on solvent and temperature, either N- or
C-coordination occurs without loss of
dinitrogen, as studied by Hansmann

and co-workers. In the reaction with
organometallic Au(1) precursors, Severin
and colleagues observed the coordination
of one molecule of diazoolefin via the
central carbon atom when THF was

used as the solvent. In contrast, the team
led by Hansmann noted the formation

of a dinuclear Au(1) complex as well as

an azo-bridged dimer of the mesoionic
N-heterocyclic olefin when diethyl ether
was the solvent. Whether this divergent
reactivity is related to the N-heterocyclic
backbone of the diazoolefin or arises from
the change in solvent remains unclear and
requires further investigation. Additional
studies by Severin and co-workers on

the formation of metal complexes of
diazoolefins revealed that they all feature a
surprisingly stable diazo functional group,
which remains untouched for complexes
based on Pd(11), Rh(1) or Al(1).

As described in 1987 by Bott, such
(mesoionic) N-heterocyclic diazoolefins
are remarkably stable. To evaluate this
property, the use of these diazoolefins in
organic synthesis was studied (Fig. 1d).

In a few initial applications, the
Severin group highlighted the reaction
with different electrophiles in [2+3]
cycloaddition reactions of dimethyl
acetylenedicarboxylate, maleimides,
carbon disulfide or tetracyanoethylene,
and the Hansmann group describes the
reaction with a quinone methide. In all
reactions the diazo functional group
remains untouched and nitrogen is not
released. In the reaction with organic
isocyanides, a formal substitution
occurs. It is only under photochemical
conditions — that recently attracted
the interest of organic chemists for
sustainable, metal-free carbene transfer
reactions® — that the diazo functional
group is cleaved to release a free vinylidene
that reacts with a pendant aromatic ring.
Both of these studies open up new
exciting discoveries based on the chemistry
of diazoolefins. But many questions remain
regarding more generalized structural
requirements that allow the synthesis of
diazoolefins, coordination properties of
diazoolefins in metal complexes and the
reactivity of diazoolefins in vinylidene
transfer reactions for applications in organic
synthesis to name just a few examples. a
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Fast track to structural biology

Machine learning algorithms are fast surpassing human abilities in multiple tasks, from image recognition to
medical diagnostics. Now, machine learning algorithms have been shown to be capable of accurately predicting the

folded structures of proteins.

Cecilia Clementi

n 1997, an IBM computer called Deep
Blue won a game of chess against Garry
Kasparov, the world chess champion
at that time. Deep Blue was a specialized
computer, built by IBM for this purpose
and mostly relied on brute force computing
power, by evaluating 200 million positions
per second. In the following almost 25 years,
the advent of modern machine learning has
produced several milestones in competitions
of the ‘man against the machine’ kind. In
2015 the company DeepMind reported that
the program AlphaGo was able to defeat
several masters at the game of Go. This
fact made a news splash as, besides the
intricacies of the game itself, AlphaGo is
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not a specialized machine but a computer
program that can be run on relatively
standard hardware. Since then, there has
been a rapid succession of additional
programs able to outperform humans in
different tasks, from complex games to
medical diagnostics.

It is expected that similar advances
could also be made in scientific research,
and that new machine-learning-based
programs could upend established
approaches to scientific problems.

We have recently witnessed this happening
in structural biology with the unveiling of

the DeepMind AlphaFold2 program at the
CASP14 competition' and later reported

‘ ") Check for updates

in Nature’. AlphaFold2 has proved capable
of determining the correct fold of many
proteins, “to a level of accuracy comparable
to that achieved with expensive and
time-consuming lab experiments” according
to the organizers of the

CASP14 competition'.

Knowing a protein’s structure is often
important for understanding the protein’s
function, or at least a starting point towards
it. For decades, the use of experimental
techniques such as X-ray crystallography
and NMR (more recently also cryo-EM)
have been the most reliable methods for
the determination of protein structures.
The importance of these methods is

NATURE CHEMISTRY | VOL 13 | NOVEMBER 2021|1027-1035 | www.nature.com/naturechemistry


http://www.nature.com/naturechemistry
http://orcid.org/0000-0002-9362-7755
http://orcid.org/0000-0003-0247-4384
https://twitter.com/EmpelClaire
https://twitter.com/ReneKoenigs
mailto:rene.koenigs@rwth-aachen.de
https://doi.org/10.1038/s41557-021-00811-1
https://doi.org/10.1038/s41557-021-00790-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41557-021-00814-y&domain=pdf

used in science, which the community can
capitalize on even beyond protein structure
prediction.

A few weeks ago, DeepMind publicized
the AlphaFold2 predictions for the protein
structures of the entire human proteome and
of the proteomes of 20 additional organisms
in a publicly accessible database (https://
alphafold.ebi.ac.uk/)®. An additional and
important output of AlphaFold2 is the local
(residue-level) uncertainty associated with
the prediction of the structure, which has
been shown to be well calibrated. All the
protein structures in the database come with
associated uncertainties. It was also shown
that predicted protein structures with large
regions with high levels of uncertainty tend
to be more flexible, partially disordered, or
able to fold only in the presence of ligands
or in complexes.

While AlphaFold2 excels in the
prediction of the protein structures of
single proteins, it is not particularly good
at predicting the structure of protein
complexes (see Fig. 1), although some
‘hacks’ have been reported. On the other
hand, RoseTTAFold appears able to obtain

AlphaFold2 prediction of protein structures in three different cases. a, Prediction for the
structure of the monomers in the heterodimeric protein with PDB code 1BVN. The prediction is shown in
sky blue for the larger monomer and in teal for the shorter monomer and compared to the PDB structure
(green and red, respectively). The agreement is very good. b, Prediction for the protein with PDB code
6ZMO. The AlphaFold2 top predicted structures (shown in different shades of blue) do not align in the
C-terminal domain (PDB structure shown in red), which was experimentally determined only as part of a
larger complex. After alignment, the predicted structures have spatial clashes with the other components
in the complex (grey surface). This illustrates the limitation of only considering the monomer in isolation
for prediction. ¢, One of the predicted structures for the protein with UniProt code AOAOB4K7K9
(no PDB structure available). The AlphaFold2 pretrained models cannot give consistent predictions for
this target, the top scoring structures are all very different from each other and the final relaxation step
cannot eliminate the spatial clashes. The color code for this structure reflects the AlphaFold2 predicted

measure of error (pLDDT) and indicates that most of the structure has significant uncertainty. This
protein is expected to be multimeric, partially disordered and complexed with other proteins.

underscored by the fact that several Nobel
Prizes have been awarded for the successful
determination of the structures of complex
proteins, starting from the Chemistry
Nobel Prize of 1962 to Max Perutz and John
Kendrew who first demonstrated that X-ray
can be used for this purpose.

AlphaFold2 is not the first software
designed to predict protein structures on a
computer. This field of research has a long
history, and a large number of codes exist.
Since 1994, the performance of the different
structure prediction codes from different
research groups is evaluated every two
years in the Community Wide Experiment
on the Critical Assessment of Techniques
for Protein Structure Prediction (CASP)
competition. Teams taking part in the CASP
challenge are given the sequences of about
100 proteins with no known structure,
and they have a few months to submit
their predictions. In the meantime, the
structures for the same set of proteins are
experimentally solved and are later used to
assess the predictions that were submitted
by the different CASP teams. Since the
first CASP edition, the ability of computer
models to predict protein structures has
steadily improved over the years, with
some eminent successes. In CASP13 in
2018, DeepMind entered the competition
for the first time with the AlphaFold code

and achieved an overall result significantly
better than everybody else. Still, it could
not get everything right. But in the latest
CASP14 competition, the newly redesigned
AlphaFold2 could predict the structures

of nearly all protein targets at atomic
resolution, achieving an accuracy

that prompted the CASP organizers to
consider the protein structure prediction
problem ‘solved.

The AlphaFold2 source code has
been made public and discussed in a
very recent paper’, and several people
in the community have started to test it,
confirming its impressive performance. At
the same time, the group of David Baker
from the University of Washington was
able to ‘reverse engineer’ AlphaFold2 to
find its most important components (from
the general idea alone, before the code
was released) and extend them to improve
their structure prediction code (into the
new RoseTTAFold)?, significantly boosting
its performance, rendering it almost
comparable to AlphaFold2 (ref. *).

These recent developments indicate that
accurate protein structure prediction is now
not only possible, but also readily available.
The AlphaFold2 and RoseTTAFold source
codes and associated web-servers provide
powerful new tools as well as a trove of
new ideas on how machine learning can be
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reliable protein—protein complex models*.
The prediction of the structure of proteins
in complexes and/or in the presence of
other molecules is presumably the next
challenge in the development of these
approaches, and it can have important
direct implications in drug design and
protein engineering applications. But how
much can the methods be extended to
cover more complicated (and biologically
relevant) scenarios? Can changes in the
structure upon changes in the physical
environment (temperature, pH, and so
on) also be readily predicted by similar
algorithms? What about the structure of
protein aggregates (for example, amyloids)
upon changes in concentration? Biological
function is an intrinsically dynamical
concept as multiple biological processes
are activated or regulated by the relative
population of ensembles of protein
configurations, and the changes in such
populations in response to environmental
changes. How a protein finds its folded
structure is often very important to
understand its function (or malfunction).
It is not possible (yet?) to obtain this
information from a AlphaFold-like software.
Will it be in the (imminent) future?
Maybe, it will prove much more
challenging than the prediction of

single protein structures.

The prediction of a protein structure as
obtained by X-ray is a well-defined problem,
and also has a very quantifiable measure
of success. Machine learning algorithms
are traditionally developed and tested on
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tasks with well-defined benchmarks, and
their performance is usually measured by
how much they can improve the state of

the art based on such benchmarks. It is

then natural to use machine learning in a
context like CASP, where the problem at
hand is well-defined and different algorithms
are compared on the same set of proteins.
However, many interesting outstanding
questions in science have no benchmarks.
The computational study of a protein
configurational landscape and its modulation
in a biological environment require more
complex and often indirect experimental
verification. Understanding the essential
physical ingredients shaping such a landscape
enable researchers to manipulate it and
predict changes. Much has been achieved in
this respect in the last few decades with the
formulation of the energy landscape theory of
protein folding. Hopefully machine learning
will also be able to help in the development
of physics-based theories, but a qualitative
leap is required towards this end. Even if
AlphaFold2 and RoseTTAFold can produce
a tremendous boost in the field of structural
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and computational biology, the field as a
whole is clearly not solved by them and
several additional step-changes are required
to be able to fully predict (and manipulate)
the function of proteins in practical
applications. As in any area of science, the
solution of a problem while answering some
questions poses new challenges.

Good commentaries on the AlphaFold2
code itself are already available®. However,
I think it’s worth noting that one of the
strengths of the approach is that it tightly
integrates domain knowledge and state
of the art machine learning tools into an
elegant software solution. One important
take-home message here is that a lot of prior
knowledge informed the design of the code:
the algorithm is not the prototypical black
box that magically transforms sequences
into structures, but it combines decades of
important results. I believe this is a lesson
for the application of machine learning in
science in general: it does not substitute
theory or knowledge but it extends them
to a level that was not possible before and
creates ‘fast tracks’ for them torunon’. O
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