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ON THE WORK OF JEAN BOURGAIN

IN NONLINEAR DISPERSIVE EQUATIONS

CARLOS E. KENIG

Abstract. In this brief note we survey a sample of the deep and influential
contributions of Jean Bourgain to the field of nonlinear dispersive equations.
Bourgain also made many fundamental contributions to other areas of par-
tial differential equations and mathematical physics (as well as to a myriad
of other areas in analysis, number theory, combinatorics, theoretical computer
science, and more). Quoting the citation of the American Mathematical Soci-
ety L. P. Steele Prize for Lifetime Achievement awarded to Bourgain in 2018,
“Jean Bourgain is a giant in the field of mathematical analysis, which he has
applied broadly and to great effect.”

Jean Bourgain’s contributions to mathematics will be remembered forever.
Those of us who knew him will also remember his warmth, generosity, and
graciousness.

1. Nonlinear dispersive equations:

The well-posedness theory before Bourgain

The theory of nonlinear dispersive equations goes back to the nineteenth century,
in connection with water waves in shallow water. The Korteweg–de Vries equation,
which governs this phenomenon, was proposed by Boussinesq and by Korteweg and
de Vries in the late nineteenth century as a way of explaining the discovery by Scott
Russell (1835) of traveling waves. The generalized KdV equations (gKdV)k, (k = 1
being the Korteweg–de Vries equation) are

(gKdV)k

{
∂tu+ ∂3

xu+ uk∂xu = 0, x ∈ R, or x ∈ T, t ∈ R

u|t=0 = u0(x)

(here, T and Td are the one-dimensional (d-dimensional) torus). Another example
of nonlinear dispersive equations are the nonlinear Schrödinger equations (NLS),

(NLS)

{
i∂tu+Δu± |u|p−1u = 0, x ∈ Rd, or x ∈ Td

u|t=0 = u0(x).

When d = 1, p = 3, these equations model the propagation of wave packets in
the theory of water waves. The equations also appear in nonlinear optics and in
quantum field theory. These equations have a Hamiltonian structure and preserve
mass and energy (although the energy may be negative). For both equations, the
conserved mass is

∫
|u0|

2, where the integral is over Rd or Td. For (gKdV)k the
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conserved energy is E(u0) =
∫
[(∂xu0)

2 − cku
k+1
0 ]dx and for (NLS) it is E(u0) =∫

[(∇xu0)
2 ∓ cp|u0|

p+1]dx, where the integrals are over Rd or Td.
These equations are called dispersive because their linear parts are dispersive.

Heuristically, the linear equations, when defined for x ∈ Rd, are called dispersive,
because the initial data gets spread out or dispersed by the evolution. (The linear
equations can be solved by using Fourier’s method.) Since the mass of the solution
is constant (the L2 norm is conserved), this requires the size of the linear solution to
become small for large t, the so-called dispersive effect. Note that this is a feature
of linear dispersive equations, the traveling wave solutions discovered by Russell do
not have this property, they are purely nonlinear objects. Moreover, when x ∈ Td,
there is no room for the solution to spread out, and the dispersive effect disappears.

Even though these equations were introduced in the nineteenth century and early
twentieth century, their systematic study started much later. One of the first things
to understand for such equations is well-posedness. Equations such as (gKdV)k or
(NLS) are said to be locally well-posed in a space B (with u0 ∈ B) if the equation
has a unique solution u (in a suitable sense) for u0 ∈ B, for some T = T (u0),
0 ≤ t ≤ T , u ∈ C([0, T ];B), and the mapping u0 ∈ B → u ∈ C([0, T ];B) is
continuous. (That is to say, in analogy with ordinary differential equations, we
have existence, uniqueness, and continuous dependence on the initial data.) If we
can take T = +∞, we say that the problem is globally well-posed. Since dispersive
equations are (essentially) time reversible, we can replace [0, T ] by [−T, T ]. Usually
in this subject, the space B is taken to be an L2 based Sobolev space (or sometimes
a weighted L2 based Sobolev space, with power weights, in case we are working
in Rd). The reason for using L2 based spaces as opposed to Lp based spaces is
the failure of estimates for u0 ∈ Lp, p �= 2, in the associated linear problems.
The first locally well-posed results used the analogy of these problems to classical
hyperbolic ones, which led (by the classical energy method and its refinements
and compactness arguments ([5], [6])) to the local well-posedness of (gKdV)k in
Hs(R), for s > 3

2 , for k = 1, 2, . . . , with the same result holding in Hs(T), and

to the local well-posedness of (NLS) in Hs(Rd), for s > d
2 , with the same result

holding in Hs(Td). (In the case of (NLS) some restrictions on p arise also, coming
from the possible lack of smoothness of α → |α|p−1α.) Here, for f defined on

Rd, we set f̂(ξ) =
∫
Rd e

2πix·ξf(x)dx, Hs(Rd) = {f :
∫
(1 + |ξ|2)s|f̂(ξ)|2dξ < ∞},

and for f defined on Td, we set f̂(n) =
∫
Td e

2πix·nf(x)dx, n ∈ Zd, and Hs(Td) =

{f :
∑

n∈Zd |f̂(n)|2(1 + |n|2)s < ∞}. An inspection of these proofs shows that

dispersive properties of (∂t + ∂3
x) or of (i∂t +Δ) are not used at all in the case of

Rd, and hence they remain valid for the case of Td. Particular cases of (gKdV)k
and (NLS) are closely connected to complete integrability, a theory which was first
developed largely in this regard [1]. These are the cases k = 1, 2 in (gKdV)k and
p = 3, d = 1 in (NLS). The applicability of this method initially required a high
order of differentiability of the data u0 and, in the case x ∈ R, a fast decay of u0.
More recently, this has been greatly improved (see [41], [42], [53]) but still only
applies to a few specific cases.

In the late 1970s and early 1980s, the pioneering works of Ginibre and Velo ([32],
[33], [34]) and Kato [45], through the use of important new advances in harmonic
analysis ([83], [86]), led to low regularity locally well-posed and globally well-posed
results for (NLS) in Rd, culminating with the definitive results of Tsutsumi [85] and
Cazenave and Weissler [22]. This approach exploited the dispersive properties of
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JEAN BOURGAIN AND NONLINEAR DISPERSIVE EQUATIONS 175

(i∂t+Δ) and the connection with the restriction problem for the Fourier transform
(discovered and formulated in the visionary work of E. M. Stein (see [81]) uncovered
by Segal [78] and Strichartz [83]).

More precisely, the solution of the initial value problem,

(LS)

{
i∂tu+Δu = 0, x ∈ Rd, t ∈ R

u|t=0 = u0(x)

is given by

û(ξ, t) = eit|ξ|
2

û0(ξ) = (eit∆u0)(̂ξ)

or

u(x, t) =
cd

|t|
d
2

∫

Rn

ei|x−y|2/4tu0(y)dy.

The second formula gives that for u solving (LS),

(1) |u(x, t)| ≤
cd

|t|
d
2

‖u0‖L1 ,

which clearly shows the dispersive effect mentioned earlier. The relevant restriction
problem here is the one to the paraboloid that equals {(ξ, |ξ|2) : ξ ∈ Rd} ⊂ Rd+1.
In this case we have the restriction inequality

(2)
(∫

|f̂(ξ, |ξ|2)|2dξ
) 1

2

� ‖f‖
L

2(d+2)
d+4 (Rd+1)

for f ∈ S (Rd+1) (see [83], [86]). The connection with (LS) is that the dual in-
equality to (2) is the extension inequality, which gives, from the first formula for
the solution u of (LS), the estimate

(3) ‖u‖
L

2(d+2)
d (Rd+1)

� ‖u0‖L2(Rd).

Now, to solve (NLS), one needs to solve (by Duhamel’s principle) the equation
(with the notation eit∆u0 = S(t)u0))

(4) u(t) = S(t)u0 ±

∫ t

0

S(t− t′)|u|p−1u(t′)dt′.

This is solved by using the contraction mapping principle on spaces constructed
exploiting the estimate (2) and related ones ([32], [33], [34], [45]).

The result of Cazenave and Weissler [22] follows.

Theorem 1.1. Assume that u0 ∈ Hs(Rd), s ≥ 0, s ≥ s0, where p − 1 = 4
d−2s0

.

Assume also that p − 1 > [s] + 1 if p − 1 /∈ 2Z⋆, where [s] is the greatest integer
smaller than s. Then (NLS) is locally well-posed for t ∈ [−T, T ]. In the subcritical
case s > s0, we can take T = T (‖u0‖Hs); in the critical case s = s0, T = T (u0).

This approach, relying on the estimates (1) and (3) uses crucially the dispersive
properties of (i∂t + Δ) in Rd, and hence it does not apply to Td. On the other
hand on Rd it yields essentially optimal results in terms of the values of s when
B = Hs(Rd), which greatly improve the results obtained by the energy method
described earlier.

There are several motivations for hoping to have low regularity well-posedness
results for (gKdV)k and (NLS). The first one is that if one can obtain local well-
posedness at the regularity level given by the conserved mass or the conserved
energy with time of existence T = T (‖u0‖)L2 , or T = T (‖u0‖H1), one can use the
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a priori control given by the conserved quantity to obtain global well-posedness,
simply by iterating the local result. Another motivation is the belief that since for
the associated linear problem we have well-posedness in Hs, for any s, the thresh-
old s for the nonlinear problem, gives information on the nonlinear effects present
in the problem. We will see later another motivation, at very low regularity lev-
els, stemming from the connection with quantum field theory, and giving global
well-posedness for generic data. Turning to the low regularity local well-posedness
theory for (gKdV)k, the new difficulty is the fact that the nonlinear term con-
tains a derivative, which needs to be recovered. One might think that the fact
that (∂t + ∂3

x) has a stronger dispersive effect (we have, for instance, the bound
|u(x, t)| � 1

t1/3
‖u0‖L1 for the linear solution, which is stronger for small t than the

1
t1/2

we get for (LS), d = 1) would compensate for the derivative in the nonlinearity,
but this is not obviously the case. Kato ([43], [44]) found a local smoothing effect
for solutions of (gKdV)k which allowed, when x ∈ R, for control a priori, with

u0 ∈ L2(R) quantities like
∫ j+1

j

∫ 1

0

(
∂xu(x, t)

)2

dxdt, j ∈ Z, uniformly in j, but

this only gave rise to weak solutions with L2 data and did not give uniqueness or
continuous dependence on the data. This was also restricted to x ∈ R, since such an
estimate in T would contradict time reversibility and conservation of mass. In the
1980s and early 1990s, in a joint project with G. Ponce and L. Vega, we developed
a new approach to the low regularity local and global well-posedness theory (for
x ∈ R) for (gKdV)k, which in the case k ≥ 4 gave essentially optimal (in some
sense) results ([4], [51]). This was also based on the contraction mapping theorem,
and it used tools from harmonic analysis. In addition to the analogues of the exten-
sion inequality (3) (with (ξ, |ξ|2) being replaced by (ξ, ξ3)), we used a sharp form
(for linear equations) of the Kato local smoothing estimate, introduced in [30], [82],
[87], as well as an analogue of the maximal function estimate introduced in [21]
and motivated by statistical mechanics (see also [31], [87]). The combination of
these two estimates allowed us to control well the nonlinear term uk∂xu. In addi-
tion we also applied the multilinear harmonic analysis tools developed by Coifman
and Meyer ([23], [24]). This was all completely tied to dispersion and was totally
dependent or the fact that x ∈ R. A sample result obtained, for KdV (k = 1),
follows.

Theorem 1.2 ([49]). Let s > 3
4 , u0 ∈ Hs(R). Then ∃T = T (‖u0‖Hs) and a space

Xs
T ⊂ C([−T, T ];Hs), such that KdV has a unique solution u ∈ Xs

T , which depends
continuously on u0.

The space Xs
T is constructed by using the estimates mentioned earlier, namely

the sharp local smoothing estimate, the maximal function estimate, and the variants
of the extension estimate. One then proves the result by the contraction mapping
principle in the space Xs

T , T = T (‖u0‖Hs), showing that the mapping Φu0
(u) =

W (t)u0 +
∫ t

0
W (t − t′)(u∂xu)(t

′)dt′ has a fixed point in Xs
T , where Ŵ (t)f(ξ) =

eitξ
3

f̂(ξ).

Remark 1. In a certain sense the approach was sharp: if we have a space Xs
T such

that ∀u0 ∈ Hs(R), the linear solution W (t)u0 belongs to Xs
T , and such that, for all

v, w ∈ Xs
T we have v∂xw ∈ L1

loc(R), then s ≥ 3
4 .

At this point, we had no idea how to improve the results for k = 1, 3 (the k = 2
result in [49] was also optimal, as was shown in [51]), or how to do anything other
than the s > 3

2 result given by the energy method in the case x ∈ T.
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JEAN BOURGAIN AND NONLINEAR DISPERSIVE EQUATIONS 177

2. Bourgain’s transformative work

on the well-posedness theory of dispersive equations

In the spring of 1990, I gave a lecture on the work (then in progress) in [49], and
E. Speer was in the audience. He asked me the following question: Consider the
quintic (NLS) on T:

(5)

{
i∂tu+Δu± |u|4u = 0, x ∈ T, t ∈ R

u|t=0 = u0(x) ∈ Hs(T).

Is this problem well-posed for s < 1
2?

I knew that the energy method gave s > 1
2 , that complete integrability did not

apply and that the methods I developed with Ponce and Vega, which relied on
dispersion, did not apply. Speer explained the reason for the question, which was
in connection with the work [56] of Lebowitz, Rose, and Speer, in which they had
constructed a Gibbs measure associated to the problem (5). The points that the
authors of [56] were concerned with were that the measure they constructed used
the periodic setting crucially, and that the support of the measure was contained
in very low regularity spaces. So, they wanted to have a flow for (5), in the support
of the Gibbs measure, which kept the Gibbs measure invariant. If so, a byproduct
of all this would be that for data in the support of the measure, local-in-time
existence could be globalized in time, similarly to the arguments in the presence of
conserved quantities that we saw before. I told Speer that I felt that the question
was very hard, and that I thought the person who could make progress in it, and
would probably be interested in the problem, was Jean Bourgain! Bourgain did get
interested and resolved completely the Lebowitz–Rose–Speer questions. In doing
so, he transformed the theory of nonlinear dispersive equations, starting with his
papers [7], [8], [9]. Moreover, he continued making fundamental contributions to
all aspects of this theory, and he transformed not only the well-posedness theory
and created the probabilistic theory suggested by [10], [11], and [56], but also many
other central areas in the field. Let me now turn to Bourgain’s papers [7], [8], in
which he made his first groundbreaking contributions to the well-posedness theory.
These works address the following two fundamental questions:

1. How do we prove low regularity well-posedness results for (NLS) and
(gKdV)k for x ∈ Td?

2. How do we improve the well-posedness results on (KdV) on R?

It turns out that in solving the first question, Bourgain also found the path to
solving the second one. Also, once the first question was solved, Bourgain turned
to the Gibbs measure questions from [56], in [10], [11], settling them and extending
their scope, as we shall see below. We thus turn to (NLS) on Td, and we will
concentrate on Bourgain’s results for d = 1, 2, which are the most relevant to our
exposition.

Theorem 2.1 ([7]).

(i) (NLS) is locally well-posed in Hs(T), for s ≥ 0, p − 1 < 4
1−2s . Thus, for

p− 1 = 4, (NLS) is locally well-posed in Hs(T) for all s > 0.
(ii) (NLS) is locally well-posed in Hs(T2), for p− 1 = 2, s > 0.

Compared with corresponding results in R,R2 that we discussed earlier, one key
difficulty is the lack of a dispersive effect. Another difficulty is that in the periodic
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case, the Fourier transform, in the solution of the associated linear problem, is
replaced by Fourier series, leading to exponential sums that are much more difficult
to estimate than integrals. For instance, the operator eit∆u0 = S(t)u0 now takes
the form

S(t)u0(x) =
∑

n∈Zd

ei(xn+t|n|2)û0(n).

The proof of Theorem 2.1 proceeds by using the contraction mapping principle.
The first step is to find estimates that replace the inequality (3), crucial in the case
of Rd, which is proved using oscillatory integral estimates. Bourgain achieved this
by using analytic number theory, and the results that he obtained in doing this
have independent interest in analytic number theory. As a sample let me mention
two such estimates:

(a)

‖
∑

n∈Z,|n|≤N

ane
i(nx+n2t)‖L6(T2) � Nε

(∑
|an|

2)
1
2 , ∀ε > 0,

which is used in Theorem 2.1(i) and
(b)

‖
∑

n∈Z2,|n1|≤N,|n2|≤N

ane
i(nx+|n|2t)‖L4(T3) � Nε

( ∑

n∈Z2

|an|
2
) 1

2

, ∀ǫ > 0,

which is used in Theorem 2.1(ii).

Their proof uses the argument of Tomas ([86]) in the proof of the restriction in-
equality combined with the major arc description of exponential sums (due to
Vinogradov) and number theoretic arguments inspired by Weyl-type lemmas [88].
The second main contribution of Bourgain here is the introduction of new function
spaces in which to apply the contraction mapping principle.

For K,N positive integers, consider

ΛK,N = {ζ = (ξ, λ) ∈ Z
d × R : N ≤ |ξ| ≤ 2N and K ≤ |λ− |ξ|2| ≤ 2K}.

For a function u in L2(Td × R), let

u(x, t) =
∑

ξ∈Zd

∫
û(ζ)e2πi(ξx+tλ)dλ,

and define |||u|||s = supK,N (K + 1)
1
2 (N + 1)s

( ∫
ΛK,N

|û(ζ)|2dζ
) 1

2

.

Fixing an interval of t in [−δ, δ], one considers the restriction norm

(6) |||u|||Xs = inf|||ũ|||s,

where the infimum is taken over all ũ coinciding with u in [−δ, δ], and it shows that
the integral equation has a solution in Xs, for small δ, by (4), now on Td, using the
contraction mapping theorem. This applies to (i) and (ii) and uses crucially the
bounds (a) and (b).

It is difficult to overestimate the impact of this work in the well-posedness theory.
It was simply a complete game changer. Versions of the spaces just described were
in the literature before, in earlier works of Rauch and Reed [76] and M. Beals [3]
dealing with propagation of singularities for solutions of semilinear wave equations,
and were also implicit in the contemporary work of Klainerman and Machedon [55]
on the local well-posedness of semilinear wave equations. However, the flexibility
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and universality of Bourgain’s formulation of these spaces contributed decisively to
their wide applicability in solving a large number of previously intractable problems
in the work of many researchers.

We now turn to the work in [8], on (gKdV)k, on T. We will restrict ourselves to
commenting on the results for k = 1.

Theorem 2.2 ([8]). (KdV) is locally well-posed on L2(T), with time of existence
depending on ‖u0‖L2 and, hence by conservation of the L2 norm, it is globally
well-posed in L2(T).

The proof also proceeds by a contraction mapping argument, in spaces related to
the ones given by (6) but adapted to the linear operator ∂t + ∂3

x. A first reduction
is to the case of data of integral 0, that is whose zero Fourier coefficient vanishes.
The space Xs now has norm

|||u|||s =

⎧
⎨
⎩

∑

n∈Z,n�=0

|n|2s
∫ +∞

−∞

(1 + |λ− n3|)|û(n, λ)|2 dλ

⎫
⎬
⎭

1/2

for u defined for (x, t) ∈ T2 with mean in x equal to 0. The relevant version of (a),
when s = 0 is now

(a′)

‖f‖L4(T2) �

⎛
⎝ ∑

m,n∈Z

(1 + |n−m3|)2/3|f̂(m,n)|2

⎞
⎠

1/2

.

A very important difference with (NLS) is the fact that there is a derivative in the
nonlinearity and there is no linear local smoothing effect, as we mentioned earlier.
Bourgain’s crucial insight here was that there is a nonlinear smoothing effect, best
captured by the function spaces introduced above. This is given in the following
estimates: let w(x, t) = ∂x(u

2)(x, t), where we assume that
∫
T
u(x, t) dx = 0. Then,

for s ≥ 0,
⎛
⎝∑

n�=0

|n|2s
∫

|ŵ(n, λ)|2

(1 + |λ− n3|)
dλ

⎞
⎠

1/2

� |||u|||Xs
,

⎛
⎝∑

n�=0

|n|2s
(∫

|ŵ(n, λ)|

(1 + |λ− n3|)
dλ

)2
⎞
⎠

1/2

� |||u|||Xs
.

It is through these estimates, controlling ∂x(u
2) by u, that we see this nonlinear

smoothing effect, which is a consequence of the curvature of (n, n3).
Finally, also in [8], Bourgain observed that this nonlinear smoothing effect also

carries over to the case x ∈ R, using the function spaces

Xs
b =

{
u(x, t) :

∫∫
(1 + |λ− ξ3|)2b · |1 + |ξ||2s|û(ξ, λ)|2 dξ dλ < ∞,

where (ξ, λ) ∈ R
2
}
.

He proved

Theorem 2.3 ([8]). (KdV) is globally well-posed in L2(R).
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Remark 2. By using a nonlinear smoothing effect and thus replacing v∂xw in Re-
mark 1 by ∂x(u

2), Bourgain bypassed the objection for improving s > 3
4 , given

in Remark 1. To Ponce, Vega, and myself this was a shocking observation. Of
course, this was just one of the many shocking observations made by Bourgain
over the years! These works of Bourgain have been and continue to be remarkably
influential.

Remark 3. Theorems 2.2 and 2.3 generated substantial interest in the question
of finding the optimal s for local well-posedness in each theorem. In [50], it was
shown that local well-posedness for T holds for s > − 1

2 and for R for s > − 3
4 ,

both by the contraction mapping principle. In [12] Bourgain observed that local
well-posedness cannot be proved by the contraction mapping principle, for s < − 1

2

on T and for s < − 3
4 on R. In [40] and [54] it was shown (independently) that

local well-posedness holds in H− 1
2 (T) and H− 3

4 (R), by the contraction mapping
principle, using a modification of the spaces Xs

b introduced by Bourgain. That
a modification of the spaces was needed was shown by Nakanishi, Takaoka, and
Tsutsumi [72]. Finally, local well-posedness was shown in H−1(T) by Kappeler and
Topalov in [41] and by Killip and Visan in H−1(R) ([53]), using inverse scattering.
These are the optimal spaces for local well-posedness in the scale of Sobolev spaces,
as was shown by Molinet [69], [70].

3. A quick sampling of some

of the other groundbreaking contributions

of Bourgain to nonlinear dispersive equations

3.1. Gibbs measure associated to periodic (NLS). We again consider the
(NLS) equation

{
i∂tu+Δu± |u|p−1u = 0, p > 1, u : Td × R → C

u|t=0 = u0

and recall the two conserved quantities, the mass

M(u) =

∫

Td

|u|2 dx = M(u0)

and the Hamiltonian (the energy)

H(u) =
1

2

∫

Td

|∇u|2 dx±
1

p+ 1

∫

Td

|u|p+1 dx = H(u0).

If we set û(n, t) = an(t)+ibn(t), we see that u solves (NLS) if and only if ȧn(t) =
∂H
∂bn

and ḃn(t) = − ∂H
∂an

, n ∈ Zd. Thus, (NLS) can be viewed as an infinite-dimensional
Hamiltonian system. If the Hamiltonian system is finite dimensional, say we con-
sider |n| ≤ N , then the Gibbs measure dμ, given by

dμ =
1

ZN
e−H(an,bn)

∏

|n|≤N

dan dbn,

where ZN is a normalization constant, is well-defined and invariant with respect to
the flow. In their paper [56], Lebowitz, Rose, and Speer were able to make sense
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of the Gibbs measure associated to (NLS) in T, with p = 5. They considered the
formal expression

dμ =
1

Z
e−H(an,bn)

∏

n∈Z

dan dbn

by introducing first the Gaussian measure

dρ =
1

Z̃
e−

∑
n(1+n2)(|an|

2+|bn|
2)
∏

n

dan dbn,

with support inHs(T), s < 1
2 , and they then proved that dμ is absolutely continuous

with respect to dρ. The questions they formulated follow.

(1) Is (NLS) on T, with p = 5, on Hs(T), 0 < s < 1
2 , well-defined for all times,

at least for data in the support of the measure?
(2) Is dμ invariant with respect to the (NLS) flow?

In the paper [10], Bourgain answered both questions in the positive. To treat
both issues, he used the locally well-posed result inHs, 0 < s < 1

2 , given in Theorem
2.1, and then used the invariance of the measure under the flow to establish global
well-posedness almost surely dμ.

In [11] Bourgain then treated a very challenging question along these lines: can
one do this for the cubic (NLS) on T2, at least in the defocusing case? That is, for
the equation

i∂tu+Δu− |u|2u = 0, x ∈ T
2.

The existence of dμ in this case was due to Glimm and Jaffe [36], but suppμ ⊂
Hs(T2), s < 0, while Theorem 2.1 gives local well-posedness in Hs(T2), s > 0.

Bourgain overcame this difficulty through another shocking breakthrough. He
considered the following random data:

uω
0 =

∑

n∈Z2

gn(ω)

(1 + |n|2)
1
2

einx,

where the {gn} are identically distributed complex Gaussian random variables.
Since uω

0 ∈ Hs(T2), s < 0, uω
0 belongs to the support of the Gibbs measure μ. (We

are going to ignore here the need for Wick-ordering the (NLS) equation here; see
[11].) The key observation is that if u is the (NLS) solution, w(t) = u(t)−S(t)uω

0 is
(almost surely in ω) well-defined in H s̄(T2), where s̄ > 0, and one can then solve for
w, to obtain a local-in-time solution. Finally, the local-in-time solution is extended
globally in time, using the invariance of the Gibbs measure. This very influential
paper led to the notion of probabilistic well-posedness in dispersive equations in
works of Burq and Tzvelkov [20], T. Oh [73], and many others, including Bourgain
and Bulut ([17], [18]).

3.2. Bourgain’s “high-low decomposition”. In Theorem 1.1 the local-in-time
result can be extended to a global-in-time one, in the case where the Hs norm of
the data is small, s ≥ s0. In the mass (L2) subcritical case, when p− 1 < 4/d (that
is when s0 < 0), the problem is locally well-posed in L2, and hence globally well-
posed in L2. When p− 1 ≥ 4/d, in the focusing case (that is when the sign in front
of the nonlinearity in (NLS) is negative, and hence the Hamiltonian does not have
a definite sign), a sufficiently large smooth solution may blow up in finite time (see
Glassey ([35]), Merle ([58], [59]), Bourgain and Wang ([19]), Merle and Raphaël
([60], [61], [62], [63], [64]), Raphaël ([74], [75]), Merle, Raphaël, and Rodnianski
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([65]), etc.). Also, if the nonlinearity is defocusing (that is, the sign in front of the
nonlinear term in (NLS) is negative so that the conserved Hamiltonian

H(u) =
1

2

∫
|∇u|2 +

1

p+ 1

∫
|u|p+1

controls
∫
|∇u|2, and if p − 1 < 4

d−2 (that is s0 < 1) and hence the problem is

energy subcritical), (NLS) is globally well-posed in the energy sphere H1(Rd) by
iterating the result in Theorem 1.1.

In [13] Bourgain developed a very general method to, in such circumstances,
obtain global well-posedness below the energy norm. A sample result is

Theorem 3.1 ([13]). The problem
{
i∂tu+Δu− u|u|2 = 0

u|t=0 = u0 ∈ Hs(R2)

is globally well-posed for s > 3
5 . Moreover, the solution u satisfies u(t)− S(t)u0 ∈

H1(R2) for all t (with a polynomial control in |t| of the H1 norm).

The general scheme of the method is as follows: First, one has to have a conserved
quantity (say I(u0)), such that I(u0) controls a certain Hs0 norm. Next, one needs
a local well-posedness result in Hs1 , for s1 < s0, with the flow map satisfying
I(u(t)−S(t)u0) ≤ F (‖u0‖Hs1 ), where S(t) is the associated linear evolution, acting
unitarily on all Hs spaces. One then expects a global well-posedness result in Hs2 ,
for some s1 < s2 < s0. In the theorem stated, I is the Hamiltonian. One then splits,

for some T large and fixed, u0 = u
(N0)
0,1 + u

(N0)
0,2 , with u

(N)
0,1 =

∫
|ξ|≤N0

û0(ξ)e
ix·ξ dξ,

where N0 = N0(T ) is to be chosen.

It is simple to see that H(u
(N0)
0,1 ) � N

2(1−s)
0 . One then solves the nonlinear

problem with initial data u
(N0)
0,1 , for all times. If we choose the time interval I =

[0, δ], where δ = N
−2(1−s)−ǫ
0 ,

‖u
(N0)
0,1 ‖L4(Rd×I) = o(1).

If we let u = u
(N0)
1 +v, where u

(N0)
1 is the global solution just mentioned, v satisfies

the difference equation
{
i∂tv +Δv − 2|u

(N0)
1 |2v − (u

(N0)
1 )2v̄ − (u

(N0)
1 )v2 − 2u

(N0)
1 |v|2 − |v|2v = 0

v|t=0 = u
(N0)
0,2 ,

with ‖u
(N0)
0,2 ‖L2 � N−s

0 ; ‖u
(N0)
0,2 ‖Hs ≤ C. One then gets, after calculations, v =

S(t)(u
(N0)
0,2 ) + w, where w(t) ∈ H1, ‖w(t)‖L2 � N−s

0 , and ‖w(t)‖H1 � N1−2s+ǫ
0 .

Then, fixing t1 = δ, we obtain u(t1) = u1 + v1, where u1 = u
(N0)
1 (t1) + w(t1),

v1 = S(t1)(u
(N0)
0,2 ). Using the conservation of H, and the bounds for w, this yields

H(u1) ≤ H(u0) + CN2−3s+ǫ
0 ,

while v1 has the same properties as u
(N0)
0,2 . Iterating the procedure, to reach time

T , we need a number of steps,

T

δ
≃ T ·N

2(1−s)+ǫ
0 .
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Thus we need to ensure that

T ·N
2(1−s)+ǫ
0 ·N2−3s+ǫ

0 < H(u
(N0)
0,1 ) ≈ N

2(1−s)
0 .

This can be achieved for s > 2
3 . A more elaborate argument gives s > 3

5 .
This method, as mentioned before, is very general, and has led to many global

well-posedness results, due to many researchers, for instance in energy subcritical,
defocusing problems. The method also stimulated the I-team (Colliander, Keel,
Staffilani, Takaoka, and Tao) to develop the I-method to treat similar types of
situations. The I-method has been extraordinarily successful (see for instance [25],
[26], [27], [28], etc.).

Besides his interest in global well-posedness for defocusing, energy subcritical
(NLS), Bourgain was very interested in corresponding global-in-time results for
energy critical and supercritical (NLS). In the next section we will discuss Bour-
gain’s work in the energy critical case. Understanding the global-in-time energy-
supercritical case was a problem that Bourgain considered very natural and intrigu-
ing. In [16], Bourgain conjectured the global existence of classical solutions, with
smooth, well-localized data for defocusing energy supercritical (NLS). For years,
this problem was considered out of reach. Recently, this conjecture was disproved
for d ≥ 5 in the spectacular series of papers by Merle, Raphaël, Rodnianski, and
Szeftel ([66], [67]), who also were able to obtain corresponding results for the com-
pressible Euler and Navier–Stokes flows [68].

3.3. Bourgain’s work on the defocusing energy critical (NLS). In the re-
markable paper [14], Bourgain considered the defocusing, energy critical (NLS)

(7)

{
i∂tu+Δu− |u|

4
d−2 u = 0, d ≥ 3

u|t=0 = u0 ∈ H1(Rd).

Theorem 3.2. (7) is globally well-posed for u0 radial, when d = 3, 4. Moreover,
higher regularity of u0 is preserved for all times.

Remark 4. The result was proved independently by Grillakis [39], when d = 3. It
was extended to all d ≥ 3, still under u0 radial, by Tao in 2005.

Remark 5. In addition to global well-posedness, Bourgain established scattering,
that is to say, there exist u±

0 ∈ H1(Rd), radial such that

lim
t→±∞

∥∥u(t)− S(t)(u±
0 )

∥∥
H1(Rd)

= 0.

Remark 6. The corresponding result for the defocusing energy critical nonlinear
wave equation ⎧

⎪⎨
⎪⎩

∂2
t u−Δu+ |u|

4
d−2 u = 0

u|t=0 = u0 ∈ H1(Rd)

∂tu|t=0 = u1 ∈ L2(Rd)

were established by Struwe [84] in the radial case, by Grillakis [37], [38] in the
nonradial case (see also [79], [80]), with scattering being obtained by Bahouri and
Shatah in [2]. The key idea was to use the Morawetz identity [71], which for the
wave equation has energy critical scaling, combined with finite speed of propagation
(another important feature of the wave equation) to prevent energy concentration.
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For the proof of Theorem 3.2, when d = 3, the starting point is to show that if

(8)

∫ T⋆

0

∫

R3

|u(x, t)|10 dx dt < ∞,

where T⋆ is the final time of existence of u, then T⋆ = ∞ and u scatters. This fact
is now referred to as the standard finite time blow-up criterion. In order to achieve
(8), Bourgain’s idea was to do so by induction on the size of the Hamiltonian of u0,
and show that

‖u‖L10
x L10

[0,T⋆]
≤ M(H(u0))

for some function M . It is easy to show from the proof of the local well-posedness
result (since ‖u0‖H1 � H(u0)) that this is the case if H(u0) is small. Arguing by
contradiction, one assumes that

‖u‖L10
x L10

[0,T⋆]
> M,

for some M large, and that ‖v‖L10
x L10

t
< M1, whenever

{
i∂tv +Δv − |v|4v = 0

v|t=0 = v0,

provided H(v0) < H(u0) − η4, for some small η (depending only on H(u0)), and
then one reaches a contradiction for large M .

In order to reach this contradiction, Bourgain introduced a modification of the
Morawetz estimate for the Schrödinger equation, due to Lin and Strauss [57]. Com-
paring Theorem 3.2 with the earlier work on the wave equation by Grillakis men-
tioned in Remark 6, key difficulties are the infinite speed of propagation and the
unfavorable scaling of the estimate in [57]. This is addressed in the following.

Proposition 1. Let u be a solution of (7) in the energy space on a time interval
I on which (7) is well-posed in the energy space. Then,

∫

I

∫

|x|<|I|1/2

|u(x, t)|6

|x|
dx dt ≤ CH(u0)|I|

1/2.

It is in the application of this proposition (which allows one to handle energy
concentration) that the radial hypothesis is used. The details of the proof are
intricate. The induction on energy used in the proof is an audacious idea, which
has been extremely influential. In [29] the I-team (Colliander, Keel, Staffilani,
Takaoka, and Tao) in a major breakthrough, extended the d = 3 result in Theorem
3.2 to the nonradial case. An important ingredient of their proof is the introduction
of an interaction Morawetz inequality, a version of Proposition 1, in which the origin
is not a privileged point. This was extended to d = 4 by Ryckman and Visan [77]
and to d ≥ 5 by Visan [89]. Later on a new method, dubbed the concentration-
compactness/rigidity theorem method was introduced in [46], [47], [48], which is very
flexible, and which could also treat focusing problems under sharp size conditions.
This method also led to many more developments in these types of problems in the
works of many researchers. For a proof of Theorem 3.2 and its nonradial version in
[29] using this new method, see the work of Killip and Visan [52].
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4. Conclusion

The work of Jean Bourgain transformed the field of nonlinear dispersive equa-
tions by settling old conjectures, introducing new methods and ideas, and posing
important problems. The works briefly described in this note are just a small (hope-
fully representative) sample of Bourgain’s influential contributions to this field.
They will continue to inspire researchers for generations to come.
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