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ORCCA: Optimal Randomized Canonical
Correlation Analysis

Yinsong Wang

Abstract— Random features approach has been widely used for
kernel approximation in large-scale machine learning. A number
of recent studies have explored data-dependent sampling of
features, modifying the stochastic oracle from which random
features are sampled. While proposed techniques in this realm
improve the approximation, their suitability is often verified
on a single learning task. In this article, we propose a task-
specific scoring rule for selecting random features, which can
be employed for different applications with some adjustments.
We restrict our attention to canonical correlation analysis (CCA)
and provide a novel, principled guide for finding the score
function maximizing the canonical correlations. We prove that
this method, called optimal randomized CCA (ORCCA), can
outperform (in expectation) the corresponding kernel CCA with
a default kernel. Numerical experiments verify that ORCCA is
significantly superior to other approximation techniques in the
CCA task.

Index Terms— Canonical correlation analysis (CCA), kernel
approximation, kernel methods, random features.

I. INTRODUCTION

ERNEL methods are powerful tools to capture the non-
linear representation of data by mapping the dataset to
a high-dimensional feature space. Despite their tremendous
success in various machine learning problems, kernel methods
suffer from massive computational cost on large datasets. The
time cost of computing the kernel matrix alone scales quadrat-
ically with data, and if the learning method involves inverting
the matrix (e.g., kernel ridge regression), the cost would
increase to cubic. This computational bottleneck motivated
a great deal of research on kernel approximation, where the
seminal work of [1] on random features is a prominent point in
case. For the class of shift-invariant kernels, they showed that
one can approximate the kernel by the Monte Carlo sampling
from the inverse Fourier transform of the kernel. This idea
has been used in solving many machine learning problems,
including distributed learning [2], [3], online learning [4], [5],
and deep learning [6].
Due to the practical success of random features, the idea
was later used for one of the ubiquitous problems in statistics
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and machine learning, namely, canonical correlation analysis
(CCA). CCA derives a pair of linear mappings of two datasets
such that the correlation between the projected datasets is max-
imized. Similar to other machine learning methods, CCA also
has a nonlinear counterpart called kernel CCA (KCCA) [7],
which provides a more flexible framework for maximizing
the correlation. Due to the prohibitive computational cost of
KCCA, randomized CCA (RCCA) was introduced [8], [9] to
serve as a surrogate for KCCA. RCCA uses random features
for transformation of the two datasets. Therefore, it provides
the flexibility of nonlinear mappings with a moderate compu-
tational cost.

On the other hand, more recently, data-dependent sampling
of random features has been an intense focus of research in
the machine learning community. The main objective is to
modify the stochastic oracle from which random features are
sampled to improve a certain performance metric. Examples
include [10], [11] with a focus only on kernel approximation
as well as [12]-[14] with the goal of better generalization
in supervised learning. While the proposed techniques in this
realm improve their respective learning tasks, they are not
necessarily suitable for other learning tasks, such as CCA,
which is the focus of this work.

In this article, we propose a task-specific scoring rule for
reweighting random features, which can be employed for
various applications with some adjustments. In particular,
our scoring rule depends on a matrix that can be adjusted
based on the application. We first observe that a number of
data-dependent sampling methods (e.g., leverage scores (LSs)
in [13] and energy-based sampling in [15]) can be recovered
by our scoring rule using specific choices of the matrix.
Then, we draw a connection between the scoring rule and
correlation analysis/dimension reduction problems that deal
with trace optimization objectives. As an important case study,
we focus on CCA and provide a principled guide for finding
the score function maximizing the canonical correlations. Our
result reveals a novel data-dependent method for selecting
features, called optimal randomized CCA (ORCCA). This
suggests that prior data-dependent methods are not necessarily
optimal for the CCA task. We also prove that ORCCA achieves
a better performance compared to KCCA (in expectation)
with a default kernel. We conduct extensive numerical exper-
iments verifying that ORCCA indeed introduces significant
improvement over the state of the art in random features
for CCA.

The rest of this article is organized as follows. In Section II,
we provide the preliminaries on random features, CCA, and
formally define the problem we will address in this article.
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This section also includes the related literature. In Section 111,
we propose our score function, discuss its connection with
existing score functions in supervised learning, and show a
class of problems that is compatible with our score function.
In Section IV, we present our theoretical results. We illus-
trate the effectiveness of ORCCA on benchmark datasets in
Section V and conclude in Section VI.

II. PRELIMINARIES AND PROBLEM SETTING

Notation: We denote by [n] the set of positive integers
{1,...,n}, by Tr[-] the trace operator, by (-, -) the standard
inner product, by ||-|| the spectral (respectively, Euclidean)
norm of a matrix (respectively, vector), and by E[-] the
expectation operator. Boldface lowercase variables (e.g., a) are
used for vectors, and boldface uppercase variables (e.g., A) are
used for matrices. [A];; denotes the ijth entry of matrix A.
The vectors are all in column form.

A. Random Features and Kernel Approximation

Kernel methods are powerful tools for data representation,
commonly used in various machine learning problems. Let
{x;}"_, be a set of given points where x; € X € R% for any
i € [n], and consider a symmetric positive-definite function
k(-,-) such that 37, a;a;k(x;,X;) > 0 for @ € R". Then,
k(-,-) is called a positive (semi)definite kernel, serving as a
similarity measure between any pair of vectors (x;, X;). This
class of kernels can be thought as inner product of two vectors
that map the points from a d,-dimensional space to a higher
dimensional space (and potentially infinite-dimensional space).

Despite the widespread use of kernel methods in machine
learning, they have an evident computational issue. Computing
the kernel for every pair of points costs O(n?), and if the
learning method requires inverting that matrix (e.g., kernel
ridge regression), the cost would increase to O(n*). This
particular disadvantage makes the kernel method impractical
for large-scale machine learning.

An elegant method to address this issue was the use of
random Fourier features (RFFs) for kernel approximation [1].
Let p(w) be a probability density with support Q C R%.
Consider any kernel function in the following form with a
corresponding feature map ¢ (X, @) such that:

k(x, x') :/Qqﬁ(x, w)p(x', w) p(w)dw

M
1
i > ¢, 0n)p (X, o) (1)
m=1
where {wm},",f’:1 are independent samples from p(w), called

random features. Examples of kernels taking the form (1)
include shift-invariant kernels [1] or dot-product (e.g., poly-
nomial) kernels [16] (see [17, Table I] for an exhaustive list).
Let us now define

2(®) £ [p(x1, @), . . ., P(Xq, )] (2)

Then, the kernel matrix [K];; = k(x;,X;) can be approxi-
mated with ZZ" where Z € R"™M ig defined as

ze ﬁ[z(wl), @), 3)
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The low-rank approximation above can save significant
computational cost when M < n. As an example, for kernel
ridge regression, the time cost would reduce from O(n?) to
O(nM?). Since the main motivation of using randomized
features is to reduce the computational cost of kernel methods
(with M < n), this observation will naturally raise the
following question:

Problem 1 (Informal): Can we develop a sampling (or
selection) mechanism for random features that takes into
account the “learning task” to improve the performance com-
pared to plain sampling?

Section III sheds light on Problem 1. First, in Section III-A,
we will propose a score function with a potential to be
adapted to different learning tasks. Section III-B shows the
connection between the proposed score function and two
existing score functions for random features in supervised
learning. Then, Section III-C provides another class of prob-
lems (i.e., dimensionality reduction/correlation analysis) for
which the proposed score function can prove useful. In this
article, we focus on kernel CCA (as one potential application),
introduce our main question in Problem 2, and provide our
theoretical results.

B. Overview of Canonical Correlation Analysis

Linear CCA was introduced in [18] as a method of correlat-
ing linear relationships between two multidimensional random
variables X =[x, ..., X,]" e R and Y = [y1,...,¥yal' €
R™*4 This problem is often formulated as finding a pair of
canonical bases I, and IT, such that |corr(XII,, YII,) =L, ||
is minimized, where r = max(rank(X), rank(Y)) and ||-|| 7 is
the Frobenius norm.

The problem has a well-known closed-form solution (see,
e.g., [19]), relating canonical correlations and canonical pairs
to the eigensystem of the following matrix:

(Zxx + /uxI)71 0 :| |: 0 ZX}’i|
|: 0 (Zyy + :“yl)il Zyx 0 @

where ., =X'X, 2,, =Y'Y, X, = X"Y, and u,, u, are
regularization parameters to avoid singularity. In particular, the
eigenvalues correspond to the canonical correlations and the
eigenvectors correspond to the canonical pairs.

The kernel version of CCA, called KCCA [7], [20], inves-
tigates the correlation analysis using the eigensystem of the
following matrix:

[(waxl)‘ 0 Mo Ky} )
0 (K, +u,0) " || Ko 0

where [K]ij = ki (x;, x;) and [K,l;; = ky(yi,y;)-

As the inversion of kernel matrices involves O(n?®) time
cost, Lopez-Paz et al. [9] adopted the idea of kernel approxi-
mation with random features, introducing randomized CCA
(RCCA). RCCA uses approximations K, ~ Z,Z! and
K, ~ ZyZyT in (5), where Z, and Z, are the transformed
matrices using random features as in (3). In other words,
RCCA(X,Y) = CCA(Z:,Z,) ~ KCCA(X,Y). Now, the
question we would like to answer in this article is as follows.
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Problem 2: 1f we want to maximize the total canonical cor-
relations, i.e., the trace of matrix (5), what is the corresponding
score function in the form of (6) to reweight (or select) the
random features?

Note that the term “maximize” makes sense here due to the
approximation using random features. In other words, we are
interested in finding the features providing more correlation
(or maximize the correlation) between X and Y. In the next
section, we will derive the desired score function and show its
performance advantage in theory. We will see that the features
that we select based on the score function change the kernel
in a way that improves the correlation.

C. Related Literature

1) Random Features: As discussed in Section II-A, kernels
of form (1) can be approximated using random features
(e.g., shift-invariant kernels using Monte Carlo [1] or quasi
Monte Carlo [21] sampling and dot-product kernels [16]).
A number of methods have been proposed to improve the time
cost, decreasing it by a linear factor of the input dimension
(see, e.g., fast food [10], [22]). The generalization properties
of random features have been studied for ¢-regularized risk
minimization [23] and ridge regression [24], both improving
the early generalization bound of [25]. Also, Felix et al. [26]
developed orthogonal random features (ORFs) to improve
kernel approximation variance. It turns out that ORF pro-
vides an optimal kernel estimator in terms of mean-squared
error [27]. May et al. [28] presented an iterative gradient
method for selecting the best set of random features for
supervised learning with acoustic model. A number of recent
works have focused on kernel approximation techniques based
on data-dependent sampling of random features. Examples
include [29] on compact nonlinear feature maps, [10], [30]
on approximation of shift-invariant/translation-invariant ker-
nels, [11] on the Stein effect in kernel approximation, and [31]
on data-dependent approximation using greedy approaches
(e.g., Frank—Wolfe). On the other hand, another line of
research has focused on generalization properties of data-
dependent sampling. In addition to works mentioned in
Section III-B, the work [14] also studied data-dependent
approximation of translation-invariant/rotation-invariant ker-
nels for improving generalization in SVM. Li er al. [32]
recently proposed a hybrid approach (based on importance
sampling) to reweight random features with application to both
kernel approximation and supervised learning.

2) Canonical Correlation Analysis: As discussed in
Section II-B, the computational cost of KCCA [7] moti-
vated a great deal of research on kernel approximation for
CCA in large-scale learning. Several methods tackle this
issue by explicitly transforming datasets (e.g., randomized
CCA (RCCA) [8], [9], fix-sized kernel CCA (FSCCA) [33],
and deep CCA (DCCA) [34]). RCCA and FSCCA tackle
the computation issue of KCCA with two well-known ker-
nel approximation methods, random features and Nystrom
method, respectively. RCCA focuses on transformation using
randomized one-hidden layer neural network, whereas DCCA
considers deep neural networks. Perhaps not surprisingly, the

time cost of RCCA is significantly smaller than DCCA [9].
There exist other nonparametric approaches such as nonpara-
metric CCA (NCCA) [35], which estimates the density of
training data to provide a practical solution to Lancaster’s
theory for CCA [36]. Also, more recently, a method is
proposed in [37] for sparsifying KCCA through the ¢; reg-
ularization. A different (but relevant) literature has focused on
addressing the optimization problem in CCA. Wang et al. [38]
and Arora et al. [39] [38], [39] discussed this problem by
developing novel techniques, such as alternating least squares,
shift-and-invert preconditioning, and inexact matrix stochas-
tic gradient. In a similar spirit is [40], which presents a
memory-efficient stochastic optimization algorithm for RCCA.

The main novelty of our approach is proposing an optimized
scoring rule for random features selection, which can be
adopted for different learning tasks, including various corre-
lation analysis techniques, e.g., CCA.

III. OBJECTIVE-BASED SCORE FUNCTION
A. Task-Specific Scoring Rule for Random Features Selection

Several recent works have answered to Problem 1 in the
affirmative; however, quite interestingly, there is so much
difference in adopted strategies given the learning task. For
example, a sampling scheme that improves kernel approxima-
tion (e.g., ORFs [26]) will not necessarily be competitive for
supervised learning [15]. In other words, Problem 1 has been
addressed in a task-specific fashion. In this article, we propose
a scoring rule for selecting features that lends itself to several
important tasks in machine learning. Let B be a real matrix
and define the following score function for any w € Q:

q(®) £ p(@)z' (®)B z(w) (©6)

where p(w) is the original probability density of random
features. p(w) can be thought as an easy prior to sample
from. The score function g(®@) can then serve as the metric
to reweight the random features from prior p(®). The key
advantage of the score function is that B can be selected based
on the learning task to improve the performance. We will
elaborate on this choice in Sections III-B-III-C.

B. Relation to Supervised Learning Scoring Rules

A number of recent works have proposed the idea of sam-
pling random features based on data-dependent distributions,
mostly focusing on improving generalization in supervised
learning. In this section, we show that the score function (6)
will bring some of these methods under the same umbrella.
More specifically, given a particular choice of the cen-
ter matrix B, we can recover a number of data-dependent
sampling schemes, such as LSs [13], [24], [41], [42] and
energy-based exploration of random features (EERFs) [15].

1) Leverage Scores: Following the framework mentioned
in [13], LS sampling is according to the following probability
density function:

qrs(@) « p(@)z' (©)(K + 1)~ 'z(w) @)

which can be recovered precisely when B = (K+AI)~! in (6).
A practical implementation of LS was proposed in [41] and
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later used in the experiments mentioned in [42] for SVM. The
generalization properties of (a variant of) LS algorithm was
also studied in [43] for the case of ridge regression.

2) Energy-Based Exploration of Random Features: The
EERF algorithm was proposed in [15] for improving general-
ization. In supervised learning, the goal is to map input vectors
{x;}/_, to output variables {y;}?_,, where y; € R for i € [n].
The EERF algorithm employs the following scoring rule for
random features

(®)

gEERF(®)

1 n
=2 yib(xi, )
i=1

where the score is calculated for a large pool of random
features and a subset with the largest score will be used for the
supervised learning problem. Now, if we lety = [y, ..., yal',
we can observe that gggrp(®@) is equivalent to (6) with the
center matrix B = yy' because ordering the pool of features
according to (y'z(®))? = (31_, yi¢(xi, w))? is equivalent to
|(1/n) X", yi¢(xi, )| given above. Shahrampour ef al. [15]
showed in their numerical experiments that EERF consistently
outperforms plain random features and other data-independent
methods in terms of generalization. We remark that the kernel
alignment method in [12] is also in a similar spirit. Instead
of choosing features with largest scores, an optimization
algorithm is proposed to reweight the features such that the
transformed input is correlated enough with output variable.

Given the success of algorithms such as LS and EERF,
we can hope that the scoring rule (6) has the potential to be
adopted in various learning tasks. Indeed, the center matrix B
should be chosen based on the objective function that needs
to be optimized in the learning task at hand.

C. Relation to Dimension Reduction and Correlation
Analysis

We now show another potential of the score function (6) by
establishing that

Tr[KB] :/Qq(w)dw:/gp(w)zT(w)B zZ(®)

%

1 M
~ > 2" (@n)B z(wn) )
m=1

where {w,,}_, are independent samples from p(w). The
above relationship reveals the connection of the score
function with a class of trace maximization problems deal-
ing with kernelized objective functions. Several dimen-
sion reduction/correlation analysis methods fall into this
category. For example, kernel principal component analy-
sis (KPCA) and kernel orthogonal neighborhood preserving
projections (KONPPs) have the exact form of the objective
function in (9) (see, e.g., [44]). In each case, we can identify
the matrix B by looking at the corresponding eigenvalue
problem. For KPCA, the eigenvalue problem implies that the
matrix B = (I — (1/n)117), where 1 is the vector of all ones.
In KONPP, the corresponding eigenvalue problem entails that
B =(1-W")I—- W), where W is the affinity matrix in
the feature space. Now, instead of covering more high level
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formulations, in Section 1V, we will carefully study CCA,
which is also formulated as a trace optimization (9).

Remark 1: The scoring rule (6) offers a principled way to
select random features that promise good performance for
a specific objective. In this section, we identify a class of
dimension reduction and correlation analysis problems that
are compatible with the proposed scoring rule. However, its
adaptation to other problems still requires efforts in the iden-
tification and derivation of the score function. In Section IV,
we will focus on nonlinear CCA, as an important problem in
machine learning and statistics, to derive the respective score
function and use it for algorithm implementation.

IV. CANONICAL CORRELATION ANALYSIS WITH
SCORE-BASED RANDOM FEATURES SELECTION

We now show the application of the scoring rule (6) to
nonlinear CCA.

A. Optimal Randomized Canonical Correlation Analysis

We now propose the adaptations of the scoring rule (6) for
CCA, where the center matrix B is selected particularly for
maximizing the total canonical correlation. We start with an
important special case of d, = 1 due to the natural connection
to supervised learning. We will use index x for any quantity
in relation to X and y for any quantity in relation to Y.

1) Optimal Randomized Canonical Correlation Analysis 1
(dy =1 and Linear K,): We consider the scenario where
X e R™*% is mapped into a nonlinear space Z, € R"™M
(using random features) following (3). On the other hand,
Y =y € R” remains in its original space (with d, = 1 and
K, = yy ). It is well known that if y = Z.«a for some
o € RY, perfect (linear) correlation is achieved between y
and Z, (with 4, = u, = 0 and n > d,), simply because y
is a linear combination of the columns of Z,. This motivates
the idea that sampling schemes that are good for supervised
learning may be natural candidates for CCA in that with
y = Z,a, we can achieve perfect correlation. The following
proposition finds the optimal scoring rule of form (6) that
maximizes the total canonical correlation.

Proposition 1: Consider KCCA in (5) with p, = uy = u,
a nonlinear kernel matrix K, and a linear kernel K, = yy'.
If we approximate K, ~ Z,Z! only in the right block matrix
of (5), the optimal scoring rule maximizing the total canonical
correlation can be expressed as

q(@) = p(w)z, (@)K, + 1) 'yy 'z, (@) (10)

for any @ € Q, € R%. The scoring rule above corresponds to
(6) with B = (K, + uI)~lyy'.

Interestingly, the principled way of choosing B that max-
imizes total CCA leads to a feature selection rule that was
not previously investigated. It is clear that the score function
in (10) is different from LS (7) and EERF (8). While the
scoring rule (10) optimizes canonical correlations in view of
Proposition 1, calculating B would cost O(n?), which is not
scalable to large datasets. The following corollary offers an
approximated solution to avoid this issue.
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Corollary 1: For any finite pool of random features
{wm},’f(‘:l, instead of selecting according to the scoring
rule (10), we can approximate the scoring rule with the
following empirical score:

@) ~G@) = | (Z]Z+ ) 2wz | ap
for any w,; € Q, C R% and i € [M,], where Z, is formed
with M, random features as in (3) and ¢(w;) denotes the
empirical score of the ith random features in the pool of
M, features.

Observe that selecting according to the score rule above will
reduce the computational cost from O(n’) to O (nMg + My),
which is a significant improvement when M, <« n. After
constructing (11), we can select the M features with the
highest empirical scores. This algorithm is called ORCCA1
presented in Algorithm 1.

Algorithm 1 ORCCA1

Input: X € R"*% y € R”, the feature map ¢(-, -), an integer
M, an integer M, the prior distribution p(®), the parameter
u > 0.

My
m=1

1: Draw M, independent samples {®,,} from p(w).

2: Construct the matrix
Q= (Z]Z +ul) ' Z]yy Z.,

where Z, is defined in (3).
3: Let for i € [My]

q(®;) =[Q];;.

The new weights q = [§(@1), - .., §(@um,)] "

4: Sort q and select top M features with highest scores
from the pool to construct the transformed matrix A
following (3).

Qutput: Linear canonical correlations between ZX and y (with

regularization parameter u).

2) Optimal Randomized Canonical Correlation Analysis 2
(Nonlinear K,): We now follow the idea of KCCA with both
views of data mapped to a nonlinear space. More specifically,
X € R"™% is mapped to Z, € R and Y € R"*% is mapped
to Z, € R"™M following (3). For this set up, we provide below
the optimal scoring rule of form (6) that maximizes the total
canonical correlation.

Theorem 1: Consider KCCA in (5) with u, = u, = pu,
a nonlinear kernel matrix K,, and a nonlinear kernel K.
If we alternatively approximate K, ~ Z,Z! and K, ~ Z,Z]
only in the right block matrix of (5), the optimal scoring rule
maximizing the total canonical correlation can be expressed
as

(@) = pr(@)z] (©) (K, + 1)K, (K, + uI) ' 2, (@)
9y(@) = py(@)z] (@) (K, + £1) K (K, + pD) 7'z, ()
(12)

for any € Q, € R% and any ' € Q, C R%, respectively.
The probability densities p.(w) and p,(@’) are the priors

defining the default kernel functions in the space of X and
Y according to (1).

We can associate the scoring rules above to the task-specific
scoring rule (6) as well. Indeed, for choosing the random
features from €, to transform X, the center matrix is B =
K, + uD7'K, (K, + D)7, and for choosing the random
features from Q, to transform Y, the center matrix is B =
(K, + uD)'K (K, + u«I)~!. While the scoring rule (12)
optimizes canonical correlations in view of (5), calculating B
would cost O (n?), which is not scalable to large datasets. The
following corollary offers an approximated solution to avoid
this issue.

Corollary 2: For any finite pool of random features
{a)x,m}ﬁ;";l and {a)y,m}nﬁfo=1 (sampled from priors p,(w) and
py(w), respectively), instead of selecting according to the scor-
ing rules (12), we can approximate them using the following
empirical versions:

Qo) = (2120 + 1) 2] 2,(2]2, + 1) '2]2, ]

12
gy(@y.) = [(ZIZ)’ + /‘I)AZ;‘FZ’C (ZIZX + :“I)AZIZ.V]”
for any @,; € Q, € R% and any @,; € Q, € R%,
respectively. Z, and Z, are the transformed matrices of X and
Y as in (3) using M, random features. gy (wy ;) and g, (@, ;)
denote the scores of the ith random features in the pools
corresponding to X and Y, respectively.

As we observe, the computational cost in both views of the
data is reduced from O (n?) to O(nMj+ M;). The justification
is provided in the appendix (Section VI-F). We use the
above empirical scores for the implementation of ORCCA2,
described in Algorithm 2. We also prove below that the
theoretical score functions in (10) and (12) always provide
improvement over RCCA and KCCA.

Proposition 2: The total canonical correlation obtained
with M features selected from an M, features pool
(M < My < o0) using nonempirical scores (10) and (12)
provides a theoretical upper bound of the total canonical
correlation obtained with M plain RFFs in expectation. Let us
denote by p(KCCA) the total canonical correlation obtained
by KCCA and by p™)(RCCA) the total canonical correlation
obtained by RCCA with M plain RFFs. Let us also represent
by p®™-M)(ORCCA) the total canonical correlation obtained
by ORCCA (1 and 2), where top M features are selected from
a pool of My > M plain RFFs according to score (12). Then,
the following relationship holds:

E[p™-")(ORCCA)] = E[p™ (RCCA)] = p(KCCA) (13)

where the expectation is taken over random features.

The intuition is that the selected features via the proposed
score obtain a sup value over the subsets of the feature pool,
and therefore, the expectation of the sup will be greater than
the sup of expectation. This logic applies to other adaptations
as well, meaning that proper adaptation of score function (6)
will provide uniformly better results than RFFs in any suitable
tasks. The proof of our results is given in the appendix.

Remark 2: Notice that ORCCA1l is a special case of
ORCCA2 where dy = 1 and K, = yy ', and we are presenting
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Algorithm 2 ORCCA2

Input: X e R™4Y e R"™9%, the feature map (-, "),
an integer My, an integer M, the prior densities p,(®) and
py(®), parameter x4 > 0.

1: Draw samples {wx,,,,},’,‘f“:1 and {®y .}

px(®) and py(w), respectively.
2: Construct the matrices

Q = (22, + 1) '2]2,
P=(2]Z,+ul) 'Z]Z,.

My

me according to

where Z, and Z, are defined in (3).
3: Let for i € [My]

z]\x (wx,i) = [QP]u

The new weights q; = [gx(@x.1), - . -
4: Let for i € [My]

> Zl\x (wx,Mo )]T

Gy (w,,)) = [PQ];.

The new weights q, = [§y(@y.1), - - -, @y (@y 1)1
5: Select top M features with the highest scores from each
of the pools {wx,i}?/l:"l and {wy,i}g‘l, according to the new
scores q, and ii)\, to construct the transformed matrices
7. € R™M and Z, € R™M respectively, as in (3).
Output: Linear canonical correlations between Z, and /Z\y
(with parameter u).

it as a separate algorithm to highlight its connection with
supervised learning.

V. NUMERICAL EXPERIMENTS
A. Approximated KCCA Comparison

We now investigate the empirical performance of ORCCA1
and ORCCA2 against other approximated versions of KCCA
using six datasets from the UCI Machine Learning Repository.

1) Benchmark Algorithms: We compare our work to four
random features based benchmark algorithms that have shown
good performance in supervised learning and/or kernel approx-
imation. All four algorithms approximate KCCA by random-
ized low-rank kernel approximation. The first one is plain
RFFs [1]. Next is ORFs [26], which improves the variance
of kernel approximation. We also include two data-dependent
sampling methods, LS [13], [41] and EERF [15], due to their
success in supervised learning as mentioned in Section III-B.

1) RFFs [1] With ¢ = cos(x"® + b) as the Feature Map to
Approximate the Gaussian Kernel: {,,})_, are sampled from
the Gaussian distribution N'(0, 1) and {b,,}*_, are sampled
from uniform distribution ¢/ (0, 27). We use this to transform
X € R™% to Z, € R"™M_ The same procedure applies to
y € R" to map it to Z, € R"™M_ This algorithm corresponds
to the aforementioned RCCA [9], and we use RFF instead
of its original name to emphasize the role of plain random
features method here.

2) Orthogonal Random Features [26] With ¢ =
[cos(x ' w), sin(x' w)] as the Feature Map: {wn}M_, are sam-
pled from a Gaussian distribution A/(0, ¢ *I) and then modified
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based on a QR decomposition step. The transformed matrices
for ORF are Z, € R"*™ and Z, € R™*M_ Given that the
feature map is 2-D here, to keep the comparison fair, the
number of random features used for ORF will be half of other
algorithms.

3) Leverage Score Sampling [I3], [41] With ¢ =
cos(x"® + b) as the Feature Map: {w,,l}nﬁf”=1 are sampled
from the Gaussian distribution N'(0, ¢2I) and {bm}”/‘f"=1 are
sampled from the uniform distribution ¢ (0, 2z). M features
are sampled from the pool of My RFFs according to the
scoring rule of LS (7). Note that the transformed matrices
Z, € R™M and Z, € R™M correspond to (3) with the jth
column normalized by a factor of (p(®;)/qrs(®@;))"/* due to
importance sampling.

4) Energy-Based Exploration of Random Features [15] With
¢ = cos(x'® + b) as the Feature Map to Approximate the
Gaussian Kernel: {wm}fjo:l are sampled from the Gaussian
distribution A/(0, ¢2I) and {bm},}‘f‘;1 are sampled from the
uniform distribution U (0, 27). M features are selected using
the scoring rule in (8) from the M, feature pool. We use the
sampled M features to transform X € R"*% to Z, € R"™M,

1) Numerical Experiments for ORCCAI:

Practical Considerations: Following [8], we work with
empirical copula transformation of datasets to achieve
invariance with respect to marginal distributions. For
X domain, the variance of random features o, is set
to be the inverse of mean distance of the 50th nearest
neighbor (in Euclidean distance), following [26]. We use
the corresponding Gaussian kernel width for KCCA. The
label information y has remained in its original space
after coupula transform. For LS, EERF, and ORCCAI,
the pool size is My = 10M when M random features
are used in the CCA calculation. The regularization
parameter A for LS is chosen through grid search. The
regularization parameter x4 = 107% is set to be small
enough to make its effect on CCA negligible while
avoiding numerical errors caused by singularity. The
feature map for ORCCAL1 is set to be ¢ = cos(x w+b).
Performance: The empirical results for ORCCAL are
reported in Fig. 1. The results are averaged over 30 sim-
ulations and error bars are presented in the plots. There
is only one canonical correlation to report due to d, = 1.
We can clearly observe that ORCCA1 shows dominance
over the other benchmark algorithms except for two
occasions: 1) at M = 100 features, ORF performs
on par with ORCCAL in the Adult dataset and 2) at
60+ features, EERF performs on par with ORCCALI in
the Energy dataset. Another interesting observation here
is that other than ORCCALI, all the benchmark algo-
rithms do not show any clear hierarchy in performance
given their established empirical performance hierarchy
in supervised learning [45].

2) Numerical Experiments for ORCCA2:

Practical Considerations: The variance of random fea-
tures o, is set to be the inverse of mean distance of
the 50th nearest neighbor (same procedure as ORCCA1
experiments). After performing a grid search, the vari-
ance of random features ¢, for Y is set to be the same
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as oy, producing the best results for all algorithms. For
LS and ORCCAZ2, the pool size is My = 10M when M
random features are used in the CCA calculation. The
regularization parameter A for LS is chosen through grid
search. The regularization parameter in CCA calculation
remains at 4 = 1075, The feature map for ORCCA?2 is
also ¢ = cos(x' @ + b).

Performance: Our empirical results on four datasets
are reported in Fig. 2. The results are averaged over
30 simulations and error bars are presented in the plots.
The first row of Fig. 2 represents the total canonical
correlation versus the number of random features M for
ORCCAZ2 (this work), RFF, ORF, and LS. We observe
that ORCCAZ2 is superior compared to other benchmarks
and only for the Adult dataset ORF is initially on
par with our algorithm. The second row of Fig. 2
represents the top-10 canonical correlations, where we
observe the exact same trend. This result shows that the

total canonical correlation is mostly explained by their
leading correlations. The third row of Fig. 2 represents
the largest canonical correlation. Although ORCCA?2 is
developed for the total canonical correlation objective
function, we can still achieve performance boost in
identifying the largest canonical correlation, which is
also a popular objective in CCA. The theoretical time
complexity and practical time cost are tabulated in
Table I. Our cost is comparable to LS as both algorithms
calculate a new score function for feature selection.
The run time is obtained on a desktop with an eight-
core, 3.6-GHz Ryzen 3700X processor and 32 GB of
RAM (3000 MHz). Given the dominance of ORCCA1
over LS and EERF and ORCCA2 over LS, we can
clearly conclude that data-dependent sampling methods
that improve supervised learning are not necessarily
best choices for CCA. Finally, in Fig. 4, we compare
ORCCA?2 and KCCA. The datasets used for this part are
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3)

smaller than the previous one due to prohibitive cost of
KCCA. On these datasets, ORCCA2 can gradually out-
perform KCCA in total CCA value as the computation
time increases (due to increasing the number of random
features), while it is also more efficient in terms of time
cost. The main reason is that ORCCA2 approximates a
“better” kernel than Gaussian by choosing good features.
Performance Comparison With Training and Testing Sets
(ORCCA2):

Due to the sample and select nature of ORCCA algo-
rithms, one might wonder the necessity of cross vali-
dation during the implementation of ORCCA. In this
experiment, we randomly choose 80% of the data as
the training set and use the rest as the testing set. For
ORCCA2 and LS, the random features are reselected
according to the score calculated with the training set,
and canonical correlations are calculated with these
features for the testing set. RFF and ORF algorithms
are only implemented on the test set as their choice
is independent of data. All the parameters, including
the random features variances o? and o7, feature map
¢, pool size M, the original distribution for random
features, the regularization parameter u for CCA, and
the regularization parameter A for LS, are kept the same
as the previous ORCCA2 numerical experiment. The
results are shown in Fig. 3 following the same layout
as Fig. 2. We can observe that the performance of
algorithms is almost identical to the results of Fig. 2,
which shows the robustness of ORCCA2 to test data
as well. In another word, we can avoid the loss of
information due to cross validation when implementing
ORCCA algorithms.

B. Deep Learning CCA Comparison

In addition to variants of kernel approximation for CCA,
recent studies have been utilizing deep learning to fur-
ther enhance CCA. The recent deep learning algorithms
include deep CCA (DCCA) [34], deep variational CCA
(DVCCA) [46], deep generalized CCA (DGCCA) [47], and
deep tensor CCA (DTCCA) [48]. In this section, we will
compare ORCCA2 with the above-mentioned state-of-the-art
CCA methods.

1) Benchmark Algorithms:

1) DCCA: DCCA uses deep neural networks for the non-
linear transformation of both views of data. The para-
meters of the network are updated using gradient flow,
calculated with negative total canonical correlation used
as the loss function. We identically construct the neural
networks for both views of the data. The neural network
consists of a hidden layer with 100 neurons and ReLU
activations, with an output of dimension 20.

2) DTCCA: Deep tensor CCA uses a deep neural net-
work for nonlinear transformation, similar to DCCA.
However, the loss function is replaced by the tensor
formulation of total canonical correlations from tensor
CCA to extend DCCA to more than two views of data.
We construct the same neural network embedding as
DCCA. We must note that the main goal of DTCCA
is to extend CCA to more than two views of data with
tensor formulation. The main reason to include DTCCA
in this comparison is to show the impact of multiview
CCA on the correlation extraction.

3) DGCCA: Deep generalized CCA uses deep neural net-
works for nonlinear transformation, similar to DCCA.
It forces the two views of data to transform into a shared
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TABLE I

THEORETICAL TIME COMPLEXITY OF ORCCA?2 AND BENCHMARK ALGORITHMS AND THEIR PRACTICAL TIME COST (IN SEC). FOR REPORTING
TIME COST (ONLY), WE USED n = 5000 DATA POINTS, M = 100 RANDOM FEATURES, AND M = 1000 FEATURE POOL.
FOR ENERGY USE, WE USED THE FULL DATASET n = 768

ALGORITHMS COMPLEXITY MNIST ENERGY USE SEIZURE DETECTION ADULT

ORCCA2 O(nM§ + Mg)  21.03 2.49 17.39 15.70

LS O(nMg + Mg) 18.73 2.44 16.32 14.92

RFF O(nM?) 2.86 0.40 2.59 2.53

ORF O(nM?) 2.78 0.40 2.62 2.58
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Fig. 4. ORCCAZ2 versus KCCA comparison. The plots represent the total canonical correlations obtained by ORCCA?2 with different time costs (by varying
the number of random features). The dot represents the total canonical correlation obtained by KCCA and its time cost. The total canonical correlations and
time cost of KCCA are also marked by text on the axis. The error bars are obtained with 30 Monte Carlo simulations. CCPP is “Combined Cycle Power

Plant” data.

TABLE II

ORCCA2 PERFORMANCE COMPARISON WITH OTHER STATE-OF-THE-ART DEEP LEARNING VARIANTS OF CCA. ALL DEEP LEARNING
ALGORITHMS USE 20 LATENT DIMENSIONS, AND RFF AND ORCCA?2 USE 20 RANDOM FEATURES FOR A FAIR COMPARISON.

THE STANDARD ERRORS ARE ESTIMATED WITH 30 MONTE CARLO SIMULATIONS

FASHIONMNIST MNIST
ALGORITHMS TIME(S) LARGEST Top-10 TOTAL TIME(S) LARGEST Top-10 TOTAL

RFF 0.016 + 0.001 0.559 £ 0.010 3.126 + 0.027 3.971 £ 0.034 0.016 + 0.001 0.405 £+ 0.005 2.773 +£0.020 3.586 £+ 0.027
DCCA 34.983 £ 0.020 0.517 +0.026 1.993 + 0.039 2.360 £ 0.047 33.023 + 0.459 0.261 +0.018 1.355 £ 0.056 1.585 + 0.072

DTCCA 7.266 £+ 0.422 0.535 4+ 0.008 1.372 £ 0.028 1.194 + 0.042 6.911 +0.348 0.173 £ 0.008 0.731 +0.032 0.555 + 0.48
DGCCA 53.941 +£0.171 | 0.698 +0.014 1.952 + 0.040 2.132 +£0.065 55.732 + 0.150 0.221 £0.012 1.155 + 0.050 1.274 £ 0.043
DVCCA 4.756 + 0.018 0.401 £+ 0.006 3.226 + 0.055 4.168 + 0.122 4.615 4+ 0.010 0.184 4+ 0.004 1.329 + 0.034 1.600 £ 0.042
ORCCA2 0.083 + 0.003 0.638 4+ 0.008 3.509 + 0.021 | 4.483 +£0.028 0.090 4+ 0.003 0.452 +0.005 | 3.077 £0.017 | 4.016 +0.024

view that will be learned through gradient flow. We use
a similar neural network structure for DGCCA, where
we feed the data into a hidden layer with 160 neurons
and ReLU activations. It will then be transformed into
a latent variable of dimension 20.

4) DVCCA: Deep variational CCA replaces the total canon-
ical correlation loss function with the expected log
likelihood, derived from the evidence lower bound given
a latent variable with shared information from both
views of data. We use the same network structure as
DCCA for DVCCA.

2) Datasets: Instead of using low-dimensional datasets,
we focus on high-dimensional image data correlation extrac-
tion, following the convention in deep learning variants
of CCA. We use two datasets, Fashion MNIST, a 28 x
28 grayscale image dataset for clothes and shoes, and MNIST,
a 28 x 28 grayscale image dataset for handwritten digits. For
both datasets, we randomly sample 1500 images, 500 for train-
ing, 500 for validation, and 500 for testing. We rotate these
images for a degree uniformly distributed in [— (7 /4), (z /4)]

to form the first view of the data. Then, for each image in
View 1, we randomly sample a new image with the same
label from the original dataset and add centered Gaussian
noise to form View 2. This experimental setting is identical to
that of [46]. The training set in ORCCA2 is used for feature
selection, whereas in all deep learning algorithms, it is used for
neural network training. The validation set is used in all deep
learning algorithms for training epochs’ validation. The test
set is then used in all the algorithms for recording canonical
correlations. Some sample images for the two views are shown
in Fig. 5.

3) Practical Consideration: The latent dimension for deep
learning algorithms as well as the number of random features
for ORCCAZ2 and RFF are set to be 20 for a fair comparison.
Note that any deep learning algorithm is able to achieve
perfect correlation between two views of training data for large
enough latent dimension (overfitting). However, this is not
the intent in applications of nonlinear CCA, and all the deep
learning CCA works [34], [46]-[48] conduct their experiments
in a low latent dimension, as we do here. We use the “Adam”
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Fig. 5. Rotated View 1 (left) and Noisy View 2 (right) of FashionMNIST
dataset and MNIST dataset.

optimizer for all deep learning algorithms, and the number
of training epochs is selected using the validation set. DCCA
is trained for 50 epochs. DTCCA is trained for 100 epochs.
DGCCA is trained for 20 epochs. DVCCA is trained for
300 epochs.

4) Performance: All the results are tabulated in Table II,
where we report the time cost, largest correlation value,
the sum of top-10 correlation values, and the sum of total
correlation values. The standard errors are calculated using
30 Monte Carlo simulations. The reported time for deep
learning algorithms and ORCCA2 includes the model train-
ing/feature selection time in addition to the CCA time. The
validation time for deep learning algorithms is not included.
As we can observe, ORCCA2 dominates all the benchmark
algorithms in correlation extraction while being significantly
faster than the deep learning algorithms.

VI. CONCLUSION

Random features have been widely used for various machine
learning tasks but often times they are sampled from a pre-
set distribution, approximating a fixed kernel. In this work,
we highlight the role of the objective function in the learning
task at hand. We propose a score function for selecting random
features, which depends on a parameter (matrix) chosen based
on the specific objective function to improve the performance.
We start by drawing connections to score functions for random
features in supervised learning. We first show the potential of
our score function through a class of dimension reduction and
correlation analysis models, which involves a trace operator in
their objective functions. We then focus on CCA and derive

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the optimal score function for maximizing the total CCA.
Empirical results verify that random features selected using
our score function significantly outperform other state-of-the-
art methods for random features. It would be interesting to
explore the potential of this score function for other learning
tasks as a future direction.

APPENDIX

A. Proof of Proposition 1

To find canonical correlations in KCCA (5), we deal with
the following eigenvalue problem (see, e.g., [49, Sec. 4.1]):

(K + 1D 'Ky (Ky + ul) Koy, = 8, (14)

where the eigenvalues 6> are the kernel canonical correlations
and their corresponding eigenvectors are the kernel canonical
pairs of X. The solutions to y can be obtained by switching
the indices of x and y. When K, is a linear kernel, we can
rewrite above as follows:

_ —1
K +uD)'yy " (yy" +ul) Ko, =6,

Then, maximizing the total canonical correlation (over ran-
dom features) will be equivalent to maximizing the approxi-
mated objective Tr[(K, + xI)~'yy"(yy" + x«I)~'K,]. Here,
we first approximate K, at the end of the left-hand side with
Z.Z] such that

_ -1
Tr[(K, + «D) 7 'yy (yy" + 1) K]

_ —1
~ Tr[(Kx + 1Dy (yy" + ) ZXZI]
= Tr[(K, + uD)7lyy' 2, 2] | ———
[(K: +uD)~'yy ' Z,Z] ] PR
o« Tr[ (K, + uD)~'yy ' Z,Z] |
= Ti[Z] (K, + uD)"'yy ' Z,]

My

= > (2] K, + uD)yy Z,],

i=1

5)

My
1 _
W >zl (@)K, + 1Dy 2o (@)
i=1

where the third line follows by the Woodbury inversion lemma
(push-through identity).

Given the closed form above, we can immediately see that
good random features are ones that maximize the objective
above. Hence, we can select random features according to
the (unnormalized) z, (w)(K, + #I)~'yy 'z (w). Given that
random features are sampled from the prior p(®), we can
then write the score function as

q(@) £ p(@)z] (@)K, + uI) yy 'z, (@) (16)

completing the proof of Proposition 1.
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B. Proof of Corollary 1

In Corollary 1, we further approximate (10) and achieve an
improved time cost.

Notice that when we sample M, random features as a pool,
the probability p(w) is already incorporated in the score.
Therefore, we just approximate the kernel matrix K, with
Z,CZ;Cr [according to (3)] such that

-1
qx(@n) ~ Z; (wm)(ZxZ; + IUI) nyzx (@m). (17)

Then, using the push-through identity again, we derive
-1
2 (@) (Z:Z] + 1)y 2 (@n)

= [ZI (ZXZ;Cr + ,uI)_lnyZx]

mm

- [(ijx + ﬂl)“zjnyzx] (18)

mm

Therefore, for a specific w,,, the RHS of (17) can be
rewritten in the following form:

—1 ~
RHS = [(ZIZX + pul) ZInyZx] =G (@m).

Then, Corollary 1 is proven.

C. Proof of Theorem 1

When Y is also mapped into a nonlinear space, we need
to work with the eigensystem in (14). As discussed before,
the objective is then maximizing the approximated version of
Tr[(K, + ,uI)_le(Ky + ,uI)_le]. Following the same idea
of (15), we have the following:

_ -1
Tr[(K, + £ 7K, (K, 4 1I) 7 K, ]
~ Tr[(Kx + D) 'K (K, + ﬂl)‘lzxzj]

— Tr[Zj(Kx +uD) 'K (K, + ,uI)_le:I

My
1 _ -1
A 2 z) (@,) Ky + 12D 'K (Ky + 1I) 7 2o (@)

m=1

19)

We can then follow the exact same lines in the proof of
Proposition 1 to arrive at the following score function:

0:(®) = pr(@)z] (@)K, + 1)K, (K, + uI) ' 2, (@)

The proof for ¢,(w) follows in a similar fashion.

D. Proof of Corollary 2

Similar to approximation ideas in the proof of Corollary 1,
we can use the approximations K, ~ Z,Z] and K, ~ Z,Z
to get

qx (@)
~ 2] (@) (ZoZ] + 1) Z, 2] (Z,2] + p1) " 2 (@)
(20)

Using the push-through identity twice in the following,
we have:

2] (@) (Z.Z] + 1) Z,Z] (Z,Z] + 1) 'z, (n)
= 2] (2.2] + 1) '2,2] (2,2] + 1) 'Z]

mm

= (@ 2+ w0) 2 2,(2]2, + 1) 2] 2]

mm

which provides the approximate scoring rule

Ge(@n) = [(ijx +ul) 2] Z,(2]Z, + ﬂl)"zjzx]

The proof for gy (w,,) follows in a similar fashion.

E. Proof of Proposition 2

We will demonstrate the proof using the ORCCA2 formu-
lation. Recall the total canonical correlation decomposition
derived in (19). We will now formally define two quantities
in the following:

M
1
(M) A T
p M (RCCA) & m m§:1zx (@n)Gz (@)

pM-Mo) (ORCCA) £ sup

1 T
— Z, (0,)GZy (@)
Ng[Mo],\N\:MMZ e

meN
(22)

where
G2 (K, + ul) 'K, (K, + uI) ",

We can see that p™)(RCCA) corresponds to the total
canonical correlation obtained by M plain RFFs. Similarly,
we can see that p®:-M)(ORCCA) corresponds to the total
canonical correlation obtained by ORCCA?2, where top M
features are selected from a pool of My > M plain RFFs
according to score (12).

Taking expectation over random features, we have that

E[p™-M) (ORCCA)]

sup Z Z; ((X)m ) GZX (wm ):|

1
= —E
M| N ivi=m S

! sup E |: Z ZI ((X)m )sz (wm)i|

M nemoivi=m | v

v

v

1 T
ME Z z, (0,)GZy(wy,)

me[M]

E[p™ (RCCA)] = p(KCCA).

(23)

The above equation shows that the total canonical correla-
tion obtained by ORCCA2 provides an upper bound for the
total canonical correlation obtained by RFF in the view of X.
We can conclude the same thing in the view of Y following
the same procedure. Setting K, = yy', we can also have the
same property for ORCCA1. Therefore, Corollary 2 is proven.
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F. Computation Complexity

To highlight the computational advantage, we examine the
computational cost of the dominating components in KCCA
formulation and ORCCA formulation.

1y

2)

For KCCA, the dominating component in terms of
computational cost is the matrix inversion of the full
rank matrices K, + xI and K, 4 uI, as we can see
in (5). Both of them have the time complexity of
On®) as K,,K, € R™" The matrix multiplication
will also induce a theoretical time complexity of O(n?).
Therefore, the computational cost of KCCA is o).
For ORCCA1 and ORCCAZ2, the dominating component
in terms of computational cost comes from calculating
the empirical score function (21). The score function
needs to be computed once for ORCCA1 and twice for
ORCCA?2. The matrix inversion of Z!Z, + I induces
a cost of O(M3), where M, is the number of random
features in the pool. The matrix multiplication ZZ,
induces a cost of O(nM?). Therefore, the computation
cost of ORCCA1 and ORCCA?2 is dominated by this
term and the cost is O(nM§ + M;).
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