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The COVID-19 pandemic has highlighted how the healthcare system could be
overwhelmed. Telehealth stands out to be an effective solution, where patients can
be monitored remotely without packing hospitals and exposing healthcare givers to
the deadly virus. This article presents our Intel award winning solution for
diagnosing COVID-19 related symptoms and similar contagious diseases. Our
solution realizes an Internet of Things system with multimodal physiological sensing
capabilities. The sensor nodes are integrated in a wearable shirt (vest) to enable
continuous monitoring in a noninvasive manner; the data are collected and
analyzed using advanced machine learning techniques at a gateway for remote
access by a healthcare provider. Our system can be used by both patients and
quarantined individuals. The article presents an overview of the system and briefly
describes some novel techniques for increased resource efficiency and assessment
fidelity. Preliminary results are provided and the roadmap for full clinical trials is
discussed.

The emergence of the COVID-19 pandemic has led
to an unprecedented burden on the healthcare
system both nationally andworldwide.1 Just in the

U.S. alone, the number of positive cases has exceeded
twenty-eight million at the time of writing this article.
Such a global-scale outbreak has caused overwhelming
load on the healthcare facilities andpersonnel.Moreover,
caregivers have become at high risk and quite a few of
them have been infected. Subsequently the demand has
increased for telehealth services to fill in the gap, espe-
cially at a time when social distancing measures are
being employed. Telehealth employs a combination of
communications, sensing, computation, and human–
computer interaction technologies that are used in diag-
nosis, treatment, and monitoring of patients without dis-
turbing the quality of life of the individuals.2 It also
provides a conduit for allowing the physician to provide
an expected level of care through sensor biofeedback.

The major breakthrough in developing wearable
medical devices and the emergence of the Internet
of Things (IoT) has revolutionized the healthcare
industry.2,3 Particularly, these advanced technologies
have enabled the development of effective and eco-
nomic solutions for remote and continuous monitor-
ing of patients with medical conditions. For example,
the heartbeat of individuals can be measured to
detect cardiac unrest and automatically call for emer-
gency assistance. Such a monitoring service has tra-
ditionally been possible only through hospitals or
specialized clinics, and consequently deemed both
expensive for insurance companies and inconvenient
for patients and their families. For health insurance
providers, reducing the cost is paramount in order to
maintain affordable premiums. Moreover, wearable
sensors are invaluable for monitoring the body condi-
tions under stress, e.g., while exercising or playing
sports. The architecture of such a real-time health
monitoring system consists of single or multimodality
sensing devices to collect relevant measurements
and transmit them through a gateway node to stor-
age centers, either cloud-based or private, to be
accessible to caregivers.
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This article provides an overview of our smart
Telehealth-IoT system that is geared for addressing the
aforementioned challenge. Fundamentally, our Intel
award winner and patent pending smart wireless wear-
able IoT system provides an in-home Telehealth monitor-
ing tool for health assessment and for diagnosing illness
conditions amid the COVID-19 pandemic. The system
realizes amultimodal health assessmentmethodology by
monitoring multiple vital conditions and correlating the
collected data to provide continual and real-time assess-
ment of the patient’s health. The system is geared for use
by: 1) patients who have been confirmed to have COVID-
19 and are being treated at home, and 2) those who are
quarantined after being exposed to infected individuals.
Our novel wearable Telehealth-IoT system is fundamen-
tally different from the state-of-the-art in that it uses a
body area sensor network (BASN) with each node in the
network having a plurality of sensors, including micro-
phones and pulse oximeter, which will be used to provide
illness diagnosing and monitoring of conditions. In
essence, our wearable noninvasive system constitutes
an enabling technologywith value proposition of

1) diagnosing fever conditions;
2) providing alerts of any lung inflammations;
3) detecting unusual patterns that indicate breath-

ing difficulty;
4) monitoring heart function and assessing fatigue

level; and
5) allowing a physician to remotely monitor quaran-

tined and sick individuals.

In addition to describing the architecture and fea-
tures of Telehealth-IoT, this article briefly highlights
some of the novel techniques that have been developed
to tackle the technical challenges and boost the effi-
ciency of the system in practice. Particularly, we
describe a novel fusion technique for multimodal diag-
nosis of COVID-19 infection. We provide an overview of
an innovative technique for energy-efficient data collec-
tion through predictive sampling. We also show some of
the preliminary results and report on the current status
of the development. The article is organized as follows.
The next section provides an overview of the system
design and compares Telehealth-IoT with other solu-
tions. Section “Multimodality Illness Diagnostics”
describes our multimodal approach for diagnosis of
COVID-19 illness and other diseases. Section “Energy
Conservation Through Predictive Sampling” briefly dis-
cusses our energy optimization technique through pre-
dictive sampling. Finally, Section “Conclusions and
Future Work” concludes the article with a summary and
a brief discussion of future extensions.

SYSTEM ARCHITECTURE AND
DISTINCT FEATURES
System Architecture
An overview of the system architecture is shown in
Figure 1, the BASN incorporates a mesh of wireless
sensors that are networked to measure full torso
range of motion, muscle activation, and body vitals in
the form of photoplethysmography (PPG), electrocar-
diography (ECG), electromyography (EMG), acoustic
cardiography (ACG), and acoustic myography (AMG).
The system uses Zigbee for supporting internode con-
nectivity. The sensors transmit their data to a gateway
node that serves as the interface for the BASN. One of
the nodes can be designated as a gateway or a sepa-
rate node can be incorporated to serve such a role. An
example of the latter is when integrating the BASN
with the smart LASARRUS glove (not shown in
Figure 1), which has onboard processing capabilities,
and includes additional sensor modalities, such as
pulse sensor. For the purpose of COVID-19 diagnosis
and symptom tracking, we are leveraging the ECG,
ACG, and temperature sensors for physiological moni-
toring, auscultation of lung sounds and fever detec-
tion. Signal processing techniques are used for
wireless beamforming and deconvolution of incoming
lung sounds. The real-time sensor data are processed
by the gateway node if feasible or relayed through the
gateway to remote centers over secure connection.

To highlight the capabilities of the incorporated
sensors, we provide a brief comparison of the perfor-
mance of our ECG sensing with an FDA approved ECG
device, namely the Kardia by AliveCore. The wave-
forms are shown in Figure 1. The result shows consis-
tent heart rate (HR) and Q-wave, R-wave, and S-wave
(QRS) intervals for the sample duration, the LASAR-
RUS ECG slightly lags the Kardia in time due to the
imperfections in the synchronization of the two

FIGURE 1. Overview of our multimodal smart sensor network

architecture for COVID-19 diagnosis. Also shown is one of

our sensor data modality (ECG) in comparison with an exist-

ing FDA approved system.
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independent data streams. The heart rate estimation
between the two ECG streams was within 5% of each
other, with the HR shown in Figure 1 to be around 59
bpm for a subject at rest. The other sensors of our sys-
tem have comparable capabilities and specification to
commercial systems, namely, the Eko DUO ECG þ
Digital Stethoscope, and ThermoWorks WAND.

Existing Covid-19 Technologies
Respiratory Rate Analysis: The respiration rate (RR)
reflects the breathing frequency and is deemed indica-
tive of health problems. Particularly, RR abnormality
could be linked to hypoxaemia or hypercarbia, which
is often associated with the COVID-19 infection. Many
studies have correlated abnormal respiratory rates
with pneumonia, pulmonary embolism, weaning fail-
ure, and overdose.4 Subbe et al. 5 have shown that RR
identifies patients with high-risk of cardiopulmonary
catastrophic deterioration more accurately than using
the blood pressure and pulse rate. It has been shown
that RR can be inferred from physiological signals
such as ECG.6 We will be integrating a finger pulse
oximeter in our system for rapid development to
address the COVID-19 demands.

Wearable Auscultation Devices for Telehealth Diag-
nosis: Recent advances in wearable devices and smart
sensors have led to the development of practical “Steth-
oVest” systems.7–9 Researchers at Johns Hopkins Uni-
versity are among the first to develop a wearable vest
that is embedded with microphones for heart and lung
auscultation.7 However, the vest requires physical teth-
ering to a PC performing the data acquisition. Scientists
from Technische Universit€at Berlin, Germany, have
developed a wireless multimodal sensor for acoustic

auscultation.8 Their solution integrates sensors for ECG
and actigraphy in addition to microphones. Although
very promising, their solution can only be used for aus-
cultation. A similar systemhas been developed by scien-
tists from The University of Taipei, Taiwan, where a
wearable sensor system is utilized to reduce the effect
of motion artifacts on the breathing sound and ECG sig-
nals.9 To the best of our knowledge, there are no existing
“StethoVest” or wearable systems that employ a net-
work of smart multimodal sensor nodes, each with
acoustic sensing capabilities, for heart and lung auscul-
tation and diagnosis. Table 1 gives a holistic overview of
our Telehealth-IoT system capabilities and comparison
to the state-of-the-art.

MULTIMODALITY ILLNESS
DIAGNOSTICS

Our Telehealth-IoT system distinguishes itself through
the inclusion of a diverse set of sensors and pursuing
a multimodal methodology for detecting and tracking
the symptoms of COVID-19. According to the data of
the infected patients in Wuhan, China,10 the COVID-19
symptoms with commonality are, fever (73%), cough
(59%), shortness of breath (31%), muscle ache (11%),
confusion (9%), headache (8%), sore throat (5%), rhi-
norrhea (4%), chest pain (2%), diarrhea (2%), and nau-
sea and vomiting (1%). From these statistics, it can be
concluded that the strongest indication of infection
are pulmonary-related impacts and breathing disor-
ders. Therefore, our system focuses on respiratory
related symptoms and aggregates different sensing
modalities to detect signs of COVID-19 illness and
track the patient’s condition overtime. We show later

TABLE 1. Comparison of our system to the state-of-the-art.

Wearable Device Max Number of
Sensors

Wireless
Connectivity

Multimodal
Sensing

Features

Telehealth-IoTTM 24-30 Yes Yes @Motion Tracking

@Auscultation

@Vital Monitoring

@Diagnose Illness
Conditions

Johns Hopkins 12 No No @Auscultation

@Vital Monitoring

Technische
University

1 Yes Yes @Auscultation

@Vital Monitoring

University of Taipei 2 Yes Yes @Motion Tracking

@Auscultation

@Vital Monitoring
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in this section, that our multimodal approach boosts
the fidelity of COVID-19 diagnostics.

As articulated earlier, our Telehealth-IoT opts tomon-
itor patients remotely in a nonintrusive manner. There-
fore, acoustic sensors are primarily used in tracking
respiratory related symptoms. We analyze cough and
breathing sounds to detect pulmonary related disease,
namely, asthma, pneumonia, and lung inflammation. Our
approach distinguishes itself by employing specific deep
learning techniques to detect theCOVID-19 based on the
features extracted fromcough and breathing sounds.We
further include PPG and ECG sensing modalities to
detect the respiratory rate to be used as features for our
multimodal diagnostics. Our results confirm the effec-
tiveness of our single and multimodality diagnostics. In
the following, each classification technique is briefly
explained and then our aggregation mechanism for
COVID-19 diagnostic is highlighted.

Classification of COVID-19 cough sound: The most
severe consequence of the COVID-19 is the develop-
ment of pneumonia. This is typically confirmed with X-
ray or CT scan images as they are the most effective
means for assessing the lung’s conditions. Published
studies have shown that analyzing X-ray and CT scan
images, either by physicians and/or computer-based
processing techniques achieves a high accuracy of
95% for COVID-19 infection diagnosis.11 However,
obtaining imagery data requires visiting healthcare
facilities and getting in contact with medical profes-
sionals, which our system aims to prevent in order to
halt infection spreading and facilitate social distanc-
ing. In essence, our system relies on analyzing the
cough sound not only to assess the condition of the
respiratory system but also to distinguish symptoms
of COVID-19 from other illnesses, e.g., asthma. The
wearable acoustic sensors in our Telehealth-IoT sys-
tem acquires cough sounds to be processed at the
gateway or remotely at a medical facility.

The use of acoustic recording of coughs and con-
volutional neural networks (CNNs) in detecting
asthma, pneumonia, and COVID-19 has been recently
explored.12 However, deep networks, like CNN, gener-
ally require substantial training data, which is not cur-
rently available for COVID-19. Therefore, we promote
the use of generative adversarial network (GAN) to
generate synthetic acoustic COVID records and dem-
onstrate that the synthetic data produced can
enhance the classification of the patient’s respiratory
symptoms with high accuracy. We realize data aug-
mentation using a generative model. The generative
acoustic data are used to train our CNN classifier. The
input to the CNN model is the Mel-frequency cepstral
coefficients (MFCCs), which represent the acoustic

data in the time/frequency domain. The architecture
of our discriminative and generative model is illus-
trated in Figure 2(a). Our GAN model uses two neural
networks (NN) that try to defeat each other, where
the first NN generates virtual data while the second
NN acts as a discriminator model trying to detect
such virtual (unreal) data within the entire dataset.
The process continues while minimizing the probabil-
ity of detecting such virtual data. In essence, the GAN
model strives to increase the similarity between the
real and generated sounds. We feed the generative
networks with the MFCC of the real COVID cough
sound and restrict the model to generate virtual
COVID cough sounds. More specifically, we use condi-
tional GAN to generate improved sounds by restrict-
ing the search space to the latent space point and the
class to be COVID-19 data. The model’s objective is to
reduce binary cross-entropy.

To help in diagnosing COVID-19, our Telehealth-IoT
employs a CNN model to classify the patient’s cough
sound (MFCC data). Such a CNN model is trained
using both existing cough recordings as well as the
augmented (GAN generated) data of patients with
COVID infections. We have utilized the audio dataset
from the Coswara database13 in our analysis. Coswara
is a project at the Indian Institute of Science Banga-
lore for aiding in the diagnosis of COVID-19 based on
respiratory, cough and speech sounds; it requires the
participants to provide a recording of breathing and
cough sounds. Specifically, we have extracted 1589
non-COVID and 220 COVID coughs, and 1590 non-
COVID and 221 COVID breathing samples; we split the
obtained samples into nonoverlapping training and
testing sets. Figure 2(b) shows the MFCC data with
dimension 4327�13�1 is provided as an input to a con-
volution layer. Then, we feed the output to two addi-
tional convolutional layers that have 32 and 64
channels with 4�4 kernel size, respectively.

The output is flattened and then passed to a fully
connected layer of 84 neurons, followed by 16 intermedi-
ate neurons and then a final layer with 2 neurons. To
achieve balanced training, we have used the same num-
ber of COVID and non-COVID samples, for both scenar-
ios with and without augmentation. We have applied k-
fold for cross validationwhere k is set to 5. In Table 2, we
report the results for varying COVID-19 augmented
records. We grow the size of augmented COVID data
samples incrementally from 50 to 1000, so that the aug-
mented data constitutes between 50/(270þ270) and
1000/(1220þ1220), i.e., 9–40% of the overall dataset. For
example, 50/(270þ270) means that we have used 270
samples of healthy individuals, 220 COVID patient sam-
ples and augmented the latter with 50 generated
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samples (i.e., a total of 270 sick patients). In essence, the
dataset originally contains more records of healthy
patients. Thus, when we generate COVID-19 records,
the accuracy reaches 91% and 90% for cough and
breathing, respectively. This is very much expected
since the generated samples are based on the classifi-
cation of the actual data. The total signal duration is
equal to 30 seconds. The cough sound results are shown
in Table 2, with and without augmented data. The most
noteworthy observation in Table 2 is the relatively high
detection accuracy that our approach could achieve,
even by trainingwith a small dataset.

Detection of COVID breathing sound: Based on the
Wuhan statistics mentioned earlier, about one-third of
COVID-19 patients experience shortness in breath. Our
multimodality solution exploits such a symptom by ana-
lyzing breathing sounds. Doctors use digital stetho-
scopes to listen to the lung’s sound during breathing
and spirometers to measure lung volume and capacity
by gauging the airflow in the lung. Generally, the breath-
ing sound patterns include different phases like inspira-
tory, pause, and expiratory that refer to the inhale/
inflow and exhale/outflow of air to/from the lungs.
Abnormalities reflect one or multiple lung/breathing
complications. The frequency and energy characteris-
tics of the acoustic signal in each phase enable the

diagnosis of crackles, wheezes, rhonchus, squawk, and
stridor. This motivates the exploitation of the spectro-
gram analysis using deep learning. Basically, the
acquired sound records over time are analyzed using
Mel-frequency to detect anomalous patterns. We apply
deep learning techniques to the MFCC breathing vec-
tors for patients with both COVID and other complica-
tions. We employ the same generative learning
mechanism, described above, to populate the dataset
with breathing sounds reflecting COVID-19 complica-
tions. Similarly, a CNN is used in the classification of
COVID-19 breathing sounds; the architecture of the
CNN model in this case includes two convolutional
layers followed by two dense nonlinear layers and one
linear layer. The filter size is 4�4 for both convolutional
layers. As shown in Table 2, our approach achieves dis-
tinct accuracy.

Multimodal Data Fusion for COVID diagnostics: In
order to generate accurate diagnosis and measure the
progression of the COVID-19 illness, our Telehealth-IoT
system correlates the various indicators provided by ana-
lyzing data from individual sensors. Here we use our
cough and breathing sound analysis results as well as the
respiratory rate based on PPG and ECG data. We explore
twomethodologies to conduct such correlation. The first
is a voting ensemble-basedmechanism to categorize the

FIGURE 2. Architectural design of the employed: (a) Conditional GAN used for data augmentation, and (b) the CNN classifier

used for processing the cough sound.
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patient’s infection. In this step, we use all COVID-19 indi-
cators based on the single-modality analysis as inputs to
a classifier. The output of the classifier reflects the overall
assessment of whether the patient has COVID-19 or not,
along with the accuracy (fidelity). We apply a variety of
classifiers and then take a hard vote based on their out-
put. In essence, we consider multiple machine learning
classifiers including SVMGaussian kernel, Adaboost, ran-
dom forest, decision tree, and aggregate their results.
Our preliminary results have shown that such voting
ensemble achieves 80% accuracy for COVID diagnosis
without any data augmentation; this is clearly a major
improvement in accuracy to the assessment using indi-
vidualmodality, where Table 2 reports 70% and63% accu-
racy when only breathing and cough sounds are used,
respectively. The second methodology is to fuse the
symptom indicators from the single-modality analysis
using a fuzzy mechanism. Such an approach will enable
the correlation of data that is not provided by the wear-
able system, e.g., fatigue, headache, etc. We also factor in
the importance of the individual symptoms based on
how common they are for COVID-19. Currently, we are
implementing the secondmethodology.

ENERGY CONSERVATION
THROUGH PREDICTIVE SAMPLING

The operation of these wearable devices involves sig-
nificant energy consumption due to the wireless trans-
mission and high sampling rates required for collecting
physiological data. In our Telehealth-IoT system, we
have developed a novel mechanism for reducing the
number of transmissions through in-network data
processing. The idea is to skip the transmission of

some samples without degrading the data accuracy.
We note that under no serious health conditions, there
are little variations in the monitored physiological
attributes and consequently the collected data. We
employ a machine learning model at the sensor side;
such a model is also duplicated on the gateway node.
The model identifies the possible set of predictable
samples that can be inferred by the gateway node.
Generally, the analog sensing data from different
modalities like ECG, EMG, and AMG exhibits some
known patterns constituting time series. By setting a
certain variation threshold a, the sensor will decide on
skipping the transmission if the difference from the
predicted and actual data sample is negligible. We uti-
lize a long short-term memory (LSTM) network. A
major advantage of our approach is that the error
bound for a reproduced data sample is easily con-
trolled by adjusting the variation threshold and thus
our approach can be applied to a wide range of sensor
modalities. Furthermore, our approach does not suffer
from error distortion from each reconstructed signal
segment, since the errors are handled sequentially;
any violation of the variation threshold necessitates
the transmission of the sample and consequently
restoring the accuracy for the next sample prediction.

The effectiveness of our energy optimization
approach is validated using ECGdatasets. For the trans-
mission power, we have considered a Zigbee trans-
ceiver, specifically the Digi XBee-3 radio which has a
transmit power of 90mW. The computation overhead is
based on using an Arduino platform that has an active
current of 1.23mAwhen clocked at 16MHz. The average
power consumed in processing is approximately 5mW,
which is an order of magnitude less than that of

TABLE 2. Cross-validation results for COVID-19 classification using the cough and breathing sound analysis of our telehealth-IoT

deep learning model.

Cough sound Breathing sound

Dataset F1-score Accuracy F1-score Accuracy

Average Standard
deviation

Average Standard
deviation

Average Standard
deviation

Average Standard
deviation

Collected data only 0.6549 0.0820 0.6297 0.0170 0.7273 0.0700 0.7045 0.0500

With data
augmentation

Aug ¼ 50 0.6968 0.0361 0.6667 0.0166 0.7646 0.0491 0.7333 0.0522

Aug ¼ 100 0.7099 0.0417 0.6875 0.0140 0.7904 0.0452 0.7703 0.0517

Aug ¼ 150 0.7522 0.0368 0.7324 0.0289 0.8015 0.0293 0.7770 0.0283

Aug ¼ 180 0.7777 0.0186 0.7375 0.0198 0.8120 0.0426 0.7988 0.0281

Aug ¼ 200 0.7866 0.0317 0.7595 0.0246 0.8192 0.0217 0.8071 0.0237

Aug ¼ 300 0.8244 0.0360 0.8010 0.0387 0.8417 0.0323 0.8260 0.0291

Aug ¼ 1000 0.9172 0.0048 0.9098 0.0065 0.9172 0.0208 0.9098 0.0224
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communication. We have used valgrind profiler with ver-
rou tools to estimate the set and the number of instruc-
tions for the applied algorithms while handling the same
number of samples (50 000 ECG records). Overall, we
have observed that the computational overhead is quite
insignificant and is about 1% of that of communication.
This is because the employed LSTMmodel is simple and
contains 101 trainable parameters. The model is trained
offline and hence is computationally inexpensive for
normal Telehealth-IoT usage for patient monitoring. The
estimated runtime duration for predicting the data sam-
ple by our LSTM is approximately 0.4496 ms, which is
much less than the sampling rate required for ECG.

As a baseline for comparison, we have imple-
mented the compressive sensing approach of,15 which
is based on the discrete wavelet transform (DWT) with
five decomposition levels. The DWT coefficients are
divided into three groups; a threshold is set for each
group based on a desired energy packing efficiency.
To retain 95% of the signal energy, the thresholds are
set to: 99.9% for the approximation band coefficients
of level five, 97% for the detail band coefficients of
level five, and 85% for detail subbands coefficients
of levels 1–4. To determine the most significant coeffi-
cient for each level i, we: i) calculate the energy of all
coefficients, ECi,j , ii) sort ECi,j in descending order, and
iii) add ECi,j in the sorted list progressively until the
desired thresholded energy corresponding of level i
(i.e., energy � thresholdi) is reached. The remaining
coefficients are below the threshold and thus will be
insignificant. A binary significance map is then formed
where a binary one is outputted if the wavelet decom-
position coefficient is significant, or zero otherwise.
Compression is achieved using direct binary represen-
tation of the significant coefficients.

Figure 3 captures the energy savings as a result of
reduced packet transmissions and optimized data sam-
ple quantization. Our Telehealth-IoT Energy Optimizer
(TEO) achieves dramatic power savings, indicating that
six times reduction in the communication overhead is
possible with a variation threshold of 10-5. Figure 3 also
highlights the significant impact of the tolerance inac-
curacy on the performance; tolerating more deviation
between the predicted and actual data enables skipping
the transmission of more samples and consequently
conserves more energy. The figure also demonstrates
the superiority of the Telehealth-IoT optimization rela-
tive to contemporary compressive sensing. On the aver-
age, TEO could skip up to 80% of the samples for alpha
10-4 and 28% with alpha 10-7. Overall, our TEO approach
is complementary, rather than alternative, for any com-
pressive sensing algorithm and may be generically
applied to various sensormodalities. As indicated by the

results, combining compressive sensing with our TEO
approach yields performance that surpasses each of
them individually. Overall, a sensor node in our Tele-
health-IoT system has a battery rating of 2.3 Watt-hours
(Wh). Thus, the baseline approach will last approxi-
mately 4 hours (2.3 Wh/0.58 Watts, from Figure 3) on a
continuous operation. Our TEO approach will extend
such time to 22 hours.

CONCLUSION AND FUTUREWORK
In this article, we have presented our novel and patent
pending Telehealth-IoT system for diagnosing COVID-19
related symptoms and similar contagious diseases. Our
preliminary results show a classification accuracy of 80%
for COVID-19 diagnosis without any data augmentation.
Furthermore, we have demonstrated that our solution
can operate while also conserving energy through predic-
tive sampling. Our future work includes extending our
multimodal analysis to fuse the symptom indicators from
the single-modality analysis using a fuzzy mechanism,
and to assess the performance of data sample prediction
for other signals such as EEG and EMG.We hope to begin
our clinical study byQ1 of 2021.
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