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Abstract

The latest advances in mixed reality promote new
capabilities that allow head-mounted displays, such
as Microsoft HoloLens, to visualize various data and
information in a real physical environment. While such
new features have great potential for new generations
of visualization systems, they require fundamentally
different visualization and interaction techniques that
have not been well explored. This paper presents
an immersive visualization approach for investigating
abnormal events in heterogeneous, multi-source, and
time-series sensor data collections in real-time on the
site of the event. Our approach explores the essential
components for an analyst to visualize complex data
and explore hidden connections in mixed reality; it
also combines automatic event detection algorithms
to identify suspicious activities. We demonstrate our
prototype system by using the developer version of
Microsoft HoloLens and presenting case studies that
require an analyst to investigate related data on site. We
also discuss the limitations of the current infrastructure
and potential applications for security visualization.

1. Introduction

The recent advances on head-mounted displays
(HMDs) for mixed reality (MR), such as Microsoft
HoloLens and Meta 2, provide commercialized devices
for data visualization and visual analytics applications.
Different from virtual reality (VR), MR produces the
hologram effects to mix physical and virtual objects,
which allows users to visualize and interact with
data and corresponding physical objects in the real
environment.  Also different from the traditional
augmented reality (AR), the latest MR technologies are
equipped with significantly more powerful computing
and storage units for complex data visualization and
analysis tasks.

*This work was done during the visit at UNC Charlotte.

Figure 1. Microsoft HoloLens and an example

demonstrating immersive visualization and analysis
using a large physical environment without the needs
of a desktop computer.

For security visualization, MR creates several
desirable features that are not available from desktop
visualization systems. The key difference is that
MR provides a computing infrastructure that allows
analysts to perform both data analysis and physical
operations without any context switch at the same
physical location. This feature is useful for many
security applications, ranging from visualization of
critical infrastructures and emergency responses to
monitoring routine operations for suspicious activities.
As various virtual objects can be mixed in the same
environment, MR can also be used for collaborative
analysis that allows analysts at different locations to
work in the same environment simultaneously. For
example, a user at the site of a natural disaster can
receive information from the headquarters and visualize
them right on the corresponding physical locations.

However, there are still many open questions for
MR visualization systems involving challenges related
to multi-sensory interfaces, human perception and
cognition, storage, and computation capabilities [1].
Especially at this early stage of MR visualization, we
need to study how to visualize abstract information
effectively in a real physical environment. We also
need to explore multi-sensory input approaches, which
includes using voices and gestures for interacting with
the data. These challenges should be carefully studied
to explore the new dimensions that are brought in by
MR infrastructure to human analysts.

This paper presents our study for a security



application with heterogeneous datasets that involve
multi-attributes and time-series data collected by various
sensors. Our immersive visualization approach provides
visual correlations between spatially organized 3D floor
plans and line charts of temporal features. Specifically,
we allow analysts to visualize both 2D information
and 3D patterns by placing them on a table or
walking around the floor plans as if they were at the
site. We also combine event detection algorithms for
exploring abnormal events from multiple attributes in
the operational data.

Our prototype system is equipped with the key
components involved in creating an immersive
visualization system for complex data, including
building 2D and 3D visualizations with Unity and
developing voice, gaze, and gesture-based user
interaction functions. The results and discussions
demonstrate  the immersive  visualization for
heterogeneous data analysis tasks in MR. We also
summarize our findings throughout the project as the
limitations of the current infrastructure and potential
security applications for further research.

2. Related Work

We summarize the related work from the two aspects
of immersive analytics and event detection approaches,
as they are the two important components of this work.

2.1. Immersive Visualization and Analytics

While the latest technology significantly advances
the performances and features of HMDs, the concepts
of augmented and virtual realities have been existed for
decades; among which a number of work is devoted for
security applications. Generally, VR is used for training
purposes and it allows users to experiment in real time
under various situations such as evacuation scenarios [2]
while MR and AR are more suitable for real action with
the integration of virtual information in real physical
environments. For example, AR technology was used
as a tool to support the collaboration between rescue
services for the police and military personnel in a crisis
management scenario [3]. For operational units in
the security domain that work together in teams, AR
techniques were used to support quick context-related
information exchange [4]. AR-based mobile assistance
systems in context-based provision of facility-related
information [5] were shown to minimize the intensive
recall required in this domain.

Specifically related to immersive analytics, a number
of recent studies have been performed and they provide
favorable results for stereoscopic techniques. Ware
and Mitchell [6] studied the perception of variations

of 3D node-link diagrams and showed that stereoscopy
reduces errors and response time in a very high
resolution stereoscopic display for both skilled and
unskilled observers.  Studies of performances on
collaborative immersive visualization using the recent
HMDs, such as Oculus Rift and HTC Vive, have
shown no difference with expensive equipment such
as cave-style environments [7]. Kwon et al. [8]
investigated the effectiveness of graph visualization and
the impact of different layout techniques on readability
in an HMD, and they concluded that the 3D stereoscopic
graph visualization with an Oculus Rift out-performed
traditional 2D graph visualizations.

This approach facilitated the effectiveness of alerts
in complex systems - a key feature in security
monitoring systems. We expect that this will become
an important application of immersive visualization
systems in the near future [9, 10].

2.2. Events Detection in Time Series Data

There has been a significant amount of prior works
in data mining, statistics, information theoretic and
machine learning on finding abnormal patterns or
anomalies. Anomalies are patterns in data that do not
conform to a well defined notion of normal behavior
and can be point anomalies, contextual anomalies or
collective anomalies [11]. Generally, anomaly detection
techniques are domain specific. In the security context,
these abnormal patterns can be related to intruders,
malicious attacks, or compromised security rules. The
output of the anomaly detection is usually in form
of suspicious levels or scores [11]. For example,
Papadopoulos et al. [12] used the data features to
quantifying the anomaly level of each path change event
in their border gateway protocol anomalies detection
and visualization prototype.

One important trend in anomaly detection is for
periodic time series data. For example, statistical
approaches have been used to search periodic patterns
and compute the deviation [13]. Some researchers
used visual analytic approach to visually identity
such deviation by comparing visual correlation and
similarity between the time series data [14, 15, 16].
Other researchers used collaborative and user defined
events approach to highlight suspicious events from the
experts instead of automatic detection algorithms [17].
Also, feature vector technique has been used in
behavioral observation to detect cyber-threat in critical
infrastructure [18]. It has also been used to detect large
scale unusual behavior in time series data [19].



Figure 2. Examples of immersive visualization using HoloLens for studying heterogeneous information collected
from various sensors. The prototype system demonstrates features of combined voice, gaze, and gesture
interaction for on-site investigation, which are especially useful for security applications such as emergency
responses and situations that require overlaying information with the real environment.

Figure 3. Flexible organizations of 3D floor plans and movement patterns of employees. They can be flexible
placed on available spaces on site, such as a table or on a wall, as stacked images or staircases (generally with
less occlusion) for studying various 3D visual correlations.

3. On-Site Immersive Visualization
3.1. Application Requirements

To justify our design of the MR visualization
system, we first summarize the requirements of
the application, which are provided by the VAST
Challenge 2016. A company named GAStech has
a state-of-the-art, three-story building which is fully
instrumented with sensors that identify everything from
building temperatures to concentration levels of various
chemicals. The movements of staff members are also
tracked by requiring them to wear proximity cards while
in the building. The goal of this application is to help
users understand the steady stream of operations data,
including data from stationary and mobile sensors of
multiple types.

Specifically, the dataset can be divided to three
groups.

o Building attributes collected over two weeks
e Floor plans for the three-story building

e Employees’ movement records during the two
weeks

Our design of immersive visualization in this section and
event detection algorithms in Section 4 are both based
on the data features and application requirements.

3.2. Design of Immersive Visualization

Our main design principle is to identify important
data relationships in the application and organize
visualization in MR accordingly. This design
corresponds to a key difference of MR and desktop
visualization system — spatial mapping that mixes virtual
information with the physical environment. Based on
the available data groups and application requirements,
we separate the data features to two main types (3D/2D).

To provide the experience of mixed reality, we
visualize the building as a stack of floor plans. The
stack can hover on top of a table or a flat surface like
the floor, utilizing the large empty space in the physical
environment. We provide a flexible organization of
the spatial mapping — the three floors can be mapped
to the same location as a stack or adjacent images
for observing local details. The relative locations on
the stack of floor plans can also be adjusted for a
stairway effect without object overlapping, so users
can easily observe all the 3D information. As shown



in Figure 3, users can interactively switch between
these organizations to study the patterns of different
employees or locations.

Centered by the 3D floor plans, we introduce
additional information that can be connected to the floor
plans.

e The floor plan also provides a 3D bar chart
for visualizing location-related information, such
as multiple chemical concentrations for different
floor zones or the movement patterns from
different employees. For example, Figure 2
demonstrates the bar charts on both 2D wall
mapping and 3D floating setting.

e For each employee in the dataset, a path is
drawn with a distinct color which shows their
movements across the building. Figures 2 and
3 provide examples of the movement paths from
different employees.

e The line charts can be mapped on any large
surfaces such as a table or a wall. They can
also float in the 3D space, as shown in Figure 2.
We generally prefer to have the line chart located
close to the corresponding floor zone, so that an
analyst can visualize both temporal patterns and
3D locations simultaneously.

3.3. User Interactions in MR

We have explored the following interactive functions
for immersive analytics. As the examples demonstrated
in Figures 2, 3, and 4, these interaction functions are
different from mouse and keyboard and rely on natural
user interactions.

3.3.1. Voice-based Interaction Voice is one of
the key forms of input on HoloLens. @ We use
voice commands to direct the immersive system to
switch between different visualization functions. For
example, voice command “select” is combined with
gaze information for selecting zones. Voice command
“line” brings the line chart of the selected building
attribute on the selected zone.

3.3.2. Gaze-based Interaction The gaze-based
interaction is the primary mechanism of user interaction
in MR. The gaze locations for simple surfaces are
automatically tracked in HoloLens. To make a selection,
the user can look around and stare at the desired object,
such as a zone on the floor plan. Depending on the

command mode of the system, different visualization
modules are called correspondingly.

3.3.3. Gesture-based Interaction The current
version of HoloLens supports two gestures, air tap
and bloom. We use the air tap gesture to identify a
location where the user wants to move a visualization
component, such as the stack of floor plan or a line
chart. It is also used to specify a location to copy the
floor plan.

3.34. Menu It is still challenging to develop a
practical menu for MR. As shown in Figure 2, we use a
check list for the user to pick employees for visualizing
his or her movement patterns.

3.3.5. Free movement MR provides an immersive
experience which allows an analyst to walk around the
rooms in a building to observe patterns from different
locations and angles, as shown in Figure 4. This
interaction is crucial for a user to match the floor
plan with the real physical environment and reason the
movement paths.

3.3.6. Combined User Interaction The user
interaction in real action often combines more than one
interaction method above. For example, the interaction
practice of copying a floor plan from the 3D stack to
the wall is achieved as so: the user first gazes at the
floor plan, use the voice command “select” to confirm
selection, moves his or her hand around to find a
desired location, and then use the gesture “air tap” to
make the copy. It takes time for a user to get used to
such interactions, but voice, gaze, and gesture-based
interactions are often quick to learn.

3.4. The Prototype System

The system is built using the Unity 3D engine. Unity
greatly simplifies the development of three-dimensional
applications by offering a powerful API, smooth
performance, and a solid integration with HoloLens.
When the application starts, it asks the user to scan the
surrounding area for about 10 seconds. This allows
the system to process the environment and generate
meaningful placement surfaces for widgets. Once
scanning is complete, the stack of floor plans is placed
on a horizontal surface, such as a table or the floor, in
front of the user. The Unity Holotoolkit and HoloLens
tutorials offer several ways to help aid the process: a



(a)

Figure 4. Examples of user interaction in mixed reality: (a) walk around for studying 3D relationships, (b)
gaze-based selection, and (c) copying floor plans on the wall for detailed observation.

spatial mapping class to generate room geometry, a
spatial processing class to detect surfaces, a placement
script to interactively move objects, and a cursor to help
the user know what their gaze direction is.

Our system is comprised of several Unity C# classes:

e CoordinateConverter gives widgets the ability
to convert between arbitrary data and their local
coordinate system. The CoordinateConverter is
used to map floor plan locations to 3D points
when drawing the bar chart and employee paths.
It is also used for drawing line charts on two
dimensional widgets.

o Datal.oader loads and parses the data file, and
exposes events to notify listeners when data
processing is completed.

e BarChart and LineChart depend on
CoordinateConverter and use converted data
points to draw vertical bars or lines.

¢ EmployeeManager and EmployeePath: The
manager creates a list of check boxes with
different colors, and configures them to create
EmployeePaths when checked. EmployeePath
depends on CoordinateConverter and uses
converted data locations to 3D line points drawn
between floors

With our prototype system, we can explore the
datasets and continue to discover interesting events in
the operation data.

4. Event Detection for Operating
Sequences

We have also designed two automatic detection
algorithms to assist analysts with identifying abnormal
patterns in the operational sequences. We target finding
clues of suspicious patterns from the building data
and abnormal behaviors of employees, so that analysts
can proceed with interactive analysis for a prompt
investigation.

4.1. Building - Finding abnormal patterns
amongst the building attributes

As there are hundreds of building attributes, our
first algorithm is designed to identify the attributes with
abnormal patterns so that analysts can be aware of
the whole building status. The building attributes are
automatically collected with various sensors, such as
room temperature, energy consumption, and a variety of
chemical densities, in the constant sampling rate - one
value per five minutes. The patterns often vary between
day and night. Energy consumption, for example, is
high during the day and low at night. The patterns
are also different for weekdays and weekends; there is
lower energy consumption during the weekends as most
employees are not at work.

We design an algorithm to identify abnormal
patterns through taking the two periodic features of
building attributes into consideration. For each attribute,
we separate weekdays and weekends into two groups
and generate their signature daily patterns respectively.
This is achieved through averaging the samples from
the same time of a day. As shown in Figure 5,
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Figure 5. Signature daily patterns for detecting
abnormal durations. The images on the left show the
time series of two attributes during a week, and the
images on the right shows their signature daily
patterns (red line for weekends and orange for
weekdays).

the signature daily patterns are very similar to the
patterns of individual days when the attribute is normal
throughout the time duration; while at least portions
of the signature daily patterns are different from the
patterns of individual days when there is an abnormal
event.

To identify the abnormal duration, we compare the
signature daily patterns with the samples from each
day. The durations with large value differences are
marked as “abnormal” with the absolute differences as
the “abnormal degree”. We then summarize all the
abnormal degrees for each day and each attribute. If
an analyst checks other attributes with high abnormal
degrees, he or she may find out the same abnormal
duration quickly, and therefore start to dig into more
information related to these energy zones.

4.2. Employee - Finding suspicious movement
patterns amongst a group of employees

The challenges of finding suspicious movement
patterns of employees mainly come from the following
aspects: First, it is normal that different employees
have different movement patterns, such as an how an
administrator stays in offices and an engineer visits
facility rooms. Second, the movement patterns of
employees are consisted of many random factors, such
as visiting restrooms at different times and locations.
Therefore, it is not effective to generate a signature daily
pattern in a similar approach as we did for the building
attributes in our previous algorithm. Our solution is
to treat different employee groups separately, assuming
that employees from the same group follow similar
movement patterns.

To find suspicious behaviors amongst a group of
employees, we use high-dimensional feature vectors to

quantify the movement patterns. The concept of feature
vectors allows us to combine various factors in the same
framework, compare different employees, and identify
specific suspicious behaviors. Based on the example
movement patterns, we have included factors of each
work day’s start and end time, zones visited, time spent
at each zone, the variance of time spent at each zone, and
the number of visits to each zone. Figure 6 shows how
all the factors are concatenated as a high-dimensional
feature vector V; for each employee ¢. Similar to the
building attributes, we also separate time to weekdays
and weekends as majority movements appear during the
weekdays.

We calculate a suspicious level s; for each employee
1 in the group. This is achieved by generating the feature
vector G for the group by averaging the features vectors
of employees.

k
G = Zi:l ‘/U

/ k
where £ is the number of employees in the group. Then,
we compute the absolute value of the variation between

an employee feature vector on one day and the group
average feature vector.
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Note that if f is the number of features in employee
feature vector and n is the number of different zones the
group members visited, then all members feature vectors
have the same size of f x n.
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Figure 6. Building features vectors of movement
patterns.

Figures 7 demonstrates our approach on the group
of employees from the executive department. All
the employees have their offices on the third floor
and therefore are using the same path to get to their
office. They also have the same work schedule. The
algorithm has detected that the employee with the sensor
card “jsanjorge001”, Sten Sanjorge Jr, has the highest
suspicious level from the group. His daily suspicious
level shows the most suspicious behavior from the group
appeared on June 2, as shown on top right image in



Figures 7. A further investigation reveals that he is
usually detected by the fixed sensors around 7 AM every
weekday. However, on June 2, he arrived at midnight
and spent about fourteen hours on the first floor in
zone 1, shown on the bottom image in Figures 7. This
deviant behavior results in a very high suspicious level
for that day and increases the total suspicious level for
this employee.

A

e

e
o O e LI

suspicious degrees daily degrees of jsanjorge001

movement patterns of jsanjorge001
Figure 7. Finding suspicious activities from a group

of executive employees. Employee with sensor card
jsanjorge001 has the highest suspicious degrees.

5. Results and Case Studies

With our prototype system, we have explored causal
relationships between building attributes and employee
movement patterns. This section presents three case
studies and quantitative results to provide an overview
of our approach.

5.1. Finding abnormal patterns of building
attributes

As the building attributes are collected by sensors
automatically throughout the week, most patterns
of building attributes demonstrate periodic patterns
between day and night. We start with the abnormal
detection algorithm for building attributes and visualize
the abnormal values as bar charts on the floor plans.
An analyst can use the visualization and interaction
functions shown in Figures 3 and 4 to place the floor
plans on a large empty space in the room and copy a
level on the wall for observation. As shown in Figure 8,
the analyst has selected to look at the attribute with
the top abnormal degree - CO2 concentration, which
was abnormally high between June 5th and June Sth in
some proximity zones on the first floor. Meanwhile,
the same event has been observed on the second and
third floors from June 7th to June 9th. The immersive
visualization system provides a strong visual correlation
of the abnormal events to the 3D locations in the
building, especially when enlarging the floor plans and
walking around them.
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Figure 8. Abnormal CO2 concentrations on different
zones.

5.2. Detecting suspicious behaviors of
employees

With the 3D movement patterns in MR, we
can clearly differentiate the patterns from different
employees. Figure 9 shows the movement patterns
from three employees. Among which, Whaley mainly
moves between the first and the second floors, Bramar
and Young move among all the three floors, and Young
focuses on the second and third floors. Whaley’s
patterns are consistent over the two week duration
while Bramar and Young have been identified with high
suspicious levels.

Specifically, Bramar’s schedule was irregular as an
administrator. On June 9th, he was only detected in
the building from 7:15AM at the main entry and left at
8:02AM. He was then detected on Saturday June 11th
from 8:30AM to 11:31AM although he never worked
on Saturdays. Also, Bramar showed up at zone 5 on first
floor and zones 1 and 7 on the second floor, while the
majority of administrators work on the third floor.

Young’s behavior is flagged as he used two cards at
the same time on different days. As shown in Figure 9,
his visits were mainly located on the second and third
floors. It is interesting to see that he visited the top
row (39), which corresponds to the server room on the
third floor, only with the first card. It is possible that he
switched cards for different access permissions.

5.3. Exploring event correlations

By searching for abnormal events amongst the
building attributes, we can find that several attributes,
such as HVAC electric demand power, supply inlet
temperature, thermostat cooling/heating set points, and
CO2 concentration, appeared abnormal during the
same period of June 7th and 8th. As shown in
Figure 10, different from CO2 concentration, the
attributes of HVAC electric demand power and supply



Bramar

Young uses two proximity cards with overlapped
activities
Figure 9. Example employees with suspicious
movement patterns.

inlet temperature were dramatically increased, while
thermostat cooling/heating set points showed a larger
variance than usual. Related to the electrical zones on
the floor plans, we can gaze over several zones and
find that these changes were more obvious in zones
of rooms than regions of corridors. We suspect that
some changes to the heating/cooling system might have
affected the building settings, including power demands,
and continuously caused a series of abnormal events
collected by the sensors.

In addition, we can correlate the movement patterns
of employees with these events. Through searching
for suspicious activities of employees among the same
group during this abnormal duration, we identify several
employees with different movement patterns.  For
example, claisO01 in the administration department
visited the server room on the third floor once on July
7th (right after the abnormal events started) and July 9th
(after the events ended). Ibennett001 from the facility
department and csolosO01 from the IT department
visited the same server room around the same time as
claisO01. Therefore, the suspicious activities of these
employees are likely the responses to the abnormal
events.

5.4. Quantitative Results

Our system has an interactive performance for all the
major immersive visualizations, interactions, and event
detection components. The size of all data files except
the floor plans is around 18 MB, including hundreds
of building attributes and employees. We specifically
measured the response times for each of our application
features. The table 1 shows the average response time

Figure 10. Interactive exploration of building
attributes and movement patterns from employees for
investigating event correlations. The four examples
demonstrate that a user can select and visualizes four
attributes respectively: F2 Z15 Supply Inlet
Temperature, F2 Z14 Return Outlet CO2, F1 Z5
Supply Inlet Temperature, HVAC Electric Demand
Power.

Table 1. Performance of our MR visualization

system.
Operations miliseconds
Data Processing 7202
Rearrange Floors 3
Draw Bars 391
Draw Employee Path 22
Update Line Chart 16
Copy Floor 7

for each action. As expected, the slowest methods
to execute are the ones responsible for loading and
processing data, as well as the ones responsible for
generating new geometry (Draw Bars).

It is worth noting that the Unity platform uses
Just-In-Time (JIT) compilation on platforms other than
10S. When a method is first called, it will first be
dynamically compiled and then called. As a result,
the measured time for methods called for the first
time is significantly longer than subsequent calls. For
example, when running the methods RearrangeFloors,
DrawEmployeePath, UpdateLineChart, and CopyFloor
for the first time, the response time is around 20 ms.
Meanwhile, the time for subsequent calls drops to 0 or 1
millisecond for these methods.

6. Discussions and Current Limitations

In this section, we summarize our experiences of
exploring the immersive visualization from the aspects
of potential security applications and current limitations.



6.1. Potential Applications of MR Security
Visualization

The differences between MR and desktop
visualization systems are clear — desktop computers
project visualization results on a 2D monitor or
projection screen while MR allows users to utilize a 3D
space to visualize data at any location. The differences
between MR/AR and VR are also obvious — each with
its own unique strength. VR, providing a complete
immersive environment by separating users from the
real physical environments, is very suitable for training
tasks. MR and AR, providing an integrated environment
by mixing virtual objects or information with a real and
physical environment, is more suitable for actions on
site.

From this project, we have experienced the
effectiveness of spatial correlation in the mixed reality.
Our impression is that MR can improve the spatial
cognition of users for a more effective analysis and
connection with data. We expect that 3D visualization
will have more advantages in MR than with traditional
desktop systems with the feature of strong spatial
correlations.

Collaborative visualization and analysis can become
a key function for security applications, which are
often involved of joint work from multiple analysts.
The immersive visualization will allow users from
different locations to work in the same environment
by mixing information from each analyst.  The
visualization systems will also have the options
of improving the communication of collaborations
and tuning the information for each analyst. We
expect that collaborative visualization will be essential
to applications of emergency responses and remote
collaboration.

6.2. Current Limitations

Although there are many promising features and
potential applications, the current options for developing
immersive visualizations are still limited. We describe
four main limitations we have encountered during this
project, which are expected to be gradually improved in
the future.

First, the HoloLens is provided with the HoloLens
Technical Preview which is a custom version of Unity
for development. Our project uses the HoloLens
Technical Preview which is based off the Unity 5.4
Beta version. The development of MR has to be
restricted by the available functions provided in this
version. For example, the Unity Standard Assets are
not included, and until the latest version there is no
reliable Hololens-compatible input module for the UI

event system.

Second, the data processing capabilities of HMDs
are still limited. The performance of HoloLens is
comparable to tablet devices, but far less than powerful
desktop computers.  Specifically, the configuration
includes Intel Atom x5-Z8100 1.04 GHz for CPU, a
custom-built Microsoft Holographic Processing Unit
(HPU 1.0) for the CPU/HPU processor, 2GB RAM,
and 64GB Flash storage. The design of immersive
visualization needs to be tailored to a mobile platform in
order to maintain interactive performance. Only simple
geometries and a small amount of information can be
simultaneously rendered, and only a limited amount of
data can be loaded and processed without slowing down
the system.

Third, the lack of interaction channels is also a main
limitation of current HMDs. While voices and gestures
are natural to a user, the voice and gesture-based
interaction techniques are still ongoing research topics.
As all our users have accustomed to the use of a mouse
and keyboard, voice and gesture-based approaches need
to be simple and intuitive for easy adoption. Also, the
HMDs may need to be combined with additional devices
that can acquire inputs, such as finger movements, in
real-time. In this project, we are limited to voice, gaze,
the two main gestures (air tap and bloom), and a clicker
to design our interaction methods.

Fourth, the current display technology that the
HoloLens uses cannot render black or very dark colors,
as they appear transparent on HoloLens. This forces the
user interface and various widgets to use bright colors.
For example, we had to process the floor plan images
to use white lines and text instead of black or else they
would not have proper outlines when displayed with the
HoloLens.

7. Conclusion and Future Work

This paper presents an immersive visualization
system using the Microsoft HoloLens for investigating
heterogeneous operational data collected by multiple
sensors. We have developed a flexible MR system
to visualize both 2D information and 3D patterns in
a physical environment and to interact with voice,
gaze, and gesture-based techniques. We have also
presented event detection algorithms and combined
them with the immersive visualization system for
efficiency. According to our knowledge, this work
is the first to explore the potential of using the
latest advanced technology of holographs for security
visualization. Our prototype system demonstrates the
immersive analytics features of mixed-reality, which
frees analysts from traditional computing settings and



allow them to monitor and analyze time-series data
anywhere on site.

As immersive visualization is still new for security
applications, there are many open problems and exciting
potentials to explore. We plan to explore the following
directions in the future: First, we have tested Unity in
this project, and we plan to continue with additional
Unity development as well as explore other rendering
platforms such as DirectX. Second, we are interested
in extending the interaction functions in this work and
designing suitable gesture-based interaction techniques
that are intuitive for data visualization and visual
analytics tasks.  Third, collaborative analysis will
become a powerful tool for two or more analysts to
jointly study a dataset, regardless of whether they are at
the same physical locations or not. We plan to extend
our prototype system and allow multiple analysts to
work simultaneously. At the end, fundamental problems
that are related to visual perception and cognition are
crucial to the success of mixed-reality systems and need
to be carefully studied. We expect that mixed reality
approaches will be widely used in security visualization
applications.
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