 0.61 0.16 0.79 0.21 0.70 0.18 
4 0.80 0.19 0.99 0.31 0.93 0.21 
5 0.93 0.25 1.20 0.31 1.09 0.23  
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Fig. 10. Objective value of M-I (ξM−I) for different sets of candidate nodes (generated based on different centrality measures) for protection budgets of (a) 0, (b) 1, (c) 
2, (d) 3, and (e) 4. 
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preparation decisions and post-disruption restoration planning. There
fore, there exists a tradeoff between employing a more comprehensive 
model with higher computational complexity or neglecting the recovery 
process of disrupted system through the interdiction model. 

Though interdiction models have widespread applications from 
military to infrastructure networks along with other domains, they are 
generally nonconvex problems and computationally challenging to 
solve. Therefore, efficient solution methods are necessary to deal with 
such complex problems. For future work, we plan to explore heuristic 
solution techniques to overcome the computational complexity of 
interdiction models. In addition, machine learning techniques could be 
used to estimate the restoration schedule of disrupted components, 
which could significantly improve the efficiency of the algorithm. 

Furthermore, in the proposed model, an intelligent attacker with com
plete information about the network intentionally interdicts the system. 
The protector, on the other hand, defends (fortifies) the system in 
response to such a prospective interdiction. Another future consider
ation will explore the value of defender secrecy and deception for 
defensive investments in the interdiction models. 
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Table 6 
Objective value of M-II (νM−II) for each set of candidate nodes (generated based on different centrality measures) under different 
budget scenarios.  

Protector budget (BP)  Attacker budget (BI)  Candidate node sets 

Closeness PageRank Load 

0 1 0.16 0.14 0.16 
2 0.29 0.26 0.29 
3 0.32 0.36 0.36 
4 0.34 0.45 0.42 
5 0.37 0.52 0.45  

1 1 0.14 0.12 0.14 
2 0.23 0.22 0.23 
3 0.28 0.32 0.30 
4 0.32 0.40 0.36 
5 0.35 0.45 0.39  

2 1 0.09 0.10 0.09 
2 0.17 0.20 0.17 
3 0.23 0.28 0.24 
4 0.26 0.36 0.31 
5 0.29 0.41 0.35  

3 1 0.08 0.10 0.08 
2 0.14 0.18 0.16 
3 0.19 0.25 0.22 
4 0.24 0.32 0.27 
5 0.26 0.37 0.30  

4 1 0.07 0.09 0.08 
2 0.12 0.17 0.14 
3 0.17 0.24 0.20 
4 0.22 0.30 0.24 
5 0.22 0.33 0.26  
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Fig. 11. Network performance φ(t) of M-I as forBI = 5 under (a)BP = 0 and (b)BP = 1.  
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Fig. 12. The objective value of M-II (νM−II) in different sets of candidate nodes (generated based on different centrality measures) for protection budgets of (a) 0, (b) 
1, (c) 2, (d) 3, and (e) 4. 
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Table 7 
Computational time of M-I and M-II under different budget scenarios.  

Protector budget (BP)  Attacker budget (BI)  ΓM−I(min)  ΓM−II(min)  
(

ΓM−I

ΓM−II

)

0 1 0.25 0.01 25.00 
2 1.46 0.08 18.25 
3 6.44 0.41 15.71 
4 19.93 1.4 14.24 
5 49.19 4.24 11.60  

1 1 0.38 0.03 12.67 
2 3.92 0.17 23.06 
3 9.66 0.76 12.71 
4 31.64 2.68 11.81 
5 71.51 10.25 6.98  

2 1 0.52 0.03 17.33 
2 8.78 0.24 36.58 
3 23.74 1.34 17.72 
4 83.67 4.07 20.56 
5 120.11 14.18 8.47  

3 1 0.65 0.05 13.00 
2 8.06 0.32 25.19 
3 35.72 2.13 16.77 
4 87.94 8.79 10.00 
5 147.73 32.65 4.52  

4 1 0.76 0.04 19.00 
2 9.97 0.42 23.74 
3 51.97 2.11 24.63 
4 91.04 9.1 10.00 
5 456.28 55.43 8.23  
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Fig. 13. Computation time of M-I (a) and M-II (b) along with the relative speed of M-I with respect to M-II (c) under different budget scenarios.  
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Appendix A. Tri-level Formulation: Protection-Interdiction-Restoration model (M-I) 

Assume a set K of infrastructure networks. Network k ∈ K is defined by Gk =
(
Nk, Ak)

, where Nk is the set of nodes and Ak is the set of links that 
connect nodes. Let R be the set of work crews available for the system of interdependent networks, where the subset Rk⊆R indicates the work crews 
that operate in network k ∈ K. Tables A1–A3 outline the model indices, parameters, and decision variables, respectively. Note that all parameters of 
the model are known and certain. 

Objective function 

ζM−I(t) = 1 −

( ∑
k∈K

∑
i∈Nk

−
wk

itηk
it

∑
k∈K

∑
i∈Nk

−
wk

itηk
ite

)

∀t ∈ T (A1)  

ξM−I = min
y

max
z

min
η,x,F,α,β

∑

t∈T
ζM−I(t) (A2) 

Table A2 
Model parameters.  

ηk
ite  Flow reaching node i ∈ Nk

− in network k ∈ K before the attack  

wk
it  Importance weight assigned to node i ∈ Nk

− in network k ∈ K at timet ∈ T  
BP  Cardinality budget for the protector,BP ∈ Z*  

BI  Cardinality budget for the interdictor,BI ∈ Z*  

Sk
i  Amount of supply in node i ∈ Nk

+ in network k ∈ K  

dk
i  Amount of demand in node i ∈ Nk

− in network k ∈ K  

uk
ij  Capacity of link (i, j) ∈ Ak in network k ∈ K  

λk
i  Restoration rate of node i ∈ N’k in network k ∈ K,0 < λk

i ≤ 1  

λk
ij  Restoration rate of link (i, j) ∈ A’kin network k ∈ K,0 < λk

ij ≤ 1  
M  An arbitrarily large positive number  

Table A3 
Model decision variables.  

ηk
it  Amount of demand met at node i ∈ Nk

− in network k ∈ K in time t ∈ T, continuous  

xk
ijt  Flow on link(i, j) ∈ Ak in network k ∈ K in time t ∈ T, continous  

yk
i  Equal to 1 if node i ∈ N’kin network k ∈ K is protected, binary  

yk
ij  Equal to 1 if link (i, j) ∈ A’k in network k ∈ K is protected, binary  

zk
i  Equal to 1 if node i ∈ N’k in network k ∈ Kis interdicted, binary  

zk
ij  Equal to 1 if link (i, j) ∈ A’k in network k ∈ K is interdicted, binary  

Fk
i  Equal to 1 if node i ∈ N’k in network k ∈ K is functional, binary  

Fk
ij  Equal to 1 if link (i, j) ∈ A’k in network k ∈ K is functional, binary  

αkr
it  Equal to 1 if node i ∈ N’k in network k ∈ K is restored by work crew r ∈ Rkin time t ∈ T, binary  

αkr
ijt  Equal to 1 if link (i, j) ∈ A’k in network k ∈ K is restored by work crew r ∈ Rkin time t ∈ T, binary  

βk
it  Equal to 1 if node i ∈ N’k in network k ∈ K is reactivated at time t ∈ T, binary  

βk
ijt  Equal to 1 if link (i, j) ∈ A’k in network k ∈ K is reactivated at time t ∈ T, binary   

Table A1 
Model sets and indices.  

K  Set of all infrastructure networks, indexed by k  

Nk  Set of all nodes in network k ∈ K, indexed by i  

Ak  Set of all links in network k ∈ K, indexed by (i, j)

Nk
+ Set of supply nodes in network k ∈ K such that Nk

+⊆Nk  

Nk
− Set of demand nodes in network k ∈ K such that Nk

−⊆Nk  

Nk
0  Set of transshipment nodes in network k ∈ K such that Nk

0⊆Nk  

N’k  Set of nodes that can be either protected or interdicted in network k ∈ K such thatN’k⊆Nk  

A’k  Set of links that can be either protected or interdicted in network k ∈ K such thatA’k⊆Ak  

Rk  Set of work crews in network k ∈ K, indexed byr  

T  Set of time periods, indexed byt   
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First Level: Protection 
∑

k∈K

∑

i∈N’k

yk
i +

∑

k∈K

∑

(i,j)∈A’k

yk
ij ≤ BP (A3)  

yk
i ∈ {0, 1} ∀i ∈ N’k, ∀k ∈ K (A4)  

yk
ij ∈ {0, 1} ∀(i, j) ∈ A’k, ∀k ∈ K (A5) 

Second Level: Interdiction 
∑

k∈K

∑

i∈N’k

zk
i +

∑

k∈K

∑

(i,j)∈A’k

zk
ij ≤ BI (A6)  

zk
i ∈ {0, 1} ∀i ∈ N’k, ∀k ∈ K (A7)  

zk
ij ∈ {0, 1} ∀(i, j) ∈ A’k, ∀k ∈ K (A8) 

Third Level: Restoration 

1 + yk
i − zk

i ≥ Fk
i ∀i ∈ N’k, ∀k ∈ K (A9)  

1 + yk
ij − zk

ij ≥ Fk
ij ∀(i, j) ∈ A’k, ∀k ∈ K (A10)  

Fk
it ≤ 1 − βk

it ∀i ∈ N’k, ∀k ∈ K, ∀t ∈ T (A11)  

Fk
ijt ≤ 1 − βk

ijt ∀(i, j) ∈ A’k, ∀k ∈ K, ∀t ∈ T (A12)  

βk
i1 = 0 ∀i ∈ N’k, ∀k ∈ K (A13)  

βk
ij1 = 0 ∀(i, j) ∈ A’k, ∀k ∈ K (A14)  

∑

(i,j)∈Ak

xk
ijt −

∑

(j,i)∈Ak

xk
jit ≤ Sk

i ∀i ∈ Nk
+, ∀k ∈ K, ∀t ∈ T (A15)  

∑

(i,j)∈Ak

xk
ijt −

∑

(j,i)∈Ak

xk
jit = 0 ∀i ∈ Nk

0 , ∀k ∈ K, ∀t ∈ T (A16)  

∑

(i,j)∈Ak

xk
ijt −

∑

(j,i)∈Ak

xk
jit = −ηk

it ∀i ∈ Nk
−, ∀k ∈ K, ∀t ∈ T (A17)  

ηk
it ≤ dk

i ∀i ∈ Nk
−, ∀k ∈ K, ∀t ∈ T (A18)  

xk
ijt ≤ uk

ij ∀(i, j) ∈ Ak, ∀k ∈ K, ∀t ∈ T (A19)  

xk
ijt ≤ uk

ij

(
Fk

ij + βk
ijt

)
∀(i, j) ∈ A’k, ∀k ∈ K, ∀t ∈ T (A20)  

xk
ijt ≤ uk

ij

(
Fk

i + βk
it

)
∀(i, j) ∈ Ak, ∀i ∈ N’k, ∀k ∈ K, ∀t ∈ T (A21)  

xk
ijt ≤ uk

ij

(
Fk

j + βk
jt

)
∀(i, j) ∈ Ak, ∀j ∈ N’k, ∀k ∈ K, ∀t ∈ T (A22)  

∑t

s=1
αkr

is ≤ M
(

1 −
(

αkr
i(t+1) − αkr

it

) )
∀i ∈ N’k, ∀r ∈ Rk, ∀k ∈ K, ∀t ∈ T (A23)  

∑

r∈Rk

∑

t∈T
αkr

it ≥

(
1 − Fk

i

)

λk
i

∀i ∈ N’k, ∀k ∈ K (A24)  

∑

r∈Rk

∑

t∈T
αkr

it <

(
(1 − Fk

i

)

λk
i

+ 1
)

∀k ∈ K, ∀i ∈ N’k (A25)  

∑t

s=1
αkr

ijs ≤ M
(

1 −
(

αkr
ij(t+1) − αkr

ijt

) )
∀(i, j) ∈ A’k, ∀r ∈ Rk, ∀k ∈ K, ∀t ∈ T (A26)  

∑

r∈Rk

∑

t∈T
αkr

ijt ≥
(1 − Fk

ij

)

λk
ij

∀k ∈ K, ∀(i, j) ∈ A’k (A27)  

∑

r∈Rk

∑

t∈T
αkr

ijt <

(
(1 − Fk

ij

)

λk
ij

+ 1

)

∀k ∈ K, ∀(i, j) ∈ A’k (A28) 
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∑

s ∈ Rk

s ∕= r

∑

t∈T
αks

it ≤ M
(
1 − αkr

it

)
∀i ∈ N’k, ∀r ∈ Rk, ∀k ∈ K, ∀t ∈ T (A29)  

∑

s ∈ Rk

s ∕= r

∑

t∈T
αks

ijt ≤ M
(

1 − αkr
ijt

)
∀(i, j) ∈ A’k, ∀r ∈ Rk, ∀k ∈ K, ∀t ∈ T (A30)  

∑

r∈Rk

αkr
it ≤ 1 ∀i ∈ N’k, ∀k ∈ K, ∀t ∈ T (A31)  

∑

r∈Rk

αkr
ijt ≤ 1 ∀(i, j) ∈ A’k, ∀k ∈ K, ∀t ∈ T (A32)  

∑

(i,j)∈A’k

αkr
ijt +

∑

i∈N’k

αkr
it ≤ 1 ∀r ∈ Rk, ∀k ∈ K, ∀t ∈ T (A33)  

1 −

⎛

⎜
⎜
⎜
⎜
⎝

(1−Fk
i )

λk
i

−
∑

r∈Rk

∑t−1
s=1αkr

is

M

⎞

⎟
⎟
⎟
⎟
⎠

≥ βk
it ∀i ∈ N’k, ∀k ∈ K, ∀t ∈ T|t ∕= 1 (A34)  

1 −

⎛

⎜
⎜
⎜
⎜
⎝

(1−Fk
ij)

λk
ij

−
∑

r∈Rk

∑t−1
s=1αkr

ijs

M

⎞

⎟
⎟
⎟
⎟
⎠

≥ βk
ijt ∀(i, j) ∈ A’k, ∀k ∈ K, ∀t ∈ T|t ∕= 1 (A35)  

xk
ijt ≤ uk

ij

(
Fi

k + βit
k
)

∀(i, j) ∈ Ak, ∀i ∈ N’k, ∀k, k ∈ K|
(

(i, k),
(

i, k
) )

∈ Ψ or
(

(j, k),
(

i, k
) )

∈ Ψ, ∀t ∈ T (A36)  

ηk
it ≥ 0 ∀i ∈ Nk

−, ∀k ∈ K, ∀t ∈ T (A37)  

xk
ijt ≥ 0 ∀(i, j) ∈ Ak, ∀k ∈ K, ∀t ∈ T (A38)  

Fk
i ∈ {0, 1} ∀i ∈ N’k, ∀k ∈ K (A39)  

Fk
ij ∈ {0, 1} ∀(i, j) ∈ A’k, ∀k ∈ K (A40)  

αkr
it ∈ {0, 1} ∀i ∈ N’k, ∀r ∈ Rk, ∀k ∈ K, ∀t ∈ T (A41)  

αkr
ijt ∈ {0, 1} ∀(i, j) ∈ A’k, ∀r ∈ Rk, ∀k ∈ K, ∀t ∈ T (A42)  

βk
it ∈ {0, 1} ∀i ∈ N’k, ∀k ∈ K, ∀t ∈ T (A43)  

βk
ijt ∈ {0, 1} ∀(i, j) ∈ A’k, ∀k ∈ K, ∀t ∈ T (A44)  
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Altner, D. S., Ergun, Ö., & Uhan, N. A. (2010). The Maximum Flow Network Interdiction 
Problem: Valid inequalities, integrality gaps, and approximability. Operations 
Research Letters, 38(1), 33–38. 

Aven, T. (2011). On some recent definitions and analysis frameworks for risk, 
vulnerability, and resilience. Risk Analysis, 31(4), 515–522. 

Ayyub, B. M. (2014). Systems resilience for multihazard environments: definition, 
metrics, and valuation for decision making. Risk Analysis, 34(2), 340–355. 

Bard, J. F. (1991). Some properties of the bilevel programming problem. Journal of 
Optimization Theory and Applications, 68(2), 371–378. 

Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2013). Resilience-based network 
component importance measures. Reliability Engineering & System Safety, 117, 89–97. 

Baycik, N. O., Sharkey, T. C., & Rainwater, C. E. (2018). Interdicting layered physical and 
information flow networks. IISE Transactions, 50(4), 316–331. 

Bier, V. M., Gratz, E. R., Haphuriwat, N. J., Magua, W., & Wierzbicki, K. R. (2007). 
Methodology for identifying near-optimal interdiction strategies for a power 
transmission system, 92, 1155–1161. 

Borndörfer, R., Sagnol, G., & Schwartz, S. (2016). An Extended network interdiction 
problem for optimal toll control. Electronic Notes in Discrete Mathematics, 52, 
301–308. 

Brown, G., Carlyle, M., Salmerón, J., & Wood, K. (2006). Defending critical 
infrastructure. Interfaces, 36(6), 530–544. 

Brown, G. G., Carlyle, W. M., Harney, R. C., Skroch, E. M., & Wood, R. K. (2009). 
Interdicting a Nuclear-Weapons Project. Operations Research, 57(4), 866–877. 

Brown, G. G., Carlyle, W. M., & Wood, R. K. (2008). Optimizing Department of 
Homeland Security Defense Investments : Applying Defender-Attacker (-Defender) 

N. Ghorbani-Renani et al.                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0360-8352(20)30755-5/h0005
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0005
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0005
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0015
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0015
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0020
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0020
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0020
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0025
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0025
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0035
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0035
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0035
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0040
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0040
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0045
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0045
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0050
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0050
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0055
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0055
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0060
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0060
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0070
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0070
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0070
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0075
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0075
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0080
http://refhub.elsevier.com/S0360-8352(20)30755-5/h0080


Computers & Industrial Engineering 153 (2021) 107085

20

Optimization To Terror Risk Assessment and Mitigation. Appendix E, National 
Academies Press, Washington, DC, pp. 1–30. 

Chang, S. E., McDaniels, T. L., Mikawoz, J., & Peterson, K. (2007). Infrastructure failure 
interdependencies in extreme events: Power outage consequences in the 1998 Ice 
Storm. Natural Hazards, 41(2), 337–358. 

Davarikia, H., & Barati, M. (2018). A tri-level programming model for attack-resilient 
control of power grids. Journal of Modern Power Systems and Clean Energy, 6(5), 
918–929. 

Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Mirjalili, S. (2018). Hybrid optimizers 
to solve a tri-level programming model for a tire closed-loop supply chain network 
design problem. Applied Soft Computing Journal, 70, 701–722. 

Fathollahi Fard, A. M., & Hajaghaei-Keshteli, M. (2018). A tri-level location-allocation 
model for forward/reverse supply chain. Applied Soft Computing Journal, 62, 
328–346. 

Fulkerson, D. R., & Harding, G. C. (1977). Maximizing the minimum source-sink path 
subject to a budget constraint. Mathematical Programming, 13(1), 116–118. 

Ghare, P. M., Montgomery, D. C., & Turner, W. C. (1971). Optimal interdiction policy for 
a flow network. Naval Research Logistics Quarterly, 18(1), 37–45. 
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Gomez, C., González, A. D., Baroud, H., & Bedoya-Motta, C. D. (2019). Integrating 
operational and organizational aspects in interdependent infrastructure network 
recovery. Risk Analysis, 39(9), 1913–1929. 
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