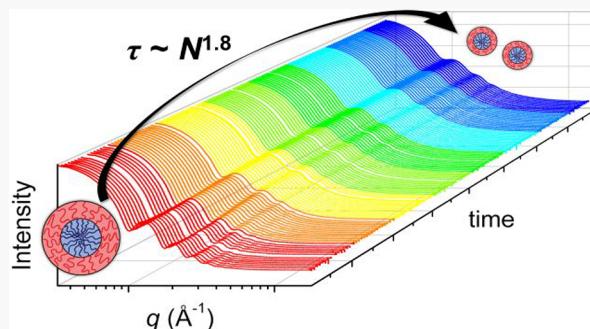


Molecular Weight Dependence of Block Copolymer Micelle Fragmentation Kinetics

Julia T. Early, Alison Block, Kevin G. Yager, and Timothy P. Lodge*

Cite This: <https://doi.org/10.1021/jacs.1c02147>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: The effect of molecular weight (M) on the fragmentation kinetics of micelles formed by 1,2-polybutadiene-*block*-poly(ethylene oxide) (PB-PEO) copolymers was studied in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A series of six samples, with total M ranging from 10^4 to 10^5 g mol $^{-1}$ and nearly constant composition ($f_{\text{PEO}} \approx 0.4$), were examined; all six formed spherical micelles with PEO coronas. Nonequilibrium PB-PEO micelles were prepared by direct dissolution, a process that systematically produces nanoparticles with mean aggregation numbers more than twice the equilibrium values. When subjected to high temperature annealing (170 °C), the average micelle radius was found to decrease substantially, as determined by temperature-jump dynamic light scattering (T -jump DLS) and time-resolved small-angle X-ray scattering (TR-SAXS). The characteristic fragmentation times (τ) were found to increase strongly with increasing degree of polymerization N , as $\tau \sim N^{1.8}$. This result compares favorably with the prediction of a previously untested model.

19 ■ INTRODUCTION

20 Diblock copolymers self-assemble into a variety of micellar 21 structures in the presence of a block-selective solvent, i.e., a 22 solvent that dissolves one block and not the other. Block 23 copolymer (BCP) micelles are utilized in a wide range of 24 applications including ion gels,^{1,2} drug or gene delivery,^{3,4} 25 nanolithography,⁵ and viscosity modification.⁶ Because of the 26 versatility of BCP micelles from an applications perspective, 27 their dynamics and equilibration kinetics in solution are of 28 interest, yet these processes remain less well understood in 29 comparison to their low molecular weight counterparts.^{7–10} 30 The thermodynamics of micellization has been studied 31 extensively, both theoretically and experimentally.^{11,12} The 32 morphology and size of block copolymer micelles at 33 equilibrium can be tuned by changing the molecular 34 characteristics of the block copolymer itself, such as the core 35 and corona block lengths,^{13–16} and the solvent selectivity.¹⁷ 36 There are five primary processes thought to govern the 37 formation, destruction, and equilibration of block copolymer 38 micelles in solution, namely, (i) *chain exchange*, where 39 individual copolymer chains are exchanged between micelles, 40 (ii) *fragmentation*, where a micelle much larger than the 41 equilibrium aggregation number Q_{eq} breaks up into smaller 42 micelles, (iii) *fusion*, where micelles smaller than Q_{eq} merge 43 together, (iv) *micelle creation*, where individual chains nucleate 44 a new micelle, and (v) *annihilation* of micelles, where a series 45 of chain exchange/fragmentation/fusion events eliminates one 46 micelle. The kinetics of these processes were first modeled by 47 Aniansson, Wall, and co-workers.^{18,19} These processes of

micellization and equilibration are supported by experimental 48 studies of low molecular weight surfactants²⁰ and Pluronics.^{21–24} 49 Halperin and Alexander developed the first detailed 50 theory of block copolymer micelle dynamics near equilibrium,⁵¹ 52 where chain exchange was considered to be the only plausible 53 equilibration mechanism, as fragmentation and fusion were 54 argued to be much slower.^{25,26} Dormidontova proposed a 55 different model that gives scaling predictions for the relaxation 56 times of chain exchange, fragmentation, and fusion.²⁷ Nyrkova 57 and Semenov focused on the rates of micelle creation and 58 annihilation in response to abrupt changes in conditions such 59 as jumps in temperature.²⁸

The molecular weight (M) of diblock copolymers not only 60 affects the equilibrium structure of micelles, but also the 61 dynamics and equilibration kinetics in solution.^{8,15,29} The 62 aggregation number Q of a given micelle can vary, and micelle 63 equilibration occurs by some combination of the exchange of 64 individual chains,^{7,9,15,30–35} fusion, or fragmentation.^{20,22,23,36} 65 Halperin and Alexander proposed that the chain exchange 66 kinetics depends on a characteristic relaxation time, τ , that 67 depends on the core and corona block lengths as $\tau \sim$ 68

Received: February 24, 2021

69 $N_{\text{core}}^{2/25} N_{\text{corona}}^{9/5} \exp(E_a/k_B T)$, where E_a is the activation 70 barrier given by $\gamma N_{\text{core}}^{2/3} b^2$, where γ is the interfacial tension 71 between the core block and the solvent and b is the monomer 72 size of the core block.²⁵ Experimentally, the effect of M on 73 micelle chain exchange kinetics has been found to be very 74 strong, with the barrier to exchange increasing linearly with 75 core block degree of polymerization, N_{core} , in contrast to the 76 Halperin-Alexander model.^{8,32–34,37,38} Interestingly, it has also 77 been reported that increasing the degree of polymerization of 78 the corona block, N_{corona} , of PS-PEO micelles in squalane could 79 increase the rate of chain exchange by up to 2 orders of 80 magnitude,¹⁵ whereas studies of $C_{27}\text{-PEO}_n$ in water showed 81 that increasing N_{corona} had the opposite effect.⁸

82 Despite the dramatic effect of M on chain exchange, 83 essentially nothing is known experimentally about the 84 influence of M on the kinetics of fragmentation.³⁶ In general, 85 fragmentation is much slower than chain exchange for micelles 86 that are not too far from equilibrium, thus increasing molecular 87 weight should lead to longer fragmentation time scales.^{22,23,36} 88 Techniques including dynamic light scattering (DLS) and 89 time-resolved small-angle X-ray scattering (TR-SAXS) are 90 useful for monitoring changes in micelle size over a wide range 91 of time scales.^{39–43} This is primarily due to the relatively short 92 acquisition times required for DLS (i.e., minutes), and 93 particularly for synchrotron SAXS (seconds). Previous work 94 by Kelley et al. showed that micellization of 1,2-polybutadiene- 95 block-poly(ethylene oxide) (PB-PEO) in mixtures of tetrahy- 96 drofuran and water occurs via a distinct bimodal pathway, and 97 the increase of the average hydrodynamic radius, $\langle R_h \rangle$, was 98 monitored using DLS for as long as 90 days.⁴¹ They concluded 99 that the initial growth of micelles occurs via micelle fusion.⁴¹ 100 Additionally, the combination of DLS and TR-SAXS proves 101 invaluable for determining micelle fragmentation kinetics, as 102 the total micelle radius, i.e., $\langle R_h \rangle$, and the average micelle core 103 radius, $\langle R_{\text{core}} \rangle$, are readily determined. In general, chain 104 exchange by itself is not expected to change $\langle R_{\text{core}} \rangle$ to a 105 significant extent.^{36,44,45}

106 A theoretical model of the M dependence, specifically the 107 dependence on N_{corona} , of micelle fusion and fragmentation has 108 been reported.²⁷ Dormidontova proposed a scaling model to 109 account for micellization in systems far from equilibrium, and 110 assumes that micelle fragmentation proceeds by the reverse 111 mechanism as micelle fusion.²⁷ The relaxation time (τ) for 112 fusion of two micelles with similar aggregation numbers ($Q_1 \leq 113 Q_2$) scales with aggregation number and the degree of 114 polymerization of the corona block as $\tau \sim N_{\text{corona}}^{17/5} Q_1^{4/5} Q_2$.²⁷ 115 The strong N_{corona} dependence on the characteristic time for 116 fusion is attributed to the corona chain deformation during the 117 merging process, where the corona chains of a smaller micelle 118 penetrate into the corona region of a larger micelle. On the 119 basis of this observation for micelle fusion, the fragmentation 120 times for micelles with small aggregation numbers were 121 estimated to scale with $N_{\text{corona}}^{17/5}$ as well. The fragmentation 122 time was predicted to scale as $\tau \sim N_{\text{corona}}^{9/5} Q^{13/5}$ for micelles 123 with very large aggregation numbers $Q > (cV_{\text{corona}})^{5/2} N_{\text{corona}}^2$, 124 where c is the micelle concentration and V_{corona} is the molar 125 volume of a corona-forming chain.

126 Previous work on the micellization of PB-PEO in the ionic 127 liquid (IL) 1-ethyl-3-methylimidazolium bis- 128 (trifluoromethylsulfonyl)imide ($[\text{C}_2\text{mim}][\text{TFSI}]$) showed 129 that the solution preparation method influences $\langle R_h \rangle$. For 130 micelles prepared by direct dissolution (DD) of the bulk 131 copolymer in the IL, the $\langle R_h \rangle$ of the as-prepared micelles is

quite large compared to micelles prepared by the cosolvent method, in which a good solvent is introduced to the solution and slowly evaporated away.⁴⁰ For micelles prepared by DD, $\langle R_h \rangle$ decreased to approximately half of the original size when annealed at 170 °C.⁴⁰ Further work on this system showed that the time-dependent decrease in $\langle R_h \rangle$ was consistently well-described by a compressed exponential function $\exp(-(t/\tau)^n)$ with an exponent $n \approx 2$, even at lower annealing temperatures ($T = 120$ °C).³⁶ To further understand the mechanism, the fragmentation kinetics for one molecular weight of PB-PEO was studied in five 1-alkyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide-based ILs ($[\text{C}_x\text{mim}][\text{TFSI}]$ where $x = 1, 2, 4, 6$, and 8).⁴⁵ The solvent quality with respect to the PB core-forming block was improved by increasing the length of the alkyl chain on the IL cation, but it was found that the improvement in solvent quality did not affect the fragmentation kinetics of PB-PEO micelles to any significant extent.⁴⁵ We previously reported the direct observation of micelle fragmentation for three molecular weights of PB-PEO in $[\text{C}_2\text{mim}][\text{TFSI}]$ using high-temperature liquid-phase transmission electron microscopy, and intermediate structures close to an apparent transition state for micelle fragmentation were observed in situ.⁴⁶

The absence of experimental results on the molecular weight dependence of fragmentation kinetics motivates this work. Here we monitor the fragmentation of PB-PEO in the IL $[\text{C}_2\text{mim}][\text{TFSI}]$ where the total molecular weight of the diblock is varied from 11 to 100 kg mol⁻¹ while maintaining a constant volume composition $f_{\text{PEO}} \approx 0.4$. The thermal stability and nonvolatility of ILs is exploited here as the solutions can be heated to much higher temperatures than organic solvents, allowing the kinetics of fragmentation to be studied over more accessible time scales.⁴⁷

■ EXPERIMENTAL SECTION

Synthesis and Characterization. Six PB-PEO copolymers were synthesized by two-step sequential anionic polymerization,⁴⁸ as briefly described here. 1,3-Butadiene (Sigma-Aldrich, $\geq 99\%$) and ethylene oxide (Sigma-Aldrich, $\geq 99.5\%$) were purified by stirring with vacuum-dried *n*-butyllithium (Sigma-Aldrich, 2.5 M in hexanes) twice for 30 min. Six molecular weights (6–53 kg mol⁻¹) of hydroxyl-terminated 1,2-polybutadiene were synthesized via anionic polymerization of 1,3-butadiene with *sec*-butyllithium in tetrahydrofuran (THF) at -75 °C for 8 h; the polymer chains were end-capped with a single ethylene oxide unit at 27 °C, and the polymerization was terminated by the addition of acidic methanol (1:10 HCl:methanol).¹⁷⁶ A concentrated solution of PB-OH in dichloromethane was precipitated into an excess of cold methanol, isolated via vacuum filtration, and dried under vacuum (<100 mTorr) at 40 °C for 72 h prior to use. PB-PEO diblocks with a nearly constant volume fraction of PEO ($f_{\text{PEO}} \approx 0.4$) were prepared by subsequent anionic polymerization of ethylene oxide. The polymerization was performed in THF at 40 °C for 24 h in the presence of PB-OH with potassium naphthalenide. The polymerization was terminated by the addition of acidic methanol (1:10 HCl:methanol). PB-PEO diblocks were freeze-dried in benzene with 0.1 wt % BHT as an antioxidant under vacuum (<100 mTorr) at 27 °C for 24 h prior to use. The samples are denoted $\text{BO}(x-y)$, where x and y indicate the number-average molecular weights of the PB and PEO blocks in kg mol⁻¹, respectively. The number-average molecular weight (M_n), dispersity (D), and f_{PEO} were determined by a combination of size exclusion chromatography (SEC) in THF with a multiangle laser light scattering detector (Wyatt Dawn Heleos II) and ¹H nuclear magnetic resonance spectroscopy in CDCl₃ (¹H NMR, Varian Inova 500) as shown in Table 1. The refractive index detector traces from SEC in THF of all diblocks are shown in the Supporting Information (SI Figure S1). The refractive

Table 1. Characteristics of BO(*x*–*y*) Diblock Copolymers^a

sample	$M_{n,\text{PB}}$ (kg mol ⁻¹)	$M_{n,\text{PEO}}$ (kg mol ⁻¹)	f_{PEO}	D
BO(6–5)	6.5	5.2	0.38	1.14
BO(8–7)	9.4	7.6	0.38	1.07
BO(10–9)	10	9.4	0.43	1.05
BO(25–22)	25	22	0.41	1.09
BO(27–27)	27	27	0.43	1.06
BO(53–46)	53	46	0.40	1.05

^a¹H NMR spectroscopy in CDCl₃ was used to determine the number-average molar mass (M_n) and volume fraction of PEO (f_{PEO}) using bulk densities $\rho_{\text{PB}} = 0.87 \text{ g/cm}^3$ for PB, and $\rho_{\text{PEO}} = 1.13 \text{ g/cm}^3$ for PEO. SEC with a multiangle light scattering detector in THF was used to determine the weight-average molar mass (M_w) and molar mass dispersity ($D = M_w/M_n$) of the diblocks.

197 index increment (dn/dc) for a diblock was estimated as the weight-
198 average of the refractive index increments for PB in THF ($dn/dc =$
199 0.119 mL/g) and PEO in THF ($dn/dc = 0.068 \text{ mL/g}$).⁴⁹ The ¹H
200 NMR spectra of the diblocks in deuterated chloroform (CDCl₃) are
201 shown in Figure S2.

202 The ionic liquid (IL) 1-ethyl-3-methylimidazolium bis-
203 (trifluoromethylsulfonyl)imide ([C₂mim][TFSI]) was synthesized
204 by an anion exchange reaction between 1-ethyl-3-methylimidazolium
205 bromide and lithium bis(trifluoromethylsulfonyl)imide, carried out in
206 water at 70 °C for 24 h.⁵⁰ The reaction mixture was diluted with
207 dichloromethane, the aqueous layer was removed, and the organic
208 layer was washed three times with deionized water. The organic layer
209 was stirred on activated charcoal for 24 h. The solution was passed
210 through an alumina column, dichloromethane was removed in vacuo,
211 and [C₂mim][TFSI] was dried under vacuum (<100 mTorr) at 60 °C
212 for 72 h. The dried IL was characterized by ¹H, ¹³C, and ¹⁹F NMR
213 spectroscopy in DMSO-*d*₆. The ¹H NMR spectrum for [C₂mim]-
214 [TFSI] is shown in Figure S3.

215 **Solution Preparation by Direct Dissolution (DD).** All
216 solutions were prepared by the direct dissolution (DD) method
217 described here. The desired amounts of PB-PEO and [C₂mim][TFSI]
218 were combined by weight in a 20 mL scintillation vial equipped with a
219 stir bar to obtain a 0.25 wt % solution. The vial was placed in an oil
220 bath and stirred vigorously at 70 °C for 48 h. The resulting DD
221 solutions were slightly blue-tinged for BO(6–5), BO(8–7), and
222 BO(10–9) micelles, whereas those for BO(25–22), BO(27–27), and
223 BO(53–46) were white-tinged.

224 **Dynamic Light Scattering (DLS).** Dynamic light scattering
225 measurements were performed on a home-built light scattering setup
226 equipped with a Brookhaven BI-DS photomultiplier mounted to an
227 adjustable goniometer, a Lexel Ar⁺ laser ($\lambda = 488 \text{ nm}$), and a
228 Brookhaven BI-9000 correlator. During a typical annealing experi-
229 ment, the temperature was controlled with an index-matching high-
230 temperature silicone oil bath to within ± 0.1 °C. To verify the size of
231 the micelles before and after annealing, multiangle light scattering
232 experiments were performed at $T = 27$ °C with a range of scattering
233 angles θ from 60° to 120°.

234 Each micelle solution was passed through an 0.45 μm PTFE
235 syringe filter to remove any dust, and subsequently flame-sealed under
236 vacuum ($\leq 70 \text{ mTorr}$) in a dust-free glass tube (I.D. 0.51 cm) to
237 prevent degradation of the block copolymer and to avoid contact with
238 moisture and dust. In an annealing experiment, the oil bath
239 temperature was allowed to equilibrate for 30 min prior to
240 introducing the sample. The normalized intensity autocorrelation
241 function, $g_2(t)$, was measured at $\theta = 90^\circ$ as a function of time. For
242 each time point, $g_2(t)$ was acquired for 90 s. The intensity
243 autocorrelation function was converted to the electric field
244 autocorrelation function, $g_1(t)$, via the Siegert relation,⁵¹ which was
245 then fit to a second-order cumulant expansion for single populations
246 to obtain the average decay rate, $\bar{\Gamma}$, and the variance, $\mu_2/\bar{\Gamma}^2$. The
247 mutual diffusion coefficient D_m was calculated from $D_m = \bar{\Gamma}/q^2$, where
248 q is the magnitude of the scattering vector defined by $q = (4\pi n/$

$\lambda_0) \sin(\theta/2)$, where n is the refractive index of [C₂mim][TFSI], and λ_0 is the wavelength of light in a vacuum. For multiangle light scattering experiments, D_m was estimated by taking the slope of the line in plots of $\bar{\Gamma}$ versus q^2 with zero intercept. For dilute solutions, D_m can be used as an approximation of the tracer diffusion coefficient, D_t . This is used to calculate the hydrodynamic radius using the Stokes–Einstein equation:

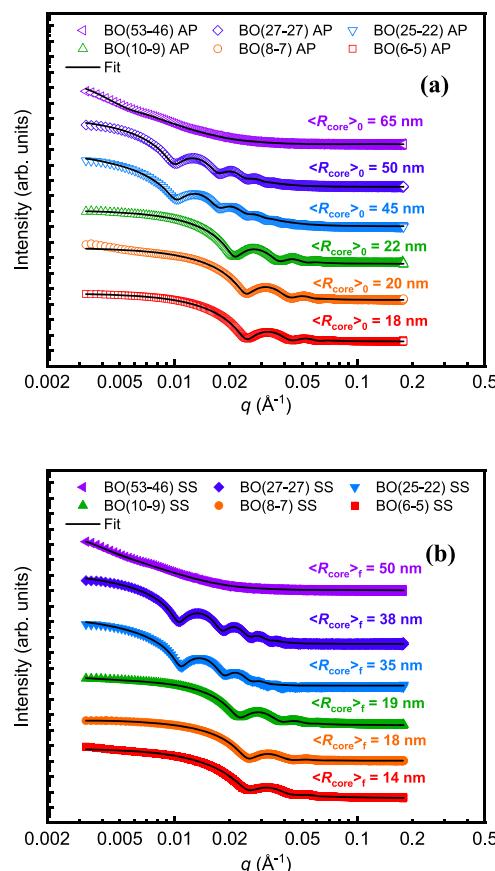
$$R_h = \frac{k_B T}{6\pi\eta_s D_t} \quad (1)$$

where k_B is the Boltzmann constant, T is the temperature, and $\eta_s(T)$ is the solvent viscosity; $\eta_s(170 \text{ }^\circ\text{C}) = 2.4 \text{ kPa}\cdot\text{s}$ for [C₂mim][TFSI].³⁶ The temperature dependence of the viscosity is well described by the Vogel–Fulcher–Tamman equation for [C₂mim][TFSI] and many other ILs.^{52–55} Additional analysis of the micelle size distribution was performed by applying the regularized positive exponential sum (REPES) Laplace inversion to the intensity correlation function.⁵⁶ Application of this algorithm results in the decay rate distribution, $G(\Gamma)$, which can be expressed in terms of the hydrodynamic radius from eq 1. When the REPES routine showed a sample with a bimodal distribution, $g_1(t)$ was fit to a double-exponential function, shown in eq 2, to obtain the decay rates of each population.

$$g_1(t) = A_1 \exp(-\bar{\Gamma}_1 t) + A_2 \exp(-\bar{\Gamma}_2 t) \quad (2)$$

Time-Resolved Small Angle X-ray Scattering (TR-SAXS). SAXS experiments were conducted at the 11-BM Complex materials Scattering (CMS) beamline at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. Samples of 0.25 wt % PB-PEO directly dissolved in [C₂mim][TFSI] were syringe-filtered into 1.5 mm diameter borosilicate capillaries (Charles Supper Co.) and then placed into a custom 15-capillary temperature-controlled stage. SAXS measurements were conducted with samples under dynamic vacuum at room temperature and 170 °C. Two-dimensional scattering patterns were obtained using a Dectris Pilatus 300k pixel-array detector (pixel size $172 \times 172 \mu\text{m}^2$) using a 30 s exposure time to 13.5 keV X-rays ($\lambda = 0.918 \text{ \AA}$) and a sample-to-detector distance of 2 m. The position where the incident beam hits the capillary was changed throughout a time-resolved experiment to mitigate beam damage effects. The scattering vector q was calibrated using silver behenate. The 2D data were azimuthally averaged to yield 1D scattering patterns as intensity versus q . Due to the presence of higher q upturns in ionic liquid scattering, which has been observed previously, and significant capillary-to-capillary variations, the background (i.e., ionic liquid and capillary scattering) was fit to a power law ($I(q) = A + Bq^{-m}$, where $2 \leq m \leq 4$) and subtracted from the solution scattering data.⁵⁷ The background-corrected intensity traces were fit using an established block copolymer micelle model.^{58,59} In this model, the scattering intensity is defined as follows:

$$I(q) = \int D(R_{\text{core}})[P_{\text{mic}}(q) + A_{\text{mic}}^2(q)(S(q) - 1)]dR_{\text{core}} \quad (3)$$


where R_{core} is the micelle core radius with distribution $D(R_{\text{core}})$, $P_{\text{mic}}(q)$ is the spherical form factor for the micelle core,⁵⁸ $A_{\text{mic}}(q)$ is the form factor amplitude, and $S(q)$ is the hard-sphere structure factor with the Percus–Yevick closure.⁵⁹

SAXS experiments for the bulk BO copolymers were conducted at the 5-ID-D beamline of the Dupont–Northwestern–Dow Collaborative Access Team (DND-CAT) at the Advanced Photon Source, Argonne National Laboratory. All samples were hermetically sealed in aluminum DSC pans under argon with <0.1 wt % BHT as an antioxidant. The samples were annealed at 70 °C for 10 min prior to measurement. SAXS measurements of bulk polymers were conducted at 70 °C. Two-dimensional scattering patterns were obtained using a Rayonix MX170-HS CCD area detector using a 0.5 s exposure time to X-rays with a wavelength of $\lambda = 0.729 \text{ \AA}$ and a sample-to-detector distance of 8.5 m. The 2D data were azimuthally averaged to yield 1D scattering patterns as intensity versus q .

RESULTS AND DISCUSSION

Initial and Final Micelle Dimensions. SAXS and DLS were used to determine the effect of molecular weight on the size of micelles, both as prepared by direct dissolution and also at steady-state after annealing at 170 °C. The initial size of micelles prepared by DD and after a *T*-jump to 170 °C were determined by multiangle DLS and SAXS, in terms of the overall micelle radius R_h and the micelle core radius R_{core} , respectively. The overall radii were determined by fitting the intensity autocorrelation function from DLS to a second order cumulant expansion. The radii increased monotonically with increasing M , as seen in SI Figures S4 and S5. REPES analysis of DLS data, shown in Figure S4, for the as-prepared and steady-state $\langle R_h \rangle$ of 0.25 wt % PB-PEO in $[C_2mim][TFSI]$ corroborates the fitting results in that the $\langle R_h \rangle$ decreases after annealing at 170 °C for all molecular weights. The percent decrease in $\langle R_h \rangle$ after long-time annealing at 170 °C was 31%, 36%, 33%, 17%, 25%, and 29% for BO(6–5), BO(8–7), BO(10–9), BO(25–22), BO(27–27), and BO(53–46), respectively.

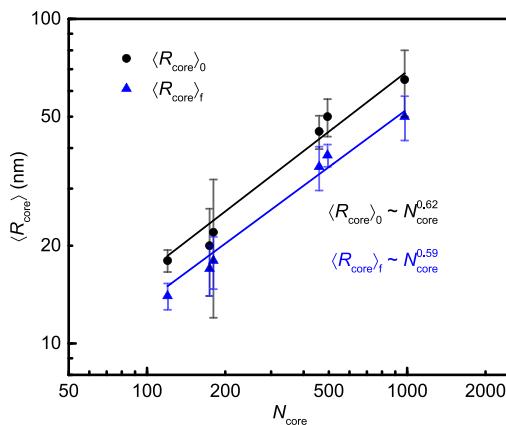

To determine the effect of M on R_{core} , SAXS was performed at room temperature before and after annealing at 170 °C. The background corrected scattering intensity traces versus q for the as-prepared and steady-state micelles are shown in Figure 1a and 1b, respectively. The as-prepared micelles for all

Figure 1. SAXS intensity versus q , on logarithmic scales, for 0.25 wt % PB-PEO in $[C_2mim][TFSI]$ ($T = 27$ °C) (a) as prepared by DD and (b) steady-state after annealing at 170 °C. The black lines represent the best fits of the scattering data to eq 4 with the Pedersen model for block copolymer micelles. The data sets are shifted vertically for clarity.

polymers, except for BO(53–46), are well-defined spheres. This is confirmed by the distinct first minimum in the form factor and oscillations at higher q values, which generally reflect a narrow size distribution and a modest interfacial width at the core–corona interface.^{58,60} The increased size dispersity of BO(53–46) micelles may be due to the fixed time used to prepare the solutions, and longer dissolution times may be required to obtain more narrowly distributed initial micelles. Similarly, well-defined smaller spherical micelles are obtained after annealing at 170 °C, as shown in Figure 1b, for all but the largest polymer.

As with the total micelle radius, $\langle R_{core} \rangle$ from SAXS was found to increase monotonically with M for the as-prepared and steady-state micelles, as shown in Figure 2. The changes in

Figure 2. Scaling of $\langle R_{core} \rangle$ versus N_{core} for 0.25 wt % PB-PEO in $[C_2mim][TFSI]$ as prepared by DD (black circles) and steady-state after annealing at 170 °C (blue triangles). The solid lines for the as-prepared and steady-state values represent the scaling obtained for $\langle R_{core} \rangle_0 \sim N_{core}^{0.62}$ (black line) and $\langle R_{core} \rangle_f \sim N_{core}^{0.59}$ (blue line). The error bars represent $\pm \sigma_{core}$ shown in Table 2.

micelle size before and after annealing at 170 °C are summarized in Table 2. The percent decrease in $\langle R_{core} \rangle$ exhibits a similar trend to that observed in $\langle R_h \rangle$; the percent decrease in $\langle R_{core} \rangle$ with increasing M was 22%, 20%, 14%, 22%, 24%, and 23%. From $\langle R_{core} \rangle$, the average aggregation number Q was calculated assuming that the micelle core is devoid of solvent (i.e., $Q = (4\pi\langle R_{core} \rangle^3)/3V_{core}$, where $V_{core} = M_{n, PB}/\rho_{PB}N_{AV}$ is the molar volume of one core block). This is a reasonable approximation for such a strongly segregated system. From these values, the fragmentation process results in a population of micelles with an average aggregation number that is approximately half that of the initial aggregation number. The core size of strongly segregated block copolymer micelles should scale as $R_{core} \sim N_{core}^{3/5}$.^{61–63} As shown in Figure 2, $\langle R_{core} \rangle$ increases with N_{core} essentially as predicted for both the as-prepared and steady-state samples. This former result is somewhat unexpected, in that micelles prepared by DD apparently adhere to an equilibrium scaling relationship of $\langle R_{core} \rangle$ with N_{core} , even though they are clearly far from equilibrium. This result highlights another difficulty in assessing the true equilibrium state in block copolymer micelles—apparent adherence to an equilibrium scaling law is far from a sufficient criterion.

Fragmentation Kinetics. The substantial decrease in micelle size after annealing has previously been established as being due to equilibration via micelle fragmentation.^{36,45} Thus,

Table 2. Micelle Dimensions for 0.25 wt % Solutions in [C₂mim][TFSI] at T = 27 °C, Before and After Annealing at 170 °C

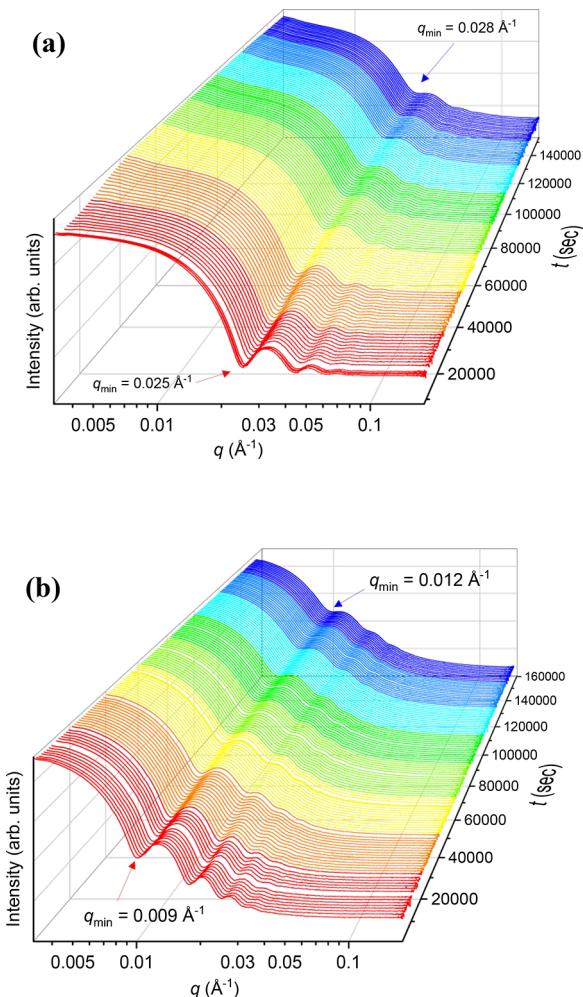
sample	as prepared by direct dissolution						
	$\langle R_h \rangle_0$ (nm)	$\langle \mu_2/\Gamma^2 \rangle_0$	$\langle R_{\text{core}} \rangle_0$ (nm)	$\sigma_{\text{core},0}$ (nm)	Q_0^a	$s_{\text{core},0}^b$	$s_{\text{corona},0}^c$
BO(6–5)	29	0.084	18	1.4	1260	2.05	2.22
BO(8–7)	42	0.251	20	6.0	1900	2.45	2.50
BO(10–9)	51	0.229	22	10.0	2400	2.38	3.31
BO(25–22)	70	0.086	45	5.3	8060	2.93	1.86
BO(27–27)	83	0.166	50	6.6	11000	3.38	2.20
BO(53–46)	108	0.177	65	15.0	11400	3.15	2.07
sample	steady-state after annealing at 170 °C						
	$\langle R_h \rangle_f$ (nm)	$\langle \mu_2/\Gamma^2 \rangle_f$	$\langle R_{\text{core}} \rangle_f$ (nm)	$\sigma_{\text{core},f}$ (nm)	Q_f^a	$s_{\text{core},f}^b$	$s_{\text{corona},f}^c$
BO(6–5)	20	0.050	14	1.3	930	1.97	0.78
BO(8–7)	27	0.050	16	3.0	950	1.60	1.51
BO(10–9)	34	0.042	19	3.3	1500	2.05	1.71
BO(25–22)	58	0.072	35	5.4	3800	2.28	1.72
BO(27–27)	62	0.085	38	3.0	4900	2.57	1.60
BO(53–46)	77	0.085	50	7.8	5200	1.96	1.80

^aThe aggregation number (Q), where the subscripts 0 and f denote initial and final values, respectively, was calculated as $4\pi\langle R_{\text{core}} \rangle^3/(3V_{\text{PB}})$ assuming the core is devoid of solvent, and $V_{\text{PB}} = M_{\text{n,PB}}/\rho_{\text{PB}}N_{\text{Av}}$ is the volume per core chain, $\rho_{\text{PB}} = 0.89 \text{ g/cm}^3$, N_{Av} is Avogadro's number, and $M_{\text{n,PB}}$ is the molecular weight of PB, as reported in Table 1. The degree of core chain stretching (s_{core}), was calculated as $\langle R_{\text{core}} \rangle$ divided by the root-mean-square end-to-end distance of the core block using the statistical segment length of PB, $b = 5.9 \text{ \AA}$.⁶⁴ ^bThe degree of corona chain stretching (s_{corona}) calculated as the corona thickness ($L_{\text{corona}} = \langle R_h \rangle - \langle R_{\text{core}} \rangle$) divided by the root-mean-square end-to-end distance of the corona block using the statistical segment length of PEO, $b = 6.0 \text{ \AA}$.⁶⁵

the fragmentation kinetics were studied for six molecular weights of PB-PEO in [C₂mim][TFSI] using *T*-jump DLS and TR-SAXS to determine the dependence of the fragmentation time τ on the total degree of polymerization of the copolymer N_{total} . The change in $\langle R_{\text{core}} \rangle$ was monitored with high temporal resolution by heating micelle solutions directly on the beamline to 170 °C under vacuum, and the scattering was measured during annealing for 48 h. Representative TR-SAXS data for 0.25 wt % BO(27–27) in [C₂mim][TFSI] are shown in Figure 3, where the background-subtracted intensity traces versus q are plotted as a function of annealing time. Analogous TR-SAXS data for BO(8–7), BO(10–9), and BO(25–22) are provided in the SI, Figures S6–S8.

As shown in Figure 3b, the form factor for BO(27–27) shows a first minimum at $q_{\text{min}} = 0.009 \text{ \AA}^{-1}$ after annealing at 170 °C for approximately 26 min, which corresponds to $\langle R_{\text{core}} \rangle = 50 \text{ nm}$ from the hard sphere approximation where $qR_{\text{core}} = 4.493$. Throughout the course of an annealing experiment, the q -position of the first minimum shifts progressively to higher values of q , indicative of a smaller $\langle R_{\text{core}} \rangle$. After annealing at 170 °C for approximately 2500 min, q_{min} shifts to 0.012 \AA^{-1} and $\langle R_{\text{core}} \rangle = 37.4 \text{ nm}$. Fitting the scattering data to the block copolymer micelle model before and after annealing at 170 °C shows good agreement with the hard sphere approach used to determine $\langle R_{\text{core}} \rangle$ from TR-SAXS.

To quantify the fragmentation kinetics, the change in micelle size, either $\langle R_h \rangle$ or $\langle R_{\text{core}} \rangle$, is normalized according to the following:^{eq 4:}


$$R(t) = \frac{\langle R_i \rangle_t - \langle R_i \rangle_f}{\langle R_i \rangle_0 - \langle R_i \rangle_f} = \exp[-(t/\tau)^n] \quad (4)$$

where $R(t)$ is the normalized relaxation function, and $i = h$ or core denotes either the average hydrodynamic radius from DLS or the average micelle core radius from SAXS. The normalized change in size was fit to the Avrami equation or “compressed” exponential, shown in eq 4, where τ is the fragmentation time constant and n is the Avrami exponent.

The normalized change in $\langle R_h \rangle$ from DLS is shown in Figure 4, and that for $\langle R_{\text{core}} \rangle$ in Figure 5.

From DLS, the change in $\langle R_h \rangle$ while annealing at 170 °C is well-described by eq 4, with an exponent of 2.0–2.3. The fitting was performed using n as an adjustable parameter, resulting in an average value of $n = 2.2 \pm 0.3$. Refitting the data with a fixed exponent of $n = 2.0$ resulted in fits of similar quality with only modest variations in τ , as shown in Table S1. Attempts to fit the change in normalized $\langle R_h \rangle$ to a single or a double exponential resulted in poor fit quality for the former, and physically unreasonable values of τ for the latter. This is consistent with previous reports on a single, low molecular weight of PB-PEO in various ionic liquids.^{36,40,45} From Figure 4, the fragmentation time τ increases strongly with increasing M ; the 11 kg mol⁻¹ diblock has a τ on the order of 100 min, whereas the 100 kg mol⁻¹ diblock has $\tau \approx 5000$ min. To corroborate the results from *T*-jump DLS, the time-dependent change in R_{core} from SAXS at 170 °C was normalized according to eq 4. The results for all polymers except BO(53–46) are shown in Figure 5. The dispersity in R_{core} for BO(53–46) made estimating the radius using the hard sphere approximation based on the first minimum of the form factor unreliable. Although the intensity traces for BO(53–46) could be fit to the Pedersen model, the error in $\langle R_{\text{core}} \rangle$ was quite large. The large micelle size dispersity and exponent by DLS shown in Table 3 for BO(53–46) are likely due to the fact that this sample is prepared using the same dissolution time as the lower M samples. Due to this uncertainty, the fragmentation kinetics were determined only for the other five M . In general, values of τ obtained from DLS and SAXS agree remarkably well. The fitting results for both experiments are summarized in Table 3.

Molecular Weight Dependence of Fragmentation Time. As noted above, the fragmentation kinetics for PB-PEO in [C₂mim][TFSI] depend strongly on M . Figure 6 shows the values of τ obtained from fitting the normalized change in micelle size to eq 4 as a function of the total degree of polymerization; the results from DLS and SAXS are very

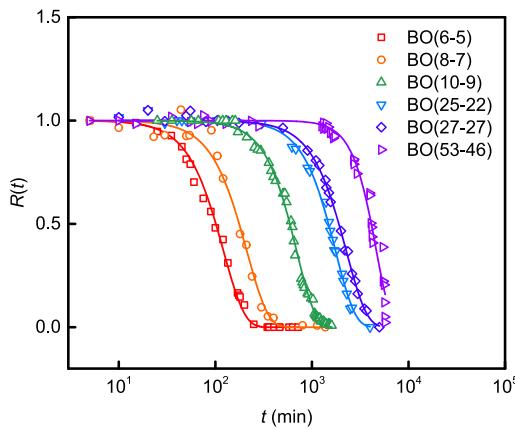
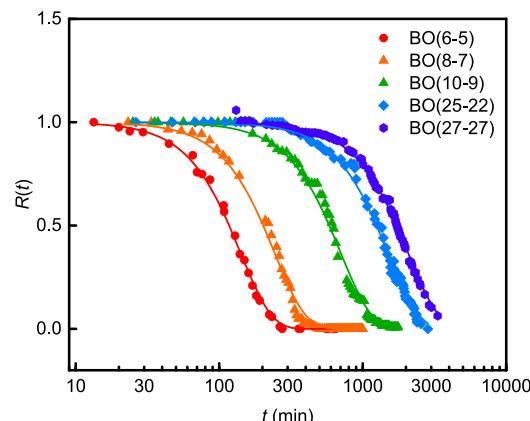


Figure 3. TR-SAXS intensity (logarithmic scale) as a function of q showing the evolution in the micelle core radius while annealing at 170 °C for 0.25 wt % (a) BO(6-5) in $[\text{C}_2\text{mim}][\text{TFSI}]$. The position of the first minimum in the form factor increases from $q_{\min} = 0.025 \text{ \AA}^{-1}$ for short annealing times to $q_{\min} = 0.028 \text{ \AA}^{-1}$ at longer annealing times. (b) BO(27-27) in $[\text{C}_2\text{mim}][\text{TFSI}]$. The first minimum in the form factor increases from $q_{\min} = 0.009 \text{ \AA}^{-1}$ at short times to $q_{\min} = 0.012 \text{ \AA}^{-1}$ at longer annealing times. The PB core radius can be estimated assuming a hard sphere ($R_{\text{core}} \approx 4.493/q_{\min}$), so the radius of the micelle core decreases with increasing annealing time.


consistent. The fit to a power law gives the scaling $\tau \sim N_{\text{total}}^{1.8 \pm 0.1}$. Dormidontova proposed a scaling model for micelle fusion kinetics, and further assumed that fragmentation would proceed as the reverse of micelle fusion, and thus the N scaling would be the same for both processes.²⁷ For micelles with large aggregation numbers (Q) with respect to their equilibrium size, Dormidontova defined a characteristic time for corona deformation (τ_{def}) as the inverse translational diffusion constant for chains, where V_B is the molar volume per monomer unit in the corona.²⁷

$$\tau_{\text{def}} \approx \frac{n_s V_B}{k_B T} N_{\text{corona}}^{9/5} Q^{13/5} \quad (5)$$

Assuming the fragmenting micelle is large, Dormidontova's theory proposes that $\tau \sim N_{\text{corona}}^{1.8}$ at constant Q , as shown in eq 5. It should be noted that for very large aggregation numbers, such as the ones obtained for the as-prepared micelles, that there is at most a small molecular weight

Figure 4. Time dependence of normalized $\langle R_h \rangle$ for 0.25 wt % solutions of BO molecular weight series in $[\text{C}_2\text{mim}][\text{TFSI}]$. DLS measurements were performed at a scattering angle of 90° and a relaxation temperature of 170 °C. Solid lines represent best fits to eq 4 with $n = 2.2 \pm 0.3$.

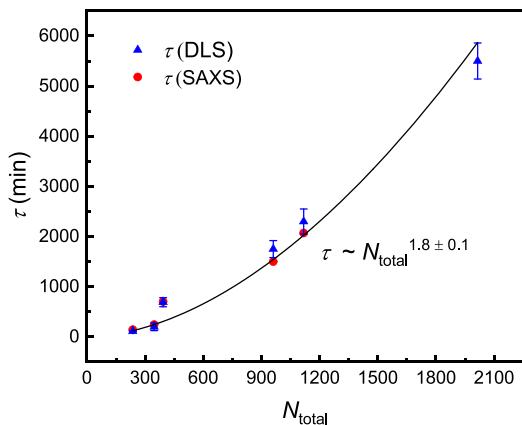

Figure 5. Time dependence of normalized $\langle R_{\text{core}} \rangle$ for 0.25 wt % solutions of PB-PEO in $[\text{C}_2\text{mim}][\text{TFSI}]$. TR-SAXS measurements were performed at a relaxation temperature of 170 °C. Solid lines represent best fits to eq 4 with $n = 2.0 \pm 0.1$.

Table 3. Molecular Weight Dependence of τ Determined by T-Jump DLS and TR-SAXS at 170 °C for 0.25 wt % BO in $[\text{C}_2\text{mim}][\text{TFSI}]$

sample	T-jump DLS		TR-SAXS	
	τ (min)	n	τ (min)	n
BO(6-5)	120 \pm 10	2.0	140	2.1
BO(8-7)	200 \pm 75	2.0	250	2.2
BO(10-9)	690 \pm 90	2.2	710	2.2
BO(25-22)	1750 \pm 170	2.2	1500	2.1
BO(27-27)	2300 \pm 250	2.1	2070	2.3
BO(53-46)	5000 \pm 360	2.7		

dependence to Q . The Q dependence of τ is shown in the SI,⁴⁶⁵ where $\tau \sim Q_0^{1.7 \pm 0.1}$. The agreement between the scaling of τ with N_{corona} and Q_0 implies that the strong Q dependence from eq 5 does not reflect our experimental results, and this is consistent with the assumption that Q does not depend strongly on N_{total} for very large Q .⁴⁶⁶

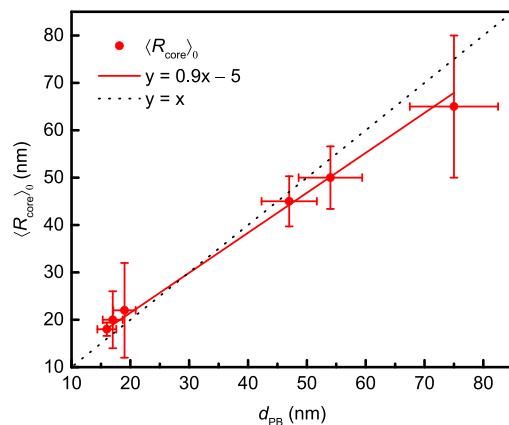
The results are apparently in excellent agreement with the theory. However, some caution is warranted. First, the theory does not anticipate the compressed exponential form in eq 4,⁴⁷³ so there is clearly an aspect of the fragmentation mechanism

Figure 6. Dependence of the fragmentation time constants (τ) determined by T -jump DLS (red circles) and TR-SAXS (blue triangles) on the degree of polymerization of PEO (N_{PEO}).

475 that is not yet fully appreciated. Second, the separate effects of
476 N_{core} and N_{corona} on the experimental fragmentation times
477 cannot be assessed individually because the volume fraction of
478 PEO in this work has been constant. Thus, the experimental
479 scaling represents the dependence of the fragmentation time
480 on the total degree of polymerization, which may not coincide
481 with the dependence on N_{corona} . However, it does seem
482 physically reasonable that the corona plays a much larger role
483 in the process than the core. Further discussion of the time
484 constants from the model and from estimates of corona
485 dynamics are provided in the SI.

486 To rationalize the dependence of the fragmentation kinetics
487 on molecular weight, one must consider the transition state
488 and activation barrier of this process. Previous work on this
489 system revealed that the fragmentation kinetics were
490 unaffected by changes in the solvent selectivity toward the
491 core-forming block,⁴⁵ thus indicating independence of
492 interfacial tension. Accordingly, we propose that severe corona
493 crowding in the transition state is the primary barrier to
494 fragmentation. When considering the free energy of polymer
495 chains in a block copolymer micelle at equilibrium, the
496 interfacial free energy and the free energy of chains in the
497 corona contribute more to the total free energy of the micelle
498 compared to the free energy of chains in the core.^{12,61,66} We
499 calculate the free energy of PB-PEO micelles as prepared by
500 DD, after annealing at 170 °C, and for the proposed “peanut-
501 shaped” transition state (Figure S10) observed in previous
502 work on PB-PEO in [C₂mim][TFSI] by high-temperature
503 liquid phase transmission electron microscopy.⁴⁶ A schematic
504 illustration of the transition state is shown in Figure S11. The
505 total free energy of a spherical block copolymer micelle in
506 solution (F_{mic}) was well described by Zhulina et al.,¹² and is
507 given by the sum of the free energy contribution from the core
508 chains (F_{core}), the free energy of the corona chains (F_{corona}),
509 and the interfacial energy (F_{int}). Therefore, the free energy can
510 be estimated for the as-prepared and steady state micelles.
511 Some details on this calculation are provided in the SI, and
512 were previously reported by Zhulina et al.¹² Because the
513 transition state morphology is “peanut-shaped” the transition
514 state free energy cannot be treated in the same manner as the
515 spherical micelles before and after fragmentation. The
516 calculated free energies are reported in Table S4.

517 To calculate the corona free energy in the transition state,
518 the fraction of corona chains overlapped in the neck region


519 must be estimated. The transition state is represented
520 schematically in Figure S11. We propose that the increase in
521 the local concentration of corona chains near the neck point,
522 i.e., the increase in the number of blobs per corona chain n_{blob} ,
523 in the formation of the transition state is the primary barrier to
524 fragmentation. To estimate the degree of corona crowding in
525 the transition state first, we estimate the fraction of corona
526 overlap in the transition state, and then relate the overlap
527 fraction to the concentration of blobs per PEO chain in the
528 neck region using the theory from Zhulina et al.¹² Using a
529 simplified model for the transition state, illustrated in Figure
530 S12, to determine the area of corona overlap in the transition
531 state results in approximately 1/6 of the corona chains
532 overlapping for all molecular weights. Details on this
533 calculation are provided in the SI. Then, the concentration
534 of PEO chains in the neck region of the transition state is
535 determined by estimating the number of blobs per corona
536 chain. In the neck region, the number of blobs per chain is
537 expected to be approximately twice the number of blobs per
538 chain in the as-prepared micelles ($n_{\text{blob,neck}} = 2n_{\text{blob,sphere}} =$
539 $2F_{\text{corona,0}}/k_{\text{B}}T$), whereas the outer spherical regions would have
540 $n_{\text{blob,sphere}} = F_{\text{corona,0}}/k_{\text{B}}T$, where the free energy is calculated
541 using the as-prepared size of the micelle as shown in eq S11.
542

The transition state free energy for the core and the interface
542 was calculated using the steady state micelle dimensions. The
543 transition state corona free energy was calculated assuming
544 of the chains are described by $F_{\text{corona,0}}/k_{\text{B}}T$, and for the 1/6 of
545 corona chains overlapped in the neck region, the corona free
546 energy is $2F_{\text{corona,0}}$. Therefore, the total corona free energy in
547 the transition state is calculated as $F_{\text{corona,TS}}/k_{\text{B}}T = (5/6)$
548 $F_{\text{corona,0}}/k_{\text{B}}T + (1/3)F_{\text{corona,0}}/k_{\text{B}}T$. Details on this calculation
549 are provided in the SI. From Table S4, the average n_{blob} is 16
550 for BO(53–46) before a T -jump to 170 °C. Assuming that the
551 number of blobs in the neck point is double the calculated
552 $n_{\text{blob,0}}$ shown in Table S4, approximately 1/6 of the corona
553 chains experience corona crowding where there are approx-
554 imately 32 blobs per chain near the neck, whereas n_{blob} is 16 for
555 chains in the spherical region of the micelle indicated in Figure
556 S11. The fraction of corona chain overlap was determined to
557 be 1/6 for all molecular weights by eq S8, and thus n_{blob} at the
558 neck point is 8, 9, 10, 21, 24, and 32 for BO(6–5), BO(8–7),
559 BO(10–9), BO(25–22), BO(27–27), and BO(53–46). This
560 large increase in the local concentration of PEO chains in the
561 neck region of the transition state supports the strong
562 molecular weight dependence of micelle fragmentation
563 kinetics. Because the confinement free energy of corona chains
564 is directly proportional to n_{blob} , the chains near the neck point
565 become much more confined and the entropic penalty
566 associated with this chain confinement contributes to this
567 being the primary activation barrier to fragmentation.
568

569 Although these estimates are encouraging, we emphasize
570 that the uncertainties in estimating the transition state free
571 energy are quite large, and the differences in the calculated free
572 energies for the spherical and “peanut” shaped micelles are
573 only ~ 5 –10 $k_{\text{B}}T$. Given that the aggregation numbers are huge
574 and the barrier is known to be of order 30–40 kT ,^{36,45} the
575 estimated barriers per chain are small fractions of kT , and
576 beyond the resolution of this calculation.
577

Molecular Weight Dependence of Initial Micelle Size by Direct Dissolution. To understand the N dependence of the
578 initial core size for micelles prepared by DD, SAXS
579 measurements on the pure PB-PEO diblock copolymers
580 were conducted. The 1D scattering intensity traces for these
581

samples are shown in Figure S9. It has been suggested that the morphology of micelles prepared by direct dissolution depends on the morphology of the bulk diblock copolymer.^{36,67} The scattering data confirms that BO(6–5), BO(8–7), BO(10–9), BO(25–22), and BO(27–27) exhibit a lamellar morphology at 70 °C, which is the temperature used for preparing micelle solutions by direct dissolution. The domain size of the PB lamellae was estimated from the q -position of the primary scattering peak ($d = 2\pi/q^*$) and the known volume fraction of PB. The domain sizes were found to be approximately 16, 17, 19, 47, and 54 nm for BO(6–5), BO(8–7), BO(10–9), BO(25–22), and BO(27–27), respectively. Interestingly, the domain sizes obtained from SAXS of the bulk polymers are comparable to the initial micelle core size. This dependence is represented in Figure 7 as a plot of $\langle R_{\text{core}} \rangle_0$ vs d_{PB} . From this

Figure 7. Dependence of $\langle R_{\text{core}} \rangle_0$ (nm) on the PB domain size (d_{PB}) indicating a direct relationship between $\langle R_{\text{core}} \rangle_0$ for micelles prepared by DD and the PB domain size of the bulk diblock copolymer. The solid red line represents the best linear fit to $\langle R_{\text{core}} \rangle_0$ as a function of d_{PB} , and the dotted black line represents $y = x$. The error bars in $\langle R_{\text{core}} \rangle_0$ represent $\pm \sigma_{\text{core}}$ from Table 2, and 10% error in d_{PB} is assumed.

figure, the direct relationship between the domain size of the bulk copolymer and the initial micelle core radius is apparent. This result is also consistent with the previous reports on BO(8–7) in 1-alkyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide-based ionic liquids.^{36,45} It should be noted that a linear dependence should not necessarily be expected. The dependence begins to weaken slightly at higher molecular weights, as evidenced by the slight downward curvature of $\langle R_{\text{core}} \rangle$ for the two largest polymers. The dependence of $\langle R_{\text{core}} \rangle_0$ on d_{PB} follows the strong segregation limit scaling of $2/3$,⁶⁸ as shown in Figure S13, while the apparent equilibrium scaling of $\langle R_{\text{core}} \rangle$ with N_{core} for the initial micelles has an exponent closer to $3/5$, as shown in Figure 2. These slightly different dependences give rise to the curvature evident in Figure 7. Figure S13 shows the relationship of d_{PB} as a function of N_{core} for the domain size determined experimentally by SAXS, and the estimated domain spacing calculated from self-consistent field theory (SCFT); the experimental domain size of the PB lamellae agrees well with SCFT. We therefore speculate that during direct dissolution the solvent penetrates the PEO domains, peeling apart layers of PEO-decorated PB layers. Some surface instabilities in these separate layers drive a pinching-off process to give large, disperse spherical aggregates in solution. This

behavior is broadly analogous to a Rayleigh instability, and has been referenced in computations of surfactant-based micelles,⁶⁹ and experimentally in cylinder-to-sphere transitions^{70–75} in block copolymer micelles. In experimental works on the cylinder-to-sphere transitions in block copolymer micelles, it is concluded that the surface-instability-mediated transitions induce pinching of immature spherical micelles,⁶² followed by rapid chain exchange.⁷⁴ On the basis of the lack of chain exchange in BO/[C₂mim][TFSI] systems reported previously,³⁶ the direct dissolution mechanism is related to this process, but not identical. Furthermore, even accounting for the molar mass difference, our system undergoes fragmentation about 3 orders of magnitude slower than the PEP-PEO cylindrical micelles, implying a very small barrier in the latter case.

Another possibly surprising result of the dependence of $\langle R_{\text{core}} \rangle_0$ on d_{PB} is that the micelles prepared by direct dissolution have a core radius that is approximately equal to the full PB domain size, rather than $d_{\text{PB}}/2$. The interfacial tension in the swollen state is clearly greater than in the dry copolymer, so an increase in core chain stretching is certainly expected. Moreover, the degree of interdigitation of the PB chains in the dry lamellae can affect this picture of the dissolution mechanism. In the dry state, the degree of stretching of PB (s_{PB}) can be estimated from two limits: the first assumes no interdigitation of chains, where $s_{\text{PB},1} = d_{\text{PB}}/\langle h^2 \rangle_0^{1/2}$; the second method assumes full interdigitation of chains, where $s_{\text{PB},2} = d_{\text{PB}}/2\langle h^2 \rangle_0^{1/2}$. Calculating the degree of stretching for BO(8–7) by these two methods gives $s_{\text{PB},1} = 1.1$ and $s_{\text{PB},2} = 2.2$, respectively. These may be to the degree of stretching of chains in the micelle core from Table 2, $s_{\text{core}} = 2.5$. This result implies some significant degree of interdigitation in the bulk state.

CONCLUSIONS

In this work, the effect of polymer molecular weight on micelle fragmentation kinetics was studied for the first time, using six molecular weights of PB-PEO with a near constant volume fraction of PEO ($f_{\text{PEO}} \approx 0.40$) in the ionic liquid [C₂mim]-[TFSI]. Disperse micelles prepared by direct dissolution in [C₂mim][TFSI] were found to be larger than the equilibrium size, and all molecular weight micelles decreased in size, both $\langle R_h \rangle$ and $\langle R_{\text{core}} \rangle$, when subjected to high temperature annealing. The decrease in micelle size while annealing at 170 °C was monitored by *T*-jump DLS and TR-SAXS, and it was concluded that PB-PEO micelles equilibrate by fragmentation. The final aggregation number was approximately half of the original aggregation number prior to a *T*-jump. The decay in $\langle R_h \rangle$ and $\langle R_{\text{core}} \rangle$ was consistently well described by a compressed exponential with an exponent of 2; the origin of this functional form remains to be elucidated. The characteristic fragmentation times determined by fitting the normalized change in micelle size to this equation was found to depend strongly on the molecular weight of the block copolymer, where $\tau \sim N_{\text{total}}^{1.8 \pm 0.1}$. A previous model of micelle fragmentation by Dormidontova predicts a similar scaling, albeit in terms of N_{corona} . Future measurements on a series of polymers with constant N_{core} will be required to assess whether this apparent agreement is robust. The core size of the initial micelles was shown to correlate closely with the PB domain dimensions in the precursor dry, lamellar copolymer, suggesting a formation mechanism involving peeling apart of layers, followed by pinching off into spherical domains.

683 ■ ASSOCIATED CONTENT

684 ■ Supporting Information

685 The Supporting Information is available free of charge at
686 <https://pubs.acs.org/doi/10.1021/jacs.1c02147>.687 SEC-RI traces of PB-PEO diblocks, ^1H NMR spectra of
688 PB-PEO diblocks and $[\text{C}_2\text{mim}][\text{TFSI}]$, REPES results
689 for PB-PEO in $[\text{C}_2\text{mim}][\text{TFSI}]$ as-prepared by DD and
690 steady-state after annealing, dependence of $\langle R_h \rangle$ on the
691 total degree of polymerization N_{total} for 0.25 wt % PB-
692 PEO in $[\text{C}_2\text{mim}][\text{TFSI}]$, fragmentation times with fixed
693 n , TR-SAXS traces for BO(8–7), BO(10–9), and
694 BO(25–22), calculations of corona chain disentanglement
695 time, SAXS of bulk PB-PEO, high temperature
696 liquid-phase transmission electron microscopy of
697 BO(53–46) in $[\text{C}_2\text{mim}][\text{TFSI}]$, calculations of the
698 fraction of corona overlap in the transition state, high
699 temperature LP-TEM micrograph of BO(53–46) in
700 $[\text{C}_2\text{mim}][\text{TFSI}]$ at 170 °C, schematic illustration of
701 fragmentation transition state, illustration of simplified
702 model transition state for calculating corona chain
703 overlap, calculation of micelle free energy, domain
704 spacing from SAXS of of BO($x-y$) diblock copolymers
705 in the bulk, Comparison of the domain size of PB
706 determined by SAXS and the estimated domain size for
707 a lamellar diblock copolymer using self-consistent field
708 theory, estimated fragmentation lag time as a function of
709 degree of polymerization, and dependence of fragmentation
710 time on as-prepared aggregation number ([PDF](#))

711 ■ AUTHOR INFORMATION

712 Corresponding Author

713 Timothy P. Lodge – Department of Chemical Engineering
714 and Materials Science and Department of Chemistry,
715 University of Minnesota, Minneapolis, Minnesota 55455-
716 0431, United States; orcid.org/0000-0001-5916-8834;
717 Email: lodge@umn.edu

718 Authors

719 Julia T. Early – Department of Chemistry, University of
720 Minnesota, Minneapolis, Minnesota 55455-0431, United
721 States; Center for Functional Nanomaterials, Brookhaven
722 National Laboratory, Upton, New York 11973-5000, United
723 States; orcid.org/0000-0002-5794-7161724 Alison Block – Department of Chemical Engineering and
725 Materials Science, University of Minnesota, Minneapolis,
726 Minnesota 55455-0431, United States727 Kevin G. Yager – Center for Functional Nanomaterials,
728 Brookhaven National Laboratory, Upton, New York 11973-
729 5000, United States; orcid.org/0000-0001-7745-2513

730 Complete contact information is available at:

731 <https://pubs.acs.org/10.1021/jacs.1c02147>

732 Notes

733 The authors declare no competing financial interest.

734 ■ ACKNOWLEDGMENTS

735 This work was supported primarily by the National Science
736 Foundation (DMR-1707578). Additional support came from
737 the University of Minnesota Doctoral Dissertation Fellowship
738 (JTE), the University of Minnesota Robert and Jill DeMaster
739 Excellence Fellowship (J.T.E.), the Research Experiences for
740 Undergraduates (REU) Program of the National Science741 Foundation under Award Number DMR-1559833 (through
742 the University of Minnesota MRSEC under Award Number
743 DMR-2011401, A.B.), and from the U.S. Department of
744 Energy (DOE), Office of Science, Office of Workforce
745 Development for Teachers and Scientists, Office of Science
746 Graduate Student Research (SCGSR) program (J.T.E.). The
747 SCGSR program is administered by the Oak Ridge Institute
748 for Science and Education (ORISE) for the DOE. ORISE is
749 managed by ORAU under contract number DE-SC0014664.
750 Portions of this work were performed at the Center for
751 Functional Nanomaterials, and the National Synchrotron Light
752 Source II, Brookhaven National Laboratory, which are
753 supported by the U.S. DOE Office of Science under Contract
754 DE-SC0012704. Portions of this work were performed at the
755 DuPont-Northwestern-Dow Collaborative Access Team
756 (DND-CAT) located at Sector 5 of the Advanced Photon
757 Source (APS). DND-CAT is supported by Northwestern
758 University, E.I. DuPont de Nemours & Co., and The Dow
759 Chemical Company. This research used resources of the
760 Advanced Photon Source, a U.S. Department of Energy
761 (DOE) Office of Science User Facility operated for the DOE
762 Office of Science by Argonne National Laboratory under
763 Contract No. DE-AC02-06CH11357. We thank Dr. Ruipeng
764 Li and Dr. Esther Tsai for assistance with TR-SAXS
765 measurements at the 11-BM CMS beamline at the NSLS-II
766 and Dr. Lihua Zhang for insightful discussions on high
767 temperature LP-TEM. We thank Claire Seitzinger for assisting
768 with SAXS measurements of bulk PB-PEO diblocks.
769

770 ■ REFERENCES

- (1) Tang, B.; White, S. P.; Frisbie, C. D.; Lodge, T. P. Synergistic Increase in Ionic Conductivity and Modulus of Triblock Copolymer Ion Gels. *Macromolecules* **2015**, *48*, 4942–4950.
- (2) Tang, B.; Schneiderman, D. K.; Zare Bidoky, F.; Frisbie, C. D.; Lodge, T. P. Printable, Degradable, and Biocompatible Ion Gels from a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid. *ACS Macro Lett.* **2017**, *6*, 1083–1088.
- (3) Kataoka, K.; Harada, A.; Nagasaki, Y. Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. *Adv. Drug Delivery Rev.* **2012**, *64*, 37–48.
- (4) Li, Z.; Johnson, L. M.; Ricarte, R. G.; Yao, L. J.; Hillmyer, M. A.; Bates, F. S.; Lodge, T. P. Enhanced Performance of Blended Polymer Excipients in Delivering a Hydrophobic Drug through the Synergistic Action of Micelles and HPMCAS. *Langmuir* **2017**, *33*, 2837–2848.
- (5) Cotanda, P.; Lu, A.; Patterson, J. P.; Petzeltakis, N.; O'Reilly, R. K. Functionalized Organocatalytic Nanoreactors: Hydrophobic Pockets for Acylation Reactions in Water. *Macromolecules* **2012**, *45*, 2377–2384.
- (6) Anderson, W. Block Copolymers as Viscosity Index Improvers for Lubrication Oils. US 3763044, 1973.
- (7) Zhao, D.; Ma, Y.; Lodge, T. P. Exchange Kinetics for a Single Block Copolymer in Micelles of Two Different Sizes. *Macromolecules* **2018**, *51*, 2312–2320.
- (8) Zinn, T.; Willner, L.; Pipich, V.; Richter, D.; Lund, R. Molecular Exchange Kinetics of Micelles: Corona Chain Length Dependence. *ACS Macro Lett.* **2016**, *5*, 884–888.
- (9) Ma, Y.; Lodge, T. P. Chain Exchange Kinetics in Diblock Copolymer Micelles in Ionic Liquids: The Role of χ . *Macromolecules* **2016**, *49*, 9542–9552.
- (10) Denkova, A. G.; Mendes, E.; Coppens, M.-O. Non-Equilibrium Dynamics of Block Copolymer Micelles in Solution: Recent Insights and Open Questions. *Soft Matter* **2010**, *6*, 2351.
- (11) Halperin, A.; Tirrell, M.; Lodge, T. P. Tethered Chains in Polymer Microstructures. *Macromol. Synth. Order Adv. Prop.* **1992**, *100* (1), 31–71.

805 (12) Zhulina, E. B.; Adam, M.; Larue, I.; Sheiko, S. S.; Rubinstein, 806 M. Diblock Copolymer Micelles in a Dilute Solution. *Macromolecules* 807 **2005**, *38*, 5330–5351.

808 (13) He, Y.; Li, Z.; Simone, P.; Lodge, T. P. Self-Assembly of Block 809 Copolymer Micelles in an Ionic Liquid. *J. Am. Chem. Soc.* **2006**, *128*, 810 2745–2750.

811 (14) Choi, S.; Bates, F. S.; Lodge, T. P. Structure of Poly (Styrene-b- 812 Ethylene-Alt-Propylene) Diblock Copolymer Micelles in Squalane. *J.* 813 *Phys. Chem. B* **2009**, *113*, 13840–13848.

814 (15) Wang, E.; Lu, J.; Bates, F. S.; Lodge, T. P. Effect of Corona 815 Block Length on the Structure and Chain Exchange Kinetics of Block 816 Copolymer Micelles. *Macromolecules* **2018**, *51*, 3563–3571.

817 (16) Yu, K.; Zhang, L.; Eisenberg, A. Novel Morphologies of “Crew- 818 Cut” Aggregates of Amphiphilic Diblock Copolymers in Dilute 819 Solution. *Langmuir* **1996**, *12*, 5980–5984.

820 (17) Bang, J.; Jain, S.; Li, Z.; Lodge, T. P.; Pedersen, J. S.; 821 Kesselman, E.; Talmon, Y. Sphere, Cylinder, and Vesicle Nano- 822 aggregates in Poly(Styrene-b-Isoprene) Diblock Copolymer Solu- 823 tions. *Macromolecules* **2006**, *39*, 1199–1208.

824 (18) Aniansson, E. A. G.; Wall, S. N. On the Kinetics of Step-Wise 825 Micelle Association. *J. Phys. Chem.* **1974**, *78*, 1024–1030.

826 (19) Aniansson, E. A. G.; Wall, S. N.; Almgren, M.; Hoffmann, H.; 827 Kielmann, I.; Ulbricht, W.; Zana, R.; Lang, J.; Tondre, C. Theory of 828 the Kinetics of Micellar Equilibria and Quantitative Interpretation of 829 Chemical Relaxation Studies of Micellar Solutions of Ionic 830 Surfactants. *J. Phys. Chem.* **1976**, *80*, 905–922.

831 (20) Rharbi, Y.; Winnik, M. A.; Hahn, K. G. Kinetics of Fusion and 832 Fragmentation Nonionic Micelles: Triton X-100. *Langmuir* **1999**, *15* 833 (14), 4697–4700.

834 (21) Goldmints, I.; Holzwarth, J. F.; Smith, K. a.; Hatton, T. A. 835 Micellar Dynamics in Aqueous Solutions of PEO-PPO-PEO Block 836 Copolymers. *Langmuir* **1997**, *13*, 6130–6134.

837 (22) Rharbi, Y. Fusion and Fragmentation Dynamics at Equilibrium 838 in Triblock Copolymer Micelles. *Macromolecules* **2012**, *45*, 9823– 839 9826.

840 (23) Rharbi, Y.; Karrouch, M.; Richardson, P. Fusion and Fission 841 Inhibited by the Same Mechanism in Electrostatically Charged 842 Surfactant Micelles. *Langmuir* **2014**, *30*, 7947–7952.

843 (24) Michels, B.; Waton, G.; Zana, R. Dynamics of Micelles of Poly 844 (Ethylene Oxide) - Poly (Propylene Oxide) - Poly (Ethylene Oxide) 845 Block Copolymers in Aqueous Solutions. *Langmuir* **1997**, *13* (12), 846 3111–3118.

847 (25) Halperin, A.; Alexander, S. Polymeric Micelles: Their 848 Relaxation Kinetics. *Macromolecules* **1989**, *22*, 2403–2412.

849 (26) Halperin, A. On Micellar Exchange: The Role of the Insertion 850 Penalty. *Macromolecules* **2011**, *44*, 5072–5074.

851 (27) Dormidontova, E. E. Micellization Kinetics in Block Copolymer 852 Solutions: Scaling Model. *Macromolecules* **1999**, *32*, 7630–7644.

853 (28) Nyrkova, I. A.; Semenov, A. N. On the Theory of Micellization 854 Kinetics. *Macromol. Theory Simul.* **2005**, *14*, 569–585.

855 (29) Lu, J.; Bates, F. S.; Lodge, T. P. Addition of Corona Block 856 Homopolymer Retards Chain Exchange in Solutions of Block 857 Copolymer Micelles. *Macromolecules* **2016**, *49*, 1405–1413.

858 (30) Lu, J.; Bates, F. S.; Lodge, T. P. Chain Exchange in Binary 859 Copolymer Micelles at Equilibrium: Confirmation of the Independent 860 Chain Hypothesis. *ACS Macro Lett.* **2013**, *2*, 451–455.

861 (31) Lu, J.; Bates, F. S.; Lodge, T. P. Remarkable Effect of Molecular 862 Architecture on Chain Exchange in Triblock Copolymer Micelles. 863 *Macromolecules* **2015**, *48*, 2667–2676.

864 (32) Willner, L.; Poppe, A.; Allgaier, J.; Monkenbusch, M.; Richter, 865 D. Time-Resolved SANS for the Determination of Unimer Exchange 866 Kinetics in Block Copolymer Micelles. *Europhys. Lett.* **2001**, *55*, 667– 867 673.

868 (33) Lund, R.; Willner, L.; Stellbrink, J.; Lindner, P.; Richter, D. 869 Logarithmic Chain-Exchange Kinetics of Diblock Copolymer 870 Micelles. *Phys. Rev. Lett.* **2006**, *96* (6), 1–4.

871 (34) Lund, R.; Willner, L.; Richter, D.; Dormidontova, E. E. 872 Equilibrium Chain Exchange Kinetics of Diblock Copolymer Micelles: 873 Tuning and Logarithmic Relaxation. *Macromolecules* **2006**, *39*, 4566– 874 4575.

875 (35) Lund, R.; Willner, L.; Stellbrink, J.; Richter, D. Equilibrium 876 Exchange Kinetics in PEP-PEO Block Copolymer Micelles. A Time 876 Resolved SANS Study. *Phys. B* **2006**, *385*–386, 735–737.

877 (36) Meli, L.; Santiago, J. M.; Lodge, T. P. Path-Dependent 878 Morphology and Relaxation Kinetics of Highly Amphiphilic Diblock 879 Copolymer Micelles in Ionic Liquids. *Macromolecules* **2010**, *43*, 880 2018–2027.

881 (37) Choi, S. H.; Lodge, T. P.; Bates, F. S. Mechanism of Molecular 882 Exchange in Diblock Copolymer Micelles: Hypersensitivity to Core 883 Chain Length. *Phys. Rev. Lett.* **2010**, *104* (4), 1–4.

884 (38) Zinn, T.; Willner, L.; Lund, R.; Pipich, V.; Richter, D. 885 Equilibrium Exchange Kinetics in N-Alkyl-PEO Polymeric Micelles: 886 Single Exponential Relaxation and Chain Length Dependence. *Soft 887 Matter* **2012**, *8*, 623–626.

888 (39) Zhang, L.; Eisenberg, A. Thermodynamic vs Kinetic Aspects in 889 the Formation and Morphological Transitions of Crew-Cut 890 Aggregates Produced by Self-Assembly of Polystyrene-b-Poly(Acrylic 891 Acid) Block Copolymers in Dilute Solution. *Macromolecules* **1999**, *32*, 892 2239–2249.

893 (40) Meli, L.; Lodge, T. P. Equilibrium vs Metastability: High- 894 Temperature Annealing of Spherical Block Copolymer Micelles in an 895 Ionic Liquid. *Macromolecules* **2009**, *42*, 580–583.

896 (41) Kelley, E. G.; Murphy, R. P.; Seppala, J. E.; Smart, T. P.; Hann, 897 S. D.; Sullivan, M. O.; Epps, T. H. Size Evolution of Highly 898 Amphiphilic Macromolecular Solution Assemblies via a Distinct 899 Bimodal Pathway. *Nat. Commun.* **2014**, *5*, 3599.

900 (42) Honda, C.; Hasegawa, Y.; Hirunuma, R.; Nose, T. Micellization 901 Kinetics of Block Copolymers in Selective Solvent. *Macromolecules* **1992** 902 *27*, 7660–7668.

903 (43) Honda, C.; Abe, Y.; Nose, T. Relaxation Kinetics of 904 Micellization in Micelle-Forming Block Copolymer in Selective 905 Solvent. *Macromolecules* **1996**, *29*, 6778–6785.

906 (44) Parent, L. R.; Bakalis, E.; Ramírez-Hernández, A.; Kammeyer, J. 907 K.; Park, C.; De Pablo, J.; Zerbetto, F.; Patterson, J. P.; Gianneschi, N. 908 C. Directly Observing Micelle Fusion and Growth in Solution by 909 Liquid-Cell Transmission Electron Microscopy. *J. Am. Chem. Soc.* **2010**, *132*, 910 17140–17151.

911 (45) Early, J. T.; Lodge, T. P. Fragmentation of 1,2-Polybutadiene- 912 Block-Poly(Ethylene Oxide) Micelles in Imidazolium-Based Ionic 913 Liquids. *Macromolecules* **2019**, *52*, 7089–7101.

914 (46) Early, J. T.; Yager, K. G.; Lodge, T. P. Direct Observation of 915 Micelle Fragmentation via In Situ Liquid-Phase Transmission 916 Electron Microscopy. *ACS Macro Lett.* **2020**, *9*, 756–761.

917 (47) Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.; 918 Tschersich, A.; Verevkin, S. P.; Heintz, A. Experimental Vapor 919 Pressures of 1-Alkyl-3-Methylimidazolium Bis-(920 Trifluoromethylsulfonyl)Imides and a Correlation Scheme for 921 Estimation of Vaporization Enthalpies of Ionic Liquids. *J. Phys. 922 Chem. A* **2006**, *110*, 7303–7306.

923 (48) Hillmyer, M. A.; Bates, F. S. Synthesis and Characterization of 924 Model Polyalkane-Poly(Ethylene Oxide) Block Copolymers. *Macromolecules* **1996**, *29*, 6994–7002.

926 (49) Brandrup, J.; Immergut, E. H.; Grulke, E. A. *Polymer Handbook*; 927 Wiley-Interscience: New York, 1999, 1–1102.

928 (50) Bonhôte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, 929 K.; Grätzel, M. Hydrophobic, Highly Conductive Ambient-Temper- 930 ature Molten Salts. *Inorg. Chem.* **1996**, *35*, 1168–1178.

931 (51) Brown, W. *Dynamic Light Scattering: The Method and Some 932 Applications (Monographs on the Physics and Chemistry of Materials)*; 933 Clarendon Press/Oxford University Press: Oxford (England)/New 934 York, 1993, 1–752.

935 (52) Bai, Z.; He, Y.; Lodge, T. P. Block Copolymer Micelle Shuttles 936 with Tunable Transfer Temperatures between Ionic Liquids and 937 Aqueous Solutions. *Langmuir* **2008**, *24*, 5284–5290.

938 (53) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; 939 Watanabe, M. Physicochemical Properties and Structures of Room 940

941 Temperature Ionic Liquids. 1. Variation of Anionic Species. *J. Phys. Chem. B* **2004**, *108*, 16593–16600.

942 (54) Nazet, A.; Sokolov, S.; Sonnleitner, T.; Makino, T.; Kanakubo, M.; Buchner, R. Densities, Viscosities, and Conductivities of the Imidazolium Ionic Liquids [Emim][Ac], [Emim][FAP], [Bmim]-[BETI], [Bmim][FSI], [Hmim][TFSI], and [Omim][TFSI]. *J. Chem. Eng. Data* **2015**, *60*, 2400–2411.

943 (55) Zhao, N.; Jacquemin, J.; Oozeerally, R.; Degirmenci, V. New Method for the Estimation of Viscosity of Pure and Mixtures of Ionic Liquids Based on the UNIFAC - VISCO Model. *J. Chem. Eng. Data* **2016**, *61*, 2160–2169.

944 (56) Jakes, J. (Institute of M. C. Testing of the Constrained Regularization Method of Inverting Laplace Transform on Simulated Very Wide Quasielastic Light Scattering Autocorrelation Functions. *Czech. J. Phys.* **1988**, *38*, 1305–1316.

945 (57) Kharel, A.; Lodge, T. P. Coil Dimensions of Poly(Ethylene Oxide) in an Ionic Liquid by Small-Angle Neutron Scattering. *Macromolecules* **2017**, *50*, 8739–8744.

946 (58) Pedersen, J. S.; Svaneborg, C.; Almdal, K.; Hamley, I. W.; Young, R. N. A Small-Angle Neutron and x-Ray Contrast Variation Scattering Study of the Structure of Block Copolymer Micelles: Corona Shape and Excluded Volume Interactions. *Macromolecules* **2003**, *36*, 416–433.

947 (59) Pedersen, J. S. Determination of Size Distributions from Small-Angle Scattering Data for Systems with Effective Hard-Sphere Interactions. *J. Appl. Crystallogr.* **1994**, *27*, 595–608.

948 (60) Pedersen, J. S.; Svaneborg, C. Scattering from Block Copolymer Micelles. *Curr. Opin. Colloid Interface Sci.* **2002**, *7*, 158–166.

949 (61) Halperin, A. Polymeric Micelles: A Star Model. *Macromolecules* **1987**, *20*, 2943–2946.

950 (62) Ma, Y.; Lodge, T. P. Poly(Methyl Methacrylate)-Block-Poly(n-Butyl Methacrylate) Diblock Copolymer Micelles in an Ionic Liquid: Scaling of Core and Corona Size with Core Block Length. *Macromolecules* **2016**, *49*, 3639–3646.

951 (63) Nagarajan, R.; Ganesh, K. Block Copolymer Self-Assembly in Selective Solvents: Spherical Micelles with Segregated Cores. *J. Chem. Phys.* **1989**, *90*, 5843–5856.

952 (64) Bates, F. S. Measurement of the Correlation Hole in Homogeneous Block Copolymer Melts. *Macromolecules* **1985**, *18*, 525–528.

953 (65) Hiemenz, P. C.; Lodge, T. P. *Polymer Chemistry*, 2nd ed.; Taylor & Francis Group/CRC Press: Boca Raton, 2007, 1–587.

954 (66) Zhulina, E. B.; Borisov, O. V. Theory of Block Polymer Micelles: Recent Advances and Current Challenges. *Macromolecules* **2012**, *45*, 4429–4440.

955 (67) Cameron, N. S.; Corbierre, M. K.; Eisenberg, A. 1998 E.W.R. Steacie Award Lecture Asymmetric Amphiphilic Block Copolymers in Solution: A Morphological Wonderland. *Can. J. Chem.* **1999**, *77* (8), 1311–1326.

956 (68) Helfand, E.; Wasserman, Z. R. Block Copolymer Theory. 4. Narrow Interphase Approximation. *Macromolecules* **1976**, *9*, 879–888.

957 (69) Sammalkorpi, M.; Karttunen, M.; Haataja, M. Micelle Fission through Surface Instability and Formation of an Interdigitating Stalk. *J. Am. Chem. Soc.* **2008**, *130*, 17977–17980.

958 (70) Ryu, C. Y.; Vigild, M. E.; Lodge, T. P. Fluctuations with Cubic Symmetry in a Hexagonal Copolymer Microstructure. *Phys. Rev. Lett.* **1998**, *81*, 5354–5357.

959 (71) Ryu, C. Y.; Lodge, T. P. Thermodynamic Stability and Anisotropic Fluctuations in the Cylinder-to-Sphere Transition of a Block Copolymer. *Macromolecules* **1999**, *32*, 7190–7201.

960 (72) Burke, S. E.; Eisenberg, A. Kinetics and Mechanisms of the Sphere-to-Rod and Rod-to-Sphere Transitions in the Ternary System PS310-b-PAA52/Dioxane/Water. *Langmuir* **2001**, *17*, 6705–6714.

961 (73) Abbas, S.; Li, Z.; Hassan, H.; Lodge, T. P. Thermoreversible Morphology Transitions of Poly(Styrene-b-Dimethylsiloxane) Diblock Copolymer Micelles in Dilute Solution. *Macromolecules* **2007**, *40*, 4048–4052.

962 (74) Lund, R.; Willner, L.; Richter, D.; Lindner, P.; Narayanan, T. Kinetic Pathway of the Cylinder-to-Sphere Transition in Block Copolymer Micelles Observed in Situ by Time-Resolved Neutron and Synchrotron Scattering. *ACS Macro Lett.* **2013**, *2*, 1082–1087.

963 (75) Wang, L.; Huang, H.; He, T. Rayleigh Instability Induced Cylinder-to-Sphere Transition in Block Copolymer Micelles: Direct Visualization of the Kinetic Pathway. *ACS Macro Lett.* **2014**, *3*, 433–438.