1760

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 4, APRIL 2020

Scientific Visualization as a Microservice

Mohammad Raji*”, Alok Hota

and Jian Huang

, Student Member, IEEE, Tanner Hobson ",
, Senior Member, IEEE

Abstract—In this paper, we propose using a decoupled architecture to create a microservice that can deliver scientific visualization
remotely with efficiency, scalability, and superior availability, affordability and accessibility. Through our effort, we have created an open
source platform, Tapestry, which can be deployed on Amazon AWS as a production use microservice. The applications we use to
demonstrate the efficacy of the Tapestry microservice in this work are: (1) embedding interactive visualizations into lightweight web
pages, (2) creating scientific visualization movies that are fully controllable by the viewers, (3) serving as a rendering engine for high-end
displays such as power-walls, and (4) embedding data-intensive visualizations into augmented reality devices efficiently. In addition, we
show results of an extensive performance study, and suggest how applications can make optimal use of microservices such as Tapestry.

Index Terms—Scientific visualization, visualization systems, cloud computing, web applications, and distributed visualization

1 INTRODUCTION

WHILE the web has transformed the way our society uses
computers and computing technology over the past 20
years, the web architecture has undergone rapid and acceler-
ating improvements itself, gradually becoming one of the
most robust, scalable, and general client-server architectures.

Since client-server is a core design in scientific visualiza-
tion, our field has dedicated much effort to map the scientific
visualization pipeline onto the web architecture; for example,
to increase the mobility of scientific visualization applications,
to reach a wider audience, and to use the rich web ecosystem
for building interactive tools and websites. To this end, our
field first explored ways to adopt the web browser as
a general client in scientific visualization applications. Para-
ViewWeb [1], ViSUS [2], XML3D [3], ArcticViewer [4] are a
few of the most well known successes in that regard.

The next step is to explore whether web services can
serve as performance servers in the client-server settings of
scientific visualization. This work extends our previous
efforts [5] in which we presented Tapestry, a platform for
the scalable delivery of scientific visualization. Tapestry is
an open source platform' that separates application states
from the server and makes the server stateless.

The benefits of using stateless servers are multi-fold:
(1) make it feasible to use virtualized containers, parallel
swarm management, auto load balancing, and auto-scaling
in scientific visualization applications, (2) make it practical
to expand application design goals to also include expand-
ing accessibility of the visualizations, i.e., to improve the

1. https:/ / github.com/seelabutk/tapestry

o Theauthors are with the Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN 37996. E-mail: {mahmadza,
ahota, thobson2 |@uvols.utk.edu, huangj@utk.edu.

Manuscript received 21 Feb. 2018; revised 16 Oct. 2018; accepted 29 Oct.
2018. Date of publication 5 Nov. 2018, date of current version 4 Mar. 2020.
(Corresponding author: Mohammad Raji.)

Recommended for acceptance by |. Ahrens.

Digital Object Identifier no. 10.1109/TVCG.2018.2879672

scalability of audience, (3) formalize and unify the commu-
nication between client and server as simplified rendering
requests. The Tapestry system treats each rendering request
independently and automates request handling through the
use of Docker Swarm [6].

Using rendering requests as the unifying interface, we
were able to further simplify the complexity on the client-side
and introduce 3D scientific visualizations into the standard
Web Document Object Model (DOM) as very lightweight
objects called hyperimages [5]. A web page can contain as
many hyperimages as the web developer would like. When
not interacted with, the performance cost of a hyperimage
is equal to that of any static image, and its impact on web
page load time is negligible. When a user interacts with
a hyperimage, the in-browser user experience is as if the
whole scientific visualization is local. A hyperimage transpar-
ently translates user interactions into web requests, issues the
requests, and receives and caches new images from the server.
Hyperimages are not only interactive themselves. Interactions
on different hyperimages embedded in the same DOM can be
linked and synchronized via hyperactions [5].

While web services directly serve users, microservices
serve application developers, so that new applications can
make agile and scalable use of a suite of highly available
and accessible services, instead of having to remain tightly-
coupled with certain hardware or platforms.

In this work, we extend Tapestry into an independently
deployable microservice, in particular, by increasing control-
lable granularity and parallel end-points in the system. We
also release Tapestry in the form of a Docker image (details
in Section 3.4), which is portable across cloud platforms such
as Amazon AWS.

Herein, we show that the Tapestry microservice can facili-
tate the following application innovations: (1) embed volume
visualization into lightweight web pages that work interac-
tively even on mobile phones, (2) create portable and user-
controllable movies of scientific visualizations, (3) serve as an
efficient and cost-effective parallel rendering engine for large

1077-2626 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8891-3071
https://orcid.org/0000-0001-8891-3071
https://orcid.org/0000-0001-8891-3071
https://orcid.org/0000-0001-8891-3071
https://orcid.org/0000-0001-8891-3071
https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-6269-7881
https://orcid.org/0000-0002-6269-7881
https://orcid.org/0000-0002-6269-7881
https://orcid.org/0000-0002-6269-7881
https://orcid.org/0000-0002-6269-7881
https://orcid.org/0000-0002-9288-0505
https://orcid.org/0000-0002-9288-0505
https://orcid.org/0000-0002-9288-0505
https://orcid.org/0000-0002-9288-0505
https://orcid.org/0000-0002-9288-0505
mailto:
mailto:
mailto:

RAJI ET AL.: SCIENTIFIC VISUALIZATION AS A MICROSERVICE

power-wall displays, (4) embed interactive volume render-
ings into augmented reality devices (e.g., HoloLens) in a very
lightweight manner.

Besides enabling novel applications, scalability is another
key aspect of microservices. To that end, we have conducted
an extensive performance study of the Tapestry microser-
vice. For deployment platforms, we tested on an institu-
tional cloud and Amazon AWS cloud. Our scalability tests
included up to 100 geographically distributed test workers.
Regarding test methodology, we included batch-mode
stress test, realistic user behavior based monkey testing,
and actual application usage testing. Our test datasets come
from typical domains of scientific visualization.

We will discuss related works in Section 2, Tapestry’s
architecture in Section 3, demonstrative applications in
Section 4, and results in Section 5. The conclusion is in
Section 6.

2 BACKGROUND

Delivering scientific visualization with mobility is full of
challenges, regardless of whether web is involved, because
scientific visualization is resource heavy. With today’s ever
expanding needs for analytics on datasets of growing sizes,
scientific visualization’s simultaneous requirement of com-
puting capabilities, data bandwidth, and interactivity calls
for our field to rethink the traditional client-server delivery
mechanisms of scientific visualization.

2.1 Using Web Browsers as a Visualization Client
Over the years, visualization researchers have made much
effort to make interactive visualizations work inside web
browsers. The creation of D3 in 2011 became one of the
most recognized milestones [7] in that regard. Other notable
successes include: (i) visualization system interfaces, such
as Visualizer and LightViz [1]; (ii) API-based scientific data
management applications, such as MIDAS using the Para-
ViewWeb API [8]; (iii) plugin-based web browser systems
backed by a high-end resource, such as ViSUS using an IBM
BlueGene [2]; and (iv) plugin free implementations backed
by custom clusters, such as XML3D [9], [10].

Within a browser, the scientific visualizations can be
implemented in data-space or image-space. A naive data-space
implementation is to download the dataset into a browser
and then render it using libraries such as WebGL or VTK.
js [11]. This has the obvious limitations of available band-
width and working memory on the local machine. More
scalable data-space systems perform data processing and
rendering on a remote server and transmit final or interme-
diate data to the client web browser for further handling.
Those solutions fit better with the high-end computing com-
munity [1], [2], [8], [9], [10], where server-side computing
and networking resources tend to be abundant. Regardless,
when data is large, the networking and in-browser comput-
ing overhead can still be overwhelming. In particular,
render performance would be slow on mobile devices,
leading to an unresponsive web page.

Image-space techniques can be used for remote visualiza-
tion in general [12]. As a more recent success, ArcticViewer
is a web visualization system that improves in-browser
user experience by serving pre-rendered images of datasets

1761

User Interface

Application Logic

Gateways]

Application Logic

Rendering Implementation [

Data Management

Computing
service

Computing
service

Computing
service

[

Monolithic Design Decoupled Design

Fig. 1. Comparing a monolithic design (left) and a decoupled design
(right). In a monolithic design, application states exist throughout the
component stack. In a decoupled design, compute-intensive tasks such
as rendering and data management are encapsulated in stateless serv-
ices and accessed through a unified cloud-hosted gateway.

on demand [4]. Paired with Cinema [13], ArcticViewer
addresses needs by the in-situ visualization community par-
ticularly well. However, pre-rendering typically generates
a large amount of rendered images that may or may not be
used by the end-user.

2.2 Architectural Designs of Client-Server
Regardless of whether a web browser is used, delivering
visualizations with mobility should ideally combine the
best of both data-space and image-space designs. For exam-
ple, it should be “expressive and flexible” like in data-space
systems [7], and be “immediately available” like in image-
space systems [13].

This need can benefit from having a more clear separation
of concerns, where the expressive and flexible interactions are
handled separate from the highly available and efficient
computing.

Existing applications often take a monolithic approach
(Fig. 1-left). In result, the 1-to-1 mapping between client and
server has become a standard design in existing systems, such
as Vislt[14], ParaView[15], and web-based systems like Para-
ViewWeb. Previous works have also explored adding staging
nodes in between the client and the server, in order to achieve
better system performances [16], [17], while continuing to
abide by the monolithic 1-to-1 mapping between client-server.

A decoupled design (Fig. 1-right) can separate the highly
responsive visual application from the compute-intensive
components such as rendering. In that regard, Tapestry [5]
was the first example to our knowledge that implemented
such decoupling and allow the client-server to have an m-to-n
relationship, where m and n can be any number above 1.

By simplifying the client-server interface into rendering
requests, Tapestry’s server-side is responsible for rendering
and is completely oblivious to anything application related;
that is, it has become stateless, free of application logic. The
server can answer simultaneous requests from m different
clients. On the client-side, a web-page can contain visualiza-
tions of many datasets, potentially hosted on n different
servers.

While computing services commonly use HPC platforms,
the Tapestry server was instead created as a web service man-
aged by Docker [5], to reap the benefits of automatic load
balancing, auto-scaling, and automatically parallelized data
transfers that are standard in today’s web technology.

In this work, we further extend Tapestry so that the Tapes-
try server can run as an Amazon AWS deployed microservice,

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

1762

which is independently deployable, fine-grained, and light-
weight. For example, as we will show in Section 5.6, using the
Tapestry microservice, applications can achieve interactive
performance at minuscule costs. Hence, scientific visualiza-
tion can be more accessible and available than before.
Established tools that have played a pioneering role in
today’s computational science, such as Vislt [14], ParaView
[15], and Arctic Viewer [4], should be able to adopt Docker
based microservice model for resource-scaling purposes too.

2.3 Server-Side Rendering

Volume visualization is well understood from an algorithm
perspective [18]. Highly efficient implementations using
many-core processors, either GPU or CPU, are available as
community-maintained open-source renderers [14], [15], [19],
[20]. In this work, we use OSPRay [19] because of its rendering
performance. Additionally, its software-only nature makes
it easier to manage in a typical cloud-managed container.
A GPU-based renderer that exhibits similar throughput to
OSPRay can also be used. Unlike in our previous version
where PNG was used, we now encode OSPRay-rendered
framebuffers as JPG images, because of its better compression
rate and faster in-browser decompression.

Level-of-detail is a proven approach to manage the trade-
off between speed and quality for time-critical visualiza-
tion [21], [22], [23]. Tapestry uses a similar approach. When
a user interacts with the 3D visualization in the web docu-
ment, rendering requests are made at a lower resolution. After
a user pauses, rendering requests are made at a higher resolu-
tion. This is detailed in Section 3.1.2.

Parallel visualization generally takes three approaches:
data-parallel, task-parallel, and a hybrid of the two [24], [25].
Our primary concern is system throughput (i.e., rendering
requests/sec). We chose the task-parallel approach to process
rendering requests in parallel. As is commonly done [26],
we group worker processes into a two-level hierarchy: (i) the
computing cluster as a whole, (ii) each computing node.
Worker processes on the same node share datasets via mem-
ory-mapped regions of disk. Using known methods to resolve
I/0 bottlenecks [27], we have a dedicated I/O layer as the
data manager on each node to manage pre-loading the data
once Tapestry starts (detailed in Section 3.2.1).

3 ARCHITECTURE

Tapestry decouples client and server and separates the
application space from the system space. We do so by for-
malizing rendering requests as a reduced and restricted
interface, and the only interface, between the two spaces.
As shown in the system diagram (Fig. 2), the generation of
rendering requests in the application space is asynchronous
and distributed. On the server side, rendering requests
are automatically distributed to many disparate endpoints
through typical web server load balancers and ensures
scalability.

The application space maintains the dynamic states related
to the application and interaction. The system space is dedi-
cated to answering rendering requests and stays stateless
without maintaining any application state information.

The two spaces have different life cycles. The system space
stays up as long as the cloud service is up. The application
space exists as individual instances, with one instance per

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 4, APRIL 2020

Application Space

Browser
Document Object Model (DOM) ‘

Hyperimage| [Hyperimage| |Hyperimage| =-*

X
|

| |
¢ i ¢ JavaScript
Tapestry Tapestry Tapestry
Object Object Object —oo
(GO) (GC) (GO)
X LY A

A\
Render 'N‘

Browsers I\
and responses Internet I

[Docker Endpoint l [Docker Endpoint] [Docker Endpoint l

! ! {

[Docker Swarm Manager ‘

Runtime
Manager
[
Node Nodes

| i
z i

Docker Daemon [Docker Daemon]

| N

Hyperimage

Hyperimage|
Server Server Server
(DA) (DA) (DA)

1 1 i

[Memory-mapped Data l

! ! |

Render & Render & Render &
Encode Encode Encode

Hyperimage|

Container Container Container Ci i C i Ce

System Space

Fig. 2. The Tapestry system architecture, which separates the applica-
tion space and system space.

each session when a user accesses the application, e.g., a web
page with embedded 3D visualizations. The application space
can have many instances. The system space is a single entity
shared by all instances of the application space.

In the application space, a hyperimage is the universal
interactive visualization object. Each hyperimage is controlled
by an attached Tapestry object in JavaScript, which presents
the 3D interactions and automatically requests services from
the server, by way of issuing rendering requests. Details in
Section 3.1.

The system space is cloud hosted on a cluster of nodes.
These nodes comprise a Docker Swarm [6]. The swarm
abstracts handling of rendering requests into a cluster of
microservices implemented in virtualized containers, which
the swarm manages altogether as a collection. The system
also includes elastic task handling, request routing, and
automatic resource scaling. Details in Section 3.2.

Connections between the two spaces are simple, short,
and transient rendering requests. An application instance
can generate many rendering requests concurrently. The
system space can answer a large amount of rendering
requests simultaneously. The system space does not relate
one rendering request with another, and treats each request
independently, even when the rendering requests are from
the same application instance.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

RAJI ET AL.: SCIENTIFIC VISUALIZATION AS A MICROSERVICE

JavaScript

Document Object Model Tapestry object

Camera Image
(Arcball) buffer
Config ID o
Vel Linked
handlers

hyper-

images
Fig. 3. Hyperimages are DOM elements. In the application space, each
hyperimage element is paired with a Tapestry object, which handles
user interaction and communicate with the Tapestry server.

Render
Requests

Hyperimage

Name ID
(optional)

Internet

Rendered
Images

3.1 Application Space
Using Tapestry, the presentation of the visualization resides
in a desktop/mobile web browser as an embedded object.
Within a browser, we could consider using the HTML5
canvas or the 3D-enhanced WebGL canvas [28]. However,
we chose to use a simple image tag () instead for
several reasons. First, HTML5 and WebGL canvases are
heavyweight elements with initialization costs. Their perfor-
mance also relies on the user’s hardware. Second, the
output of many visualizations is an image and therefore an
 tag is a natural medium that does not need any
post-processing and is widely used across the web ecosys-
tem. We refer to our enhanced tags as hyperimages.

3.1.1 Control of Visualization Objects

Fig. 3 shows a closeup of Tapestry’s application space in
a web setting. An application can use as many hyperimages
as the developer desires. In this example, we show a single
hyperimage in the DOM, but multiple may be present.
In essence, a hyperimage is a simple tag with
extended capabilities. As a user interacts with a hyperimage,
a controlling JavaScript object generates and submits render-
ing requests to the server automatically, updates the received
renders and updates the hyperimage’s src attribute.

The Graphics Context (GC) of each hyperimage is con-
trolled by an attached Tapestry object in the tapestry.js
JavaScript code. The GC information includes: camera man-
agement through arcball, an image buffer for received images,
event handlers and a list of other hyperimages that may be
linked to the object. Optional settings such as initial camera
position can be sent to the Tapestry constructor if needed.

Listing 1. Sample Code for Adding a Hyperimage into a
Webpage

<script>$ (" .hyperimage") .tapestry ({}); </script>
<imgclass="hyperimage" data-dataset="supernova"/>

Listing 1 shows the full HTML code to embed a 3D visu-
alization on a web page. The second line of Listing 1 shows
a simple hyperimage of a supernova. The class attribute
identifies the tag as a hyperimage, and the dataset being
rendered is added in the data-dataset attribute. Note,
data-* is the standard prefix for custom attributes in
HTMLS5 [29]. Hyperimages become interactive by replacing
the source attribute of the tag. When the user is not interact-
ing, a hyperimage is effectively a simple image.

For time varying data, a hyperimage can take an optional
data-timerange attribute. The value of this attribute repre-
sents the time step range through which the volume
can animate. This range is formatted as <integer>..<
integer>. For example, a value of 5 .. 15 would mean that

1763

TABLE 1
Supported Hyperactions

Action Description

position(x, y, z)
rotate(angle, axis)

Sets the position of the camera
Rotates the camera angle degrees about the
given axis

zoom (z) Sets the relative camera Z position

link(idl, ...) Links the viewpoint of other hyperimages to
the current hyperimage’s camera

unlink(idl, ...) Unlinks the viewpoint of other hyperimages

play () Animates the time steps of a time series data-
set

stop () Stops the time series animation

time (t) Changes the timestep to t

switch_config (name) Switches to a new hyperimage configuration

the hyperimage cycles through time steps 5 to 15 when
animated.

In addition to mouse and hand gestures, Tapestry allows
a customizable type of interaction: hyperactions. Hyperactions
provide a way for the DOM to manipulate a hyperimage
without user intervention. A simple use case of a hyperaction
is a hyperlink in a text that rotates a hyperimage to a specific
viewpoint. Hyperactions essentially provide a simple connec-
tion between textual content and volume renderings. Any
standard DOM element can be converted to a hyperaction by
adding three attributes: the class hyperaction, a for attri-
bute that denotes which hyperimage should be associated
with the action, and a data-action attribute describing the
action itself. For example, a hyperlink that sets the camera
position of a hyperimage is shown in Listing 2.

When clicked on, this hyperaction sets the camera position
of the hyperimage with the id of teapot1 to (10, 15, 100). A list
of supported actions and their syntax is shown in Table 1. The
logic behind what hyperactions do is also controlled by Tapes-
try objects. When a Tapestry object is initialized, it looks at the
DOM for hyperimages and their corresponding hyperactions
and sets up event handlers for the hyperactions’ action. Two
example applications in Section 4 make use of hyperactions.

Listing 2. An Example Hyperaction that Sets the Camera
Position to the Given Position for the Teapot Dataset

<a class="hyperaction" for="teapotl" data-action="

position=10,15,100">anewviewpoint

3.1.2 Generation of Rendering Requests

The DOM defines the structure of a web page, and the Java-
Script provides interactivity and control. The relationship
between a hyperimage (a DOM element) and the related
Tapestry object is no exception to that. When a user interacts
with a hyperimage through mouse or touch gestures, the
corresponding Tapestry object manages callback functions
and generates rendering requests as needed. While interac-
tion is happening, it continues to send new requests to the
server-side and asks for updated renders.

During interaction (e.g.,, when rotating), the object
requests interaction resolution images (256 by default) to
allow for smoother movement. When interaction stops, the
object requests a viewing resolution image (1024?).

Rendering requests are sent using the HTTP GET method.
As aresult, renderings can be saved or shared after interaction

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

1764

just like any image with a valid address. A rendering request
takes the form of http: //HOST/DATASET/POS_X/POS_Y/
POS_Z/UP_X/UP_Y/ UP_Z/RESOLUTION/OPTIONAL. The
DATASET parameter denotes which configured dataset
should be rendered. The camera position is given by
<POS_X, POS_Y, POS_z>, and the up vector is given by
<UP_X, UP_Y, UP_Z>. RESOLUTION denotes the ren-
dering’s resolution. Finally, additional optional parameters
can be added as a comma separated string of key-value pairs.
For example, to specify the time step in a temporal series.

Listing 3. Two Rendering Requests for a Well-Known
Supernova Simulation [30]. The Values Represent Camera
Position, up Vector, and Image Size, Respectively. The
Second Request Includes an Optional Time step Parameter

http://host.com/supernova/128.0/-256.0/500.0/0.707/0.0/
0.707/256

http://host.com/supernova/128.0/-256.0/500.0/0.707/0.0/
0.707/256/timestep, 5

Tapestry objects also control the volume of rendering
requests. For example, a user’s mouse can typically emit up
to 125 move events per second (on a common 125 Hz
mouse). We set a default policy: let every fifth event trigger
a rendering request. This policy generates up to 25 render-
ing requests per second.

Due to the minimal interface between the client and
server, requests can also be generated in batches and by
scripts, for more complicated applications. Section 4 shows
this in more detail through several applications.

3.1.3 Non-Invasive Embedding

From an application developer perspective, Tapestry pro-
vides non-invasive integration in clients. In other words, it
is simple to integrate and customize and does not cause any
global changes in the host web application.

More specifically, hyperimages in the client are self-
contained and do not share state with each other. This means
that they can be independently added or removed in a page.

Another aspect of non-invasiveness are hyperactions.
Hyperactions are behaviors, not objects. In other words,
they can be added to a variety of HTML elements (e.g., but-
tons, hyperlinks, images, etc.) and enable interaction with
a hyperimage. Those HTML elements can be freely styled
and edited by the developer.

Users of scientific visualization often need to tweak
and edit visualization tools to add new capabilities. To
facilitate this, the Tapestry server can take an optional
app directory as input at runtime. JavaScript, HTML, or
CSS source code in the app directory overrides those of
Tapestry’s default, allowing for easy hot-swappable func-
tional changes. In other words, client-side changes to a
user’s application do not require a re-compile or restart
of the Tapestry service.

3.2 System Space
The sole concern of the system space is to process render-
ing requests. It is a task-parallel computing system, using
distributed resources that auto-scale on demand.

In system space, we make a distinction between a physical
node, a Docker container, and a hyperimage server instance.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 4, APRIL 2020

Docker Daemon
Render
requests

Docker Container

Rendered
images

Hyperimage Server
HTTP web Data
server attributes
Data Renderer &
reference(s) encoder

Fig. 4. A container is the basic processing unit in Tapestry’s system
space. Each container runs an instance of the hyperimage server.

A physical node refers to the real machine on which multiple
Docker containers may be launched. There may be multiple
physical nodes. A Docker container is an in-memory virtual
operating system.

Fig. 4 shows a single Docker container. Each container
includes an instance of a hyperimage server, which is a web
server that manages attributes of given datasets, and han-
dles any rendering requests it receives in sequence.

3.2.1 Container-Based Rendering Services

Virtualization and containerization are classic concepts in
software architecture [31]. Open-source software container
platforms have become popular, including for HPC com-
puting services [32].

We chose Docker [6] containers because they are light-
weight, and provide a robust and simple interface. Each
Docker container includes a small, stripped-down version
of an operating system as well as all the dependencies
needed to run an application independently. Multiple
containers can run on the same node.

Each physical node runs a local Docker daemon, which
manages all running containers on that node. Across nodes,
we use Docker Swarm as another layer of abstraction on top
of a collection of physical nodes, allowing a pool of contain-
ers to have unified entry points as well as leverage Docker
Swarm’s load balancer.

In Tapestry, each Docker container is based on a
stripped down version of Ubuntu, which runs a hyper-
image server instance inside. The Docker Swarm Manager
monitors and manages the containers, routes incoming ren-
dering requests, and load balances the containers using its
internal Ingress load balancer [33].

When a hyperimage server starts, it loads all pre-
configured datasets into memory using a memory-
mapped loading operation. In other words, containers
that reside in the same worker node only load the data
once and only during system startup.

3.2.2 Hyperimage Server and Data Attributes

A hyperimage server is initialized once and lives for the life-
time of the cloud service. A hyperimage server takes a config-
uration directory during initialization. All valid configuration
files — properly formatted JSON files — within this directory
are used to provide data attributes for the server instance.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

RAJI ET AL.: SCIENTIFIC VISUALIZATION AS A MICROSERVICE

These configuration files, provide basic information about the
datasets. An example configuration file is shown in Listing 4.

Listing 4. Example Configuration File Providing Data
Attributes

{
"filename" : "/path/to/data/magnetic.bin",
"dimensions" : [512, 512, 5127,

"colorMap" :

"cool towarm",
"opacityAttenuation" : 0.5,
"backgroundColor" : [38, 34, 56]

The configuration files are a list of key-value pairs. A com-
plete list of keys and possible values for configuration files
can be found in our previous work [5]. These parameters are
standard visualization data attributes. Basic information
about the dataset, such as filename and dimensions are
required, but most others are optional and can revert to
default values. Different transfer functions require different
configuration files. However, they can all point to the same
dataset. Memory-mapping assures that the dataset used by
different configurations are only loaded to memory once for
each node.

Additional configuration keys available also include
isosurfaceValues and specular to control isosurface
rendering if desired. Note that Tapestry uses OSPRay’s
implicit isosurface rendering to provide images of surfaces.
Implicit isosurfaces avoid the need to explicitly compute
and store surface geometry, which allows the server to
remain stateless.

Currently, the server handles raw binary and NetCDF files,
two common formats for scientific data. The filename pro-
vided may be a path to a single file, i.e., a static volume, or
a path with wildcard characters to describe multiple volumes,
i.e., a time-varying series. Example filenames for a time-vary-
ing series could be: ”~/supernova/*.bin” for all available
time steps or ”~/supernova/time_[2-7] .bin” for 5 spe-
cific time steps.

During initialization, the datasets referred to by the con-
figurations are loaded. Since each physical node may run
multiple server instances, we memory-map the datasets
when loading. This allows the physical node’s host operat-
ing system to maintain an in-memory map of a file that can
be given to each server instance. This reduces I/O costs and
allows using multiple configuration files to reference the
same dataset without additional overhead.

Attributes about the dataset from the configuration, such
as transfer function or data variable, are kept alongside the
reference to the data. Multiple configuration files may refer-
ence the same dataset, for example, using varying transfer
functions. This flexibility allows for more power in the ren-
dering requests.

3.2.3 Handling of Rendering Requests

After being routed from a unified endpoint to a specific
Docker container, a rendering request is handled by a
hyperimage server. Rendering requests from the client ask
for an image URL in which various parameters are embed-
ded. Image requests are processed by the C++ web server,
built with the Pistache library [34], by first parsing the

1765

options and then rendering the requested image using the
OSPRay renderer.

Each incoming rendering request contains the dataset,
camera position, up vector, the resolution of the render, and
potentially time-step. Camera and renderer settings are
updated accordingly.

OSPRay performs the rendering according to the above
parameters. The life-cycle of the OSPRay rendering objects in
each server are equal to that of the hyperimage server itself.
Data and rendering attributes are pre-configured per volume
during hyperimage server initialization. When the render
completes, we composite the OSPRay framebuffer onto the
appropriate background color and encode as a JPG image.
There is no need to store the image to disk on the server, so
the encoding is done to a byte stream in memory. At this
point, all information about the camera position and other
dynamic state parameters are no longer needed nor held.

The web server sends the rendered image as JPG byte
stream (e.g., image/Jjpg MIME type) from the rendering
module. The Docker Swarm Manager, which routed the
request to this container, handles responding to the appro-
priate user. The hyperimage server itself remains oblivious to
whom it has communicated with.

3.2.4 Elastic System Operation

Job Assignment and Runtime Management.

Using a single container, rendering requests from n users
will be queued up by the web server. Each request will occupy
the container until rendering and network transfer of the
image is complete. With multiple containers, any container
available can be selected for any given rendering request.
Sequential requests from a single user can be routed to differ-
ent containers on different physical nodes. This has two main
benefits: (i) new rendering requests can be processed while
other requests are blocked for I/O, network transfer, or ren-
dering; and (ii) elastic routing provides fault tolerance when a
hyperimage server or physical node goes down.

The volume of rendering requests is variable over time and
hard to predict. We monitor the current load on all containers
and scale the number of containers up or down accordingly,
through the runtime manager (RM) shown in Fig. 2.

Our RM, like RMs on typical cloud platforms, implement
elasticity by periodically checking CPU usage across all con-
tainers, and start new containers or close idling containers
as needed. In our previous work, we showed how Tapestry
leveraged such auto-scaling on an institutional cluster [5].
In this work, we deploy Tapestry on Amazon AWS as a micro-
service and, to this end, benefit from Amazon’s auto-scaling
RMs transparently.

Cache Container. In each physical node, we have added an
Nginx cache container intercepting all messages between
hyperimage servers and the outside. In a completely transpar-
ent manner, this enables caching for the Tapestry microser-
vice instances. Server responses are now cached based on
the incoming request. This improves efficiency and scalability
for many use cases. For example, commonly used view
angles, isovalues, etc. in repeated batches of renderings for
hypervideos and tiled renderings can now be simply reused,
saving hyperimage servers to handle new rendering requests.
Note that client-side caching inside web browsers also take
place transparently by browsers themselves.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

1766

Controllable Granularity. Tapestry’s server-side is a task-
parallel engine. As known for task-parallel systems in general,
the granularity of the tasks can affect the parallel efficiency of
the overall system. In this work, we have added a tiling mech-
anism to Tapestry as an option so that an application can
choose to use finer granularity to achieve better performance.

With tiling, a single hyperimage can be divided into many
 tags on the client-side. Each tile represents a portion
of the final render and is rendered on a different container in
parallel to other tiles. Using tiling, the client-side creates a ren-
der request for each tile and sends them to the server-side.
Once the response comes back, the appropriate is
updated with the result.

The setting “tiling, TILE_NUMBER-N_TILES” is an
optional parameter in the rendering request to specify tiling.
For example, tiling,6-16 denotes that the rendering
request is for the first tile out of a 16-tile render. Once this
rendering request reaches a hyperimage server, the server
calculates the portion of the volume that it needs to render
and updates the OSPRay camera’s clip space.

When rendered tiles are returned to the client-side, the
tiles are placed in the DOM in their own corresponding
 tag. Because each tile request can be sent indepen-
dently and routed to the correct position in the hyperimage,
there is no explicit compositing step required. That is, we
provide stitch-free tiling.

Multiple Endpoints. Docker Swarm uses an Ingress load
balancer [33]. The setup allows any physical node to be an
endpoint for incoming requests. The requests are then
routed to a free container. As a new addition, in this work,
we have added support for multiple endpoints in the client
(tapestry.js). The host parameter in a Tapestry object
can be set to an array of host addresses. Endpoints are then
chosen using a round-robin approach in the client in Tapes-
try objects. This achieves two purposes. First, the problem
of bottlenecking at a node’s inbound traffic is alleviated.
Second, browsers typically only open a limited number of
sockets per host address (e.g., Chrome currently defaults to
opening 6 connections per destination host (endpoint) [35].)
By using multiple endpoints, Tapestry objects can take
advantage of more open sockets.

In the case of Amazon’s cloud, AWS also has a load bal-
ancer that provides the same effect as Docker Swarm’s and
is called the Elastic Load Balancer (ELB). Multiple ELBs can
target the same set of machines to provide a similar effect
on AWS as on our institutional Docker Swarm. The address
of the ELBs can be used as endpoints in Tapestry clients.

3.3 Deployment on Institutional Clouds

Tapestry’s source code comes with a command-line inter-
face (CLI) named tapestry.sh that simplifies setting up
and running the backend on institutional clouds. Linux and
Docker Swarm are the only requirements for running the
Tapestry system. With Docker Swarm installed, users can
simply run . /tapestry.shbuildand ./tapestry.sh
run to run the system. Since Tapestry is built inside Docker
containers, the build is guaranteed to be successful on
machines that run Docker. In that regard, Docker has sim-
plified portability. The command-line interface also con-
tains other sub-commands such as scale (for manually
scaling the system), example (to download and run the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 4, APRIL 2020

examples), cache_report (to view the number of cache
hits and misses) among others. Extra features of the inter-
face can be seen using the help subcommand.

3.4 Deployment on Amazon AWS as a Microservice
Although the achieved performance metrics on public clouds
may be lower than on institutional clouds, public facing cloud
platforms, such as Amazon AWS, provide true Internet-scale
availability and accessibility at very affordable cost levels.

To create a Tapestry service on AWS from scratch, only
a few steps are needed. AWS provides a load balancer that
is instrumental in distributing rendering loads across multi-
ple machines. For the setup, an AWS load balancer needs to
be started with its listening port set to a publicly accessible
port for the service; typically the default HTTP port 80. The
load balancer must then be configured to forward traffic to
some alternative port (e.g., 8,080).

After that, an AWS Elastic Container Service (ECS) service
can be created. Tapestry’s Docker image then needs to be
uploaded to Amazon’s cloud-based registry and needs to
include any necessary data and configurations. The ECS
service needs to point to this image and use the previously
specified private port (8,080). Finally, the user needs to scale
the service as necessary; often a higher number than would be
used on an institutional cloud because AWS shares the
resources with other users and services.

In studying the performance of Tapestry on Amazon
AWS, we were mostly interested in choosing the optimal
type of machine and measuring the price for a desired
frame-per-second performance. In our tests, we spawned
various numbers of different machines and sent rendering
requests of different image sizes and measured the round
trip time. As a summary of the outcome, we found to sup-
port a large number of simultaneous users, using a large
number of small T2 type instances is more cost effective.
However, for super resolution renderings for a few users,
the Compute-Optimized machines are more suitable. More
detailed results are shown in Section 5.4. Additionally, to
simplify usage on cloud services, we have released a Docker
image of Tapestry.?

4 APPLICATION DEVELOPMENT

In this section, we describe three application development
settings enabled by using the Tapestry microservice. Specific
application performance results are in Section 5.6.

4.1 Embedding Visualizations into Web Pages
Hyperimages can be easily added to a web page using
HTML tags and a short JavaScript function call. To integrate
hyperimages into a page, the developer must include the
tapestry.js file and its dependencies: arcball,js, sylvester.js,
math.js and jQuery.js. Then, one line of JavaScript needs
to be called to initialize all hyperimages: $(".hyper-
image") .tapestry () ;

This call creates a Tapestry object per hyperimage tag.
Parameters such as default size of the hyperimage and
camera position can be sent to the object through the
constructor.

2. https:/ /hub.docker.com/r/seelabutk/tapestry

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

https://hub.docker.com/r/seelabutk/tapestry

RAJI ET AL.: SCIENTIFIC VISUALIZATION AS A MICROSERVICE

Characteristics

Size and shape

Fig. 5. Left: Embedded a volume rendering of tornado (dataset details in
Table 3) in a Wikipedia page on tornadoes. Users can start and stop an
animated temporal sequence. Right: The same page also works on
mobile phones. The page used to hold a static image showcasing the
shape of a stovepipe tornado. Now users can interactively see the tem-
poral progression of the natural phenomenon.

4.1.1 Time-Varying Data Animation (Wikipedia Example)

Listing 5 shows the changes needed to include a hyperimage
of a time-varying dataset into a Wikipedia page.

Listing 5. Code for Adding a Hyperimage of a Time
Varying Simulation into the Wikipedia Tornado Page

$(".hyperimage") .tapestry ({
"host": "http://host.com:port/",
"width": 256, "height": 256, "zoom": 300,
"n_timesteps": 20

1)

<img id="timeseries" class="hyperimage"
data-volume="tornado" data-timerange="0..20"/>

<a class="hyperaction" for="timeseries"
data-action="play () ">

<a class="hyperaction" for="timeseries"
data-action="stop () ">

Listing 6. Code Needed to Insert the Four Linkable
Hyperimages and Hyperaction into NASA’s Supernova
Web Page

<script>

$(".hyperimage") .tapestry ({
"host": "http://host.com:port/",
"width": 128, "height": 128, "zoom": 300
1)
</script>

<aclass="hyperaction" for="gl1"
data-action="1ink(s2,s3,s84)">

Fig. 5 shows the Wikipedia page on tornadoes after
the modification. The page includes a hyperimage linked
to a series of time steps from a tornado simulation data-
set. Two hyperactions can be seen in the code. Users can
click a hyperaction to play or stop the animation, while
still having the ability for 3D interaction with the volume
rendering.

1767

NASA NASA TV

What Is a Supernova?

This artceis partof th. seres.

space.

‘Where Do Superovas Take Place?

own Milky Way gaaxy because dust blocks ourview. In 1604, Johames Kepler

Giscovered the.

-
where there s a change in e
can occus in two diferent ways, wih boh resuling na supemon

One of e stars.

much matercauses th sta o explode, resulng n 3 upermova

enough mass o become a supernora.

Fig. 6. Embedding four time steps of a supernova simulation into a
NASA educational web page (dataset details in Table 3). The four hyper-
images (bottom right) can be linked or unlinked using the hyperaction in
the caption below it. Previously, the page had only a static figure (top
right) showing an artist’'s rendition. Now users can also interactively
explore how a supernova evolves over time.

4.1.2 Multiple Linked Views (NASA Example)

Here we show a NASA educational outreach page explaining
supernovae. The relevant code changes are in Listing 6. The
modified page is shown in Fig. 6.

The page now contains four hyperimages showing con-
secutive time steps of a supernova simulation. The views
can be linked and unlinked with the hyperaction in the
caption. When linked, all four hyperimages move together
when a user interacts with any one of them.

4.2 Controllable Movies of Scientific Visualization
By unifying the interface of the Tapestry microservice as
simple rendering requests, we can achieve more complex
application logic, for example, for making movies of scien-
tific visualization.

Listing 7. Sample Script for a Hypervideo with Two
Keyframes

<script id="video" type="text/json">
{
"keyframeO": {
"rotation": [-0.72, 0.30, 0.62, 0.51, 0.83, 0.19, -
0.46, 0.45, -0.751,
"zoom": 500, "timestep": 0,
},
"keyframel": {

"isovalue": 0.2

"rotation": [0.44,
0.78, 0.40, 0.461,
"zoom": 200, "timestep": 20, "isovalue": 0.7

-0.16, 0.88, 0.43, 0.90, -0.05, -

}
</script>

<div class="hypervideo" data-keyframeid="video"
data-dataset="supernova"></div>

Traditionally, making a visualization movie requires
creating the keyframes first. Then, a movie is created by ren-
dering all of the intermediate frames sequentially. Making
changes to an already-made movie requires a user to have
access to significant computing resources, and is usually
a very time consuming process.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

1768

nnnnn

Main Hyperimage

Parameter

“ = ‘ . Kevrramesj—‘

Fig. 7. A webpage for creating and manipulating hypervideos. A user can
add keyframes, edit existing keyframes, and export movies. Editing the
movie can be to modify camera angle, time step, isovalue, color map, etc.

Using the Tapestry microservice, we can make the
movie-making process interactively controllable by a user
from within a simple web browser. While offloading all
rendering tasks to the microservice, we simplify the applica-
tion space of the movie-making process to just the textual
representations of the keyframes (i.e., the corresponding
rendering requests). We call these application-space con-
structs, hypervideos.

Hypervideos can be embedded in HTML with the class
attribute set to hypervideo, and their data-keyframes
set to a JSON file. Alternatively, developers can set the
data-keyframeid attribute to the id of a script tag that
contains the JSON. Listing 7 shows an embedded hypervi-
deo with two keyframes.

Using and interacting with hypervideos is different from
traditional movies in important ways.

First, each keyframe can be presented on a web page as
a hyperimage, which has all of the interactivity described in
Section 4.1, including allowing the user to alter the key-
frame by changing the view. The generation of intermediate
frames is automatic. We use linear interpolation for changes
in timesteps, isovalues, and zoom levels; we interpolate
camera rotations using slerp [36].

Second, in a traditional movie, only the keyframes are
controllable. In contrast, due to the Tapestry microservice
treating all rendering requests in the same way, we turn
each individual frame in the movie into a hyperimage.
In this way, when a viewer watches the movie, he or she
can pause the movie at any time to interact and navigate
around the dataset freely.

Third, because of the microservice’s availability, the movie,
i.e the hypervideo, can remain text-only, and hence remain
compact, easily editable, sharable, and version controlled.
In addition, while changing number of frames, screen resolu-
tion, splitting and re-joining movies etc., are hard for tradi-
tional movies, they are trivial tasks for hypervideos.

For creating hypervideos, Fig. 7 shows a GUI that is
essentially a web page. A user can interactively add and
control the key frames. When the keyframes are set, the
user can play the animation or export the video in the form
of JSON text or as MP4 (rendered and encoded server-side
using ffmpeg). At all times, the Tapestry microservice serves
as the rendering engine.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 4, APRIL 2020

Fig. 8. A volume rendering of the turbine blade dataset shown through
HoloLens.

The performance of hypervideo renderings is presented
in Section 5.6.

4.3 Augmented Reality and Power-Wall

The endpoints of the Tapestry microservice is served by
Docker Swarm following standard HTTP protocols. This
kind of generality allows any application to simply access
the endpoints (e.g., via Linux’s curl). When using the Tap-
estry microservice, the application space does not have to
be related to web browsers at all. We further provide two
demonstrative examples as follows.

For the first example, we developed HoloTapestry, a C#
application for augmented reality using the Tapestry micro-
service. This prototype runs on a Microsoft HoloLens device
and performs stereo renderings using two textured planes,
rotated so they stay normal to the viewer’s eyes. Each plane
independently updates its texture by making rendering
requests to the microservice based on the current camera
parameters from the HoloLens. Transparency is achieved
by setting the background color of the renders to black as is
standard in HoloLens applications.

In result, Tapestry microservices allowed us to deliver
volume renderings of a 7.5 GB dataset to an AR device with
2 GB of memory by writing about 100 lines of code. Fig. 8
shows a view of the turbine blade dataset on a desk. The
performance of HoloTapestry is in Section 5.6. HoloTapes-
try is open-source.

For the second example, we target power-wall displays,
which is arguably one of the most prized tools for demonstrat-
ing advances in science and engineering. Traditionally, each
power-wall facility is accompanied by its own computing
cluster. Due to the typical tiled nature of power-walls, pro-
ducing super-resolution renderings using the Tapestry micro-
service is straightforward. One can use a short Shell script that
batch-generates rendering requests through curl. Or, one
can run a web browser across the power-wall and have the
browser transparently issue the batch of rendering requests,
one per each tile in the image, in order to achieve parallel
acceleration on the server side. In both cases, a lightweight
single-node can deliver data-intensive visualizations onto the
whole power-wall.

Fig. 9 shows a user using Tapestry to inspect defects in
a 3D printed wind turbine blade on a 4 x 3 power-wall
display. The volume is created by scanning the actual 3D

3. https:/ /github.com/seelabutk/holotapestry

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

RAJI ET AL.: SCIENTIFIC VISUALIZATION AS A MICROSERVICE

Fig. 9. A user using Tapestry to inspect a 3D printed wind turbine on a
4 x 3 power-wall. Renderings are 2048 x 2048 in resolution.

printed model using neutron scattering [37]. The renderings
are at 2048 resolution, rendered in 256 tiles (128 pixels per
tile) in parallel. The tiles are synchronized using a global
barrier. Tiled-based performance is detailed in Section 5.1.

5 RESULTS AND DEPLOYMENT

Our testing platforms include our institutional cloud and
Amazon AWS instances. Our institutional cloud setup
includes three machines each with 24 physical cores
(dual-socket Xeon E5-2650 v4, 2.9 GHz, 128 GB memory)
and three machines each with 28 cores (dual-socket Xeon
E5-2650 v4, 2.9 GHz, 256 GB memory).

On AWS, we tested seven different types of instances.
Table 2 shows the detailed list. The “d” suffix (e.g., c5d.
xlarge) refers to AWS instances with SSDs. For our system,
the SSDs do not affect the runtime performance, only micro-
service initiation time.

Our testing includes: (i) using 1 single container to serve
1 rendering request (Section 5.2), (ii) using an institutional
cluster to serve a varying number of emulated streams of
rendering requests (Section 5.3), (iii) using Amazon AWS
cloud to serve a varying number of emulated request
streams (Section 5.4), (iv) using AWS cloud to serve a vary-
ing number of simulated users (Section 5.5), and (v) perfor-
mance of demonstrative applications as experienced by a
user (Section 5.6).

Among the above tests, (i) - (iii) are to understand how
the Tapestry server performs, independent of user behavior.
(iv) is to understand the quality of service received by
a cohort of simultaneous users performing exactly the same
kinds of operations. (v) is to understand how a single user
experiences applications supported by the Tapestry micro-
service. Note that end-users are not affected by dataset load
time in these tests because all datasets are pre-loaded before
the service starts.

5.1 Configuring the Tapestry Microservice
This section discusses application policies to consider when
deploying Tapestry on the cloud.

When deploying on Amazon AWS, because virtual
instances have to share their physical nodes with others,
Amazon by default sets a low cap on the number of contain-
ers. For example (as shown in Table 2), on c5d.18xlarge
(with 72 vCPUs), the Amazon imposed container count cap
is 14, which translates to a 0.2 container/core ratio. Because

1769
TABLE 2
Amazon AWS Instances Used in this Work

Instance Core Cnt Memory # Containers
t2.micro 1 vCPU 1GiB 1
t2.medium 2 vCPUs 4 GiB 2
c5d.large 2 vCPUs 4 GiB 2
c5d.xlarge 4 vCPUs 8 GiB 3
c5.2xlarge 8 vCPUs 16 GiB 3
c5d.2xlarge 8 vCPUs 16 GiB 3
c5.9xlarge 36 vCPUs 72 GiB 7
c5d.18xlarge 72 vCPUs 144 GiB 14

The t2 prefix (e.g., t2.micro) refers to general purpose instances, while the c5 prefix
refers to compute optimized instances. The containers colummn shows the
maximum number of containers allowed by AWS on each particular instance.

this is much lower than the 0.8 ratio on institutional cloud
(explained in Section 5.3), we use the max number of con-
tainers allowed by AWS.

For applications to run optimally on the cloud, there are
three accelerations to consider, all of which are independent
of Tapestry. Instead, they are solely application-side policies.

First, use tiling. Instead of sending a rendering request for
a 1024” image, send 16 rendering requests of 2567 tiles. These
per-tile rendering requests will be answered by the Tapestry
microservice in parallel. For example, a t2.medium instance
has 2 vCPU and 2 GB memory, each available for 4.6 cents/
hour. It's easily affordable, and beneficial for fault tolerance,
to get a cohort of 100 t2.mediums to use for Tapestry.

We have found a simple and general heuristic to set tiling
factor to 16. A tiling factor of 4 still limits the amount of paral-
lelism that can be exploited. A tiling factor of 64 creates too
much management overhead for the client. Based on our tests,
a tiling factor of 16 reliably leads to 3 to 4 times faster render-
ing performance, as compared to when tiling is not used. Tile
size or image size of 642 or smaller is to fine grained. In all our
demo applications, we lower bound tile size to 1282

Second, use a lower interaction-resolution and a higher
viewing-resolution. As discussed in Section 2.3, level-of-
detail is very effective to ensure user-experience. Specifi-
cally, when needing a visualization at a viewing resolution
of 1024?, during interaction for faster response time, it is
helpful to use a lower interaction resolution. Regardless of
whether rendering for interaction- or viewing-resolutions,
all of our demo applications use tiling (to benefit from paral-
lel server-side rendering).

Third, use multi-threaded downloading. Most modern
web browsers implement this by default. For example,
Chrome automatically opens 6 asynchronous socket connec-
tions for each destination host. When accessing Tapestry
from a non-browser client (e.g., curl), we have also found
parallel connections helpful.

Hence, we have set up our tests of Tapestry microservices,
in Sections 5.4, 5.5, and 5.6, using the following assumptions:
(1) each user has 6 concurrent request streams, (2) tile-based
rendering requests, (3) when testing for user experience, use
a viewing-resolution of 1024? and a interaction-resolution
of 256°.

5.2 Rendering Pipeline Performance
We benchmarked the rendering and encoding process using
three variables that affect render time: image size, level of

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

1770

TABLE 3
The Datasets Used in this Work

Dataset Size per Spatial Time

Volume Resolution Steps
Boston teapot with lobster 45 MB 356 x 256 x 178 1
Isotropic turbulence [39] 64 MB 256 x 256 x 256 1
Jet flames [40] 132 MB 264 x 396 x 66 122
Superstorm [41] (1 run) 201 MB 254 x 254 x 37 49
Tornado [42] (wind velocity) 257 MB 480 x 480 x 290 600
Supernova [30] 308 MB 432 x 432 x 432 60
Magnetic reconnection [43] 512 MB 512 x 512 x 512 1
Turbine blade [37] 7500 MB 1589 x 698 x 1799 1

For time-varying data, varying time steps were used during testing.

attenuation of a ramp opacity map, and number of samples
per pixel. We used 6 image sizes (64?, 1287, 2562, 5122, 10242,
and 2048?), 4 attenuation values (1.0, 0.5, 0.1, and 0.01), and
4 sampling rates (1, 2, 4, and 8). The target hardware was
a 24-core node of our institutional cluster with a single con-
tainer. We then tested each combination of these parameters,
resulting in 96 test cases. We repeated each of the 96 cases
10 times with the camera at a randomized positions to simu-
late the effects of the volume being at different distances and
angles. We calculate the average time taken for 10 renders for
a given test case. To see the effect of image sizes, we then aver-
aged the times for each image size. This simulates possible
variation in image quality within same-sized images.

The target datasets were: supernova, isotropic turbulence,
and magnetic reconnection (described in Table 3). All three
datasets are structured grids of floating point values. To mea-
sure rendering time, each image was rendered to OSPRay’s
internal framebuffer and was then discarded to avoid buffer
copy or encoding time. We then tested the encoding time
(without saving to disk) separate from render time. Results
are shown in Table 4. Note that rendering time does not
necessarily increase linearly with image size (a known charac-
teristic of ray-tracing [38]).

The fastest rendering case was unsurprisingly 64 image
size. Within the test cases that used a 642 image, attenuation
of 0.1 and sample rate of 1 resulted in the fastest renders
at 0.001 seconds, approximately 1,000 frames per second.
On the other hand, the slowest renders occurred with 20482
images.

We also compared the encoding time of PNG vs JPG (at
100 percent quality). PNG was the image format used in our
previous work [5]. On average, JPG was 2.5 times faster
in encoding than PNG and generated byte streams were
generally smaller.

TABLE 4
Average Benchmarking Results for Rendering Requests Using
the Supernova, Isotropic Turbulence, and Magnetic Datasets

Image size Rendering PNG Enc. JPG Enc. Round-trip
time (s) time (s) time (s) time (s)
64 x 64 0.003 0.005 0.003 0.009
128 x 128 0.004 0.011 0.005 0.016
256 x 256 0.009 0.035 0.012 0.030
512 x 512 0.024 0.122 0.037 0.092
1024 x 1024 0.083 0.452 0.147 0.284
2048 x 2048 0.338 1.651 0.580 1.066

The round-trip time for each request includes render, encode, and transfer time
to and from the server with JPG encoding.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 4, APRIL 2020

Performance Results For a Single Container

* 64x64
. *128x128
0 B e I 256x256
’ e e512x512

*1024x1024

*2048x2048

Average Response Time (s)

25 50 75 100 125 150

Number of Concurrent Request Streams (each at 25 requests/second)

Fig. 10. System throughput results showing request rate versus
response time for various image sizes in log scale. The linear regression
trendlines are over-plotted indicating the linear growth of response time
in relation to the number of concurrent request streams.

In our experiments, the size of the rendered images var-
ied between a few kilobytes for low resolutions up to under
300 KB for 2048% images. The exact size of the generated
images depends on the content of the rendering.

5.3 Tapestry Server Throughput

In order to evaluate our system’s throughput, we imple-
mented a stress test of Tapestry microservices running on
our institutional cluster. We orchestrated multiple test
machines to send rendering requests to Tapestry simulta-
neously. In other words, each test machine sends a different
request stream to the server.

The testing master starts by spawning testing workers on
the test machines. The master then waits until all test work-
ers have finished their tests. Test workers use curl to send
rendering requests at a rate of 25 requests/second, while
randomly changing rendering parameters (e.g., camera
position) for each request. Finally, the master reads off the
test logs from a shared queue and saves to disk. The logs
list request-sent and response-received times that allow us
to measure the average time it takes our system to respond
to rendering requests. This throughput testing suite is writ-
ten in Python and is included in the Tapestry repository.

To increase the load on the system, we simply increase
the number of test workers. Like in Section 5.2, initially our
test target was one Tapestry container in a single 24 core
node of our cluster. We ran each test 100 times on the super-
nova, turbulence and tornado datasets (Table 3). For each
dataset, we generated rendering requests for six image
sizes: 647, 1282, 256%, 512%, 1024%, and 2048°.

We then averaged the response time collected, to show
an overall system throughput under a mixture of different
sizes of rendering jobs. Fig. 10 shows the scaling curves for
various image sizes. When doubling image size, average
response time approximately increased by a factor of 4,
which is expected.

Then, we tested for the effect of the number of containers
per node. In this test, we kept the number of testing workers
constant (150), and varied the number of Tapestry contain-
ers. Fig. 11 shows the results for three image sizes. For all
image sizes, as we gradually increase the number of con-
tainers from 1 towards 20, average response time improves.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

RAJI ET AL.: SCIENTIFIC VISUALIZATION AS A MICROSERVICE

Performance Results On a Varying Number of Containers
150 Concurrent Request Streams
0.6 - 64x64

= 128x128
256x256

o
kS

r

Average Response Time (s)

F
|
|

(

o

50 100 150 200 250

Number of Containers

Fig. 11. Results showing the relationship between the number of containers
in our institutional cloud and average response time. The optimal number of
containers is shown to be 20 for a machine with 24 physical cores.

After reaching 20 containers, adding more containers did
not yield noticeable improvements.

With the hardware being a single node with 24 physical
cores, getting best performance with roughly 20 containers
suggests roughly a 0.8 container/core ratio. Through addi-
tional testing, we found this ratio to be quite consistent on
institutional cloud.

5.4 AWS Microservice Throughput

Next, we evaluated Tapestry’s performance on Amazon
AWS. In particular, we looked at the relationship between
FPS versus Price over various tile sizes: 642, 1282, and 2562.

Since Tapestry is a compute-intensive service, we tested
Amazon’s Compute-Optimized instances as well as T2 Per-
formance instances [44]. We chose T2 machines because
of their ability to sustain CPU workload and low costs
[44]. For each instance type, we ran different number of
machines. For more powerful machines we were limited to
lower quantities due to Amazon’s policies.

For the supernova dataset, Fig. 12 shows FPS vs Price for 6
and 120 concurrent request streams with all of our tested
AWS instance types. Each point in the scatter plot represents
an AWS instance type and configuration.

For example, Fig. 12-top shows the cost to sustain 10 FPS
when rendering tiles of 256° is approximately $4/hour.
Please note, tiling lets applications transparently leverage

Performance of Various AWS Instances

oncurrent requ am:

=120 concurrent request streams ® 6 concurrent request streams

Responses Per Second

OO OLEEESEESE S o o o
0 8% T T o o 65 P T 6 6% 65 o o 6 o 6B 8 6 o 6 S
o5 050508 & € & 3 BB P SOCCS

a0t 0f 0 0f (& OSSP EEEEY gl
PSR < & K &
SRS LS Gt N A A A IS CIC

AWS instance and count

(a)

1771
FPS vs. Price In Various AWS Instances
6 Concurrent Request Streams
30 ® 64x64
® 128x128
256x256
. . .
e 20 " . . o . .
§ . . .
] .o .
e .
I} .
a 9 .
] oo
§ 0
g 13
.
| 354
3o
Ao
g
0
0 5 10 15
Price ($ per hour)
FPS vs. Price In Various AWS Instances
120 Concurrent Request Streams
20 ® 64x64
® 128x128
256x256
15 . 2
°
g .
o
3
3
5 10
3 .
M
g . : .
s
[» . -
5
. .
. .
*e > .
o >)
F]
0
0 5 10 15

Price ($ per hour)

Fig. 12. Graphs showing FPS versus price on Amazon AWS for 6 (top)
and 120 (bottom) concurrent request streams. Each point in the scatter
plots belong to a different AWS instance and configuration. 10 FPS and
30 FPS are marked in green.

server-side parallel rendering; when an application requests
tiles of 2567, the target image resolution is actually 10242

To evaluate the choices of AWS instances, we used 120
concurrent request streams and a tile size of 128 (i.e., tar-
geting a typical desktop visualization resolution of 5122).
Fig. 13a shows the performance of different instance types
in blue for 120 streams. The cost of these instances can be
seen in Fig. 13b. It appears that the cost correlates quite well
with the desired FPS. The two graphs also show that
although large Compute-Optimized machines (towards the

Price of Various AWS Instances

Price ($ per hour)

0

S
aSafafafaf @ & & LI PTPTP P
SO0 0SS EEL LD 7 5

AT @\@\a@*%@.@* NN AF A gt ot W gh (AT gt oy EEF S
K N

AWS instance and count

()

Fig. 13. (a) Shows a comparison between the rendering performance of various AWS instances for 120 and 6 concurrent request streams (both at
a request rate of 25 FPS). In a Chrome browser that uses 6 request streams per host, the former results in 20 users while the latter results in 1 user.
Compute-optimized instances perform better with 6 request streams. (b) Shows the cost of different AWS instances.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

1772

Performance of T2 vs C5D Machines

=100 x t2zmedium = 3 x c5d.18xlarge

Responses per second

Number of concurrent request streams

Fig. 14. Graph showing the estimated point at which T2 instances sur-
pass compute-optimized instances at efficiency.

right) perform better, they are less cost-efficient. A reason
may be that larger machines are more suited for fewer users
and large tile sizes. Fig. 13a shows that by lowering the
number of request streams to 6 (red bars), the rendering
speed of the Compute-Optimized instances grew much
more than a large number of smaller machines such as 100
t2.medium instances.

Furthermore, we compared the performance of 100 t2.
medium machines and 3 x 72 core C5D.18xlarge machines.
Based on the changes in the number of concurrent requests
from 6 to 120, we used the least squares fitting model to esti-
mate where the performance of the two meet. The fitness of
the model had a root mean square error of 0.019. Fig. 14
shows that at 380 concurrent request streams (i.e., about
60 simultaneous uses), 100 t2.medium instances become
more cost-efficient.

5.5 User Experience Benchmarking

To test our system’s performance under realistic workloads,
we used “monkey testing”, a standard approach to stress-test
web pages. Monkey testing involves simulating interactions
across elements of the page. We used this on hyperimages
to simulate user interaction. We ran the “natural monkey
testing” scripts in the same configuration as before [5], only
that in this work 100 Amazon t2.micro instances were acting
as testing clients. The datasets used were supernova, turbu-
lence and magnetic (Table 3).

User Experience Benchmarking

Network impact

= Out-of-network users = In-network users

Average Response Time (s)

20 40 60 80 100

Number of Users

Fig. 15. Response time for a varying number of users is shown. The
slower out-of-network results are from 100 simulated users on AWS,
accessing our institutional cloud. The in-network results are from 100
simulated users in our local 1 Gbps network.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 4, APRIL 2020

User Experience Benchmarking
Resource scaling

= 72 Core Server = 156 Core Server

Average Response Time (s)

Number of users (simulated on Amazon AWS)

Fig. 16. Graph showing the scalability of the system. The 72 core cluster
is the same as the one used in our previous work [5]. In both cases, we
used 100 users (simulated on AWS with monkey-testing).

Each of the t2.micro instances ran a lightweight version of
Ubuntu and a headless Chrome browser. Our testing script
used SSH to connect to all 100 instances and run our hyper-
image test page within the headless browser, and with
monkey testing controlling the interactions.

When the monkey testing interactions were done, the
JavaScript code within the page sent timing results to a sim-
ple Python server that log the results to a file. The timing
results included request times, response times, and the reso-
lution of requested images. On average, 3.46 percent of the
images were at viewing resolution (10242), and the rest
were interaction resolution (256).

Fig. 15 shows average response time for a varying num-
ber of testing clients. The blue line shows when the testing
clients are deployed on Amazon AWS, and the red line
shows when the testing clients are on the local area network
as the institutional cluster. The result shows diminishing
differences due to network proximity as the number of test-
ing clients increase, which can lead to network congestion
regardless of proximity.

Fig. 16 shows the same test repeated to reveal resource-
scalability of our platform. We expanded the deployment
from 3 nodes (72 cores, blue curve) to 6 nodes (156 cores,
red curve). In both of these two cases, the testing clients
were deployed on AWS.

5.6 Application Performance

To test the performance of the applications in (Section 4)
with a single user, we used three C5.9xlarge AWS instances
as server.

For hyperimage embedding, we conducted a single
monkey-testing user test on a web page with a visualization
of a dataset selected randomly (full list in Table 3). On aver-
age, interaction-resolution renderings (256%) were rendered
at a speed of 9.43 FPS, while viewing-resolution renderings
(10242) achieved 2.08 FPS. In other words, when a user stops
interacting, a high quality rendering is provided in less than
0.5 seconds.

We also looked at the overhead of including the client-side
JavaScript code for Tapestry. On average, pages with Tapestry
enabled loaded 1.29 times slower than pages without Tapes-
try included. For example, a Wikipedia page without hyperi-
mages, loaded in 510 ms, while with hyperimages, it took
659 ms. Most of this overhead is due to the jQuery library.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

RAJI ET AL.: SCIENTIFIC VISUALIZATION AS A MICROSERVICE

Hypervideo performance essentially depends on the
server throughput since interpolation has a negligible cost.
In our tests, we created three hypervideos for different data-
sets (5 keyframes each). We chose to generate 50 frames
between every two keyframe and therefore 200 frames were
rendered for each video. Our video playback speed was set
to 30 frames per second; the 200 frame videos were approxi-
mately 6 seconds long. The keyframes were chosen at ran-
dom with different angles, and zoom levels. On average,
it took 70.66 seconds to render a full video.

When changing one of the keyframes, on average, the read-
justment of a keyframe took 21.15 seconds, since most of the
intermediate frames were auto-cached by the cache container
(Section 3.2.4). A user can watch the video as it renders albeit
at the rendering speed. Any subsequent playback is at
30 frames/second. All hypervideo tests were done using
aresolution of 1024,

We also tested the speed of our augmented reality applica-
tion. To view volume renderings of the 7.5 GB sized turbine
dataset on a HoloLens (Fig. 8), HoloTapestry can update
renderings at a sustained speed of 4.5 FPS. The viewing-
resolution in the tests was 5127 (stereo, without explicit syn-
chronization of left and right eye images), using all 6-nodes of
our institutional cluster. While the speed of our prototype
implementation is not sufficient for practical use yet, we
believe as hardware performance on AR devices improves,
better results can be achieved, and HoloTapestry can be uti-
lized in situations where the data is large and cannot be ren-
dered on the device.

6 CONCLUSION AND FUTURE WORK

Traditionally, the computing resources that can be provi-
sioned for a scientist restricts the kind of scientific visualiza-
tion he or she can use. This limitation also hampers efforts to
make scientific visualizations accessible to large collaborating
teams of users. Moreover, there are even more barriers
to share interactive scientific visualizations with the general
public.

In this work, we describe Tapestry as an example to map
the delivery architecture of scientific visualization onto a
cloud platform, and have scientific visualization appear as
a microservice with rendering requests being the only API.

Tapestry’s architectural design stems from decoupling and
shielding the visualization server-side away from application
logic and application states. Through deploying the stateless
Tapestry servers on Amazon AWS, we show that high-end
visualization needs can be met by a cloud-hosted service in an
efficient, on-demand, and cost-effective manner.

We believe there is a future potential that general data
analysis and visualization tasks, beyond simple rendering,
can leverage decoupled architectures in similar ways to
achieve high performance, high availability, and high accessi-
bility. In particular, we would like to further combine Tapes-
try with the area of augmented reality as well as improve its
performance with AR applications. Another area for pursuing
in the future is adding specialized support for 3D graphics
and animation development. For general computer graphics
concepts, dedicated rendering engines have been the norm.
It may be feasible to use microservices to support such use
cases on-demand.

1773

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers of
this and previous versions of the manuscript for their valuable
comments and suggestions. The authors are supported in part
by US National Science Foundation Award CNS-1629890,
Intel Parallel Computing Center (IPCC) at the Joint Institute
of Computational Science of University of Tennessee, and the
Engineering Research Center Program of the National Science
Foundation and the Department of Energy under US National
Science Foundation Award Number EEC-1041877.

REFERENCES

[1]1 S. Jourdain, U. Ayachit, and B. Geveci, “ParaViewWeb, a web
framework for 3D visualization and data processing,” in Proc.
IADIS Int. Conf. Web Virtual Reality Three-Dimensional Worlds,
2010, Art.no. 1.

[2] V. Pascucci, G. Scorzelli, B. Summa, P.-T. Bremer, A. Gyulassy,
C. Christensen, S. Philip, and S. Kumar, “The visus visualization
framework,” in High Performance Visualization: Enabling Extreme-
Scale Scientific Insight, E. W. Bethel, H. Childs, and C. Hansen, Eds.
London, UXK./Boca Raton, FL, USA: Chapman and Hall/CRC,
2012.

[3] K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, and P. Slusallek,
“XML3D: Interactive 3D graphics for the web,” in Proc. 15th Int.
Conf. Web 3D Technol., 2010, pp. 175-184.

[4] Paraview ArcticViewer, 2018. [Online]. Available: https:/ /kitware.
github.io/arctic-viewer/, Accessed on: Oct. 14, 2018.

[5] M. Raji, A. Hota, and J. Huang, “Scalable web-embedded volume
rendering,” in Proc. IEEE 7th Symp. Large Data Anal. Vis., Oct.
2017, pp. 45-54.

[6] Software Container Platform - Docker: https://www.docker.
com/, 2018. [Online]. Available: https://www.docker.com/,
Accessed on: Oct. 14, 2018.

[71 M. Bostock, V. Ogievetsky, and]. Heer, “D3 data-driven
documents,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12,
pp- 2301-2309, Dec. 2011.

[8] J. Jomier, S. Jourdain, U. Ayachit, and C. Marion, “Remote
visualization of large datasets with midas and ParaViewWeb,”
in Proc. 16th Int. Conf. 3D Web Technol., 2011, pp. 147-150. [Online].
Available: http://doi.acm.org/10.1145/2010425.2010450

[9] G.Tamm and P. Slusallek, “Plugin free remote visualization in the

browser,” in Proc. SPIE/IS&T Electron. Imag., 2015, pp. 939 705-

939 705.

G. Tamm and P. Slusallek, “Web-enabled server-based and

distributed real-time ray-tracing,” in Proc. 16th Eurographics Symp.

Parallel Graph. Vis., 2016, pp. 55-68.

Kitware, “Vtk.js,” 2017. [Online]. Available: https:/ /github.com/

Kitware/vtk-js, Accessed on: Jun. 10, 2017.

J. Ding, J. Huang, M. Beck, S. Liu, T. Moore, and S. Soltesz,

“Remote visualization by browsing image-based databases with

logistical networking,” in Proc. ACM/IEEE Conf. Supercomput.,

2003, pp. 34:1-34:11.

J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and

M. Petersen, “An image-based approach to extreme scale in situ

visualization and analysis,” in Proc. Int. Conf. High Perform.

Comput. Netw. Storage Anal., 2014, pp. 424-434.

H. Childs, E. Brugger, B. Whitlock,]. Meredith, S. Ahern, D. Pugmire,

K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,

A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Riibel, M. Durant,

J. M. Favre, and P. Navrdtil, “Vislt: An end-user tool for visualizing

and analyzing very large data,” in High Performance Visualization—

Enabling Extreme-Scale Scientific Insight. Boca Raton, FL, USA: CRC

Press, Oct. 2012, pp. 357-372.

U. Ayachit, “The Paraview guide: A parallel visualization

application,” Kitware, Inc., 2015.

Q. Wy, J. Gao, M. Zhu, N. S. Rao, J. Huang, and S. Iyengar, “Self-

adaptive configuration of visualization pipeline over wide-area

networks,” IEEE Trans. Comput., vol. 57, no. 1, pp. 55-68, Jan. 2008.

R. Sisneros, C. Jones,]. Huang, J. Gao, B.-H. Park, and N. Samatova,

“A multi-level cache model for run-time optimization of remote

visualization,” IEEE Trans. Vis. Comput. Graph., vol. 13, no. 5,

pp- 991-1003, Sep. /Oct. 2007.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171]

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

https://kitware.github.io/arctic-viewer/
https://kitware.github.io/arctic-viewer/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
http://doi.acm.org/10.1145/2010425.2010450
https://github.com/Kitware/vtk-js
https://github.com/Kitware/vtk-js

1774

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]
[40]

[41]

[42]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 4, APRIL 2020

M. Meifiner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis,
“A practical evaluation of popular volume rendering algorithms,”
in Proc. IEEE Symp. Volume Vis., 2000, pp. 81-90.

1. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers,
J. Gunther, and P. Navratil, “OSPRay—A CPU ray tracing
framework for scientific visualization,” IEEE Trans. Vis. Comput.
Graph., vol. 23, no. 1, pp. 931-940, Jan. 2017.

NVIDIA IndeX, 2016. [Online]. Available: https://developer.
nvidia.com/index

C. Zach, S. Mantler, and K. Karner, “Time-critical rendering of
discrete and continuous levels of detail,” in Proc. ACM Symp. Virtual
Reality Softw. Technol., 2002, pp. 1-8.

X. Li and H.-W. Shen, “Time-critical multi-resolution volume
rendering using 3D texture mapping hardware,” in Proc. IEEE/
ACM Symp. Volume Vis. Graph., 2002, pp. 29-36.

L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger,
C.T. Silva, and H. T. Vo, “VisTrails: Enabling interactive multiple-
view visualizations,” in Proc. IEEE Vis., 2005, pp. 135-142.

J. Gao, J. Huang, C. R. Johnson, and S. Atchley, “Distributed data
management for large volume visualization,” in Proc. IEEE Vis.,
2005, pp. 183-189.

H.Yu, K.-L.Ma, and J. Welling, “A parallel visualization pipeline for
terascale earthquake simulations,” in Proc. ACM/IEEE Supercomput.
Conf., 2004, pp. 49-49.

J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-
G: A computation management agent for multi-institutional grids,”
in Proc. 10th IEEE Int. Symp. High Perform. Distrib. Comput., 2001,
pp- 55-63.

W. Kendall, J. Huang, T. Peterka, R. Latham, and R. Ross, “Toward
a general I/O layer for parallel-visualization applications,” IEEE
Comput. Graph. Appl., vol. 31, no. 6, pp. 6-10, Nov./Dec. 2011.

A. Evans, M. Romeo, A. Bahrehmand, J. Agenjo, and J. Balt, “3D
graphics on the web: A survey,” Comput. Graph., vol. 41, pp. 43—
61, Jun. 2014.

W3C, “Embedding custom non-visible data with the data
attributes,” 2017. [Online]. Available: https://www.w3.org/TR/
2011/WD-htm15-20110525/ elements.html#embedding-custom-
non-visible-data-with-the-data-attributes, Accessed on: Mar. 21,
2017.

J. M. Blondin and A. Mezzacappa, “Pulsar spins from an instability
in the accretion shock of supernovae,” Nature, vol. 445, no. 7123,
pp- 58-60, 2007.

C. Pahl, “Containerization and the Paa$S cloud,” IEEE Cloud Comput.,
vol. 2, no. 3, pp. 24-31, May/Jun. 2015.

J. Stubbs, W. Moreira, and R. Dooley, “Distributed systems of
microservices using docker and serfnode,” in Proc. 7th Int. Workshop
Sci. Gateways, 2015, pp. 34-39.

P. Kanuparthy, W. Matthews, and C. Dovrolis, “DNS-based
ingress load balancing: An experimental evaluation,” CoRR,
vol. abs/1205.0820, 2012. [Online]. Available: http://arxiv.org/
abs/1205.0820

Mathieu Stefani, “Pistache http server,” 2017. [Online]. Available:
http:/ /pistache.io, Accessed on: Jun. 16, 2017.

“Maximum Number of Open Connections Per Browser,” (2018).
[Online]. Available: http:/ /www.browserscope.org/?category=
networké&v=top, Accessed on Oct. 2018.

K. Shoemake, “Animating rotation with quaternion curves,”
SIGGRAPH Comput. Graph., vol. 19, no. 3, pp. 245-254, 1985.

H. Bilheux, K. Crawford, L. Walker, S. Voisin, M. Kang, M. Harvey,
B. Bailey, M. Phillips, J. Bilheux, K. Berry, et al., “Neutron imaging
at the oak ridge national laboratory: Present and future capabilities,”
in Proc. 7th Int. Topical Meeting Neutron Radiography. Phys., 2013.

M. Meifiner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis,
“A practical evaluation of popular volume rendering algorithms,”
in Proc. IEEE Symp. Volume Vis., 2000, pp. 81-90.

D. Donzis, P. Yeung, and D. Pekurovsky, “Turbulence simulations
on O(10%) processors,” in Proc. TeraGrid Conf., 2008.

C.S. Yoo, R. Sankaran, and J. H. Chen, “Direct numerical simulation
of turbulent lifted hydrogen jet flame in heated coflow,” 2007.
J.Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. Moorhead,
“Noodles: A tool for visualization of numerical weather model
ensemble uncertainty,” IEEE Trans. Vis. Comput. Graph., vol. 16,
no. 6, pp. 1421-1430, Nov. /Dec. 2010.

R. Wilhelmson, M. Straka, R. Sisneros, L. Orf, B. Jewett, and
G. Bryan, “Understanding tornadoes and their parent supercells
through ultra-high resolution simulation/analysis,” 2013.

[43]

[44]

F. Guo, H. Li, W. Daughton, and Y. H. Liu, “Formation of hard power
laws in the energetic particle spectra resulting from relativistic
magnetic reconnection,” Phys. Rev. Lett., vol. 113, no. 15, pp. 1-5,
2014.

Amazon, “Amazon AWS Instance Types,” (2018). [Online]. Avail-
able: https://aws.amazon.com/ec2/instance-types/, Accessed
on Oct. 2018.

Mohammad Raji received the BS and MS
degrees in computer engineering from Razi Uni-
versity, Iran, in 2008 and 2012, respectively, and
the second MS degree in computer science from
the University of Tennessee, in 2017. He is
currently working toward the PhD degree at the
University of Tennessee, Knoxville. His research
interests include web-based data visualization
systems, large scale visualization architectures,
and deep learning.

Alok Hota received the bachelor of science
degree in computer science from Fisk University,
the bachelor of engineering degree in computer
engineering from Vanderbilt University, and the
master of science degree in computer science
from the University of Tennessee, Knoxville. He is
working toward the PhD degree at the University
of Tennessee, Knoxville. His research interests
include data visualization systems, large scale
visualization, and heterogeneous computing. He
is a student member of the IEEE.

Tanner Hobson received the BS degree in com-
puter science from the University of Tennessee,
Knoxville, where he is currently working toward
the PhD degree. His research interests include
distributed computing, mixed reality visualization,
and web-based systems architectures.

Jian Huang received the PhD degree in com-
puter science from the Ohio State University, in
2001. He is a professor with the Department of
Electrical Engineering and Computer Science,
University of Tennessee, Knoxville. His research
focuses on data visualization and analytics. His
research has been funded by National Science
Foundation, Department of Energy, Department
of Interior, NASA, UT-Battelle, and Intel.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 01,2021 at 04:00:36 UTC from IEEE Xplore. Restrictions apply.

https://developer.nvidia.com/index
https://developer.nvidia.com/index
https://www.w3.org/TR/2011/WD-html5--20110525/elements.html#embedding-custom-non-visible-data-with-the-data-attributes
https://www.w3.org/TR/2011/WD-html5--20110525/elements.html#embedding-custom-non-visible-data-with-the-data-attributes
https://www.w3.org/TR/2011/WD-html5--20110525/elements.html#embedding-custom-non-visible-data-with-the-data-attributes
http://arxiv.org/abs/1205.0820
http://arxiv.org/abs/1205.0820
http://pistache.io
http://www.browserscope.org/?category= network&v=top
http://www.browserscope.org/?category= network&v=top
https://aws.amazon.com/ec2/instance-types/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

