
Tag-based regulation of modules in genetic
programming improves context-dependent problem
solving

Alexander Lalejini · Matthew Andres
Moreno · Charles Ofria

Abstract We introduce and experimentally demonstrate the utility of tag-based
genetic regulation, a new genetic programming (GP) technique that allows pro-
grams to dynamically adjust which code modules to express. Tags are evolvable
labels that provide a flexible mechanism for referencing code modules. Tag-based
genetic regulation extends existing tag-based naming schemes to allow programs to
“promote” and “repress” code modules in order to alter expression patterns. This
extension allows evolution to structure a program as a gene regulatory network
where modules are regulated based on instruction executions. We demonstrate
the functionality of tag-based regulation on a range of program synthesis prob-
lems. We find that tag-based regulation improves problem-solving performance on
context-dependent problems; that is, problems where programs must adjust how
they respond to current inputs based on prior inputs. Indeed, the system could not
evolve solutions to some context-dependent problems until regulation was added.
Our implementation of tag-based genetic regulation is not universally beneficial,
however. We identify scenarios where the correct response to a particular input
never changes, rendering tag-based regulation an unneeded functionality that can
sometimes impede adaptive evolution. Tag-based genetic regulation broadens our
repertoire of techniques for evolving more dynamic genetic programs and can easily
be incorporated into existing tag-enabled GP systems.

Keywords tag-based referencing · gene regulation · linear genetic programming ·
automatic program synthesis · SignalGP

Alexander Lalejini1,2,3

E-mail: amlalejini@gmail.com
Matthew Andres Moreno1,2,3

E-mail: mmore500@msu.edu
Charles Ofria1,2,3

E-mail: ofria@msu.edu
1BEACON Center for the Study of Evolution in Action, Michigan State University
2Department of Computer Science and Engineering, Michigan State University
3Ecology, Evolution, and Behavior Program, Michigan State University

2 Alexander Lalejini et al.

1 Introduction

Genetic programming (GP) applies the natural principles of evolution to automat-
ically synthesize programs rather than writing them by hand. Indeed, the promise
of automating computer programming has motivated advances in GP since its
early successes in the 1980s [11, 18, 33]. Just as human software developers have
access to a dazzling array of programming languages, each specialized for solving
different types of problems, GP features many ways to represent evolvable pro-
grams. Each representation features different programmatic elements that vary
in their syntax, organization, interpretation, and evolution. These differences can
dramatically influence the types of computer programs that can be evolved, and
as such, influence a representation’s problem-solving range [25, 77]. Here, we in-
troduce and experimentally demonstrate tag-based module regulation for genetic
programming, allowing us to more easily evolve programs capable of dynamically
regulating responses to inputs over time.

Nearly all software applications are capable of conditionally responding to in-
puts. For example, each input button on a calculator triggers a different software
response; or, in the Small or Large problem from the Helmuth and Spector’s au-
tomatic program synthesis benchmark suite [22], programs must output different
classifications (“small”, “large”, or “neither”) depending on a numeric input value.
Just like such conditional logic is inherent in any non-trivial software, so to is it
ubiquitous in biological organisms where it is referred to as “plastic” behavior or
“phenotypic plasticity.”

Modular software design—that is, designs that promote the partitioning and
reusability of functional units—is fundamental to good software development prac-
tices; this principle is all the more true in producing programs capable of complex
“plasticity.” By modularizing code (e.g., into functions, classes, libraries, etc.), soft-
ware developers can craft customized responses to inputs by composing relevant
modules. These modules can each contain segments of code whose functionality
would otherwise need to be reinvented for each response. Likewise, modularity
appears to be critical in natural genomes [69] as well as artificial evolving systems
[28]. Moreover, evidence in these evolving systems suggests that modularity can
improve the capacity for effective plasticity to arise [17, 45].

Developing GP systems that facilitate the evolution of modular program archi-
tectures has long captured the attention of the genetic programming community.
Koza introduced Automatically Defined Functions (ADFs) where callable func-
tions can evolve as separate branches of GP syntax trees [34, 35]. Angeline and
Pollack developed compression and expansion genetic operators to automatically
modularize existing code into libraries of parameterized subroutines [4]. Since these
foundational advances, significant efforts have been made to allow GP representa-
tions to incorporate internal modules (e.g., [63, 53, 9, 70, 66, 64, 41]), to measure
(and select for) modularity in evolving programs (e.g., [36, 59, 60]), and to build
“libraries” of reusable code modules accessible to evolving populations of programs
(e.g., [5, 31, 32, 58]).

These innovations have improved the ability of GP systems to link modules to-
gether to solve problems, thus improving their prospects as general-purpose tools
for automatic program synthesis. In existing GP work, links between modules, how-
ever, are typically hard coded and static during program execution. Less is known
for how to evolve programs that can adjust module associations on the fly. For

Tag-based regulation of modules in genetic programming 3

many types of problems, the appropriate set of modules to execute in response to a
particular input changes over time. This requires programs to continuously adjust
associations between inputs and modular responses based on context. For example,
the computations that occur on a calculator after pressing the “equals” button are
context-dependent ; that is, they depend on the set of operators and operands (i.e.,
inputs) previously provided. To achieve this design pattern, programs must inter-
nally track contextual information and typically regulate responses using explicit
flow control directives (such as if-statements). Our goal is to evolve programs that
dynamically regulate modules during execution to more effectively solve context-
dependent problems. To reach this goal, we draw inspiration from gene regulatory
networks (both natural and artificial) to augment how program modules are called
in GP.

Here, we propose to facilitate dynamic module composition by introducing tag-
based module regulation for genetic programming. We extend existing tag-based
naming schemes to allow programs to dynamically adjust associations between
references and code modules. We experimentally demonstrate our implementation
of tag-based genetic regulation in the context of SignalGP [41]; however, our ap-
proach is immediately applicable to any existing tag-enabled GP system, such as
tag-addressed Run Transferable Libraries [31] or PushGP [66]. We add “regula-
tion” instructions to SignalGP that can adjust (i.e., promote or repress) which
code modules respond to input signals and internal calls. This extension allows
evolution to structure a program as a gene regulatory network where genes are
program modules and program instructions mediate regulation. We show that
module regulation improves problem-solving performance on problems where re-
sponses to particular inputs change depending on prior context (e.g., prior inputs).
We also observe that our implementation of tag-based regulation can sometimes
impede adaptive evolution when outputs are not context-dependent.

2 Specifying Modules with Tag-based Referencing

All programming representations that support modularizing code into functions
or libraries define mechanisms for labeling and subsequently referencing modules.
In traditional software development, programmers hand label modules and ref-
erence a particular module using its assigned label. Programmers must precisely
name the module they intend to reference; imprecision typically results in incor-
rect outputs or a syntax error. This mechanism for referencing modules allows for
an arbitrarily large space of possible module names and is intentionally brittle,
ensuring programs are either interpreted by a computer exactly as written or not
interpreted at all. Requiring genetic programming systems to adhere to these tra-
ditional approaches to module referencing is not ideal. Mutation operators must
either ensure that mutated labels are syntactically valid, or else cope with an
abundance of broken code. These choices result in either a search space that is
overly constrained or one that is rugged and difficult to navigate [56].

Inspired by Holland’s use of “tags” to facilitate binding and aggregation in
complex adaptive systems [26, 27], Spector et al. generalized the use of tags to
label and refer to program modules in GP [65, 66]. Tags are evolvable labels that
can be mutated, and the similarity (or dissimilarity) between any two tags can
be quantified. Tags are most commonly represented as floating point or integer

4 Alexander Lalejini et al.

numeric values [31, 66] or as bit strings [41]. Like traditional naming schemes, tags
can provide an arbitrarily large address space. Unlike traditional naming schemes,
however, tags allow for inexact addressing. A referring tag targets the tagged entity
(e.g., a module) with the closest matching tag; this ensures that all possible tags are
valid references. Further, mutations to tags do not necessarily invalidate existing
references. For example, mutating a referring tag will have no phenotypic effect
if those mutations do not change which target tag is matched. As such, mutating
tag-based names is not necessarily catastrophic to program functionality, allowing
the labeling and use of modularized code fragments to incrementally co-evolve [66].

Tag-based referencing has long been used to expand the capabilities of ge-
netic programming systems. Keijzer et al. created run transferable libraries of tag-
addressable functions using successful code segments evolved in previous GP runs
[31, 32]. Evolving programs (represented as program trees) contained dynamically-
linked nodes that used tag-based referencing to call library functions. These tag-
addressed libraries were updated between runs and did not co-evolve with pro-
grams.

Spector et al. augmented PushGP with tag-based referencing, allowing tag-
addressable code modules to evolve within a program [66]. Spector et al. found that
tags provided a flexible mechanism for modularization that allowed tag-enabled
programs to better scale with problem size. Additionally, Spector et al. expanded
tag-based modules beyond PushGP, successfully applying the technique to tree-
based GP [64].

Lalejini and Ofria further extended tag-based naming to linear GP. Their Sig-
nalGP system broadens the application of tags to facilitate the evolution of event-
driven programs [41, 43]. In SignalGP, tagged modules are called internally or
triggered in response to tagged events (e.g., events generated by other agents or
the environment). More recently, Lalejini and Ofria demonstrated the use of tags
to label memory positions in GP, enabling programs to define and use evolv-
able variable names [42]. This tag-based memory implementation did not substan-
tively affect problem-solving performance; however, tag-based addressing features
a larger addressable memory space than more traditional register-based memory
approaches in GP.

3 Tag-based Genetic Regulation

Here, we allow programs to use tag-based referencing to dynamically regulate
module execution. To achieve this, we draw inspiration from both natural and
artificial gene regulatory networks. We demonstrate that this approach promotes
more effective solutions for context-dependent problems.

Gene regulatory networks represent the complex interactions among genes,
transcription factors, and signals from the environment that, together, control
gene expression [7]. Gene regulation allows for feedback loops so that prior events
can continue to influence future expression in flexible and nuanced ways. Gene
regulation underlies most important biological processes, including cell differenti-
ation, metabolism, the cell cycle, and signal transduction [30]. The role of gene
regulatory networks in sustaining complex life has inspired varied and abundant
computational models of these networks [14, 30].

Tag-based regulation of modules in genetic programming 5

Artificial gene regulatory networks have been used to study how natural gene
regulation evolves [1, 12, 16] and as a tool in evolutionary computation to solve
challenging control problems (as reviewed by [14]). Evolved artificial gene regula-
tory networks have even been used as indirect encoders, providing a developmental
phase to translate genomes into programs [6, 49] or neural networks [78]. La Cava
et al. demonstrated a form of epigenetic regulation for genetic programming where
“gene” activation and silencing is learned each generation [37, 38]; however, the
programs themselves did not have direct control over these regulatory elements.
Inspired by chromatin remodeling in biological cells, Turner et al. introduced artifi-
cial epigenetic networks that allow for the regulation (i.e., the addition or removal)
of internal network components [67]; such topological self-modification improved
problem-solving success for dynamical control problems.

We aim to incorporate gene regulatory network-inspired methodology to allow
programs to dynamically adjust which module is triggered by a particular call
based on not just current inputs, but also prior inputs. We achieved this goal by
instantiating gene regulatory networks using tag-based referencing. Specifically,
we implemented tag-based genetic regulation in the context of the linear GP sys-
tem SignalGP [41], which is described in further detail in Section 4.1. Here, we
describe tag-based genetic regulation in terms of our SignalGP-based implemen-
tation; however, our overall approach is immediately applicable to each of the
tag-enabled systems described in Section 2 and can be easily incorporated into
any genetic programming representation.

Briefly, programs in SignalGP are composed of tag-addressed modules (i.e.,
functions), each of which contain a linear sequence of instructions. Each instruc-
tion has arguments, including an evolvable tag that can be used to identify and call
a tag-addressed module. When a referring tag (e.g., from an instruction) is used to
look up a tag-addressed module, all modules in that program are ranked according
to a tag-matching score. A tag-matching score quantifies the quality of the refer-
ence between a referring tag and a module’s tag; we always select the module with
best reference quality (i.e., the highest tag-match score with the referring tag).
When a module is called, it is executed procedurally, instruction-by-instruction,
in the same way as in a conventional linear GP system.

We modified SignalGP in two ways to implement tag-based genetic regulation:

1. We added a “regulatory modifier” value (represented as a floating point value)
to all tag-addressed modules. A module’s regulatory modifier adjusts how well
that module will match to referring tags, and thus, modifies the likelihood it
will be referenced.

2. We supplemented the instruction set with promoter and repressor instructions
that, when executed, adjust a target module’s regulatory modifier.

When a program begins execution, each internal module initially has no reg-
ulatory modification.1 When a promoter or repressor instruction is executed, its
associated tag identifies which module should be regulated using tag-based ref-
erencing. Promoter instructions increase a target module’s regulatory modifier,
which increases the module’s tag-match score with subsequent references (accord-
ing to equation 1 below) and thus increases the module’s chances of being refer-
enced. Repressor instructions have the opposite effect. Regulatory modifiers can

1 Alternatively, allowing programs to inherit their parent’s regulatory modifiers can provide
a simple model of epigenetics.

6 Alexander Lalejini et al.

0 ⇒ 10 10 ⇒ 0

Module 3

Module 1

Module 2

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

0.50

0.50

0.75

1111
tag reg.

(A) (B)

Module 3

Module 1

Module 2

1111
tag

0
reg.

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

0.50

0.25

0.75

Module 3

Module 1

Module 2

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

1.29

0.75

0.25

1111
tag

10
reg.

(C)

Module 3

Module 1

Module 2

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

0.0

0.50

0.751111
tag reg.

(D)

Fig. 1: Tag-based genetic regulation example. This example depicts a simple oscillating
regulatory network instantiated using tag-based regulation. In this example, tags are length-
4 bit strings. The “raw” match score between two tags equals the number of matching bits
between them. Regulation (reg.) modifies match scores for “call” instructions according to
Equation 1. First (A), the call 1001 in Module 1 executes, triggering Module 3. Next (B),
Module 3 is executed, promoting Module 2. After Module 3 returns, the call 1001 in Module 1
executes again (C); however, Module 2’s promotion causes it to be triggered instead of Module
3. Finally (D), Module 2 executes and represses itself, resetting its regulatory modifier to 0.

be configured to persist over a program’s entire execution or passively decay over
time.

When determining which module to call at runtime, each module’s tag-match
score is a function of how well the module’s tag matches the call instruction’s tag
as modified by the module’s regulatory value. If a module’s regulatory modifier
has been sufficiently decreased by repressor instructions, it is possible that the
module will no longer be able to be referenced, as its regulated tag-match score
will always be lower than at least one other program module. We must ensure that
this situation does not create an unrecoverable regulatory state and that such a
fully repressed module can always be restored. As such, promoter and repressor
instructions use unregulated tag-based referencing to identify which modules they
regulate; that is, we do not apply regulatory modifiers to tag-based references
made by promoter and repressor instructions. This ensures that no matter how
much a particular module has been repressed, subsequent promoter instructions
can increase its regulatory modifier. Figure 1 gives a simplified example of how
promoter and repressor instructions can dynamically adjust module execution over
time.

We have implemented a toolbox of interchangeable methods for applying reg-
ulation to tag-matching scores in the Empirical library [52]. Here, we use a simple
exponential function to apply a module’s regulation modifier to its tag-match score
calculations:

Mr(tq, tm, Rm) = M(tq, tm) × bRm (1)

Rm specifies the module’s regulation modifier, which is under the direct control
of the evolving programs. Mr is the regulation-adjusted match score between a
querying tag (tq) and the module’s tag (tm). M is a function that gives the baseline,

Tag-based regulation of modules in genetic programming 7

unadjusted match score between the querying tag and module tag. If tags are
represented as floating point values, M can be as simple as the absolute difference
between the two tags. The strength of regulation is determined by the constant, b
(set to 1.1 in this work).

Fig. 2: Regulated tag-match score as a function of raw tag-match score and reg-
ulatory modifier values according to Equation 1. The horizontal black line indicates a
neutral regulatory state; repressed states are below the line, and promoted states are above
the line. We expect the raw tag-match score (calculated using the Streak similarity metric,
which is described later in Section 4.1) of 90% of random pairs of tags to fall between the two
dashed vertical lines; to compute the location of these lines, we generated 105 pairs of random
tags and found the region that contained the middle 90% of raw tag-matching scores.

When determining which module to reference, each candidate module’s Mr

is computed, and the module with the highest Mr value is chosen. Intuitively,
modules with Rm < 0 are down-regulated (i.e., in a repressed state), modules with
Rm > 0 are up-regulated (i.e., in a promoted state), and modules with Rm = 0 are
unmodified by regulation. That is, down-regulated modules have lower tag-match
scores than they otherwise would without regulation, and up-regulated modules
have higher tag-match scores than they otherwise would without regulation. Figure
2 gives a visual representation of Equation 1.

In preliminary experiments, we tested several different methods of implement-
ing regulation (including additive, multiplicative, and the current exponential tech-
niques). We found no evidence for any one method performing substantially better
than the others. Future work will more thoroughly explore the potential effects of
different regulation mechanisms.

4 Methods

We evaluated how tag-based genetic regulation faculties contribute to, and poten-
tially detract from, the functionality of evolved genetic programs in the context of

8 Alexander Lalejini et al.

SignalGP. First, we assessed the evolvability of our implementation of tag-based
genetic regulation: can we evolve programs that rely on regulation to dynamically
adjust their response to environmental conditions over time? Additionally, can tag-
based genetic regulation improve problem-solving success on context-dependent
problems? We addressed these questions using the signal-counting and contextual-
signal problems, diagnostic tasks that require context-dependent responses to an
input signal.

Next, we assessed tag-based genetic regulation on the Boolean-logic calculator
problem, a more challenging program synthesis problem that requires programs
to perform Boolean logic computations in response to a sequence of input events
that represent button presses on a simple calculator.

Finally, we used the independent-signal problem to investigate the potential
for genetic regulation to impede adaptive evolution by producing maladaptive
plasticity. The independent-signal problem is a diagnostic that requires programs
to associate distinct responses with each type of input; as such, programs do not
need to change their response to particular input signals based on prior context.
Additionally, fitness evaluation in the independent-signal problem is imperfect:
programs receive input signals in a random order, providing ample opportunity
for erroneous regulation to impede adaptive evolution.

4.1 SignalGP

Here, we provide a general overview of SignalGP; see [41] for a more in-depth de-
scription. SignalGP defines a scheme for organizing and interpreting genetic pro-
grams to afford computational evolution access to the event-driven programming
paradigm [10]. In event-driven programs, software execution focuses on process-
ing events (often in the form of messages from other processes, sensor alerts, or
user actions). In SignalGP, events (signals) trigger the execution of program mod-
ules (functions), facilitating efficient reactions to exogeneously- or endogeneously-
generated signals. For this work, program modules are represented as sequences
of instructions; however, the SignalGP framework generalizes across a variety of
program representations [43].

Programs in SignalGP are explicitly modular, comprising a set of functions,
each associating a tag with an instruction sequence. SignalGP makes explicit the
concept of events or signals. All signals contain a tag and any associated signal-
specific data (e.g., numeric input values). Because both signals and program func-
tions are tagged, SignalGP determines the most appropriate function to process
a signal using tag-based referencing: signals trigger the function with the closest
matching tag.

In this work, we represent tags as 256-bit strings, and we quantify the similarity
between any two tags using the Streak metric. The Streak metric was originally
proposed by Downing [15] and measures similarity between two bit strings in terms
of the relationship between the lengths of the longest contiguously-matching and
longest contiguously-mismatching substrings.2 Specifically, we XOR the two bit
strings and count the longest substring of all 0’s in the first case or of all 1’s in

2 We make a slight modification to Downing’s matching procedure due to an error in its
mathematical derivation, as detailed in the supplement [40].

Tag-based regulation of modules in genetic programming 9

the second. The equation below overviews how the Streak metric computes the
similarity (S) between two tags (tq and tm):

S(tq, tm) =
pmismatch(tq, tm)

pmismatch(tq, tm) + pmatch(tq, tm)

where pmatch returns the probability of observing the measured length of the
longest contiguously-matching substring between tq and tm by chance, and pmismatch

returns the probability of observing the measured length of the longest contiguously-
mismatching substring between tq and tm by chance. Both our implementation and
the mathematical equations for computing the Streak similarity between two bit
strings can be found in supplemental material Section 5 [40].

When a signal triggers a function, the function executes with the signal’s asso-
ciated data as input. SignalGP programs can handle many signals simultaneously
by processing and responding to each in parallel threads of execution. Threads
each contain local memory registers for performing computations. Additionally,
concurrently executing threads may interact by writing to and reading from a
shared global memory buffer. For this work, we guaranteed deterministic thread
execution using a round robin scheduler to step each thread forward one step (i.e.,
one instruction) synchronously.

The SignalGP instruction set allows programs to generate internal signals,
broadcast external signals, and otherwise work in a tag-based context. In this
work, each instruction contains one tag and three integer arguments. Arguments
may modify the effect of an instruction, often specifying memory locations or fixed
values. For example, instructions may refer to and call internal program modules
using tag-based referencing; when an instruction generates a signal (e.g., to be
used internally or broadcast), the instruction’s tag is used as the signal’s tag.

Previous work has demonstrated that SignalGP facilitates the evolution of
event-driven programs capable of identifying and responding to many distinct sig-
nals [43]. However, without access to regulation, SignalGP requires programs to
track context in memory and use procedural mechanisms (e.g., if statements) to
adjust how they respond to a particular signal over time based on stored con-
text. Here, we apply tag-based genetic regulation to SignalGP (as described in
Section 3). We supplemented the instruction set with regulatory instructions (Ta-
ble 1) that use tag-based referencing to target internal functions. In this work,
we apply regulation to function references using Equation 1. Our full instruction
set, including descriptions of each instruction, can be found in our supplemental
material [40].

4.1.1 Evolution

In this work, we propagated programs asexually, and we applied mutations to
offspring. The parent-selection method varied across experiments. Programs were
variable-length: each program contained up to 256 modules, and each module
contained up to 128 instructions.

We applied single-instruction substitution, insertion, and deletion mutations
each at a per-instruction rate of 0.001. Additionally, we applied a ‘slip’ mutation
operator [44] that could duplicate or delete entire sequences of instructions at
a per-module rate of 0.05. We mutated numeric instruction arguments at a per-
argument rate of 0.001, and we limited numeric arguments to values between -4 and

10 Alexander Lalejini et al.

Instruction Description

SetRegulator+ Set the regulatory modifier of a target module to the
value stored in an argument-specified memory register.

SetRegulator- Set the regulatory modifier of a target module to the
negation of the value stored in an argument-specified
memory register.

SetOwnRegulator+ Set the regulatory modifier of the currently executing
module to the value stored in an argument-specified
memory register.

SetOwnRegulator- Set the regulatory modifier of the currently execut-
ing module to the negation of the value stored in an
argument-specified memory register.

AdjRegulator+ Add the value stored in an argument-specified memory
register to the regulatory modifier of a target module.

AdjRegulator- Subtract the value stored in an argument-specified mem-
ory register to the regulatory modifier of a target module.

AdjOwnRegulator+ Add the value stored in an argument-specified memory
register to the regulatory modifier of the currently exe-
cuting module.

AdjOwnRegulator- Subtract the value stored in an argument-specified
memory-register to the regulatory modifier of the cur-
rently executing module.

ClearRegulator Reset the regulatory modifier of a target module.

ClearOwnRegulator Reset the regulatory modifier of the currently executing
module.

SenseRegulator Load the value of a target module’s regulatory modifier
into an argument-specified memory register.

SenseOwnRegulator Load the value of the currently executing module’s regu-
latory modifier into an argument-specified memory reg-
ister.

IncRegulator Add one to the regulatory modifier of a target module.

IncOwnRegulator Add one to the regulatory modifier of the currently exe-
cuting module.

DecRegulator Subtract one from the regulatory modifier of a target
module.

DecOwnRegulator Subtract one from the regulatory modifier of the cur-
rently executing module.

Table 1: Regulatory instructions used in this work. We include (+) and (-) instruction
variants to ensure that positive and negative regulation values are equally probable.

4. When a numeric argument mutated, we randomized the argument’s value to a
valid integer between -4 and 4. We mutated instruction- and module-tags at a per-
bit rate of 0.0001. We applied whole-module duplication and deletion operators at
a per-module rate of 0.05, allowing the number of modules in a program to evolve.

Tag-based regulation of modules in genetic programming 11

4.2 Signal-counting Problem

The signal-counting problem requires programs to continually change their re-
sponse to an environmental signal, producing the appropriate output each of the
K times that signal is repeated. Programs output responses by executing one of K
response instructions. For example, if a program receives two signals from the envi-
ronment during evaluation (i.e., K = 2), the program should execute Response-1

after the first signal and Response-2 after the second signal; aside from executing
the correct response instruction, no other output is necessary after receiving an
environmental signal.

We provide programs 128 time steps to respond to each environmental signal.
During each time step, each of a program’s active threads execute a single in-
struction. Once the allotted time expires or the program outputs a response, the
program’s threads of execution reset, resulting in a loss of all thread-local mem-
ory; only the contents of the global memory buffer and each program module’s
regulatory state persist. The environment then produces the next signal (identi-
cal to each previous environmental signal) to which the program may respond.
A program must use the global memory buffer or genetic regulation to correctly
shift its response to each subsequent environmental signal. Evaluation continues
in this way until the program correctly responds to each of the K environmental
signals or until the program executes an incorrect response. A program’s fitness
equals the number of consecutive correct responses given during evaluation, and
a program is considered a solution if it correctly responds to all K environmental
signals.

4.2.1 Experimental Design

The signal-counting problem is explicitly designed to (1) evaluate if tag-based
genetic regulation can be evolved to dynamically adjust which modules execute in
response to a repeated input type and (2) assess the problem-solving success of a
regulation-enabled GP system relative to an otherwise identical GP system with
regulation disabled. We compared programs evolved in a regulation-on treatment
to those evolved in a regulation-off control. In the control treatment, we used an
identical instruction set where regulation instructions were altered to behave as no-
operation instructions. As such, programs must use global memory (in combination
with procedural flow-control mechanisms) to correctly respond to environmental
signals.

For each experimental condition, we evolved 200 replicate populations of 1000
programs for 10,000 generations at four levels of problem difficulty: K = 2, 4, 8, and
16. For each replicate, we randomly generated a unique tag for each environmental
signal, and we initialized populations with randomly generated programs. Each
generation, we evaluated programs independently, and we selected programs using
size-eight tournament selection.

4.3 Contextual-signal Problem

The contextual-signal problem is inspired by Skocelas and DeVries’ method for
verifying the functionality of recurrent neural network implementations [61]. In

12 Alexander Lalejini et al.

the contextual-signal problem, programs must respond appropriately to a pair of
input signals. The order of these signals does not matter, but the first signal must
be remembered (as “context”) in order to produce the correct response to the
second signal. In this work, there are a total of four possible input signals and
four possible outputs. Programs output a particular response by executing one of
four response instructions. Table 2 gives the correct output type for each pairing
of input signals.

Test case ID Input Sequence Correct Response
0 S-0, S-0 Response-A
1 S-0, S-1 Response-B
2 S-0, S-2 Response-C
3 S-0, S-3 Response-D
4 S-1, S-0 Response-B
5 S-1, S-1 Response-C
6 S-1, S-2 Response-D
7 S-1, S-3 Response-A
8 S-2, S-0 Response-C
9 S-2, S-1 Response-D
10 S-2, S-2 Response-A
11 S-2, S-3 Response-B
12 S-3, S-0 Response-D
13 S-3, S-1 Response-A
14 S-3, S-2 Response-B
15 S-3, S-3 Response-C

Table 2: Input signal sequences for the contextual-signal problem.

We evaluate programs on each of the 16 possible sequences of input signals
(Table 2); we consider each of these input sequences as a single test case. For each
test case evaluation, we give programs 128 time steps to process each signal. After
the first input signal, a program must update internal state information to ensure
that the second input signal induces the correct response. Once the allotted time
expires after the first input signal, the program’s threads of execution are reset,
resulting in a loss of all thread-local memory; only the contents of global memory
and each function’s regulatory state persist. The program then receives the second
input signal and must execute the correct response instruction within 128 time
steps. A program is considered a solution if it produces the correct response for
all 16 possible sequences of input signals.

4.3.1 Experimental Design

We use the contextual-signal problem to (1) assess the capacity of tag-based genetic
regulation to perform context-dependent module execution based on distinct input
types and (2) evaluate the problem-solving success of a regulation-enabled GP
system relative to an otherwise identical GP system with regulation disabled.
As in the signal-counting problem, we compared the problem-solving success of
regulation-on and regulation-off GP systems.

For each experimental condition, we evolved 200 replicate populations of 1000
programs for 10,000 generations. For each replicate, we randomly generated the

Tag-based regulation of modules in genetic programming 13

tags associated with each type of input signal, and we initialized populations with
randomly generated programs. Instead of selecting programs to propagate based
on an aggregate fitness measure, we used the lexicase parent selection algorithm
[23] in which each combination of input signals (i.e., row in Table 2) constituted
a single test case.

4.4 Boolean-logic Calculator Problem

Inspired by Yeboah-Antwi’s PushCalc system [80], the Boolean-logic calculator
problem requires programs to implement a push-button calculator capable of per-
forming each of the following 10 bitwise logic operations: ECHO, NOT, NAND,
AND, OR-NOT, OR, AND-NOT, NOR, XOR, and EQUALS. Table 3 gives a brief
overview of each of these operations. In this problem, there are 11 distinct types of
input signals: one for each of the 10 possible operators and one for numeric inputs.
Each distinct signal type is associated with a unique tag (randomly generated
per-replicate) and is meant to recreate the context that must be maintained on a
physical calculator. Programs receive a sequence of input signals in prefix nota-
tion, starting with an operator signal and followed by the appropriate number of
numeric input signals (that each contain an operand to use in the computation).
After receiving the appropriate input signals, programs must output the correct
result of the requested computation.

Operation # Inputs NAND gates
ECHO 1 0
NOT 1 1

NAND 2 1
AND 2 2

OR-NOT 2 2
OR 2 3

AND-NOT 2 3
NOR 2 4
XOR 2 4

EQUALS 2 5

Table 3: Bitwise Boolean logic operations used in the Boolean-logic calculator
problem. Programs are given a nand instruction and must construct each of the other oper-
ations (aside from ECHO) out of nand operations. As such, we measure the difficulty of each
operation as the minimum number of NAND gates required to construct the given operation.

Programs are evaluated on a set of test cases (i.e., input/output examples)
where each test case comprises a particular operator, the requisite number of
operands, and the expected numeric output. Test cases are evaluated on a pass/fail
basis, and a program is classified as a solution if it passes all test cases in a
training and testing set3. The training and testing sets used in this work are
included in our supplemental material [40] and contained 442 and 5810 test cases,
respectively. Each generation, we sample 20 test cases from the training set, and

3 We use the testing set only to determine if a program can be categorized as a solution. The
testing set is never used by the parent-selection algorithm to determine reproductive success.

14 Alexander Lalejini et al.

we independently evaluate each program in the population on the sampled test
cases.

When evaluating a program on a test case, we provide 128 time steps to pro-
cess each input signal. After time expires, the program’s threads of execution are
reset, resulting in a loss of all thread-local memory; only the contents of global
memory and each function’s regulatory state persist. Because input signals are
given in prefix notation, programs must adjust their internal state to ensure that
the program performs and outputs the result of the appropriate computation after
receiving the requisite number of operand input signals.

4.4.1 Experimental Design

We use the Boolean-logic calculator problem to assess the utility of tag-based
regulation on a challenging program synthesis problem. The signal-counting and
contextual-signal problems each require programs to perform different computa-
tions in response to input signals, but those computations are abstracted as ‘re-
sponse’ instructions. The Boolean-logic calculator problem requires programs to
both dynamically adjust which modules are executed in response to input signals
and perform non-trivial computations on numeric inputs.

We compared the problem-solving success of programs evolved in regulation-on
and regulation-off conditions. For each condition, we evolved 200 replicate popu-
lations of 1000 programs for 10,000 generations. For each replicate, we randomly
generated the tags associated with each type of input signal, and we initialized
populations with randomly generated programs. We selected parents using a vari-
ant of the down-sampled lexicase algorithm [24], guaranteeing that at least one of
each type of test case (i.e., at least one of each type of operator) was used during
evaluation.

4.5 Independent-signal Problem

The independent-signal problem requires programs to execute a unique response
for each of 16 distinct input signals. Because signals are distinct, programs need
not alter their response to any particular signal over time. Instead, programs may
“hardwire” each of the 16 possible responses to the appropriate input signal. How-
ever, input signals are presented in a random order; thus, the correct order of
responses cannot be hardcoded. Otherwise, evaluation (and fitness assignment) on
the independent-signal task mirrors that of the signal-counting task (Section 4.2).
A program is considered a solution if it responds correctly to all 16 input signals
during evaluation.

4.5.1 Experimental Design

We deliberately configured fitness evaluation and solution identification in the
independent-signal problem to be noisy and thus unreliable: each program is eval-
uated once on a single random ordering of input signals, and we label a program
as a solution if it performs optimally during a single evaluation. Because programs
receive input signals in a random order, erroneous genetic regulation can manifest
as cryptic variation (i.e., behavioral variation that is not expressed and selected

Tag-based regulation of modules in genetic programming 15

on). For example, non-adaptive down-regulation of a particular response function
may be neutral given one sequence of input signals, but may be deleterious in
another. Indeed, this form of non-adaptive cryptic variation can also result from
erroneous flow control structures.

The independent-signal problem allows us to test whether genetic regula-
tion can impede adaptive evolution in scenarios where outputs are not context-
dependent and where fitness evaluation does not reliably differentiate between
generalizing and non-generalizing candidate solutions. Fitness evaluation for the
independent-signal problem is computationally inexpensive, so we could easily in-
crease the reliability of evaluation by testing programs on multiple orderings of
input sequences. However, our goal is not to demonstrate that we can solve this
diagnostic problem. Rather, we aim to determine if this diagnostic represents a
general scenario where unnecessary tag-based regulation can impede adaptive evo-
lution relative to not having regulation.

As in each of the previous experiments, we compared programs evolved in
regulation-on and regulation-off conditions. Specifically, we compared initial prob-
lem-solving success and how well solutions generalized to a sample of 5000 input
sequences (of ∼2.1 × 1013 possible sequences). We deemed programs as having
generalized only if they responded correctly in all 5000 tests.

We evolved 200 replicate populations of 1000 programs for 10,000 generations
under each condition. For each replicate, we randomly generated 16 unique input
signal tags. All other experimental procedures were identical to that of the signal-
counting task.

4.6 Data Analysis and Reproducibility

For each replicate in a given experiment, we extracted and analyzed the first
evolved program that was classified as a solution. We compared the number of
successful replicates (i.e., replicates that yielded a solution) across experimen-
tal conditions using Fisher’s exact test. We conducted knockout experiments on
successful programs to identify the mechanisms underlying their behavior. In all
knockout experiments, we re-evaluated programs with a target functionality (e.g.,
regulation instructions) replaced with no-operation instructions. Specifically, we
independently knocked out (1) all regulatory instructions, (2) all instructions that
access a program’s global memory buffer, and (3) both regulatory instructions and
global memory access instructions. We classify a program as reliant on a particu-
lar functionality if, when knocked out, fitness decreases. In addition to knockout
experiments, we tracked the distribution of instruction types (e.g., flow control,
mathematical operations, etc.) executed by successful programs. For each suc-
cessful replicate, we extracted the proportion of flow control instructions (i.e.,
conditional logic instructions such as “if” or “while” statements) executed by the
evolved solution. We compared the proportions of flow control instructions exe-
cuted by regulation-on solutions and regulation-off solutions, allowing us to assess
the relative importance of conditional logic across experimental treatments.

For programs reliant on genetic regulation, we abstracted regulatory networks
as directed graphs by monitoring program execution. Vertices represent program
functions, and directed edges (each categorized as promoting or repressing) show
the regulatory interactions between two functions. For example, a repressing edge

16 Alexander Lalejini et al.

from function A to function B indicates that B was repressed when A was execut-
ing.

We implemented our experiments using the Empirical scientific software library
[52], and we conducted all statistical analyses using R version 4.0.2 [55]. We used
the reshape2 [72] R package and the tidyverse [73] collection of R packages to
wrangle data. We used the following R packages for graphing and visualization:
ggplot2 [74], cowplot [75], viridis [19], Color Brewer [21, 51], and igraph [13]. We
used R markdown [2] and bookdown [79] to generate web-enabled supplemental
material. Our source code for experiments and analyses, along with guides for
replication, can be found in supplemental material [40], which is hosted on GitHub.
Additionally, we have made all of our experimental data available on the Open
Science Framework (see Section 2 in supplement [40]).

5 Results and Discussion

5.1 Tag-based regulation improves problem-solving performance on
context-dependent tasks

We found that tag-based regulation improves performance on each of the three
problems that require context-dependent behavior: the signal-counting problem
(Section 5.1.1), contextual-signal problem (Section 5.1.2), and Boolean-logic cal-
culator problem (Section 5.1.3). Additionally, we conducted knockout experiments
that confirmed that evolved tag-based regulation allows solutions to dynami-
cally adjust module execution over time. We also found that, across all three
context-dependent problems, regulation-off solutions (i.e., solutions evolved using
regulation-disabled SignalGP) executed a larger proportion of conditional logic
instructions than regulation-on solutions (i.e., solutions evolved using regulation-
enabled SignalGP). This result suggests that without regulation, programs must
evolve larger, more complex conditional logic structures.

5.1.1 Signal-counting Problem

Regulation-off condition Regulation-on condition

Two-signal 137 200
Four-signal 8 200
Eight-signal 0 198

Sixteen-signal 0 74

Table 4: Signal-counting problem-solving success. This table gives the number of suc-
cessful replicates (i.e., in which a perfect solution evolved) out of 200 on the signal-counting
problem across four problem difficulties and two experimental conditions. For each problem
difficulty, the regulation-off condition was less successful than the regulation-on condition
(Fisher’s exact test; all difficulties: p < 10−15).

Table 4 shows the results from the signal-counting problem for each experimen-
tal condition across all four levels of problem difficulty. Regulation-on conditions

https://github.com/amlalejini/Tag-based-Genetic-Regulation-for-LinearGP/
https://osf.io/928fx/
https://osf.io/928fx/

Tag-based regulation of modules in genetic programming 17

consistently yielded a larger number of successful replicates than regulation-off
conditions where programs relied on their global memory buffer in combination
with procedural flow control for success. Although global memory is technically
sufficient to solve each version of the signal-counting problem4, in practice such so-
lutions evolved in only the two- and four-signal variants. Tag-based regulation, in
contrast, appears more readily adaptive, as regulation-based solutions arose across
all problem difficulties, implying that access to tag-based regulation can drive in-
creased problem-solving success. Further, we found that, in the two- and four-signal
tasks, solutions arose after significantly fewer generations in the regulation-on con-
ditions than in the regulation-off controls (Figure 3).

Two−signal task Four−signal task

OFF ON OFF ON

0

10

100

1000

10000

Unsolved

Regulation

G
en

er
at

io
n

fir
st

 s
ol

ut
io

n
ev

ol
ve

d
(lo

g
sc

al
e)

Fig. 3: Generation at which first solution evolved (log scale) in each successful
replicate for the signal-counting problem (Raincloud plot [3]). We show data from
only those problem difficulties in which solutions evolved (two- and four-signal problems).
Gray points indicate the number of unsuccessful replicates for each condition. For both prob-
lem difficulties, regulation-on solutions typically required fewer generations than regulation-off
solutions to arise (Wilcoxon rank sum test; two-signal: p < 10−15, four-signal: p < 9× 10−05).

Tag-based regulation renders the two-signal task trivial: all solutions evolved
in under 10 generations. In fact, the majority of regulation-on solutions (178 out
of 200) were found in the initial randomly generated population. However, not
all replicates without access to tag-based regulation even found a solution to the
two-signal task.

We conducted knockout experiments to investigate the mechanisms underly-
ing successful programs. Indeed, all solutions evolved without access to tag-based
regulation relied exclusively on their global memory buffer to differentiate their
behavior (see supplemental Section 7 [40]). Table 5 shows the strategies used by
programs evolved with regulation-enabled SignalGP. Our knockout experiments
confirm that the majority of solutions evolved with access to tag-based regulation
do indeed rely on regulation to dynamically adjust their responses to signals over
time.

4 We verified this claim by hand-coding solutions that rely on global memory and flow-
control instructions (supplemental Section 12 [40]).

18 Alexander Lalejini et al.

No regulation
required

Regulation required Unsolved

Two-signal 11 189 0
Four-signal 0 200 0
Eight-signal 0 198 2

Sixteen-signal 0 74 126

Table 5: Mechanisms underlying solutions from the regulation-on condition for the
signal-counting problem. To determine a successful program’s underlying strategy, we re-
evaluated the program with global memory access instructions knocked out (i.e., replaced with
no-operation instructions) and with regulation instructions knocked out. This table shows the
number of regulation-on solutions that actually rely on regulation to solve the signal-counting
problem.

3

10

14

23

 0 5 10 15 20 25 30
Time Step

Fu
nc

tio
n

ID

Regulation: Promoted Neutral Repressed

(a) Module regulation over time. (b) Regulatory network.

Fig. 4: Execution trace of a SignalGP program solving the four-signal version of
the signal-counting task. Color denotes each function’s regulatory state (yellow: promoted,
purple: repressed) during evaluation; functions not regulated or executed are omitted. Func-
tions that are actively executing are annotated with a black outline. Black vertical lines denote
input signals, and a diamond (white with black outline) indicates which function was triggered
by the input signal. A circle (white with black outline) indicates which function executed a
response. (b) shows the directed graph representing the regulatory network associated with
trace (a). Vertices depict functions that either ran during evaluation or were regulated. Each
directed edge shows a regulatory relationship between two functions where the edge’s source
acted on (promoted in yellow or repressed in purple) the edge’s destination. Note that in the
case presented here all repressing relationships are self-referential.

We further assessed the functionality of tag-based regulation by analyzing the
execution traces of evolved solutions. We visualized the gene regulatory networks
that manifest as a result of programs executing promoter and repressor instruc-
tions. Figure 4 overviews the execution of a representative evolved program on
the four-signal instance of the signal-counting problem. We found that successful
programs tend to operate via a succession of self-repressing events where mod-
ules express the appropriate response then disable themselves so that the next
best-matching function—expressing the appropriate next response—will activate
instead. This behavioral pattern continues for each subsequent environmental sig-
nal. Indeed, across all problem difficulties, we observed that successful regulatory
networks generally contained more repression relationships than promotion rela-
tionships between functions (supplemental Section 7 [40]). Independent knockouts
of up-regulation and down-regulation confirm that the majority of successful regu-
latory networks rely on down-regulation: of the 661 successful regulatory networks

Tag-based regulation of modules in genetic programming 19

evolved across all problem difficulties, 392 rely exclusively on down-regulation, 7
rely exclusively on up-regulation, 259 rely on both up- and down-regulation, and
3 rely on either up- or down-regulation (i.e., they required regulation but were
robust to independent knockouts of up- and down-regulation).

Our experimental data highlights the benefit of tag-based genetic regulation in
addition to traditional, register-based means of dynamically adjusting responses
to a repeated input signal over time. However, our data may also indicate a de-
ficiency in the design of SignalGP’s current global memory model. An improved
memory model may also enhance the capacity for programs to dynamically ad-
just their responses to inputs over time; however, any memory-based solution will
still suffer from the need to incorporate flow-control structures to implement this
functionality, inherently creating a larger evolutionary hurdle to overcome. In-
deed, we found that the memory-based solutions that evolved in our experiments
executed a larger proportion of flow-control instructions than regulation-based so-
lutions (Wilcoxon rank sum test; two-signal: p < 10−10, four-signal: p = 0.004;
supplemental Section 7 [40]).

5.1.2 Contextual-signal Problem

173

200

0

50

100

150

200

OFF ON
Regulation

S
uc

ce
ss

fu
l r

ep
lc

ia
te

s

(a) Successful replicates.

0

2500

5000

7500

10000

Unsolved

OFF ON
Regulation

G
en

er
at

io
n

fir
st

 s
ol

ut
io

n
ev

ol
ve

d

(b) Generations elapsed before solution.

Fig. 5: Contextual-signal problem-solving performance. (a) shows the number of suc-
cessful replicates for the regulation-off and regulation-on conditions on the contextual-signal
problem. The regulation-off condition was less successful than the regulation-on condition
(Fisher’s exact test: p < 6 × 10−9). (b) is a Raincloud plot showing the generation at which
the first solution evolved in each successful replicate. Gray points indicate the number of
unsuccessful replicates for each condition. Regulation-on solutions typically required fewer
generations than regulation-off solutions to arise (Wilcoxon rank sum test: p < 10−15).

Figure 5a shows the number of successful replicates on the contextual-signal
problem for both the regulation-on and regulation-off conditions. While both con-
ditions were often successful, we found that access to tag-based regulation signifi-
cantly improved problem-solving success. Further, regulation-on solutions typically
required fewer generations to evolve than regulation-off solutions (Figure 5b).

20 Alexander Lalejini et al.

We used knockout experiments to identify the mechanisms underlying each so-
lution’s strategy. As expected, all 173 solutions evolved without access to tag-based
regulation relied on their global memory buffer to track contextual information and
used control flow mechanisms to differentiate their responses based on stored con-
text. Indeed, we found that regulation-off solutions executed a larger proportion
of flow-control instructions than regulation-on solutions (Wilcoxon rank sum test:
p < 10−15; supplement Section 8 [40]). We also found that all 200 regulation-
on solutions relied on tag-based regulation for response differentiation: 105 relied
only on tag-based regulation and 95 relied on a combination of both tag-based
regulation and global memory.

In contrast to the signal-counting problem, we did not find that successful
regulatory networks used primarily self-repressing modules. Instead, we found that
networks were more balanced between repressing and promoting edges; indeed, we
found that successful networks generally contained more promoting edges than
repressing edges (supplement Section 8 [40]). This result suggests that we should
expect different problems to select for different forms of gene regulatory networks.

5.1.3 Boolean-logic Calculator Problem

30

66

0

50

100

150

200

OFF ON
Regulation

S
uc

ce
ss

fu
l r

ep
lc

ia
te

s

(a) Successful replicates.

0

2500

5000

7500

10000

Unsolved

OFF ON
Regulation

G
en

er
at

io
n

fir
st

 s
ol

ut
io

n
ev

ol
ve

d

(b) Generations elapsed before solution.

Fig. 6: Boolean-logic calculator problem-solving performance. (a) shows the number
of successful replicates for the regulation-off and regulation-on conditions on the Boolean-logic
calculator problem. The regulation-off condition was less successful than the regulation-on
condition (Fisher’s exact test: p < 4 × 10−05). (b) is a Raincloud plot showing the generation
at which the first solution evolved in each successful replicate. Gray points indicate the number
of unsuccessful replicates for each condition. Regulation-on solutions typically required fewer
generations than regulation-off solutions to arise (Wilcoxon rank sum test: p < 0.042).

Figure 6a shows the number of successful replicates on the Boolean-logic calcu-
lator problem for both the regulation-on and regulation-off conditions. While both
regulation-on and regulation-off solutions evolved, we again found that access to
genetic regulation significantly improved problem-solving success. Further, as in

Tag-based regulation of modules in genetic programming 21

the signal-counting and contextual-signal problems, regulation-on solutions typi-
cally required fewer generations to evolve than regulation-off solutions (Figure 6b).

As in previous experiments, we conducted knockout experiments to identify the
mechanisms underlying each solution’s strategy. To compute any of the Boolean
logic operations, programs must make use of the global memory buffer to store nu-
meric inputs (operands) to be used when performing the computation specified by
the final operator signal. Indeed, all solutions evolved across all conditions relied
on their global memory buffer to solve this problem. All 66 regulation-on solutions,
however, also relied on tag-based regulation to perform the appropriate computa-
tion for each test case. Consistent with results from each other context-dependent
problem, we found that regulation-off solutions executed a larger proportion of
flow-control instructions than regulation-on solutions (Wilcoxon rank sum test:
p < 2 × 10−05; supplement Section 9 [40]).

As in the signal-counting problem, we visualized the gene regulatory networks
that manifest as a result of programs executing promoting and repressing instruc-
tions. Figure 7 overviews the execution of a representative program evolved to solve
the Boolean-logic calculator problem. Specifically, Figure 7 shows a program com-
puting NAND and the same program computing NOR. The networks expressed on
each of these operations are distinct despite originating from the same code. These
visualizations confirm that tag-based regulation allows programs to dynamically
adjust their responses based on context (in this case, an initial operator signal).

5.2 Erroneous regulation can hinder task generalization

In the signal-counting, contextual-signal, and Boolean-logic calculator problems,
programs must adjust their behavior depending on the particular sequence of
received signals. The independent-signal problem, however, requires no signal-
response plasticity; programs maximize fitness by statically associating K distinct
responses each with one of K distinct input signals. For this task, re-wiring signal-
response associations within-lifetime is maladaptive. As such, does the capacity
for regulation impede adaptation to the independent-signal task?

We compared 200 replicate populations evolved with regulation-enabled Sig-
nalGP (“regulation-on”) and 200 populations evolved with regulation-disabled Sig-
nalGP (“regulation-off”). All replicates produced a SignalGP program capable of
achieving a perfect score during evaluation. We found no evidence that the avail-
ability of regulation affected the number of generations required to produce these
solutions.

Next, we investigated how well evolved solutions generalized across random
permutations of input sequences. Selection was deliberately based on a single
stochastic ordering of environmental signals, so a “perfect” score may not gen-
eralize across all signal orderings. We expect that programs evolved with access to
regulation will more often exhibit non-adaptive plasticity that hinders generaliza-
tion.

Figure 8 shows the number of evolved solutions from each condition that suc-
cessfully generalized. All programs that evolved without access to regulation suc-
cessfully generalized; however, evolved programs from 18 out of 200 successful
regulation-on replicates failed to generalize beyond the test cases they experi-
enced during evolution (Fisher’s exact test: p < 6 × 10−6). Moreover, 5 of 18

22 Alexander Lalejini et al.

14

60

69

71

78

83

110

136

143

0 50 100
Time Step

Fu
nc

tio
n

ID

Regulation: Promoted Neutral Repressed

(a) Module regulation over time for a NAND operation.

(b) NAND regulatory network. (c) NOR regulatory network.

28
48
49
60
69
71
78
83

143
152
157
184
197
235

0 25 50 75 100 125
Time Step

Fu
nc

tio
n

ID

(d) Module regulation over time for a NOR operation.

Fig. 7: Execution traces of a successful SignalGP program computing a NAND
operation (a) and a NOR operation (d). (b) and (c) show the directed graphs representing
the regulatory networks associated with traces (a) and (d), respectively. These visualizations
are in the same format as those in Figure 4.

Tag-based regulation of modules in genetic programming 23

Fig. 8: The number of evolved solutions that generalize on the independent-signal
problem. The difference in number of solutions that generalize between the regulation-on
and regulation-off conditions is statistically significant (Fisher’s exact test: p < 6 × 10−06).
The “Regulation-ON (reg. KO)” condition comprises the solutions from the Regulation-on
condition, except with regulatory instructions knocked out (i.e., replaced with no-operation
instructions).

non-generalizing programs generalized when we knocked out tag-based regulation.
Upon closer inspection, the other non-general programs relied on tag-based regula-
tion for initial success but failed to generalize to arbitrary environment sequences.

Unexpressed traits that vary in a population (but do not affect fitness) are
collectively known as cryptic variation. Cryptic variation is pervasive in nature
and thought to play an important role in evolution, potentially acting as a cache of
diverse phenotypic effects in novel environments [20, 54]. Such cryptic variation has
been shown to help GP systems escape local optima, improving overall problem-
solving performance [68]. Cryptic variation arises when environmental conditions
that would reveal the variation are not experienced. Access to tag-based regulation
appears to make such cryptic variation in evolving programs a stronger possibility
than previously. This dynamic can be valuable for performing more realistic studies
of evolutionary dynamics with digital organisms (i.e., self-replicating computer
programs [76]). However, when using regulation-enabled SignalGP in problem-
solving domains, such as automatic program synthesis, non-adaptive plasticity
should be accounted for in fitness objectives. In the independent-signal problem,
for example, we could have performed more thorough evaluations of programs
using multiple random permutations of input sequences instead of one. In more
challenging problems, however, more thorough evaluations can come at the cost
of substantial computational effort.

5.3 Reducing the context required for the Boolean-logic calculator problem
eliminates the benefit of regulation

Experimental results on the independent-signal problem suggest that enabling
tag-based regulation is not necessarily beneficial for solving problems that do not
require context-dependent responses to input. We use a modified version of the
Boolean-logic calculator problem to further investigate the potential for tag-based
regulation to impede adaptive evolution. The Boolean-logic calculator problem

24 Alexander Lalejini et al.

as described in Section 4.4 provides inputs in prefix notation: the operator (e.g.,
AND, OR, XOR, etc.) is specified first, followed by the requisite number of nu-
meric operands. As such, the final input signal does not differentiate which type
of computation a program is expected to perform. Programs must adjust their re-
sponse based on the context provided by previous signals, thereby increasing the
utility of regulation.

Here, we explore whether the calculator problem’s context-dependence is driv-
ing the benefit of tag-based regulation that we identified in Section 5.1.3. We
can reduce context-dependence of the calculator problem by presenting input se-
quences in postfix notation. In postfix notation, programs receive the requisite
numeric operand inputs first and the operator input last. As such, the final sig-
nal in an input sequence will always differentiate which bitwise operation should
be performed. Successful programs must store the numeric inputs embedded in
operand signals, and then, as in the independent-signal problem, a distinct signal
will differentiate which of the response types a program should execute.

151

120

0

50

100

150

200

OFF ON
Regulation

S
uc

ce
ss

fu
l r

ep
lc

ia
te

s

(a) Successful replicates.

0

2500

5000

7500

10000

Unsolved

OFF ON
Regulation

G
en

er
at

io
n

fir
st

 s
ol

ut
io

n
ev

ol
ve

d

(b) Generations elapsed before solution.

Fig. 9: Boolean-logic calculator (postfix notation) problem-solving performance.
(a) shows the number of successful replicates for the regulation-off and regulation-on conditions
on the postfix Boolean-logic calculator problem. The regulation-on condition was less successful
than the regulation-off condition (Fisher’s exact test: p < 0.002). (b) is a Raincloud plot
showing the generation at which the first solution evolved in each successful replicate. Gray
points indicate the unsuccessful replicates for each condition. Regulation-off solutions typically
required fewer generations than regulation-on solutions to arise (Wilcoxon rank sum test:
p < 0.004).

We repeated the Boolean-logic calculator experiment (as described in Section
4.4), except we presented inputs in postfix notation instead of prefix notation.
Figure 9a shows the number of successful replicates evolved in regulation-on and
regulation-off conditions. Postfix notation decreases the overall difficulty of the
Boolean-logic calculator problem; more solutions evolved in each condition than
evolved with prefix notation (Section 5.1.3). We found that the regulation-on con-
dition resulted in lower problem-solving success than the regulation-off condition.
We also found that regulation-off solutions typically required fewer generations

Tag-based regulation of modules in genetic programming 25

than regulation-on solutions to arise (Figure 9b). Additionally, we did not observe
a significant difference in the proportion of flow-control instructions represented
in execution traces of regulation-on and regulation-off solutions (supplement Sec-
tion 11 [40]).

These results, in combination with our previous experimental results, suggest
that tag-based regulation is beneficial when prior context dictates behavioral re-
sponses to input. On such context-dependent problems, representations without
explicit regulation must compensate with additional conditional logic structures.

6 Conclusion

We demonstrated that tag-based genetic regulation allows GP systems to evolve
programs with more dynamic plasticity. These evolved programs are better able to
solve context-dependent problems where the appropriate software modules to exe-
cute in response to a particular input changes over time. Genetic regulation broad-
ens the applicability of SignalGP, both as a representation for problem-solving and
as a type of digital organism for studying evolutionary dynamics [39]. Further, this
work illustrates an approach for easily incorporating tag-based models of gene reg-
ulation into existing GP systems.

Our results also reveal that tag-based regulation is not necessarily beneficial
across all problem domains. We observed that the addition of tag-based regulation
can impede adaptive evolution on problems where responses to inputs are not
context-dependent (e.g., the independent-signal task and postfix version of the
Boolean-logic calculator problem). A more thorough examination of what types
of context-free problems are most sensitive to tag-based regulation—and how to
mitigate any harm—would be potentially fruitful.

Across all problems used in this work, the tag representation and matching
scheme that we used was clearly sufficient for success. However, existing tag sys-
tems are limited in their capacity to scale up to substantially larger gene regulatory
networks. As these networks grow, the specificity required for references to differ-
entiate between modules increases. At some point references become brittle, as
any mutation will switch the module that a call triggers. In ongoing work, we are
investigating the wide variations in scalability of different metrics for measuring
the similarity between tags. Substantial work will also need to be conducted by
the community in order to develop more scalable representations for tag-based
naming. For example, insights from the indirect referencing mechanisms of arti-
ficial biochemical networks and enzyme genetic programming systems may prove
to be informative in developing new tag representations [46, 47, 48].

Evolved programs are often more challenging to read and understand than
programs written by human developers. In our experience, evolved programs that
make use of tag-based regulation were substantially more difficult to read and
interpret by hand than evolved programs that do not use tag-based regulation.
We found that visualizations of tag-based regulatory networks and program exe-
cution traces (e.g., Figures 4 and 7) greatly improved our ability to understand
how a given evolved program worked. As we scale up tag-based regulation, the
development of interactive visualizations will become increasingly important for
understanding evolved programs that use tag-based regulation.

26 Alexander Lalejini et al.

The current investigations have focused on regulation as a problem-solving
tool, but with a few extensions these sorts of systems can also help us answer open
questions about biological evolution. Our current implementation of tag-based
regulation facilitates plasticity only within a program’s lifetime; if we extend this
capacity across multiple generations, we can study the effects of epigenetic inher-
itance on evolutionary dynamics. Epigenetic inheritance refers to heritable phe-
notypic changes that are not directly encoded by the underlying genetic sequence
[8, 29]. For example, epigenetics is used in combination with gene regulation for
cell-type differentiation in multicellular organisms [50, 62] and caste determina-
tion in some species of eusocial insects [71]. SignalGP supports epigenetics with
the addition of instructions that mark existing function regulation as heritable.
For our next steps, we will apply epigenetics-enabled SignalGP to study frater-
nal transitions in individuality and the evolution of differentiation before, dur-
ing, and after a transition occurs [39]. Open-ended experiments with epigenetics
and gene regulation will help illuminate the relationship between within-lifetime
plastic adaptation and evolutionary adaptation over generational time scales. Ad-
ditionally, mechanisms for epigenetic inheritance have been shown to potentially
improve GP performance [37, 38, 57]; as such, we plan to apply our insights back
to automatic program synthesis.

Acknowledgements We thank our anonymous reviewers and Clifford Bohm for feedback and
suggestions on this manuscript. We also thank the Digital Evolution Laboratory for thoughtful
discussions, ideas, and support. This research was supported in part by NSF grants DEB-
1655715, DBI-0939454, and DGE-1424871, and by MSU through the computational resources
provided by the Institute for Cyber-Enabled Research. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the NSF. This is a post-peer-review, pre-copyedit version of an article
published in Genetic Programming and Evolvable Machines. The final authenticated version
is available online at: https://doi.org/10.1007/s10710-021-09406-8

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Maximino Aldana, Enrique Balleza, Stuart Kauffman, and Osbaldo Resendiz. Robust-
ness and evolvability in genetic regulatory networks. Journal of Theoretical Biology,
245(3):433–448, April 2007.

2. JJ Allaire, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins,
Hadley Wickham, Joe Cheng, Winston Chang, and Richard Iannone. rmarkdown: Dy-
namic Documents for R, 2020. R package version 2.6.

3. Micah Allen, Davide Poggiali, Kirstie Whitaker, Tom Rhys Marshall, and Rogier A. Kievit.
Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open
Research, 4:63, April 2019.

4. Peter J. Angeline and Jordan B. Pollack. The evolutionary induction of subroutines. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, pages
236–241, Bloomington, Indiana, USA, 1992. Lawrence Erlbaum.

5. Dirk Banscherus, Wolfgang Banzhaf, and Peter Dittrich. Hierarchical Genetic Program-
ming using Local Modules. Technical report, Universität Dortmund, October 2001. Pub-
lication Title: Reihe Computational Intelligence ; 56.

Tag-based regulation of modules in genetic programming 27

6. W. Banzhaf. Artificial Regulatory Networks and Genetic Programming. In Rick Riolo and
Bill Worzel, editors, Genetic Programming Theory and Practice, pages 43–61. Springer US,
Boston, MA, 2003.

7. Wolfgang Banzhaf and Lidia Yamamoto. Artificial chemistries. The MIT Press, Cam-
bridge, MA, 2015.

8. Judith Bender. Plant epigenetics. Current Biology, 12(12):R412–R414, June 2002.
9. Franck Binard and Amy Felty. An abstraction-based genetic programming system. In

Peter A. N. Bosman, editor, Late breaking paper at Genetic and Evolutionary Computation
Conference (GECCO’2007), pages 2415–2422, London, United Kingdom, 7-11 July 2007.
ACM Press.

10. Christos G. Cassandras. The event-driven paradigm for control, communication and op-
timization. Journal of Control and Decision, 1(1):3–17, January 2014.

11. Nichael Lynn Cramer. A representation for the adaptive generation of simple sequential
programs. In Proceedings of the 1st International Conference on Genetic Algorithms, page
183–187, USA, 1985. L. Erlbaum Associates Inc.

12. Anton Crombach and Paulien Hogeweg. Evolution of Evolvability in Gene Regulatory
Networks. PLoS Computational Biology, 4(7):e1000112, July 2008.

13. Gabor Csardi and Tamas Nepusz. The igraph software package for complex network
research. InterJournal, Complex Systems:1695, 2006.

14. Sylvain Cussat-Blanc, Kyle Harrington, and Wolfgang Banzhaf. Artificial Gene Regulatory
Networks—A Review. Artificial Life, 24(4):296–328, March 2019.

15. Keith L. Downing. Intelligence emerging: adaptivity and search in evolving neural systems.
The MIT Press, Cambridge, Massachusetts, 2015.

16. J. Draghi and G. P. Wagner. The evolutionary dynamics of evolvability in a gene network
model. Journal of Evolutionary Biology, 22(3):599–611, March 2009.

17. Kai Olav Ellefsen, Jean-Baptiste Mouret, and Jeff Clune. Neural Modularity Helps Or-
ganisms Evolve to Learn New Skills without Forgetting Old Skills. PLOS Computational
Biology, 11(4):e1004128, April 2015.

18. Richard Forsyth. BEAGLE - A Darwinian Approach to Pattern Recognition. Kybernetes,
10(3):159–166, March 1981.

19. Simon Garnier. viridis: Default Color Maps from matplotlib, 2018. R package version
0.5.1.

20. Greg Gibson and Ian Dworkin. Uncovering cryptic genetic variation. Nature Reviews
Genetics, 5(9):681–690, September 2004.

21. Mark Harrower and Cynthia A. Brewer. ColorBrewer.org: An Online Tool for Selecting
Colour Schemes for Maps. The Cartographic Journal, 40(1):27–37, June 2003.

22. Thomas Helmuth and Lee Spector. General Program Synthesis Benchmark Suite. In
Proceedings of the 2015 on Genetic and Evolutionary Computation Conference - GECCO
’15, pages 1039–1046, Madrid, Spain, 2015. ACM Press.

23. Thomas Helmuth, Lee Spector, and James Matheson. Solving Uncompromising Problems
With Lexicase Selection. IEEE Transactions on Evolutionary Computation, 19(5):630–
643, October 2015.

24. Jose Guadalupe Hernandez, Alexander Lalejini, Emily Dolson, and Charles Ofria. Random
subsampling improves performance in lexicase selection. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion on - GECCO ’19, pages 2028–2031,
Prague, Czech Republic, 2019. ACM Press.

25. Arend Hintze, Jory Schossau, and Clifford Bohm. The Evolutionary Buffet Method. In
Wolfgang Banzhaf, Lee Spector, and Leigh Sheneman, editors, Genetic Programming The-
ory and Practice XVI, pages 17–36. Springer International Publishing, Cham, 2019. Series
Title: Genetic and Evolutionary Computation.

26. John H. Holland. Concerning the emergence of tag-mediated lookahead in classifier sys-
tems. Physica D: Nonlinear Phenomena, 42(1-3):188–201, June 1990.

27. John H Holland. The effect of labels (tags) on social interactions. Technical report, Santa
Fe Institute Working Paper 93-10-064. Santa Fe, NM, 1993.

28. Joost Huizinga, Jean-Baptiste Mouret, and Jeff Clune. Does Aligning Phenotypic and
Genotypic Modularity Improve the Evolution of Neural Networks? In Proceedings of the
Genetic and Evolutionary Computation Conference 2016, GECCO ’16, pages 125–132,
New York, NY, USA, 2016. Association for Computing Machinery. event-place: Denver,
Colorado, USA.

28 Alexander Lalejini et al.

29. Eva Jablonka and Gal Raz. Transgenerational Epigenetic Inheritance: Prevalence, Mech-
anisms, and Implications for the Study of Heredity and Evolution. The Quarterly Review
of Biology, 84(2):131–176, June 2009.

30. Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory networks.
Nature Reviews Molecular Cell Biology, 9(10):770–780, October 2008.

31. Maarten Keijzer, Conor Ryan, and Mike Cattolico. Run Transferable Libraries — Learning
Functional Bias in Problem Domains. In Takeo Kanade, Josef Kittler, Jon M. Kleinberg,
Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan,
Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi,
Gerhard Weikum, and Kalyanmoy Deb, editors, Genetic and Evolutionary Computation
– GECCO 2004, volume 3103, pages 531–542. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004. Series Title: Lecture Notes in Computer Science.

32. Maarten Keijzer, Conor Ryan, Gearoid Murphy, and Mike Cattolico. Undirected Train-
ing of Run Transferable Libraries. In David Hutchison, Takeo Kanade, Josef Kittler,
Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar,
Moshe Y. Vardi, Gerhard Weikum, Maarten Keijzer, Andrea Tettamanzi, Pierre Collet,
Jano van Hemert, and Marco Tomassini, editors, Genetic Programming, volume 3447,
pages 361–370. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. Series Title: Lecture
Notes in Computer Science.

33. J. R. Koza. Hierarchical genetic algorithms operating on populations of computer pro-
grams. In N. S. Sridharan, editor, Proceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence IJCAI-89, volume 1, pages 768–774, Detroit, MI, USA,
1989. Morgan Kaufmann.

34. John R. Koza. Genetic programming: on the programming of computers by means of
natural selection. Complex adaptive systems. MIT Press, Cambridge, Mass, 1992.

35. John R. Koza. Genetic programming II: automatic discovery of reusable programs. Com-
plex adaptive systems. MIT Press, Cambridge, Mass, 1994.

36. Krzysztof Krawiec and Bartosz Wieloch. Functional modularity for genetic programming.
In Proceedings of the 11th Annual conference on Genetic and evolutionary computation -
GECCO ’09, page 995, Montreal, Québec, Canada, 2009. ACM Press.

37. William La Cava, Thomas Helmuth, Lee Spector, and Kourosh Danai. Genetic Program-
ming with Epigenetic Local Search. In Proceedings of the 2015 on Genetic and Evolu-
tionary Computation Conference - GECCO ’15, pages 1055–1062, Madrid, Spain, 2015.
ACM Press.

38. William La Cava and Lee Spector. Inheritable Epigenetics in Genetic Programming.
In Rick Riolo, William P. Worzel, and Mark Kotanchek, editors, Genetic Programming
Theory and Practice XII, pages 37–51. Springer International Publishing, Cham, 2015.
Series Title: Genetic and Evolutionary Computation.

39. Alexander Lalejini, Matthew A Moreno, and Charles Ofria. Case study of adaptive gene
regulation in dishtiny, Jun 2020. OSF. doi: 10.17605/OSF.IO/KQVMN.

40. Alexander Lalejini, Matthew Andres Moreno, and Charles Ofria. Supplemental material
(GitHub Repository), 2021. doi: 10.5281/zenodo.4316015. url: https://lalejini.com/Tag-
based-Genetic-Regulation-for-LinearGP/.

41. Alexander Lalejini and Charles Ofria. Evolving event-driven programs with SignalGP. In
Proceedings of the Genetic and Evolutionary Computation Conference on - GECCO ’18,
pages 1135–1142, Kyoto, Japan, 2018. ACM Press.

42. Alexander Lalejini and Charles Ofria. Tag-accessed memory for genetic programming. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion on -
GECCO ’19, pages 346–347, Prague, Czech Republic, 2019. ACM Press.

43. Alexander Lalejini and Charles Ofria. What Else Is in an Evolved Name? Exploring
Evolvable Specificity with SignalGP. In Wolfgang Banzhaf, Lee Spector, and Leigh Shen-
eman, editors, Genetic Programming Theory and Practice XVI, pages 103–121. Springer
International Publishing, Cham, 2019.

44. Alexander Lalejini, Michael J. Wiser, and Charles Ofria. Gene duplications drive the
evolution of complex traits and regulation. In Proceedings of the 14th European Conference
on Artificial Life ECAL 2017, pages 257–264, Lyon, France, September 2017. MIT Press.

45. Sylvain Londe, Thibaud Monnin, Raphaël Cornette, Vincent Debat, Brian L. Fisher, and
Mathieu Molet. Phenotypic plasticity and modularity allow for the production of novel
mosaic phenotypes in ants. EvoDevo, 6(1):36, December 2015.

Tag-based regulation of modules in genetic programming 29

46. Michael A. Lones, Luis A. Fuente, Alexander P. Turner, Leo S. D. Caves, Susan Step-
ney, Stephen L. Smith, and Andy M. Tyrrell. Artificial Biochemical Networks: Evolving
Dynamical Systems to Control Dynamical Systems. IEEE Transactions on Evolutionary
Computation, 18(2):145–166, April 2014.

47. Michael A. Lones, Alexander P. Turner, Luis A. Fuente, Susan Stepney, Leo S. D. Caves,
and Andy M. Tyrrell. Biochemical connectionism. Natural Computing, 12(4):453–472,
December 2013.

48. Michael A. Lones and Andy M. Tyrrell. Modelling biological evolvability: implicit con-
text and variation filtering in enzyme genetic programming. Biosystems, 76(1-3):229–238,
August 2004.

49. Rui L. Lopes and Ernesto Costa. The Regulatory Network Computational Device. Ge-
netic Programming and Evolvable Machines, 13(3):339–375, September 2012. Place: USA
Publisher: Kluwer Academic Publishers.

50. Fabio Mohn and Dirk Schübeler. Genetics and epigenetics: stability and plasticity during
cellular differentiation. Trends in Genetics, 25(3):129–136, March 2009.

51. Erich Neuwirth. RColorBrewer: ColorBrewer Palettes, 2014. R package version 1.1-2.
52. Charles Ofria, Matthew Andres Moreno, Emily Dolson, Alexander Lalejini, Santiago

Rodriguez-Papa, Jake Fenton, Katherine Perry, Steven Jorgensen, Riley Hoffman, Robin
Miller, Oliver Baldwin Edwards, Jason Stredwick, Nitash C G, Raheem Clemons, Anya
Vostinar, Ryan Moreno, Jory Schossau, Luis Zaman, and Dylan Rainbow. Empirical: A
scientific software library for research, education, and public engagement, October 2020.
doi: 10.5281/zenodo.4141943.

53. Michael O’Neill and Conor Ryan. Grammar based function definition in Grammatical Evo-
lution. In Darrell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian Parmee,
and Hans-Georg Beyer, editors, Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2000), pages 485–490, Las Vegas, Nevada, USA, 2000. Morgan
Kaufmann.

54. Annalise B. Paaby and Matthew V. Rockman. Cryptic genetic variation: evolution’s
hidden substrate. Nature Reviews Genetics, 15(4):247–258, April 2014.

55. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2020.

56. Steen Rasmussen, Carsten Knudsen, Rasmus Feldberg, and Morten Hindsholm. The core-
world: Emergence and evolution of cooperative structures in a computational chemistry.
Physica D: Nonlinear Phenomena, 42(1):111 – 134, 1990.

57. Esteban Ricalde and Wolfgang Banzhaf. Evolving Adaptive Traffic Signal Controllers for
a Real Scenario Using Genetic Programming with an Epigenetic Mechanism. In 2017 16th
IEEE International Conference on Machine Learning and Applications (ICMLA), pages
897–902, Cancun, December 2017. IEEE.

58. J.P. Rosca and D.H. Ballard. Learning by adapting representations in genetic program-
ming. In Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE
World Congress on Computational Intelligence, pages 407–412, Orlando, FL, USA, 1994.
IEEE.

59. Anil Kumar Saini and Lee Spector. Modularity metrics for genetic programming. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion on -
GECCO ’19, pages 2056–2059, Prague, Czech Republic, 2019. ACM Press.

60. Anil Kumar Saini and Lee Spector. Using Modularity Metrics as Design Features to
Guide Evolution in Genetic Programming. In Wolfgang Banzhaf, Erik Goodman, Leigh
Sheneman, Leonardo Trujillo, and Bill Worzel, editors, Genetic Programming Theory and
Practice XVII, pages 165–180. Springer International Publishing, Cham, 2020. Series
Title: Genetic and Evolutionary Computation.

61. Katherine G. Skocelas and Byron DeVries. Test Data Generation for Recurrent Neural
Network Implementations. In 2020 IEEE International Conference on Electro Information
Technology (EIT), pages 469–474, Chicago, IL, USA, July 2020. IEEE.

62. Zachary D. Smith and Alexander Meissner. DNA methylation: roles in mammalian devel-
opment. Nature Reviews Genetics, 14(3):204–220, March 2013.

63. Lee Spector. Simultaneous evolution of programs and their control structures. In Peter J.
Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 7,
pages 137–154. MIT Press, Cambridge, MA, USA, 1996.

64. Lee Spector, Kyle Harrington, and Thomas Helmuth. Tag-based modularity in tree-based
genetic programming. In Proceedings of the fourteenth international conference on Ge-

30 Alexander Lalejini et al.

netic and evolutionary computation conference - GECCO ’12, page 815, Philadelphia,
Pennsylvania, USA, 2012. ACM Press.

65. Lee Spector, Kyle Harrington, Brian Martin, and Thomas Helmuth. What’s in an Evolved
Name? The Evolution of Modularity via Tag-Based Reference. In Rick Riolo, Ekaterina
Vladislavleva, and Jason H. Moore, editors, Genetic Programming Theory and Practice
IX, pages 1–16. Springer New York, New York, NY, 2011.

66. Lee Spector, Brian Martin, Kyle Harrington, and Thomas Helmuth. Tag-based modules
in genetic programming. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation - GECCO ’11, page 1419, Dublin, Ireland, 2011. ACM Press.

67. Alexander P. Turner, Leo S. D. Caves, Susan Stepney, Andy M. Tyrrell, and Michael A.
Lones. Artificial Epigenetic Networks: Automatic Decomposition of Dynamical Control
Tasks Using Topological Self-Modification. IEEE Transactions on Neural Networks and
Learning Systems, 28(1):218–230, January 2017.

68. Andrew James Turner and Julian Francis Miller. Neutral genetic drift: an investigation
using Cartesian Genetic Programming. Genetic Programming and Evolvable Machines,
16(4):531–558, December 2015.

69. Günter P. Wagner, Mihaela Pavlicev, and James M. Cheverud. The road to modularity.
Nature Reviews Genetics, 8(12):921–931, December 2007.

70. J.A. Walker and J.F. Miller. The Automatic Acquisition, Evolution and Reuse of Modules
in Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation,
12(4):397–417, August 2008.

71. Susan A. Weiner and Amy L. Toth. Epigenetics in Social Insects: A New Direction for
Understanding the Evolution of Castes. Genetics Research International, 2012:1–11, 2012.

72. Hadley Wickham. reshape2: Flexibly Reshape Data: A Reboot of the Reshape Package,
2020. R package version 1.4.4.

73. Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino Mc-
Gowan, Romain François, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester,
Max Kuhn, Thomas Lin Pedersen, Evan Miller, Stephan Milton Bache, Kirill Müller,
Jeroen Ooms, David Robinson, Dana Paige Seidel, Vitalie Spinu, Kohske Takahashi, Davis
Vaughan, Claus Wilke, Kara Woo, and Hiroaki Yutani. Welcome to the tidyverse. Journal
of Open Source Software, 4(43):1686, 2019.

74. Hadley Wickham, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Taka-
hashi, Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. ggplot2: Create
Elegant Data Visualisations Using the Grammar of Graphics, 2020. R package version
3.3.2.

75. Claus O. Wilke. cowplot: Streamlined Plot Theme and Plot Annotations for ggplot2, 2020.
R package version 1.1.0.

76. Claus O. Wilke and Christoph Adami. The biology of digital organisms. Trends in Ecology
& Evolution, 17(11):528–532, November 2002.

77. Garnett Wilson and Wolfgang Banzhaf. A Comparison of Cartesian Genetic Program-
ming and Linear Genetic Programming. In David Hutchison, Takeo Kanade, Josef Kit-
tler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nier-
strasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug
Tygar, Moshe Y. Vardi, Gerhard Weikum, Michael O’Neill, Leonardo Vanneschi, Steven
Gustafson, Anna Isabel Esparcia Alcázar, Ivanoe De Falco, Antonio Della Cioppa, and
Ernesto Tarantino, editors, Genetic Programming, volume 4971, pages 182–193. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008. Series Title: Lecture Notes in Computer Sci-
ence.

78. Borys Wróbel and Micha l Joachimczak. Using the Genetic Regulatory Evolving Artifi-
cial Networks (GReaNs) Platform for Signal Processing, Animat Control, and Artificial
Multicellular Development. In Taras Kowaliw, Nicolas Bredeche, and René Doursat, edi-
tors, Growing Adaptive Machines, volume 557, pages 187–200. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014. Series Title: Studies in Computational Intelligence.

79. Yihui Xie. bookdown: Authoring Books and Technical Documents with R Markdown, 2020.
R package version 0.21.

80. Kwaku Yeboah-Antwi. Evolving software applications using genetic programming – Push-
Calc: the evolved calculator. In Proceedings of the fourteenth international conference on
Genetic and evolutionary computation conference companion - GECCO Companion ’12,
page 569, Philadelphia, Pennsylvania, USA, 2012. ACM Press.

	Introduction
	Specifying Modules with Tag-based Referencing
	Tag-based Genetic Regulation
	Methods
	Results and Discussion
	Conclusion

