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Abstract

The gray short-tailed opossum (Monodelphis domestica) is an established laboratory-bred marsupial model for biomedical research. It is a
critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs ancestral states of
genomic/epigenomic characteristics for eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial,
we examined 79 individuals from eight established laboratory strains. Double digest restriction site-associated DNA sequencing and
whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-
quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity,
and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis
clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects
their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient
F>0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable
for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate off-
spring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive
manipulation and CRISPR/Cas? techniques for Monodelphis domestica, the existence of distinctive inbred strains will enable genome edit-
ing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research.
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Introduction of genomic/epigenomic characteristics for all eutherian mammal
lineages.

Marsupials diverged from eutherians ~160 million years ago
(Graves and Renfree 2013), and each group exhibits lineage-specific
(derived) characteristics that have arisen during their independent
evolutionary histories. However, the critical biological functions of

The gray short-tailed opossum, Monodelphis domestica (also
known as the “laboratory opossum”), is the world’s predominant
laboratory-bred research marsupial species. In nature, M. domes-
tica are widely distributed in southern, central, and western
Brazil, eastern Bolivia, and northern Paraguay (Macrini 2004;
Carvalho et al. 2011). Adult M. domestica typically weigh 60-150g, major organs, essential genetic and molecular pathways, and fun-
and males are significantly larger than females. The body length damental developmental processes are conserved in both lineages.
ranges from 70 to 180mm, and the tail is approximately half the This makes marsupials ideal comparative models for many kinds
combined head and body length (Costa et al. 2003; Voss and Jansa of research, and they are, therefore, commonly used as “alternative
2003; Cope et al. 2012). These animals are easily maintained in mammals” (Renfree 1981; Samollow 2008) in comparative investiga-
captivity, breed year-round, and reach sexual maturity relatively tions that span many topics relevant to animal development, physi-
rapidly (by 6 months of age). Monodelphis domestica serves as a key ology, and disease susceptibility.
model for comparative genomics research, providing the pivotal Monodelphis domestica is widely recognized as an important
phylogenetic outgroup for studies of derived us ancestral states ~ Model organism for biomedical research (Ley 1987; Saunders
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et al. 1989; Mikkelsen et al. 2007; Keyte and Smith 2008;
VandeBerg and Williams-Blangero 2010), in which it is used for
studies in development, physiology, neurobiology, metabolic and
infectious disease, immunity, genome structure, function, and
evolution. For example, opossum pups are born on embryonic
day 14, at the same stage of a 6-week human embryo or E11.5
mouse embryo, which enables many kinds of early embryonic
studies that cannot be easily conducted with eutherians, in
which access to embryos and fetuses at these stages requires
considerable disruption of the gestational environment (Cardoso-
Moreira et al. 2019; Mahadevaiah et al. 2020). Marsupials are also
valuable for investigating major epigenetic processes such as X-
chromosome inactivation (Hornecker et al. 2007; Grant et al. 2012;
Rodriguez-Delgado et al. 2014; Wang et al. 2014; Waters et al. 2018;
Mahadevaiah et al. 2020) and genomic imprinting (Weidman et al.
2006; Lawton et al. 2008; Das et al. 2012; Douglas et al. 2014; Suzuki
et al. 2018). Monodelphis domestica has been used in many medical
and disease studies, such as gene expression during neural devel-
opment (Dooley et al. 2012; Sears et al. 2012; Pavan et al. 2014;
Wheaton et al. 2021), hypercholesterolemia and steatohepatitis
(Chan et al. 2010, 2012; Chan and VandeBerg 2011), cancer ther-
apy and prevention (Nair and VandeBerg 2012; Nair et al. 2014),
immunogenomics (Parra et al. 2008; Morrissey et al. 2021;
Schraven et al. 2021), viral pathogenesis (Thomas et al. 2019), and
influence of biological sex on social behavior, individual recogni-
tion, and associative learning (Gil et al. 2019).

More than 20 genetic strains of M. domestica were developed af-
ter the importation of the first wild-caught founders from Brazil
and Bolivia in 1978 (VandeBerg and Robinson 1997). A reference
genome of this species was sequenced and assembled in 2007
(Mikkelsen et al. 2007), and subsequently enhanced by a Hi-C as-
sembly (Dudchenko et al. 2018). Although complete pedigree
records of all animals produced by the M. domestica research col-
ony at the University of Texas, Rio Grande Valley (UTRGV), the
oldest and largest M. domestica colony in existence and the source
colony for all others worldwide, population genetic data for this
colony have not been investigated in a systematic, comparative
manner. High-resolution sequencing data are required to charac-
terize the genomic and genetic architecture of this colony and to
establish a better understanding of the relationships and differ-
ences among its individual strains.

Restriction-site associated DNA sequencing (RAD-Seq)
(Peterson et al. 2012) provides an effective approach for the ge-
netic characterization of these strains. This “reduced-repre-
sentation” next-generation sequencing method takes advantage
of the sequence specificity of restriction endonucleases, and is an
ideal and flexible method for genotyping by extracting a repeat-
able portion of the genome adjacent to restriction sites, allowing
researchers to identify genetic markers across the genome and
explore the same subset of genomic regions for many individuals
of a species (Baird et al. 2008; Davey et al. 2010; Mastretta-Yanes
et al. 2015). Double-digest RAD-seq (ddRAD-seq) was developed
based on RAD-seq, with improved robustness and reduced cost
(Peterson et al. 2012). ddRAD-seq uses a cocktail of two restriction
enzymes for double digestion of DNA, followed by precise size se-
lection that recovers a library consisting of only fragments
closely conforming to the desired target size (Peterson et al. 2012).
With these advantages, ddRAD-seq has been extensively applied
to achieve population-level single nucleotide polymorphism
(SNP) discovery and high-confidence SNP calling (Liu et al. 2017).
It is an efficient method for detecting and describing population
structure, hybrid individuals, founder events, biogeographic

history, and tagging genomic regions in nonmodel organisms
(Lavretsky et al. 2019).

In the present study, we applied the ddRAD-seq approach to
70 individuals of eight M. domestica laboratory strains and discov-
ered 67 thousand informative SNP markers. Together with
whole-genome resequencing data from an additional nine opos-
sums, these results provide valuable information on diversity
and relatedness between opossum strains that will facilitate fur-
ther strain development and provide a guide for the efficacious
selection of strains for novel uses of this species in future bio-
medical research applications.

Materials and methods

Monodelphis domestica strains and animal
selection

Eight laboratory opossum strains were selected for ddRAD-seq
experiments: AH11L, ATHHN, ATHL, LSD, LL1, FD2M1, FD2M4,
and FD8X (Figure 1 and Table 1). Tissue samples (ear pinna,
brain, liver) were collected between 2012 and 2015 from animals
maintained at the Texas Biomedical Research Institute under ap-
proved IACUC breeding SOP (see Results, Table 1 and
Supplementary Table S1) and at Texas A&M University (TAMU)
covered by TAMU Animal Use Protocols. For AH11L, ATHHN,
ATHL, LSD, LL1, FD2M1, and FD2M4 animals, DNA was extracted
from the ear pinna or liver. For FD8X animals, DNA was extracted
from the brain or liver. In addition, whole-genome resequencing
was performed on gDNA derived from ear pinna of six FD8X and
three LSD individuals from the breeding colony at UTRGV be-
tween 2016 and 2017 (Table 1 and Supplementary Table S2).

Genomic DNA extraction

DNA for ddRAD-seq was extracted from tissue samples (8 brain, 8
liver, and 62 ear pinnae from the eight laboratory opossum
strains) using Qiagen DNA Blood and Tissue Mini kit on a
QIAcube automated nucleic acid extraction system following
manufacture’s protocol (Qiagen, MD). The nine whole-genome
resequencing samples were extracted from ear pinna by mincing
the tissue and incubating it overnight in 200 pg/ml Proteinase K
at 55°C with gentle shaking. The solution was RNase treated for
1h at 37°C at a final concentration of 20 pg/ml prior to phase sep-
aration by phenol/chloroform (15 min each: one phenol, one phe-
nol/chloroform, and one chloroform). pH was adjusted by the
addition of NaAc at 1/10 the volume. DNA was precipitated with
ice-cold 100% EtOH with a glycogen carrier (0.04mg per ml of
EtOH). The precipitate was transferred into a clean tube and
washed with 70% EtOH, briefly dried, and resuspended in 10 mM
Tris. The yield and quality of extracted gDNA were checked with
NanoDrop and Qubit 3.0 Fluorometer (Thermo Fisher Scientific,
USA).

ddRAD-seq library preparation and sequencing

Prior to library preparation, samples were cleaned, quantified,
and normalized as described in Ballare et al. (2019). Samples were
prepared by the ddRAD-Seq method originally described by
Poland et al. (2012) with modifications (Yang et al. 2020) using the
following specific parameters. A preliminary check of several
commonly used restriction enzymes determined that the combi-
nation of Pstl and Nlalll produced an even distribution of DNA
fragments between 300 and 500 bp. Following digestion with Pstl
and Nlalll, samples were ligated to Pstl-compatible PS adapters
and one of 48 unique i5 indexes and NIlalll compatible P7
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Figure 1 Geographical locations and breeding history of the eight opossum strains in this study. (A) Map of South America showing the geographical
distribution of five populations. Animals derived from Population 1 (Exu, Brazil), Population 2 (Piraua, Brazil), and Population 5 (Brecha, Bolivia) were
sampled for this study. (B) Breeding history of eight opossum strains included in this study. Five of the strains were derived from the nine founders of
Population 1. They include a random-bred strain LL1; three partially inbred sibling strains, AH11L, ATHHN, and ATHL; and a fully inbred strain LSD.
Population 2 had 14 founders. Two male Pop2 founders were crossed with LL1 females, followed by backcrossing of F1 females to these two founders, in
order to get 75% genetic contribution from Pop2. Subsequent inbreeding resulted in two admixed strains FD2M1 and FD2M4, of which FD2M1 is now
fully inbred. FD8X is an admixed strain derived from Population 1 and Population 5. The paternal lineage is derived from the sons of one founder male
and one founder female captured near the town of Brecha in Bolivia. The maternal lineage is from the LL1 strain. Inbreeding coefficients are indicated at

the bottom of this panel.

Table 1 The sampling information and breeding history of the eight opossum strains

Strain Number of Individuals F-value Heterozygosity Heterozygosity History
individuals passing QC (inbreeding range mean (SD)
coefficient)

AH11L 10 10 0.77-0.80 (0.00027, 0.00069) 0.00052 (0.00013)  Partially inbred sibling strains, from

ATHHN 10 10 0.79-0.80 (0.00026, 0.00051) 0.00042 (0.00007) nine founders captured near Exu,

ATHL 10 10 0.93-0.94 (0.00038, 0.00043) 0.00036 (0.00006) Pernambuco, Brazil

FD2M1 10 10 0.98-0.99 (0.00040, 0.00059)  0.00035 (0.00016)  Popl-Pop2 admixed inbred sibling

FD2M4 6 6 0.92-0.93 (0.00019, 0.00035) 0.00027 (0.00007) strains. Pop2 ancestry from two
founders captured near Piraua,
Paraiba, Brazil

FD8X 12+6° 6+6° 0.21-0.23 (0.00028,0.00061)  0.00042 (0.00012)  Popl-Pop5 admixed strain. Random
bred, Pop2 ancestry from 2 founders
from Brecha, Bolivia.

LL1 10 8 0.40-0.45 (0.00054, 0.00071) 0.00060 (0.00005)  Random bred, from the same nine
founders from Exu

LSD 10432 10+43* >0.99 (0.00008, 0.00020) 0.00014 (0.00003)  Inbred strain, from the same nine

founders from Exu

#The number of individuals with whole-genome sequencing data.

adapters. The rest of the library preparation proceeded as de-
scribed in Yang et al. (2020). Final library pools were assessed for
size on a fragment analyzer (Agilent) and quantified by gPCR
(Kapa Biosystems, Inc., MA). The prepared DNA libraries were se-
quenced on an Hlumina HiSeq2500 sequencer to generate 125bp
paired-end reads at the Texas A&M Agrilife Research Genomics
and Bioinformatics Service (TxGen, College Station, TX).

Whole-genome resequencing library preparation
and sequencing

Whole-genome resequencing libraries were constructed follow-
ing the Illumina paired-end DNA library preparation protocol
(300-350bp insert size) for six FD8X individuals and three LSD
individuals with Hlumina TruSeq DNA library kit. After quality

control procedures, the libraries were sequenced on an Illumina
HiSeq2500 sequencer.

Data processing and sequencing read alignment

FastQC (Andrews 2010) was used to assess the quality of raw se-
quencing data (Supplementary Tables S1 and S2). Reads were
trimmed using Trimmomatic-0.36 (Bolger et al. 2014) with the fol-
lowing parameters: ILLUMINACLIP Nextera_adapters. fa : 2:30:10,
LEADING : 3, TRAILING : 3, SLIDINGWINDOW : 4:15, and MINLEN
: 36. The high-quality filtered reads were aligned to the M. domes-
tica reference genome monDom5 (Mikkelsen et al. 2007) using
BWA (Li and Durbin 2009) with default settings. Reads mapped to
multiple regions in the genome were removed. After removing
low-quality bases and sequencing adapter contaminations, an
average of 6.33 million reads (98.6% of the total reads) per
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individual were retained. The average percentage of uniquely
mapped reads was 90.8% (Supplementary Table S1). Eight
ddRAD-seq individuals were excluded from the analysis due to
the limited amount of retained reads or lower overlap genome
mapping rate (Supplementary Table S1). For the nine whole-ge-
nome resequencing samples, after quality control and read align-
ment, 127.4 million reads per individual passed quality control,
and the percentage of uniquely mapped reads was >92%
(Supplementary Table S2).

SNP identification and SNP calling in ddRAD-seq
and whole-genome resequencing data

De novo SNP calling was performed using the BAM files generated
from genome alignments with UnifiedGenotyper in the Genome
Analysis Toolkit (GATK) (McKenna et al. 2010; DePristo et al. 2011).
The variants were filtered using VCFtools (Danecek et al. 2011)
according to the thresholds: minimum coverage depth of 6x and
minimum alignment quality score of 200. A total of 66,640 high-
quality SNPs were identified in the 70 ddRAD-seq datasets
retained for analysis (out of 78 individuals sequenced) (see
Supplementary Data S1). Proportions of homozygous and hetero-
zygous SNP positions were computed based on the total number
of covered bases, which was defined as covered positions with a
minimum sequencing depth of 6x.

Cross-validation of ddRAD-seq SNP calls in
M. domestica RNA-seq datasets

To validate the quality of the SNP calls from our ddRAD-seq data
and to evaluate the reliability of our pipeline, we utilized an inde-
pendent RNA-seq dataset generated in the reciprocal F1 crosses
of strains LL1 and LL2 (Wang et al. 2014). LL2 is a random-bred
strain derived from an admixture of founders from Population 1
(Pop1) and Population 2 (Pop2) (Figure 1). Approximately 1.5 bil-
lion of 51bp single-end Illumina sequencing reads were gener-
ated from a total of 16 F1 individuals (accession number
GSE45211). These RNA-seq reads were aligned to the M. domestica
reference genome assembly (monDom5) using TopHat v1.4.1
(Trapnell et al. 2009), and SNP calling was performed using
SAMtools software (Li et al. 2009) to identify 68,000 SNPs (-8x cov-
erage in the RNA-seq data) in the transcripts. The RNA-seq SNP
set was compared to the ddRAD-seq calls, and we identified 2151
SNP positions in both datasets. All SNPs have the same alterna-
tive allele except for one at chr1:501281170 (Supplementary Data
S2). Close examination of this SNP position discovered thatitis a
problematic SNP with a third allele in the RNA-seq data.
Therefore, the ddRAD-seq calls have 100% agreement with RNA-
seq SNP genotypes, indicating the high accuracy of our ddRAD-
seq SNP calls.

Principal component analysis

To examine genetic structure among the eight strains, the SNPs
were imported in PLINK (Purcell et al. 2007), and principal compo-
nent analyses (PCA) were performed using the 70 ddRAD-seq
datasets from all eight strains with and without the nine whole-
genome resequencing datasets from additional FD8X and LSD
animals included. Individual variations in principal components
for 66,640 SNP loci of the 70-member ddRAD-seq dataset and the
79-member ddRAD-seq plus nine whole-genomic resequencing
datasets were visualized in R.

Genetic structure analysis

Maximum-likelihood estimates of population assignments for
each individual were determined using Admixture v1.3

(Alexander et al. 2009; Alexander and Lange 2011). Admixture
proportions were also estimated using NGSadmix in ANGSD
(Allentoft et al. 2015). We performed population structure analy-
ses at K=2, 3, and 4, where K is the number of allowed subpopu-
lations. To investigate the detailed genetic structure and
determine phylogenetic relationships among the strains, we in-
ferred population structure through shared co-ancestry using a
model-based Bayesian clustering approach implemented in the
fineRADstructure program (Malinsky et al. 2018). A co-ancestry
matrix was generated with the RADpainter module in
fineRADstructure with default parameters. A total of 100,000
Markov chain Monte Carlo iterations with a burn-in of 100,000
iterations were performed, and sampling occurred every 1000
iterations to generate the tree file. Finally, a phylogenetic tree of
the 70 ddRAD-seq individuals from the eight opossum strains
was constructed and visualized in R.

Estimation of population genetic parameters

The SNP density patterns across each chromosome were plotted
using CMplot package (Yin 2018) in R. The Pearson correlation co-
efficient between inbreeding coefficients (Supplementary Table
S3) and frequencies of heterozygous SNPs in inbred strains were
calculated with the Hmisc package in R. Composite pairwise esti-
mates of nucleotide diversity (Pi) and genetic variation (Fst
Statistic) for autosomal and X-linked ddRAD-seq loci were calcu-
lated using the population genomic analysis PopGenome package
(Pfeifer et al. 2014) in R with a concatenated data set for 70
ddRAD-seq individuals (Supplementary Table S3). Results were
visualized in 20 kb consecutive windows.

Results

Origins and relatedness of laboratory opossum
strains examined

Founder animals of the UTRGV colony were imported between
1978 and 1993 from five geographical locations (Figure 1A) in
eastern Brazil (Populations 1-4; Pops 1-4) and Bolivia
(Population 5, Pop5). Five strains in this study, LL1, LSD, AH11L,
ATHHN, and ATHL, were derived from nine Popl founders.
Among them, AH11L, ATHHN, and ATHL are closely related sib-
ling strains that are partially inbred (Figure 1B). LL1 is a
random-bred strain derived from the same nine founders. LSD,
which is also derived from the same nine founders, is an inbred
strain, which is defined as an animal stock with an inbreeding
coefficient (F) in excess of 0.99 (Figure 1B). The FD2M strain was
generated by breeding two Pop2 founder males with LL1 females
and backcrossing to produce a lineage with 75% Pop2 and 25%
LL1 genetic ancestry. FD2M1 and FD2M4 were derived from the
inbreeding of FD2M sublines. FD2M1 had a higher inbreeding co-
efficient (F=0.985) than FD2M4 (F=0.925) (Figure 1B and
Table 1). FD8X is an admixed strain with maternal genetic
background from LL1 animals and paternal background from a
Pop5 founder captured near the town of Brecha in Bolivia
(Figure 1B). Its calculated ancestry contributions are 50%
Pop1:50% Pop5.

SNP discovery in ddRAD sequencing data

We generated a total of 454 million reads from the 78 samples ex-
amined. The ddRAD-seq reads were aligned to the M. domestica
reference genome monDomb5. A total of 70 individuals with suffi-
cient reads and >85% mapping percentage were included in the
analysis (Supplementary Tables S1 and S2). In total, we identified
66,640 high-quality SNP positions (Supplementary Data S1 and
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S2). The number of SNPs detected per individual varied from 2817
to 44,739, with an average of 25,013 SNPs per individual. The total
length of genomic regions covered by at least 6x ddRAD-seq
reads was 54.6 Mb, indicating a 70-fold genome enrichment. The
average genome-wide SNP density was 1.2 SNPs per kb, which is
defined as the total number of homozygous and heterozygous
SNPs divided by the covered position (depth > 6). LL1 and the
three Popl-derived partially inbred sibling strains (AH11L,
ATHHN, and ATHL) had the lowest proportion of homozygous
SNPs (homozygous for the nonreference allele, not including ho-
mozygosity for the reference allele). This outcome is in accor-
dance with the fact that the animal sequenced for the M.
domestica reference genome (Mikkelsen et al. 2007) was from the
ATHL strain and had an inbreeding coefficient of 0.917
(VandeBerg, unpublished data) (Figure 2A and Supplementary

Figure S1). The two Popl/Pop2-admixed strains (FD2M1 and
FD2M4) had the highest overall SNP density when compared to
the reference genome, which is consistent with their mixed ge-
netic background.

The proportions of both the homozygous and heterozygous
X-linked SNPs were significantly less compared to autosomes
(Figure 2B). AH11L, ATHHN, and ATHL had lower heterozygos-
ity on the X chromosome compared to the other five strains
(Figure 2B). Compared to females, males had a deficiency of
heterozygous X-linked SNP loci (Supplementary Figure S2),
which was expected because males are hemizygous. The resid-
ual X-linked heterozygous SNPs in males could be due to mis-
assembled autosomal contigs on the X chromosome, multiple
copies on the X, or homology between X and autosomal
sequences.
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Figure 2 Histograms of proportions of homozygous and heterozygous SNPs for autosomes and the X chromosome of 70 individuals of eight laboratory
opossum strains. (A) The proportions of autosomal SNPs. Blue: homozygous SNPs; orange: heterozygous SNPs. (B) The proportion of X-linked SNPs.
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Assessment of inbred strains LSD from Pop1 and
FD2M1 from admixed Pop1/Pop2

According to the breeding history and pedigree data, two strains
were nearly 100% inbred: LSD (F>0.99) and FD2M1
(0.98 < F<0.99). However, based on the genetic data, the residual
heterozygosity in FD2M1 (0.33 SNP per kb on average) was still
comparable with the less inbred strains ATHL and ATTHN
(Table 1 and Figure 2A). This outcome provides a caution for the
prediction of residual genetic variation levels based on inbreeding
coefficients alone. In contrast, LSD individuals consistently have
the lowest heterozygosity (0.00014), with very few segregating
SNPs (Figure 2A), which is fully consistent with its calculated in-
breeding coefficient of >0.99. We conclude that both LSD and
FD2M1 (of which all living animals in August of 2021 have in-
breeding coefficients of 0.996-0.997) are inbred strains, although
FD2M1 had higher residual heterozygosity than LSD when the
strains were sampled in 2014-2017, and might still have higher
residual heterozygosity. A higher level of residual heterozygosity
in the FD2M1 strain was expected, since the Pop1/Pop2 admixed
FD2M1 strain certainly had a higher level of heterozygosity at the
outset of the inbreeding program than the Pop1 LSD strain.

Principal component analysis of the genetic data

To investigate population genetic relationships among the eight
M. domestica strains, we performed PCA using the genotypes of
66,640 SNPs in the 70 ddRAD-seq individuals. The partially inbred
sibling strains FD2M1 and FD2M4 clustered together, and they
are distantly related to other strains on PC1, which is consistent
with their admixed Pop1/Pop2 genetic background (Figure 3A).
LSD animals are well separated from other strains by PC2, pre-
sumably through inbreeding and divergence from the LL1
random-bred strain (Figure 3A). The LL1-derived partially inbred
sibling strains (AH11L, ATHHN, and ATHL) clustered together,
with the more inbred ATHL strain completely separated from
AH11L/ATHHN animals. This result is consistent with the fact
that the AH11L and ATHHN strains were established as sibling
strains well after the ATHL strain was established from the com-
mon founders of the three strains. LL1 animals are grouped in
the center of the PCA plot, with the FD8X cluster next to them
(Figure 3A). This is consistent with the fact that FD8X is a 1:1
mixture of Pop5 and LL1 background (Table 1). The same popula-
tion genetic structure pattern remained evident in the PCA plot
after adding the whole-genome resequencing data from six addi-
tional FD8X and three additional LSD animals (Figure 3B).

Population structure and admixture

In order to determine whether the population genetic structure
agrees with the breeding and admixture history of these eight
strains, phylogenetic, shared co-ancestry, and admixture analy-
ses were performed using genotyping data from the 66,640
ddRAD SNPs. The phylogeny showed a deep split between the
admixed Pop1/Pop2-derived FD2 group (FD2M1 and FD2M4) and
LL1 and other Popl strains (LSD, AH11L, ATHHN, and ATHL)
(Figure 4A). In the admixture analysis, models with K=2, 3, or 4
were applied, and the eight strains were assigned to distinct
groups at K=3 and K=4 (Figure 4B). FD2M1 and FD2M4 individu-
als are intermingled in the phylogeny (Figure 4A). They belong to
the same population in the admixture analysis (Figure 4B), and
the co-ancestry analysis revealed no differentiation between the
two strains (Figure 4C). Therefore, we conclude that they were al-
ready quite highly inbred and had limited heterozygosity at the
time they were separated as sibling strains. Similarly, the AH11L
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Figure 3 PCA of genetic variations for the eight laboratory opossum
strains. Scatterplot of individual variation in principal component (PC)
scores (PC1 on the x-axis, PC2 on the y-axis) for 66,640 SNP loci of
ddRAD-seq data in 70 individuals from eight strains (A) and the 70
ddRAD-seq data combined with nine additional whole-genomic
resequencing samples (B).

and ATHHN sibling strains lack clear separation in the phylogeny
and shared co-ancestry analysis, and there is little to no differen-
tiation between them. The sibling ATHL strain was assigned to a
different population at K=4, but not at K=3 (Figure 4B). LSD is
well separated from other Popl-derived strains because of long-
term inbreeding and more distant common ancestry with the
AH11L, ATHHN, and ATHL strains.

Patterns of genetic diversity

We investigated the distribution of SNP density across all chro-
mosomes and found that (1) it is elevated in telomeric relative to
non-telomeric regions of the autosomes (Figure 5A), (2) the ma-
jority of the X chromosome has less than 1 SNP per kb
(Figure 5A), and (3) there is a significant negative correlation be-
tween the inbreeding coefficient and the frequency of heterozy-
gous SNPs (Spearman’s correlation coefficient p = —0.67, P-value
=2.5x107%°). Estimated nuclear diversity (r) is 0.0011 for the LSD
strain and 0.0012 for the AH11L, ATHHN, and ATHL strains. The
FD8X (F=0.22) and LL1 (F=0.42) strains were much less inbred
than the other six strains examined (although some inbreeding
has occurred due to the low number of founders), and had higher
nuclear diversity (Figure 5C) and lower Fst values than the more
inbred strains (Figure 5D). The genetic diversity patterns varied
along the chromosomes, with elevated n in subtelomeric and
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Figure 4 Graphical summary of genetic structure for ddRAD-seq individuals based on 66,640 SNP loci. (A) A phylogenetic tree was constructed using
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Figure 5 Patterns of genetic diversity across ddRAD-seq individuals from eight opossum strains. (A) SNP density plot showing the distribution of
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subcentromeric regions (Figure 5, C and D and Supplementary
Figures S3 and S4).

Discussion

Metatherians, or marsupial mammals, diverged from eutherian
mammals ~160 million years ago and serve as vital models for re-
search in comparative genomics and medicine. The gray short-
tailed opossum (M. domestica) is the best established and most
widely used marsupial model for biomedical research, due to the
advantages of nonseasonal breeding, relatively rapid sexual mat-
uration, availability of multiple genetic stocks, and a high-quality
reference genome. Although the genome sequence of one animal
was published in 2007, the genetic diversity of different M. domes-
tica laboratory strains has not previously been characterized. To
fill this gap, our research provided a comprehensive analysis of
the genetic architecture in eight laboratory strains.

The first generation M. domestica linkage map was constructed
using the GMBX mapping panel, which consisted of F1 and F2
progeny of Popl and Pop3 crosses (Figure 1A) (Samollow et al.
2004). To improve the marker density and resolution, a second
(Brazilian/Bolivian back-cross) mapping panel, BBBX, was estab-
lished using crosses between Popl and Pop5 animals, which were
descended from founders collected in Bolivia (Figure 1A)

(Samollow et al. 2007). Pop5 is the most geographically distant of
the five populations, and FD8X, which was established through
1:1 admixture of Pop5 and LL1, is the only laboratory strain with
Pop5 ancestry (Figure 1B). We expected to discover significantly
more SNPs in FD8X individuals compared to the admixed Pop1/
Pop2 FD2M strains; however, we found SNP density in FD8X to be
quite similar to those in the FD2M strains (Figure 2). There are
several possible explanations, which are not mutually exclusive.
First, the FD8X strain has experienced several near-loss events
during its history, and these severe bottlenecks could be respon-
sible for genome-wide SNP loss. Second, due to the large geo-
graphic distance between the Popl and Pop5 source populations,
there could be incompatibilities between Popl and Pop5 genomes
that lead to nonrandom losses of genomic segments from one or
the other populations after the admixture. Some SNPs in tight
linkage disequilibrium with such incompatible segments would
also have suffered lost heterozygosity or fixation. Third, and con-
sidered by the authors to be least likely to be correct, FD8X SNPs
could be underrepresented in the represented genomic regions
just by chance, since the ddRAD-seq is a reduced representation
sequencing approach.

The availability of the inbred strains, LSD and FD2M1, provides
an essential genetic toolkit that enables strain-specific SNP dif-
ferences to be used as positional tags for investigating a wide
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variety of allele-specific genome structures and gene expression
characteristics. For example, documented genetic differences be-
tween these strains can be used to investigate allelic imbalances
in gene expression DNA methylation, and histone modifications
genome-wide as a means to better understand important phe-
nomena of genomic imprinting, X-chromosome inactivation, and
cis- us trans- regulation of gene expression (Wang and Clark 2014).
As inbred strains are ideal for controlling genetic background in
various kinds of experimental design, the past absence of inbred
laboratory opossum strains hampered the potential research
applications of this marsupial model. There have been multiple
attempts to develop inbred strains of M. domestica, most of which
have failed due to reduction in fertility and litter survival, pre-
sumably caused by inbreeding depression. In contrast, the inbred
LSD strain is moderately fertile with an average litter size at the
time of birth of 7, which compares favorably with a mean litter
size of 9 for LL2, the most fertile of all stocks. In our ddRAD-seq
data, we confirmed that the LSD animals consistently have the
lowest residual heterozygosity compared to other inbred strains
(1 per 10kb in 2014). We are confident that LSD will prove to be
an excellent resource for controlled treatment studies such as
toxicological, developmental, and immunological research.

The FD2M1 strain, with a mean inbreeding coefficient of 0.985 at
the time of sampling, was nearing the state of being fully inbred
(F>0.99). It, too, has continued to be further inbred, and all living
FD2M1 animals currently (August, 2021) have inbreeding coeffi-
cients of 0.996-0.997. By comparison with LL2, this strain has a low
level of fertility, with an average litter size of 5. Since its genetic
makeup is quite distinct from the genetic makeup of the LSD strain,
this pair of inbred strains can serve to determine the comparative
effects of experimental treatments on two distinct genetic back-
grounds, with minimal individual variation within each genetic
background. Moreover, the two strains provide opportunities for rig-
orous genetic research on characters of biological and medical in-
terest by conducting intercrosses and backcrosses, in which
virtually all of the allelic differences between the two parental
strains are known. Thus, our results have vastly increased the po-
tential utility of this unique animal model.

Recently reported breakthroughs in reproductive manipula-
tion techniques for M. domestica that enabled them to achieve the
first targeted gene perturbations through CRISPR/Cas9 genome
editing in any marsupial species (Kiyonari et al. 2021). The ability
to generate knockout animals, together with the availability of
two inbred strains (with promise of more such strains as our in-
breeding program continues), opens the way for investigating
specific gene functions in M. domestica through knockouts of dif-
ferent alleles of a locus in two distinct and highly uniform genetic
backgrounds.

In conclusion, our research is the first step in developing a
strain-specific genomic toolkit for this marsupial model. We
performed ddRAD-seq in eight M. domestica laboratory strains
and investigated the genomic diversity within and between
them. Population genetic parameters were computed based on
66,640 high-quality SNPs among these strains, and PCA and ad-
mixture analysis revealed that the population genetic struc-
ture is consistent with the original geographic locations of the
founder animals and the breeding history since the introduc-
tion of the founders into the laboratory. We predict that the in-
tersection of genetically diverse inbred strains and CRISPR/
Cas9 gene-altering technologies will greatly enhance the utility
of M. domestica for comparative biological and biomedical re-
search, and will usher in a new era of scientific discovery based
on this unique laboratory marsupial.

Data Availability

The whole-genome resequencing raw reads are available at NCBI
SRA databases under accession number PRINA743944. The ddRAD-
seq raw data are available at NCBI SRA databases under accession
number PRINA743991. The SNP genotypes (Supplementary Data S1
and S2) are available at https:/github.com/XuWangLab/2021_
ddRADseq_sppData.

Supplementary material is available at G3 online.
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