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Abstract— Random features approach has been widely used for
kernel approximation in large-scale machine learning. A number
of recent studies have explored data-dependent sampling of
features, modifying the stochastic oracle from which random
features are sampled. While proposed techniques in this realm
improve the approximation, their suitability is often verified
on a single learning task. In this article, we propose a task-
specific scoring rule for selecting random features, which can
be employed for different applications with some adjustments.
We restrict our attention to canonical correlation analysis (CCA)
and provide a novel, principled guide for finding the score
function maximizing the canonical correlations. We prove that
this method, called optimal randomized CCA (ORCCA), can
outperform (in expectation) the corresponding kernel CCA with
a default kernel. Numerical experiments verify that ORCCA is
significantly superior to other approximation techniques in the
CCA task.

Index Terms— Canonical correlation analysis (CCA), kernel
approximation, kernel methods, random features.

I. INTRODUCTION

KERNEL methods are powerful tools to capture the non-

linear representation of data by mapping the dataset to

a high-dimensional feature space. Despite their tremendous

success in various machine learning problems, kernel methods

suffer from massive computational cost on large datasets. The

time cost of computing the kernel matrix alone scales quadrat-

ically with data, and if the learning method involves inverting

the matrix (e.g., kernel ridge regression), the cost would

increase to cubic. This computational bottleneck motivated

a great deal of research on kernel approximation, where the

seminal work of [1] on random features is a prominent point in

case. For the class of shift-invariant kernels, they showed that

one can approximate the kernel by the Monte Carlo sampling

from the inverse Fourier transform of the kernel. This idea

has been used in solving many machine learning problems,

including distributed learning [2], [3], online learning [4], [5],

and deep learning [6].

Due to the practical success of random features, the idea

was later used for one of the ubiquitous problems in statistics
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and machine learning, namely, canonical correlation analysis

(CCA). CCA derives a pair of linear mappings of two datasets

such that the correlation between the projected datasets is max-

imized. Similar to other machine learning methods, CCA also

has a nonlinear counterpart called kernel CCA (KCCA) [7],

which provides a more flexible framework for maximizing

the correlation. Due to the prohibitive computational cost of

KCCA, randomized CCA (RCCA) was introduced [8], [9] to

serve as a surrogate for KCCA. RCCA uses random features

for transformation of the two datasets. Therefore, it provides

the flexibility of nonlinear mappings with a moderate compu-

tational cost.

On the other hand, more recently, data-dependent sampling

of random features has been an intense focus of research in

the machine learning community. The main objective is to

modify the stochastic oracle from which random features are

sampled to improve a certain performance metric. Examples

include [10], [11] with a focus only on kernel approximation

as well as [12]–[14] with the goal of better generalization

in supervised learning. While the proposed techniques in this

realm improve their respective learning tasks, they are not

necessarily suitable for other learning tasks, such as CCA,

which is the focus of this work.

In this article, we propose a task-specific scoring rule for

reweighting random features, which can be employed for

various applications with some adjustments. In particular,

our scoring rule depends on a matrix that can be adjusted

based on the application. We first observe that a number of

data-dependent sampling methods (e.g., leverage scores (LSs)

in [13] and energy-based sampling in [15]) can be recovered

by our scoring rule using specific choices of the matrix.

Then, we draw a connection between the scoring rule and

correlation analysis/dimension reduction problems that deal

with trace optimization objectives. As an important case study,

we focus on CCA and provide a principled guide for finding

the score function maximizing the canonical correlations. Our

result reveals a novel data-dependent method for selecting

features, called optimal randomized CCA (ORCCA). This

suggests that prior data-dependent methods are not necessarily

optimal for the CCA task. We also prove that ORCCA achieves

a better performance compared to KCCA (in expectation)

with a default kernel. We conduct extensive numerical exper-

iments verifying that ORCCA indeed introduces significant

improvement over the state of the art in random features

for CCA.

The rest of this article is organized as follows. In Section II,

we provide the preliminaries on random features, CCA, and

formally define the problem we will address in this article.
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This section also includes the related literature. In Section III,

we propose our score function, discuss its connection with

existing score functions in supervised learning, and show a

class of problems that is compatible with our score function.

In Section IV, we present our theoretical results. We illus-

trate the effectiveness of ORCCA on benchmark datasets in

Section V and conclude in Section VI.

II. PRELIMINARIES AND PROBLEM SETTING

Notation: We denote by [n] the set of positive integers

{1, . . . , n}, by Tr[·] the trace operator, by h·, ·i the standard

inner product, by k·k the spectral (respectively, Euclidean)

norm of a matrix (respectively, vector), and by E[·] the

expectation operator. Boldface lowercase variables (e.g., a) are

used for vectors, and boldface uppercase variables (e.g., A) are

used for matrices. [A]i j denotes the i j th entry of matrix A.

The vectors are all in column form.

A. Random Features and Kernel Approximation

Kernel methods are powerful tools for data representation,

commonly used in various machine learning problems. Let

{xi}n
i=1 be a set of given points where xi ∈ X ⊆ R

dx for any

i ∈ [n], and consider a symmetric positive-definite function

k(·, ·) such that
�n

i, j=1 αiα j k(xi , x j ) ≥ 0 for α ∈ R
n . Then,

k(·, ·) is called a positive (semi)definite kernel, serving as a

similarity measure between any pair of vectors (xi , x j ). This

class of kernels can be thought as inner product of two vectors

that map the points from a dx-dimensional space to a higher

dimensional space (and potentially infinite-dimensional space).

Despite the widespread use of kernel methods in machine

learning, they have an evident computational issue. Computing

the kernel for every pair of points costs O(n2), and if the

learning method requires inverting that matrix (e.g., kernel

ridge regression), the cost would increase to O(n3). This

particular disadvantage makes the kernel method impractical

for large-scale machine learning.

An elegant method to address this issue was the use of

random Fourier features (RFFs) for kernel approximation [1].

Let p(ω) be a probability density with support � ⊆ R
dx .

Consider any kernel function in the following form with a

corresponding feature map φ(x,ω) such that:

k
�
x, x0� =

�

�

φ(x,ω)φ
�
x0,ω

�
p(ω)dω

≈
1

M

M�

m=1

φ(x,ωm)φ
�
x0,ωm

�
(1)

where {ωm}M
m=1 are independent samples from p(ω), called

random features. Examples of kernels taking the form (1)

include shift-invariant kernels [1] or dot-product (e.g., poly-

nomial) kernels [16] (see [17, Table I] for an exhaustive list).

Let us now define

z(ω) � [φ(x1,ω), . . . , φ(xn,ω)]>. (2)

Then, the kernel matrix [K]i j = k(xi , x j) can be approxi-

mated with ZZ> where Z ∈ R
n×M is defined as

Z �
1

√
M

[z(ω1), . . . , z(ωM)]. (3)

The low-rank approximation above can save significant

computational cost when M � n. As an example, for kernel

ridge regression, the time cost would reduce from O(n3) to

O(nM2). Since the main motivation of using randomized

features is to reduce the computational cost of kernel methods

(with M � n), this observation will naturally raise the

following question:
Problem 1 (Informal): Can we develop a sampling (or

selection) mechanism for random features that takes into

account the “learning task” to improve the performance com-

pared to plain sampling?

Section III sheds light on Problem 1. First, in Section III-A,

we will propose a score function with a potential to be

adapted to different learning tasks. Section III-B shows the

connection between the proposed score function and two

existing score functions for random features in supervised

learning. Then, Section III-C provides another class of prob-

lems (i.e., dimensionality reduction/correlation analysis) for

which the proposed score function can prove useful. In this

article, we focus on kernel CCA (as one potential application),

introduce our main question in Problem 2, and provide our

theoretical results.

B. Overview of Canonical Correlation Analysis

Linear CCA was introduced in [18] as a method of correlat-

ing linear relationships between two multidimensional random

variables X = [x1, . . . , xn]> ∈ R
n×dx and Y = [y1, . . . , yn]> ∈

R
n×dy . This problem is often formulated as finding a pair of

canonical bases 5x and 5y such that kcorr(X5x , Y5y)−IrkF

is minimized, where r = max(rank(X), rank(Y)) and k·kF is

the Frobenius norm.

The problem has a well-known closed-form solution (see,

e.g., [19]), relating canonical correlations and canonical pairs

to the eigensystem of the following matrix:
�
(6xx + µxI)−1 0

0
�
6yy + µyI

�−1

��
0 6xy

6 yx 0

�
(4)

where 6xx = X>X,6 yy = Y>Y,6xy = X>Y, and µx , µy are

regularization parameters to avoid singularity. In particular, the

eigenvalues correspond to the canonical correlations and the

eigenvectors correspond to the canonical pairs.

The kernel version of CCA, called KCCA [7], [20], inves-

tigates the correlation analysis using the eigensystem of the

following matrix:
�
(Kx + µx I)−1 0

0
�
Ky + µyI

�−1

��
0 Ky

Kx 0

�
(5)

where [Kx]i j = kx(xi , x j ) and [Ky]i j = ky(yi , y j).

As the inversion of kernel matrices involves O(n3) time

cost, Lopez-Paz et al. [9] adopted the idea of kernel approxi-

mation with random features, introducing randomized CCA

(RCCA). RCCA uses approximations Kx ≈ Zx Z>
x and

Ky ≈ ZyZ>
y in (5), where Zx and Zy are the transformed

matrices using random features as in (3). In other words,

RCCA(X, Y) = CCA(Zx , Zy) ≈ KCCA(X, Y). Now, the

question we would like to answer in this article is as follows.
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Problem 2: If we want to maximize the total canonical cor-

relations, i.e., the trace of matrix (5), what is the corresponding

score function in the form of (6) to reweight (or select) the

random features?

Note that the term “maximize” makes sense here due to the

approximation using random features. In other words, we are

interested in finding the features providing more correlation

(or maximize the correlation) between X and Y. In the next

section, we will derive the desired score function and show its

performance advantage in theory. We will see that the features

that we select based on the score function change the kernel

in a way that improves the correlation.

C. Related Literature

1) Random Features: As discussed in Section II-A, kernels

of form (1) can be approximated using random features

(e.g., shift-invariant kernels using Monte Carlo [1] or quasi

Monte Carlo [21] sampling and dot-product kernels [16]).

A number of methods have been proposed to improve the time

cost, decreasing it by a linear factor of the input dimension

(see, e.g., fast food [10], [22]). The generalization properties

of random features have been studied for `1-regularized risk

minimization [23] and ridge regression [24], both improving

the early generalization bound of [25]. Also, Felix et al. [26]

developed orthogonal random features (ORFs) to improve

kernel approximation variance. It turns out that ORF pro-

vides an optimal kernel estimator in terms of mean-squared

error [27]. May et al. [28] presented an iterative gradient

method for selecting the best set of random features for

supervised learning with acoustic model. A number of recent

works have focused on kernel approximation techniques based

on data-dependent sampling of random features. Examples

include [29] on compact nonlinear feature maps, [10], [30]

on approximation of shift-invariant/translation-invariant ker-

nels, [11] on the Stein effect in kernel approximation, and [31]

on data-dependent approximation using greedy approaches

(e.g., Frank–Wolfe). On the other hand, another line of

research has focused on generalization properties of data-

dependent sampling. In addition to works mentioned in

Section III-B, the work [14] also studied data-dependent

approximation of translation-invariant/rotation-invariant ker-

nels for improving generalization in SVM. Li et al. [32]

recently proposed a hybrid approach (based on importance

sampling) to reweight random features with application to both

kernel approximation and supervised learning.

2) Canonical Correlation Analysis: As discussed in

Section II-B, the computational cost of KCCA [7] moti-

vated a great deal of research on kernel approximation for

CCA in large-scale learning. Several methods tackle this

issue by explicitly transforming datasets (e.g., randomized

CCA (RCCA) [8], [9], fix-sized kernel CCA (FSCCA) [33],

and deep CCA (DCCA) [34]). RCCA and FSCCA tackle

the computation issue of KCCA with two well-known ker-

nel approximation methods, random features and Nystrom

method, respectively. RCCA focuses on transformation using

randomized one-hidden layer neural network, whereas DCCA

considers deep neural networks. Perhaps not surprisingly, the

time cost of RCCA is significantly smaller than DCCA [9].

There exist other nonparametric approaches such as nonpara-

metric CCA (NCCA) [35], which estimates the density of

training data to provide a practical solution to Lancaster’s

theory for CCA [36]. Also, more recently, a method is

proposed in [37] for sparsifying KCCA through the `1 reg-

ularization. A different (but relevant) literature has focused on

addressing the optimization problem in CCA. Wang et al. [38]

and Arora et al. [39] [38], [39] discussed this problem by

developing novel techniques, such as alternating least squares,

shift-and-invert preconditioning, and inexact matrix stochas-

tic gradient. In a similar spirit is [40], which presents a

memory-efficient stochastic optimization algorithm for RCCA.

The main novelty of our approach is proposing an optimized

scoring rule for random features selection, which can be

adopted for different learning tasks, including various corre-

lation analysis techniques, e.g., CCA.

III. OBJECTIVE-BASED SCORE FUNCTION

A. Task-Specific Scoring Rule for Random Features Selection

Several recent works have answered to Problem 1 in the

affirmative; however, quite interestingly, there is so much

difference in adopted strategies given the learning task. For

example, a sampling scheme that improves kernel approxima-

tion (e.g., ORFs [26]) will not necessarily be competitive for

supervised learning [15]. In other words, Problem 1 has been

addressed in a task-specific fashion. In this article, we propose

a scoring rule for selecting features that lends itself to several

important tasks in machine learning. Let B be a real matrix

and define the following score function for any ω ∈ � :

q(ω) � p(ω)z>(ω)B z(ω) (6)

where p(ω) is the original probability density of random

features. p(ω) can be thought as an easy prior to sample

from. The score function q(ω) can then serve as the metric

to reweight the random features from prior p(ω). The key

advantage of the score function is that B can be selected based

on the learning task to improve the performance. We will

elaborate on this choice in Sections III-B–III-C.

B. Relation to Supervised Learning Scoring Rules

A number of recent works have proposed the idea of sam-

pling random features based on data-dependent distributions,

mostly focusing on improving generalization in supervised

learning. In this section, we show that the score function (6)

will bring some of these methods under the same umbrella.

More specifically, given a particular choice of the cen-

ter matrix B, we can recover a number of data-dependent

sampling schemes, such as LSs [13], [24], [41], [42] and

energy-based exploration of random features (EERFs) [15].

1) Leverage Scores: Following the framework mentioned

in [13], LS sampling is according to the following probability

density function:

qL S(ω) ∝ p(ω)z>(ω)(K + λI)−1z(ω) (7)

which can be recovered precisely when B = (K+λI)−1 in (6).

A practical implementation of LS was proposed in [41] and
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later used in the experiments mentioned in [42] for SVM. The

generalization properties of (a variant of) LS algorithm was

also studied in [43] for the case of ridge regression.

2) Energy-Based Exploration of Random Features: The

EERF algorithm was proposed in [15] for improving general-

ization. In supervised learning, the goal is to map input vectors

{xi}n
i=1 to output variables {yi}n

i=1, where yi ∈ R for i ∈ [n].
The EERF algorithm employs the following scoring rule for

random features

qEERF(ω) ∝

					
1

n

n�

i=1

yiφ(xi ,ω)

					 (8)

where the score is calculated for a large pool of random

features and a subset with the largest score will be used for the

supervised learning problem. Now, if we let y = [y1, . . . , yn]>,

we can observe that qEERF(ω) is equivalent to (6) with the

center matrix B = yy> because ordering the pool of features

according to (y>z(ω))2 = (
�n

i=1 yiφ(xi ,ω))2 is equivalent to

|(1/n)
�n

i=1 yiφ(xi ,ω)| given above. Shahrampour et al. [15]

showed in their numerical experiments that EERF consistently

outperforms plain random features and other data-independent

methods in terms of generalization. We remark that the kernel

alignment method in [12] is also in a similar spirit. Instead

of choosing features with largest scores, an optimization

algorithm is proposed to reweight the features such that the

transformed input is correlated enough with output variable.

Given the success of algorithms such as LS and EERF,

we can hope that the scoring rule (6) has the potential to be

adopted in various learning tasks. Indeed, the center matrix B

should be chosen based on the objective function that needs

to be optimized in the learning task at hand.

C. Relation to Dimension Reduction and Correlation

Analysis

We now show another potential of the score function (6) by

establishing that

Tr[KB] =
�

�

q(ω)dω =
�

�

p(ω)z>(ω)B z(ω)

≈
1

M

M�

m=1

z>(ωm)B z(ωm) (9)

where {ωm}M
m=1 are independent samples from p(ω). The

above relationship reveals the connection of the score

function with a class of trace maximization problems deal-

ing with kernelized objective functions. Several dimen-

sion reduction/correlation analysis methods fall into this

category. For example, kernel principal component analy-

sis (KPCA) and kernel orthogonal neighborhood preserving

projections (KONPPs) have the exact form of the objective

function in (9) (see, e.g., [44]). In each case, we can identify

the matrix B by looking at the corresponding eigenvalue

problem. For KPCA, the eigenvalue problem implies that the

matrix B = (I − (1/n)11>), where 1 is the vector of all ones.

In KONPP, the corresponding eigenvalue problem entails that

B = (I − W>)(I − W), where W is the affinity matrix in

the feature space. Now, instead of covering more high level

formulations, in Section IV, we will carefully study CCA,

which is also formulated as a trace optimization (9).

Remark 1: The scoring rule (6) offers a principled way to

select random features that promise good performance for

a specific objective. In this section, we identify a class of

dimension reduction and correlation analysis problems that

are compatible with the proposed scoring rule. However, its

adaptation to other problems still requires efforts in the iden-

tification and derivation of the score function. In Section IV,

we will focus on nonlinear CCA, as an important problem in

machine learning and statistics, to derive the respective score

function and use it for algorithm implementation.

IV. CANONICAL CORRELATION ANALYSIS WITH

SCORE-BASED RANDOM FEATURES SELECTION

We now show the application of the scoring rule (6) to

nonlinear CCA.

A. Optimal Randomized Canonical Correlation Analysis

We now propose the adaptations of the scoring rule (6) for

CCA, where the center matrix B is selected particularly for

maximizing the total canonical correlation. We start with an

important special case of dy = 1 due to the natural connection

to supervised learning. We will use index x for any quantity

in relation to X and y for any quantity in relation to Y.

1) Optimal Randomized Canonical Correlation Analysis 1

(dy = 1 and Linear Ky): We consider the scenario where

X ∈ R
n×dx is mapped into a nonlinear space Zx ∈ R

n×M

(using random features) following (3). On the other hand,

Y = y ∈ R
n remains in its original space (with dy = 1 and

Ky = yy>). It is well known that if y = Zxα for some

α ∈ R
M , perfect (linear) correlation is achieved between y

and Zx (with µx = µy = 0 and n > dx), simply because y

is a linear combination of the columns of Zx . This motivates

the idea that sampling schemes that are good for supervised

learning may be natural candidates for CCA in that with

y = Zxα, we can achieve perfect correlation. The following

proposition finds the optimal scoring rule of form (6) that

maximizes the total canonical correlation.

Proposition 1: Consider KCCA in (5) with µx = µy = µ,

a nonlinear kernel matrix Kx and a linear kernel Ky = yy>.

If we approximate Kx ≈ Zx Z>
x only in the right block matrix

of (5), the optimal scoring rule maximizing the total canonical

correlation can be expressed as

q(ω) = p(ω)z>
x (ω)(Kx + µI)−1yy>zx(ω) (10)

for any ω ∈ �x ⊆ R
dx . The scoring rule above corresponds to

(6) with B = (Kx + µI)−1yy>.

Interestingly, the principled way of choosing B that max-

imizes total CCA leads to a feature selection rule that was

not previously investigated. It is clear that the score function

in (10) is different from LS (7) and EERF (8). While the

scoring rule (10) optimizes canonical correlations in view of

Proposition 1, calculating B would cost O(n3), which is not

scalable to large datasets. The following corollary offers an

approximated solution to avoid this issue.
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Corollary 1: For any finite pool of random features

{ωm}M0

m=1, instead of selecting according to the scoring

rule (10), we can approximate the scoring rule with the

following empirical score:

q(ωi) ≈ 
q(ωi) �

��
Z>

x Zx + µI
�−1

Z>
x yy>Zx

�
ii

(11)

for any ωx,i ∈ �x ⊆ R
dx and i ∈ [M0], where Zx is formed

with M0 random features as in (3) and 
q(ωi ) denotes the

empirical score of the i th random features in the pool of

M0 features.

Observe that selecting according to the score rule above will

reduce the computational cost from O(n3) to O(nM2
0 + M3

0 ),

which is a significant improvement when M0 � n. After

constructing (11), we can select the M features with the

highest empirical scores. This algorithm is called ORCCA1

presented in Algorithm 1.

Algorithm 1 ORCCA1

Input: X ∈ R
n×dx ,y ∈ R

n , the feature map φ(·, ·), an integer

M0, an integer M , the prior distribution p(ω), the parameter

µ > 0.

1: Draw M0 independent samples {ωm}M0

m=1 from p(ω).

2: Construct the matrix

Q =
�
Z>

x Zx + µI
�−1

Z>
x yy>Zx ,

where Zx is defined in (3).

3: Let for i ∈ [M0]


q(ωi ) = [Q]ii .

The new weights 
q = [
q(ω1), . . . ,
q(ωM0
)]>.

4: Sort 
q and select top M features with highest scores

from the pool to construct the transformed matrix 
Zx

following (3).

Output: Linear canonical correlations between 
Zx and y (with

regularization parameter µ).

2) Optimal Randomized Canonical Correlation Analysis 2

(Nonlinear Ky): We now follow the idea of KCCA with both

views of data mapped to a nonlinear space. More specifically,

X ∈ R
n×dx is mapped to Zx ∈ R

n×M and Y ∈ R
n×dy is mapped

to Zy ∈ R
n×M following (3). For this set up, we provide below

the optimal scoring rule of form (6) that maximizes the total

canonical correlation.

Theorem 1: Consider KCCA in (5) with µx = µy = µ,

a nonlinear kernel matrix Kx , and a nonlinear kernel Ky.

If we alternatively approximate Kx ≈ Zx Z>
x and Ky ≈ ZyZ>

y

only in the right block matrix of (5), the optimal scoring rule

maximizing the total canonical correlation can be expressed

as

qx(ω) = px(ω)z>
x (ω)(Kx + µI)−1Ky

�
Ky + µI

�−1
zx(ω)

qy

�
ω

0� = py

�
ω

0�z>
y

�
ω

0��Ky + µI
�−1

Kx(Kx + µI)−1zy

�
ω

0�

(12)

for any ω ∈ �x ⊆ R
dx and any ω

0 ∈ �y ⊆ R
dy , respectively.

The probability densities px(ω) and py(ω
0) are the priors

defining the default kernel functions in the space of X and

Y according to (1).

We can associate the scoring rules above to the task-specific

scoring rule (6) as well. Indeed, for choosing the random

features from �x to transform X, the center matrix is B =
(Kx + µI)−1Ky(Ky + µI)−1, and for choosing the random

features from �y to transform Y, the center matrix is B =
(Ky + µI)−1Kx(Kx + µI)−1. While the scoring rule (12)

optimizes canonical correlations in view of (5), calculating B

would cost O(n3), which is not scalable to large datasets. The

following corollary offers an approximated solution to avoid

this issue.

Corollary 2: For any finite pool of random features

{ωx,m}M0

m=1 and {ωy,m}M0

m=1 (sampled from priors px(ω) and

py(ω), respectively), instead of selecting according to the scor-

ing rules (12), we can approximate them using the following

empirical versions:

q̂x

�
ωx,i

�
=

��
Z>

x Zx + µI
�−1

Z>
x Zy

�
Z>

y Zy + µI
�−1

Z>
y Zx

�
ii

q̂y

�
ωy,i

�
=

��
Z>

y Zy + µI
�−1

Z>
y Zx

�
Z>

x Zx + µI
�−1

Z>
x Zy

�
ii

for any ωx,i ∈ �x ⊆ R
dx and any ωy,i ∈ �y ⊆ R

dy ,

respectively. Zx and Zy are the transformed matrices of X and

Y as in (3) using M0 random features. 
qx(ωx,i ) and 
qy(ωy,i)

denote the scores of the i th random features in the pools

corresponding to X and Y, respectively.

As we observe, the computational cost in both views of the

data is reduced from O(n3) to O(nM2
0 +M3

0 ). The justification

is provided in the appendix (Section VI-F). We use the

above empirical scores for the implementation of ORCCA2,

described in Algorithm 2. We also prove below that the

theoretical score functions in (10) and (12) always provide

improvement over RCCA and KCCA.

Proposition 2: The total canonical correlation obtained

with M features selected from an M0 features pool

(M < M0 < ∞) using nonempirical scores (10) and (12)

provides a theoretical upper bound of the total canonical

correlation obtained with M plain RFFs in expectation. Let us

denote by ρ(KCCA) the total canonical correlation obtained

by KCCA and by ρ(M)(RCCA) the total canonical correlation

obtained by RCCA with M plain RFFs. Let us also represent

by ρ(M,M0)(ORCCA) the total canonical correlation obtained

by ORCCA (1 and 2), where top M features are selected from

a pool of M0 > M plain RFFs according to score (12). Then,

the following relationship holds:

E


ρ(M,M0)(ORCCA)

�
≥ E



ρ(M)(RCCA)

�
= ρ(KCCA) (13)

where the expectation is taken over random features.

The intuition is that the selected features via the proposed

score obtain a sup value over the subsets of the feature pool,

and therefore, the expectation of the sup will be greater than

the sup of expectation. This logic applies to other adaptations

as well, meaning that proper adaptation of score function (6)

will provide uniformly better results than RFFs in any suitable

tasks. The proof of our results is given in the appendix.

Remark 2: Notice that ORCCA1 is a special case of

ORCCA2 where dy = 1 and Ky = yy>, and we are presenting
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Algorithm 2 ORCCA2

Input: X ∈ R
n×dx ,Y ∈ R

n×dy , the feature map φ(·, ·),
an integer M0, an integer M , the prior densities px(ω) and

py(ω), parameter µ > 0.

1: Draw samples {ωx,m}M0

m=1 and {ωy,m}M0

m=1 according to

px(ω) and py(ω), respectively.

2: Construct the matrices

Q =
�
Z>

x Zx + µI
�−1

Z>
x Zy

P =
�
Z>

y Zy + µI
�−1

Z>
y Zx .

where Zx and Zy are defined in (3).

3: Let for i ∈ [M0]


qx

�
ωx,i

�
= [QP]ii .

The new weights 
qx = [
qx(ωx,1), . . . ,
qx(ωx,M0
)]>.

4: Let for i ∈ [M0]


qy

�
ωy,i

�
= [PQ]ii .

The new weights 
qy = [
qy(ωy,1), . . . ,
qy(ωy,M0
)]>.

5: Select top M features with the highest scores from each

of the pools {ωx,i }M0

i=1 and {ωy,i}M0

i=1, according to the new

scores 
qx and 
qy to construct the transformed matrices

Zx ∈ R

n×M and 
Zy ∈ R
n×M , respectively, as in (3).

Output: Linear canonical correlations between 
Zx and 
Zy

(with parameter µ).

it as a separate algorithm to highlight its connection with

supervised learning.

V. NUMERICAL EXPERIMENTS

A. Approximated KCCA Comparison

We now investigate the empirical performance of ORCCA1

and ORCCA2 against other approximated versions of KCCA

using six datasets from the UCI Machine Learning Repository.

1) Benchmark Algorithms: We compare our work to four

random features based benchmark algorithms that have shown

good performance in supervised learning and/or kernel approx-

imation. All four algorithms approximate KCCA by random-

ized low-rank kernel approximation. The first one is plain

RFFs [1]. Next is ORFs [26], which improves the variance

of kernel approximation. We also include two data-dependent

sampling methods, LS [13], [41] and EERF [15], due to their

success in supervised learning as mentioned in Section III-B.

1) RFFs [1] With φ = cos(x>
ω + b) as the Feature Map to

Approximate the Gaussian Kernel: {ωm}M
m=1 are sampled from

the Gaussian distribution N (0, σ 2I) and {bm}M
m=1 are sampled

from uniform distribution U(0, 2π). We use this to transform

X ∈ R
n×dx to Zx ∈ R

n×M . The same procedure applies to

y ∈ R
n to map it to Zy ∈ R

n×M . This algorithm corresponds

to the aforementioned RCCA [9], and we use RFF instead

of its original name to emphasize the role of plain random

features method here.

2) Orthogonal Random Features [26] With φ =
[cos(x>

ω), sin(x>
ω)] as the Feature Map: {ωm}M

m=1 are sam-

pled from a Gaussian distribution N (0, σ 2I) and then modified

based on a QR decomposition step. The transformed matrices

for ORF are Zx ∈ R
n×2M and Zy ∈ R

n×2M . Given that the

feature map is 2-D here, to keep the comparison fair, the

number of random features used for ORF will be half of other

algorithms.

3) Leverage Score Sampling [13], [41] With φ =
cos(x>

ω + b) as the Feature Map: {ωm}M0

m=1 are sampled

from the Gaussian distribution N (0, σ 2I) and {bm}M0

m=1 are

sampled from the uniform distribution U(0, 2π). M features

are sampled from the pool of M0 RFFs according to the

scoring rule of LS (7). Note that the transformed matrices
�Zx ∈ R

n×M and �Zy ∈ R
n×M correspond to (3) with the j th

column normalized by a factor of (p(ω j )/qL S(ω j ))
1/2 due to

importance sampling.

4) Energy-Based Exploration of Random Features [15] With

φ = cos(x>
ω + b) as the Feature Map to Approximate the

Gaussian Kernel: {ωm}M0

m=1 are sampled from the Gaussian

distribution N (0, σ 2I) and {bm}M0

m=1 are sampled from the

uniform distribution U(0, 2π). M features are selected using

the scoring rule in (8) from the M0 feature pool. We use the

sampled M features to transform X ∈ R
n×dx to Zx ∈ R

n×M .
1) Numerical Experiments for ORCCA1:

Practical Considerations: Following [8], we work with

empirical copula transformation of datasets to achieve

invariance with respect to marginal distributions. For

X domain, the variance of random features σx is set

to be the inverse of mean distance of the 50th nearest

neighbor (in Euclidean distance), following [26]. We use

the corresponding Gaussian kernel width for KCCA. The

label information y has remained in its original space

after coupula transform. For LS, EERF, and ORCCA1,

the pool size is M0 = 10M when M random features

are used in the CCA calculation. The regularization

parameter λ for LS is chosen through grid search. The

regularization parameter µ = 10−6 is set to be small

enough to make its effect on CCA negligible while

avoiding numerical errors caused by singularity. The

feature map for ORCCA1 is set to be φ = cos(x>
ω+b).

Performance: The empirical results for ORCCA1 are

reported in Fig. 1. The results are averaged over 30 sim-

ulations and error bars are presented in the plots. There

is only one canonical correlation to report due to dy = 1.

We can clearly observe that ORCCA1 shows dominance

over the other benchmark algorithms except for two

occasions: 1) at M = 100 features, ORF performs

on par with ORCCA1 in the Adult dataset and 2) at

60+ features, EERF performs on par with ORCCA1 in

the Energy dataset. Another interesting observation here

is that other than ORCCA1, all the benchmark algo-

rithms do not show any clear hierarchy in performance

given their established empirical performance hierarchy

in supervised learning [45].

2) Numerical Experiments for ORCCA2:

Practical Considerations: The variance of random fea-

tures σx is set to be the inverse of mean distance of

the 50th nearest neighbor (same procedure as ORCCA1

experiments). After performing a grid search, the vari-

ance of random features σy for Y is set to be the same
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Fig. 1. Plot of canonical correlations versus the number of features obtained by different algorithms (for ORCCA1 comparison). The error bars are obtained
with 30 Monte Carlo simulations.

Fig. 2. Plot of total canonical correlation (first row), top-10 canonical correlations (second row), and the largest canonical correlation (third row) versus the
number of features obtained by different algorithms. The error bars are obtained with 30 Monte Carlo simulations.

as σx , producing the best results for all algorithms. For

LS and ORCCA2, the pool size is M0 = 10M when M

random features are used in the CCA calculation. The

regularization parameter λ for LS is chosen through grid

search. The regularization parameter in CCA calculation

remains at µ = 10−6. The feature map for ORCCA2 is

also φ = cos(x>
ω + b).

Performance: Our empirical results on four datasets

are reported in Fig. 2. The results are averaged over

30 simulations and error bars are presented in the plots.

The first row of Fig. 2 represents the total canonical

correlation versus the number of random features M for

ORCCA2 (this work), RFF, ORF, and LS. We observe

that ORCCA2 is superior compared to other benchmarks

and only for the Adult dataset ORF is initially on

par with our algorithm. The second row of Fig. 2

represents the top-10 canonical correlations, where we

observe the exact same trend. This result shows that the

total canonical correlation is mostly explained by their

leading correlations. The third row of Fig. 2 represents

the largest canonical correlation. Although ORCCA2 is

developed for the total canonical correlation objective

function, we can still achieve performance boost in

identifying the largest canonical correlation, which is

also a popular objective in CCA. The theoretical time

complexity and practical time cost are tabulated in

Table I. Our cost is comparable to LS as both algorithms

calculate a new score function for feature selection.

The run time is obtained on a desktop with an eight-

core, 3.6-GHz Ryzen 3700X processor and 32 GB of

RAM (3000 MHz). Given the dominance of ORCCA1

over LS and EERF and ORCCA2 over LS, we can

clearly conclude that data-dependent sampling methods

that improve supervised learning are not necessarily

best choices for CCA. Finally, in Fig. 4, we compare

ORCCA2 and KCCA. The datasets used for this part are
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Fig. 3. Plot of total canonical correlation (first row), top-10 canonical correlations (second row), and the largest canonical correlation (third row) versus the
number of features obtained by different algorithms on test sets. The error bars are obtained with 30 Monte Carlo simulations.

smaller than the previous one due to prohibitive cost of

KCCA. On these datasets, ORCCA2 can gradually out-

perform KCCA in total CCA value as the computation

time increases (due to increasing the number of random

features), while it is also more efficient in terms of time

cost. The main reason is that ORCCA2 approximates a

“better” kernel than Gaussian by choosing good features.

3) Performance Comparison With Training and Testing Sets

(ORCCA2):

Due to the sample and select nature of ORCCA algo-

rithms, one might wonder the necessity of cross vali-

dation during the implementation of ORCCA. In this

experiment, we randomly choose 80% of the data as

the training set and use the rest as the testing set. For

ORCCA2 and LS, the random features are reselected

according to the score calculated with the training set,

and canonical correlations are calculated with these

features for the testing set. RFF and ORF algorithms

are only implemented on the test set as their choice

is independent of data. All the parameters, including

the random features variances σ 2
x and σ 2

y , feature map

φ, pool size M0, the original distribution for random

features, the regularization parameter µ for CCA, and

the regularization parameter λ for LS, are kept the same

as the previous ORCCA2 numerical experiment. The

results are shown in Fig. 3 following the same layout

as Fig. 2. We can observe that the performance of

algorithms is almost identical to the results of Fig. 2,

which shows the robustness of ORCCA2 to test data

as well. In another word, we can avoid the loss of

information due to cross validation when implementing

ORCCA algorithms.

B. Deep Learning CCA Comparison

In addition to variants of kernel approximation for CCA,

recent studies have been utilizing deep learning to fur-

ther enhance CCA. The recent deep learning algorithms

include deep CCA (DCCA) [34], deep variational CCA

(DVCCA) [46], deep generalized CCA (DGCCA) [47], and

deep tensor CCA (DTCCA) [48]. In this section, we will

compare ORCCA2 with the above-mentioned state-of-the-art

CCA methods.

1) Benchmark Algorithms:

1) DCCA: DCCA uses deep neural networks for the non-

linear transformation of both views of data. The para-

meters of the network are updated using gradient flow,

calculated with negative total canonical correlation used

as the loss function. We identically construct the neural

networks for both views of the data. The neural network

consists of a hidden layer with 100 neurons and ReLU

activations, with an output of dimension 20.

2) DTCCA: Deep tensor CCA uses a deep neural net-

work for nonlinear transformation, similar to DCCA.

However, the loss function is replaced by the tensor

formulation of total canonical correlations from tensor

CCA to extend DCCA to more than two views of data.

We construct the same neural network embedding as

DCCA. We must note that the main goal of DTCCA

is to extend CCA to more than two views of data with

tensor formulation. The main reason to include DTCCA

in this comparison is to show the impact of multiview

CCA on the correlation extraction.

3) DGCCA: Deep generalized CCA uses deep neural net-

works for nonlinear transformation, similar to DCCA.

It forces the two views of data to transform into a shared
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TABLE I

THEORETICAL TIME COMPLEXITY OF ORCCA2 AND BENCHMARK ALGORITHMS AND THEIR PRACTICAL TIME COST (IN SEC). FOR REPORTING

TIME COST (ONLY), WE USED n = 5000 DATA POINTS, M = 100 RANDOM FEATURES, AND M0 = 1000 FEATURE POOL.
FOR ENERGY USE, WE USED THE FULL DATASET n = 768

Fig. 4. ORCCA2 versus KCCA comparison. The plots represent the total canonical correlations obtained by ORCCA2 with different time costs (by varying
the number of random features). The dot represents the total canonical correlation obtained by KCCA and its time cost. The total canonical correlations and
time cost of KCCA are also marked by text on the axis. The error bars are obtained with 30 Monte Carlo simulations. CCPP is “Combined Cycle Power
Plant” data.

TABLE II

ORCCA2 PERFORMANCE COMPARISON WITH OTHER STATE-OF-THE-ART DEEP LEARNING VARIANTS OF CCA. ALL DEEP LEARNING

ALGORITHMS USE 20 LATENT DIMENSIONS, AND RFF AND ORCCA2 USE 20 RANDOM FEATURES FOR A FAIR COMPARISON.
THE STANDARD ERRORS ARE ESTIMATED WITH 30 MONTE CARLO SIMULATIONS

view that will be learned through gradient flow. We use

a similar neural network structure for DGCCA, where

we feed the data into a hidden layer with 160 neurons

and ReLU activations. It will then be transformed into

a latent variable of dimension 20.

4) DVCCA: Deep variational CCA replaces the total canon-

ical correlation loss function with the expected log

likelihood, derived from the evidence lower bound given

a latent variable with shared information from both

views of data. We use the same network structure as

DCCA for DVCCA.

2) Datasets: Instead of using low-dimensional datasets,

we focus on high-dimensional image data correlation extrac-

tion, following the convention in deep learning variants

of CCA. We use two datasets, Fashion MNIST, a 28 ×
28 grayscale image dataset for clothes and shoes, and MNIST,

a 28 × 28 grayscale image dataset for handwritten digits. For

both datasets, we randomly sample 1500 images, 500 for train-

ing, 500 for validation, and 500 for testing. We rotate these

images for a degree uniformly distributed in [−(π/4), (π/4)]

to form the first view of the data. Then, for each image in

View 1, we randomly sample a new image with the same

label from the original dataset and add centered Gaussian

noise to form View 2. This experimental setting is identical to

that of [46]. The training set in ORCCA2 is used for feature

selection, whereas in all deep learning algorithms, it is used for

neural network training. The validation set is used in all deep

learning algorithms for training epochs’ validation. The test

set is then used in all the algorithms for recording canonical

correlations. Some sample images for the two views are shown

in Fig. 5.

3) Practical Consideration: The latent dimension for deep

learning algorithms as well as the number of random features

for ORCCA2 and RFF are set to be 20 for a fair comparison.

Note that any deep learning algorithm is able to achieve

perfect correlation between two views of training data for large

enough latent dimension (overfitting). However, this is not

the intent in applications of nonlinear CCA, and all the deep

learning CCA works [34], [46]–[48] conduct their experiments

in a low latent dimension, as we do here. We use the “Adam”
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Fig. 5. Rotated View 1 (left) and Noisy View 2 (right) of FashionMNIST
dataset and MNIST dataset.

optimizer for all deep learning algorithms, and the number

of training epochs is selected using the validation set. DCCA

is trained for 50 epochs. DTCCA is trained for 100 epochs.

DGCCA is trained for 20 epochs. DVCCA is trained for

300 epochs.

4) Performance: All the results are tabulated in Table II,

where we report the time cost, largest correlation value,

the sum of top-10 correlation values, and the sum of total

correlation values. The standard errors are calculated using

30 Monte Carlo simulations. The reported time for deep

learning algorithms and ORCCA2 includes the model train-

ing/feature selection time in addition to the CCA time. The

validation time for deep learning algorithms is not included.

As we can observe, ORCCA2 dominates all the benchmark

algorithms in correlation extraction while being significantly

faster than the deep learning algorithms.

VI. CONCLUSION

Random features have been widely used for various machine

learning tasks but often times they are sampled from a pre-

set distribution, approximating a fixed kernel. In this work,

we highlight the role of the objective function in the learning

task at hand. We propose a score function for selecting random

features, which depends on a parameter (matrix) chosen based

on the specific objective function to improve the performance.

We start by drawing connections to score functions for random

features in supervised learning. We first show the potential of

our score function through a class of dimension reduction and

correlation analysis models, which involves a trace operator in

their objective functions. We then focus on CCA and derive

the optimal score function for maximizing the total CCA.

Empirical results verify that random features selected using

our score function significantly outperform other state-of-the-

art methods for random features. It would be interesting to

explore the potential of this score function for other learning

tasks as a future direction.

APPENDIX

A. Proof of Proposition 1

To find canonical correlations in KCCA (5), we deal with

the following eigenvalue problem (see, e.g., [49, Sec. 4.1]):

(Kx + µI)−1Ky

�
Ky + µI

�−1
Kxπ x = δ2

π x (14)

where the eigenvalues δ2 are the kernel canonical correlations

and their corresponding eigenvectors are the kernel canonical

pairs of X. The solutions to y can be obtained by switching

the indices of x and y. When Ky is a linear kernel, we can

rewrite above as follows:

(Kx + µI)−1yy>�
yy> + µI

�−1
Kxπ x = δ2

π x .

Then, maximizing the total canonical correlation (over ran-

dom features) will be equivalent to maximizing the approxi-

mated objective Tr[(Kx + µI)−1yy>(yy> + µI)−1Kx ]. Here,

we first approximate Kx at the end of the left-hand side with

Zx Z>
x such that

Tr[(Kx + µI)−1yy>�
yy> + µI

�−1
Kx]

≈ Tr
�
(Kx + µI)−1yy>�

yy> + µI
�−1

Zx Z>
x

�

= Tr


(Kx + µI)−1yy>Zx Z>

x

� 1

µ + y>y

∝ Tr


(Kx + µI)−1yy>Zx Z>

x

�

= Tr


Z>

x (Kx + µI)−1yy>Zx

�

=
M0�

i=1



Z>

x (Kx + µI)−1yy>Zx

�
ii

=
1

M0

M0�

i=1

z>
x (ωi )(Kx + µI)−1yy>zx(ωi ) (15)

where the third line follows by the Woodbury inversion lemma

(push-through identity).

Given the closed form above, we can immediately see that

good random features are ones that maximize the objective

above. Hence, we can select random features according to

the (unnormalized) z>
x (ω)(Kx + µI)−1yy>zx(ω). Given that

random features are sampled from the prior p(ω), we can

then write the score function as

q(ω) � p(ω)z>
x (ω)(Kx + µI)−1yy>zx(ω) (16)

completing the proof of Proposition 1.
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B. Proof of Corollary 1

In Corollary 1, we further approximate (10) and achieve an

improved time cost.

Notice that when we sample M0 random features as a pool,

the probability p(ω) is already incorporated in the score.

Therefore, we just approximate the kernel matrix Kx with

Zx Z>
x [according to (3)] such that

qx(ωm) ≈ z>
x (ωm)

�
Zx Z>

x + µI
�−1

yy>zx(ωm). (17)

Then, using the push-through identity again, we derive

z>
x (ωm)

�
Zx Z>

x + µI
�−1

yy>zx(ωm)

=
�
Z>

x

�
Zx Z>

x + µI
�−1

yy>Zx

�
mm

=
��

Z>
x Zx + µI

�−1
Z>

x yy>Zx

�
mm

. (18)

Therefore, for a specific ωm , the RHS of (17) can be

rewritten in the following form:

RHS =
��

Z>
x Zx + µI

�−1
Z>

x yy>Zx

�
mm

= 
qx(ωm).

Then, Corollary 1 is proven.

C. Proof of Theorem 1

When Y is also mapped into a nonlinear space, we need

to work with the eigensystem in (14). As discussed before,

the objective is then maximizing the approximated version of

Tr[(Kx + µI)−1Ky(Ky + µI)−1Kx]. Following the same idea

of (15), we have the following:

Tr[(Kx + µI)−1Ky

�
Ky + µI

�−1
Kx]

≈ Tr
�
(Kx + µI)−1Ky

�
Ky + µI

�−1
Zx Z>

x

�

= Tr
�
Z>

x (Kx + µI)−1Ky

�
Ky + µI

�−1
Zx

�

=
1

M0

M0�

m=1

z>
x (ωm)(Kx + µI)−1Ky

�
Ky + µI

�−1
zx(ωm).

(19)

We can then follow the exact same lines in the proof of

Proposition 1 to arrive at the following score function:

qx(ω) = px(ω)z>
x (ω)(Kx + µI)−1Ky

�
Ky + µI

�−1
zx(ω).

The proof for qy(ω) follows in a similar fashion.

D. Proof of Corollary 2

Similar to approximation ideas in the proof of Corollary 1,

we can use the approximations Kx ≈ Zx Z>
x and Ky ≈ ZyZ>

y

to get

qx(ωm)

≈ z>
x (ωm)

�
Zx Z>

x + µI
�−1

ZyZ>
y

�
ZyZ>

y + µI
�−1

zx(ωm).

(20)

Using the push-through identity twice in the following,

we have:

z>
x (ωm)

�
Zx Z>

x + µI
�−1

ZyZ>
y

�
ZyZ>

y + µI
�−1

zx(ωm)

=
�
Z>

x

�
Zx Z>

x + µI
�−1

ZyZ>
y

�
ZyZ>

y + µI
�−1

Zx

�
mm

=
��

Z>
x Zx + µI

�−1
Z>

x Zy

�
Z>

y Zy + µI
�−1

Z>
y Zx

�
mm

which provides the approximate scoring rule


qx(ωm) =
��

Z>
x Zx + µI

�−1
Z>

x Zy

�
Z>

y Zy + µI
�−1

Z>
y Zx

�
mm

.

(21)

The proof for 
qy(ωm) follows in a similar fashion.

E. Proof of Proposition 2

We will demonstrate the proof using the ORCCA2 formu-

lation. Recall the total canonical correlation decomposition

derived in (19). We will now formally define two quantities

in the following:

ρ(M)(RCCA) �
1

M

M�

m=1

z>
x (ωm)Gzx(ωm)

ρ(M,M0)(ORCCA) � sup
N⊆[M0],|N |=M

1

M

�

m∈N

z>
x (ωm)Gzx(ωm)

(22)

where

G � (Kx + µI)−1Ky

�
Ky + µI

�−1
.

We can see that ρ(M)(RCCA) corresponds to the total

canonical correlation obtained by M plain RFFs. Similarly,

we can see that ρ(M,M0)(ORCCA) corresponds to the total

canonical correlation obtained by ORCCA2, where top M

features are selected from a pool of M0 > M plain RFFs

according to score (12).

Taking expectation over random features, we have that

E


ρ(M,M0)(ORCCA)

�

=
1

M
E

�
sup

N⊆[M0],|N |=M

�

m∈N

z>
x (ωm)Gzx(ωm)

�

≥
1

M
sup

N⊆[M0],|N |=M

E

� �

m∈N

z>
x (ωm)Gzx(ωm)

�

≥
1

M
E

⎡
⎣ �

m∈[M]

z>
x (ωm)Gzx(ωm)

⎤
⎦

= E


ρ(M)(RCCA)

�
= ρ(KCCA). (23)

The above equation shows that the total canonical correla-

tion obtained by ORCCA2 provides an upper bound for the

total canonical correlation obtained by RFF in the view of X.

We can conclude the same thing in the view of Y following

the same procedure. Setting Ky = yy>, we can also have the

same property for ORCCA1. Therefore, Corollary 2 is proven.
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F. Computation Complexity

To highlight the computational advantage, we examine the

computational cost of the dominating components in KCCA

formulation and ORCCA formulation.

1) For KCCA, the dominating component in terms of

computational cost is the matrix inversion of the full

rank matrices Kx + µI and Ky + µI, as we can see

in (5). Both of them have the time complexity of

O(n3) as Kx , Ky ∈ R
n×n. The matrix multiplication

will also induce a theoretical time complexity of O(n3).

Therefore, the computational cost of KCCA is O(n3).

2) For ORCCA1 and ORCCA2, the dominating component

in terms of computational cost comes from calculating

the empirical score function (21). The score function

needs to be computed once for ORCCA1 and twice for

ORCCA2. The matrix inversion of Z>
x Zx + µI induces

a cost of O(M3
0 ), where M0 is the number of random

features in the pool. The matrix multiplication Z>
x Zx

induces a cost of O(nM2
o ). Therefore, the computation

cost of ORCCA1 and ORCCA2 is dominated by this

term and the cost is O(nM2
0 + M3

0 ).
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