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on solvent and temperature, either N- or 
C-coordination occurs without loss of 
dinitrogen, as studied by Hansmann 
and co-workers. In the reaction with 
organometallic Au(i) precursors, Severin 
and colleagues observed the coordination 
of one molecule of diazoolefin via the 
central carbon atom when THF was 
used as the solvent. In contrast, the team 
led by Hansmann noted the formation 
of a dinuclear Au(i) complex as well as 
an azo-bridged dimer of the mesoionic 
N-heterocyclic olefin when diethyl ether 
was the solvent. Whether this divergent 
reactivity is related to the N-heterocyclic 
backbone of the diazoolefin or arises from 
the change in solvent remains unclear and 
requires further investigation. Additional 
studies by Severin and co-workers on 
the formation of metal complexes of 
diazoolefins revealed that they all feature a 
surprisingly stable diazo functional group, 
which remains untouched for complexes 
based on Pd(ii), Rh(i) or Al(iii).

As described in 1987 by Bott, such 
(mesoionic) N-heterocyclic diazoolefins  
are remarkably stable. To evaluate this 
property, the use of these diazoolefins in 
organic synthesis was studied (Fig. 1d).  

In a few initial applications, the 
Severin group highlighted the reaction 
with different electrophiles in [2+3] 
cycloaddition reactions of dimethyl 
acetylenedicarboxylate, maleimides,  
carbon disulfide or tetracyanoethylene,  
and the Hansmann group describes the 
reaction with a quinone methide. In all 
reactions the diazo functional group  
remains untouched and nitrogen is not 
released. In the reaction with organic 
isocyanides, a formal substitution  
occurs. It is only under photochemical 
conditions — that recently attracted  
the interest of organic chemists for 
sustainable, metal-free carbene transfer 
reactions8 — that the diazo functional  
group is cleaved to release a free vinylidene 
that reacts with a pendant aromatic ring.

Both of these studies open up new 
exciting discoveries based on the chemistry 
of diazoolefins. But many questions remain 
regarding more generalized structural 
requirements that allow the synthesis of 
diazoolefins, coordination properties of 
diazoolefins in metal complexes and the 
reactivity of diazoolefins in vinylidene 
transfer reactions for applications in organic 
synthesis to name just a few examples.� ❐
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MACHINE LEARNING

Fast track to structural biology
Machine learning algorithms are fast surpassing human abilities in multiple tasks, from image recognition to 
medical diagnostics. Now, machine learning algorithms have been shown to be capable of accurately predicting the 
folded structures of proteins.

Cecilia Clementi

In 1997, an IBM computer called Deep 
Blue won a game of chess against Garry 
Kasparov, the world chess champion 

at that time. Deep Blue was a specialized 
computer, built by IBM for this purpose 
and mostly relied on brute force computing 
power, by evaluating 200 million positions 
per second. In the following almost 25 years, 
the advent of modern machine learning has 
produced several milestones in competitions 
of the ‘man against the machine’ kind. In 
2015 the company DeepMind reported that 
the program AlphaGo was able to defeat 
several masters at the game of Go. This 
fact made a news splash as, besides the 
intricacies of the game itself, AlphaGo is 

not a specialized machine but a computer 
program that can be run on relatively 
standard hardware. Since then, there has 
been a rapid succession of additional 
programs able to outperform humans in 
different tasks, from complex games to 
medical diagnostics.

It is expected that similar advances  
could also be made in scientific research, 
and that new machine-learning-based 
programs could upend established 
approaches to scientific problems.  
We have recently witnessed this happening  
in structural biology with the unveiling of 
the DeepMind AlphaFold2 program at the 
CASP14 competition1 and later reported 

in Nature2. AlphaFold2 has proved capable 
of determining the correct fold of many 
proteins, “to a level of accuracy comparable 
to that achieved with expensive and 
time-consuming lab experiments” according 
to the organizers of the  
CASP14 competition1.

Knowing a protein’s structure is often 
important for understanding the protein’s 
function, or at least a starting point towards 
it. For decades, the use of experimental 
techniques such as X-ray crystallography 
and NMR (more recently also cryo-EM) 
have been the most reliable methods for 
the determination of protein structures. 
The importance of these methods is 
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underscored by the fact that several Nobel 
Prizes have been awarded for the successful 
determination of the structures of complex 
proteins, starting from the Chemistry 
Nobel Prize of 1962 to Max Perutz and John 
Kendrew who first demonstrated that X-ray 
can be used for this purpose.

AlphaFold2 is not the first software 
designed to predict protein structures on a 
computer. This field of research has a long 
history, and a large number of codes exist. 
Since 1994, the performance of the different 
structure prediction codes from different 
research groups is evaluated every two 
years in the Community Wide Experiment 
on the Critical Assessment of Techniques 
for Protein Structure Prediction (CASP) 
competition. Teams taking part in the CASP 
challenge are given the sequences of about 
100 proteins with no known structure, 
and they have a few months to submit 
their predictions. In the meantime, the 
structures for the same set of proteins are 
experimentally solved and are later used to 
assess the predictions that were submitted 
by the different CASP teams. Since the 
first CASP edition, the ability of computer 
models to predict protein structures has 
steadily improved over the years, with 
some eminent successes. In CASP13 in 
2018, DeepMind entered the competition 
for the first time with the AlphaFold code 

and achieved an overall result significantly 
better than everybody else. Still, it could 
not get everything right. But in the latest 
CASP14 competition, the newly redesigned 
AlphaFold2 could predict the structures 
of nearly all protein targets at atomic 
resolution, achieving an accuracy  
that prompted the CASP organizers to 
consider the protein structure prediction 
problem ‘solved’.

The AlphaFold2 source code has 
been made public and discussed in a 
very recent paper2, and several people 
in the community have started to test it, 
confirming its impressive performance. At 
the same time, the group of David Baker 
from the University of Washington was 
able to ‘reverse engineer’ AlphaFold2 to 
find its most important components (from 
the general idea alone, before the code 
was released) and extend them to improve 
their structure prediction code (into the 
new RoseTTAFold)3, significantly boosting 
its performance, rendering it almost 
comparable to AlphaFold2 (ref. 4).

These recent developments indicate that 
accurate protein structure prediction is now 
not only possible, but also readily available. 
The AlphaFold2 and RoseTTAFold source 
codes and associated web-servers provide 
powerful new tools as well as a trove of 
new ideas on how machine learning can be 

used in science, which the community can 
capitalize on even beyond protein structure 
prediction.

A few weeks ago, DeepMind publicized 
the AlphaFold2 predictions for the protein 
structures of the entire human proteome and 
of the proteomes of 20 additional organisms 
in a publicly accessible database (https://
alphafold.ebi.ac.uk/)5. An additional and 
important output of AlphaFold2 is the local 
(residue-level) uncertainty associated with 
the prediction of the structure, which has 
been shown to be well calibrated. All the 
protein structures in the database come with 
associated uncertainties. It was also shown 
that predicted protein structures with large 
regions with high levels of uncertainty tend 
to be more flexible, partially disordered, or 
able to fold only in the presence of ligands  
or in complexes.

While AlphaFold2 excels in the 
prediction of the protein structures of 
single proteins, it is not particularly good 
at predicting the structure of protein 
complexes (see Fig. 1), although some 
‘hacks’ have been reported. On the other 
hand, RoseTTAFold appears able to obtain 
reliable protein–protein complex models4. 
The prediction of the structure of proteins  
in complexes and/or in the presence of  
other molecules is presumably the next 
challenge in the development of these 
approaches, and it can have important  
direct implications in drug design and 
protein engineering applications. But how 
much can the methods be extended to  
cover more complicated (and biologically 
relevant) scenarios? Can changes in the 
structure upon changes in the physical 
environment (temperature, pH, and so 
on) also be readily predicted by similar 
algorithms? What about the structure of 
protein aggregates (for example, amyloids) 
upon changes in concentration? Biological 
function is an intrinsically dynamical 
concept as multiple biological processes 
are activated or regulated by the relative 
population of ensembles of protein 
configurations, and the changes in such 
populations in response to environmental 
changes. How a protein finds its folded 
structure is often very important to 
understand its function (or malfunction). 
It is not possible (yet?) to obtain this 
information from a AlphaFold-like software. 
Will it be in the (imminent) future?  
Maybe, it will prove much more  
challenging than the prediction of  
single protein structures.

The prediction of a protein structure as 
obtained by X-ray is a well-defined problem, 
and also has a very quantifiable measure 
of success. Machine learning algorithms 
are traditionally developed and tested on 

a b c

Fig. 1 | AlphaFold2 prediction of protein structures in three different cases. a, Prediction for the 
structure of the monomers in the heterodimeric protein with PDB code 1BVN. The prediction is shown in 
sky blue for the larger monomer and in teal for the shorter monomer and compared to the PDB structure 
(green and red, respectively). The agreement is very good. b, Prediction for the protein with PDB code 
6ZMO. The AlphaFold2 top predicted structures (shown in different shades of blue) do not align in the 
C-terminal domain (PDB structure shown in red), which was experimentally determined only as part of a 
larger complex. After alignment, the predicted structures have spatial clashes with the other components 
in the complex (grey surface). This illustrates the limitation of only considering the monomer in isolation 
for prediction. c, One of the predicted structures for the protein with UniProt code A0A0B4K7K9  
(no PDB structure available). The AlphaFold2 pretrained models cannot give consistent predictions for 
this target, the top scoring structures are all very different from each other and the final relaxation step 
cannot eliminate the spatial clashes. The color code for this structure reflects the AlphaFold2 predicted 
measure of error (pLDDT) and indicates that most of the structure has significant uncertainty. This 
protein is expected to be multimeric, partially disordered and complexed with other proteins.
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tasks with well-defined benchmarks, and 
their performance is usually measured by 
how much they can improve the state of 
the art based on such benchmarks. It is 
then natural to use machine learning in a 
context like CASP, where the problem at 
hand is well-defined and different algorithms 
are compared on the same set of proteins. 
However, many interesting outstanding 
questions in science have no benchmarks. 
The computational study of a protein 
configurational landscape and its modulation 
in a biological environment require more 
complex and often indirect experimental 
verification. Understanding the essential 
physical ingredients shaping such a landscape 
enable researchers to manipulate it and 
predict changes. Much has been achieved in 
this respect in the last few decades with the 
formulation of the energy landscape theory of 
protein folding. Hopefully machine learning 
will also be able to help in the development 
of physics-based theories, but a qualitative 
leap is required towards this end. Even if 
AlphaFold2 and RoseTTAFold can produce 
a tremendous boost in the field of structural 

and computational biology, the field as a 
whole is clearly not solved by them and 
several additional step-changes are required 
to be able to fully predict (and manipulate) 
the function of proteins in practical 
applications. As in any area of science, the 
solution of a problem while answering some 
questions poses new challenges.

Good commentaries on the AlphaFold2 
code itself are already available6. However, 
I think it’s worth noting that one of the 
strengths of the approach is that it tightly 
integrates domain knowledge and state 
of the art machine learning tools into an 
elegant software solution. One important 
take-home message here is that a lot of prior 
knowledge informed the design of the code: 
the algorithm is not the prototypical black 
box that magically transforms sequences 
into structures, but it combines decades of 
important results. I believe this is a lesson 
for the application of machine learning in 
science in general: it does not substitute 
theory or knowledge but it extends them  
to a level that was not possible before and 
creates ‘fast tracks’ for them to run on7.� ❐
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