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A B S T R A C T   

There have been conflicting results in the literature regarding the congestion impacts of shared 
mobility systems with for-hire vehicles (FHVs). To the best of our knowledge, there is no phys
ically meaningful and mathematically tractable model to explain these conflicting results or 
devise efficient management schemes for such mobility systems. In this paper, we attempt to fill 
the gap by presenting a compartmental model for passenger trip and vehicle dynamics in shared 
mobility systems with FHVs and discussing the impacts of different fleet-size management 
schemes. 

To develop the compartmental model, we first divide passenger trips into four compartments: 
planned, waiting, traveling, and completed. We describe the dynamics of the waiting trips by the 
point queue model, and those of the traveling trips by an extended bathtub model. As the 
traditional bathtub model for vehicular trips, the extended bathtub model is derived in a relative 
space with respect to individual trips’ distances to their destinations. However, different from the 
traditional bathtub model, vehicular dynamics and trip dynamics in the extended bathtub model 
are not overlapping, as the dynamics of FHVs are controlled by the fleet-size management 
scheme; but they are related, as traveling trips travel with occupied FHVs, and empty FHVs supply 
seats to waiting trips. Within this modeling framework, the matching process between waiting 
passengers and FHVs is modeled at the aggregate level, such that the passenger trip flow from the 
waiting compartment to the traveling compartment equals the minimum of the waiting trips’ 
demand of seats and the supply of seats determined by the completion rate of traveling trips and 
the fleet-size management scheme. In addition to the pooling ratio, the deadhead miles, the 
detour miles caused by pooling services, and other extra miles associated with the matching 
process are captured by another exogenous parameter, namely, the extra mileage ratio. With 
these assumptions and simplifications, the resulting compartmental model is a deterministic, 
coupled queueing model, which can be written as a system of differential equations. We also 
present the sufficient and necessary condition on the fleet-size management scheme for the model 
to be well-defined. 

With the parsimonious, closed-form compartmental model, we demonstrate theoretically that 
limiting the wait time leads to a fleet-size management scheme equivalent to that of the privately 
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operated vehicles (POVs), i.e., the POV scheme. In such a system, the completion rate depends on 
the extra trip mileage ratio, as well as the pooling ratio. With 100% autonomous FHVs, the 
optimal fleet size that minimizes the total costs occurs at the maximum flow-rate and the free- 
flow speed. With mixed POVs and FHVs, we extend the compartmental model and numerically 
solve for the optimal fleet sizes under different market penetration rates. This study reconciles the 
conflicting results in the literature. We find that, with a low pooling ratio, the overall system’s 
performance can be deteriorated or improved, depending on the fleet-size management scheme: 
with the POV scheme, the system could become more congested; but with an appropriate fleet- 
size cap, the system’s performance can be substantially improved. A major policy implication 
of this study is that implementing a cap for the FHV fleet size is a viable measure to mitigate the 
congestion effects of extra deadhead and detour miles caused by FHVs.   

1. Introduction 

The core task of a mobility system is to accommodate various types of passenger and freight trips. Different from the traditional 
mobility system served by privately operated vehicles (POVs), in which travelers do not have to wait for their designated vehicles to be 
dispatched, recently a new type of shared mobility systems have been realized through for-hire vehicles (FHVs) managed by trans
portation network companies (TNCs). Such systems do require travelers to wait while TNCs dispatch FHVs to pick them up. Shared 
mobility systems have attracted much attention from the general public for the convenience they offer and the job opportunities they 
provide. It is believed that such a transportation mode could be even more prevalent when autonomous vehicles are incorporated into 
the future smart mobility systems (Hensher, 2018; Hyland and Mahmassani, 2018). 

In the literature, many studies focus on the design of shared mobility systems with FHVs by solving dial-a-ride or vehicle-dispatch 
problems so as to reduce TNCs’ operational costs and improve the service quality for travelers. The solutions to these problems are 
subject to constraints in the congestion condition of the road network and travel demands determined by travelers’ choice behaviors in 
departure times, modes, and so on. See Mourad et al. (2019) for a comprehensive review for such studies. In contrast, another 
important problem is related to understanding the impacts of FHVs on the whole transportation system’s performance and devising the 
corresponding system-level management schemes to improve the whole system’s performance. In particular, FHVs could impact the 
mobility, public transit ridership, car ownership, and so on. This study is concerned with the mobility impacts of FHVs. 

At the system level, there have been conflicting results in the literature regarding the impacts on mobility of shared mobility 
systems with FHVs. Through agent-based simulation studies, (Fagnant and Kockelman, 2014; Martinez et al., 2015) showed that FHVs 
can substantially relieve congestion of the transportation network with a fixed fleet size. Also through simulations, (Bischoff and 
Maciejewski, 2016; Fagnant and Kockelman, 2018) concluded that the current transportation system with POVs can be completely 
substituted by a shared mobility system with autonomous FHVs, at a rate of 8 to 10 POVs being replaced by a single FHV. These 
simulation-based studies report that wait times are reasonably low, but the total vehicles miles travelled (VMT) are longer than those 
by POVs, due to the deadhead and detour miles associated with FHVs. In general, these studies seem to support TNCs’ claim that FHVs 
can help to relieve congestion. In contrast, recent empirical studies (Schaller, 2017) point out that, in reality, FHVs have imposed 
negative impacts on all the aspects related to congestion, private car ownership, and public transit usage: “trips, mileage and the 
number of vehicles” have all been increased in the central business district area of New York city, but the increases vary considerably 
with the time of the day. In San Francisco, FHVs are estimated to account for 25% of the total vehicle hour delay (Castiglione et al., 
2018). In NYC Taxi and Limousine Commission (2019), it was observed that, “relying on short wait times to keep demand high, the 
companies have saturated the market with vehicles, which currently spend 41% of their time in the core cruising around without 
passengers.” This suggests that both the existing fleet-size management schemes employed by the TNCs and extra deadhead and detour 
mileage of FHVs might be the cause of worsening congestion. 

Shared mobility systems are quite complex with many stakeholders and can be studied from many different perspectives, such as 
the TNCs’ operational perspectives, the traffic agencies’ system perspective, the user perspective, etc. To the best of our knowledge, 
however, there is no physically meaningful and mathematically tractable model that (i) captures the impacts on congestion of fleet-size 
management schemes, pooling ratios, and extra deadhead and detour miles of FHVs, (ii) reconciles the conflicting results regarding 
FHVs’ congestion effects in the literature, and (iii) provides guidelines to efficiently manage the future smart mobility systems. In this 
paper, we attempt to fill the gap by introducing a unified analytical approach to model and manage shared mobility systems with FHVs 
with respect to the whole system’s mobility performance. 

To that end, we adopt a congestion dynamics perspective from the traffic system agencies. In particular, we propose a simple model 
to describe the congestion dynamics in a shared mobility system and then develop effective fleet-size management schemes at the 
network level. We follow the same spirit of the compartmental models in epidemiology and introduce a closed-form model for such a 
complex system (Godfrey, 1983). Based on the following four assumptions and simplifications that are closely related to the specific 
characteristics of a shared mobility system with FHVs, the compartmental model can be written as a system of differential equations. 
First, we take a compartmental view of passenger trips, by dividing them into four compartments: planned, waiting, traveling, and 
completed. Second, the dynamics of the waiting trips are captured by the point queue model (Vickrey, 1969; Jin, 2015), and those of 
the traveling trips by an extended bathtub model, which can be considered a network queue model. As the traditional bathtub model of 
vehicular trips (Vickrey, 2020; Jin, 2020), the extended bathtub model is also derived in a relative space with respect to individual 
trips’ distances to their destinations. But vehicular dynamics and trip dynamics are not overlapping, as the dynamics of FHVs are 
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controlled by the fleet-size management scheme; but they are related, as traveling trips travel with occupied FHVs, and empty FHVs 
supply seats to waiting trips. Third, the matching process between waiting passengers and FHVs is modeled at the aggregate level, such 
that the passenger trip flow from the waiting compartment to the traveling compartment is equals the minimum of the waiting trips’ 
demand of seats and the supply of seats determined by the completion rate of the traveling trips and the fleet-size management scheme. 
Here, the demand of the waiting compartment is defined as that of the point queue as in Jin (2015), and a new definition of the supply 
will be introduced to capture the impacts of both the traveling compartment and the fleet-size management scheme. The aggregate 
model for calculating the matching (transition) rate between two compartments can be considered as an extension of the Cell 
Transmission Model for calculating the transmission rate between two cells (Daganzo, 1994). Finally, two exogenous parameters are 
introduced: the pooling ratio and the extra mileage ratio, which captures the deadhead miles of empty FHVs, the detour miles with 
FHVs’ pooling services, and other extra miles associated with the matching process. Moreover, we present the sufficient and necessary 
condition on the fleet-size management scheme for the model to be well-defined. With the proposed model, we then examine the 
impacts of the fleet-size management scheme currently employed by many TNCs, which aims to limit travelers’ wait times. We also 
examine the impacts of a fleet-size management scheme, which introduces a cap of the FHV fleet size introduced by many cities. 

The contributions of this study are fourfold. First, we present a novel compartmental model by coupling the point queue model and 
an extended bathtub model to account for both passenger trip and vehicle dynamics in a shared mobility system with FHVs. Second, we 
rigorously define the current TNCs’ fleet-size management schemes and analyze their impacts on the overall mobility performance of a 
shared mobility system. Third, we define an optimal fleet-size management scheme and, by comparing it with TNCs’ schemes, prove 
that a cap for the number of FHVs as proposed by many cities is a viable option to limit traffic congestion. Fourth, we extend the 
compartmental model for the mixed mobility system with both FHVs and POVs and numerically solve the optimal fleet sizes under 
different market penetration rates. 

The rest of the article is organized as follows. In Section 2 we discuss the compartmental modeling framework for shared mobility 
systems with FHVs and present the definition for the model to be well-defined. In Section 3 we present the mathematical model for 
both trip and vehicle dynamics in a shared mobility system with FHVs and present the condition on the fleet-size management scheme 
for the model to be well-defined. In Section 4 we present two feedback fleet-size management schemes aiming to limit the wait time 
employed by TNCs. In Section 5 we formulate and solve the solution for the optimal fleet-size cap assuming user equilibrium departure 
time choice. In Section 6 we extend the model and optimal fleet-size management scheme for a mixed mobility system with both POVs 
and FHVs. In Section 7 we conclude the study with discussions on the policy implications of this study and potential extensions of the 
methodology. 

2. Compartmental modeling framework for shared mobility systems 

For the readers’ convenience, a list of notations is given in Table 1. 
Compartmental models (or modifications thereof) have been widely used in epidemiology for capturing the transmission of viruses 

in a large population (Godfrey, 1983). For example, in the classic susceptible-infectious-recovered (SIR) model of epidemic dynamics, 
the whole population is divided into three compartments: susceptible, infectious, and recovered. The state of each compartment is 
described by the number of people, which can change dynamically. The transition rate from one compartment to another is determined 
by the corresponding state variables; such deterministic, aggregate transition rates approximately capture the detailed spatial- 
temporal interactions among different groups of people. As a result, each compartment’s dynamics are described by a simple ordi
nary or partial differential equation, and the resulting models are mathematically tractable. Theoretically, the SIR model has led to 
invaluable analytical insights, including the definition of the basic reproduction number. Practically, with well calibrated parameters, 
such a model can be used to predict epidemic dynamics and devise large-scale mitigation schemes. 

Shared mobility systems are also quite complex and can be studied from many different perspectives. These include the economic 
perspective, in terms of market equilibrium with respect to demand and supply of ridesourcing services (see a comprehensive literature 
review in Wang and Yang (2019)), or the TNCs’ operational perspectives of the demand of seats, supply of seats and matching process 
between both (see a comprehensive literature review (Agatz et al., 2012)). In this study we take a congestion dynamics perspective 
from the traffic system agencies. To that end, we propose a simple model that describes the congestion dynamics in a shared mobility 
system. In turn, this allows us to develop effective fleet-size management schemes at the network level. Following the same spirit of the 
compartmental models in epidemiology, we introduce four assumptions and simplifications to reflect specific characteristics of a 
shared mobility system with FHVs. 

2.1. Compartmental view of passenger trips in different mobility systems 

For the purpose of simplicity, we lump together all trips in a mobility system, regardless of their exact locations, and divide them 
into different compartments, depending on their stages. This compartment view can be applied to a traditional mobility system with 
only POVs, a shared mobility system with 100% autonomous FHVs, or a mixed mobility system with both POVs and FHVs. 

With only POVs, the passenger trips can be divided into three sequential compartments: planned (planned but have not started), 
traveling (started but not completed), and completed. The three compartments are illustrated in Fig. 1(a), in which the total number of 
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trips during a study period is denoted by N,1 the cumulative entering flow from the planned compartment to the traveling compartment 
at t by E(t), and the cumulative completed flow by G(t). Thus, the numbers of planned, traveling, and completed trips at t are, 
respectively, N −E(t),E(t) −G(t), and G(t). The rates of change in time of E(t) and G(t) are, respectively, e(t) and g(t), which represents 
the entering and completion rates of trips, respectively: e(t) = Ė(t) and g(t) = Ġ(t) with the dot for the derivative with respect to time. 

When all trips are served by autonomous FHVs, in contrast, a traveler starts his or her trip by placing a request with a TNC but has to 
wait for the assignment of an FHV and for the vehicle to pick him/her up. Thus, there is an additional compartment of waiting trips. In 
such a system, there can be congestion in both the waiting and traveling compartments during a peak period. Since TNCs monitor wait 
times in real time and dispatch FHVs dynamically to “ensure short wait times and spur demand” (NYC Taxi and Limousine Com
mission, 2019), it is also important to model the dynamics of waiting trips. Hence, in a shared mobility system with FHVs, the pas
senger trips are divided into planned, waiting, traveling, and completed (PWTC) compartments. The four compartments are illustrated 
in Fig. 1(b), in which the cumulative entering flow from the planned compartment to the waiting compartment at t is denoted by E(t), 
and the cumulative boarding flow from the waiting compartment to the traveling compartment by F(t). Thus, the number of waiting 
and traveling trips at t are, respectively, E(t) −F(t) and F(t) −G(t). The rates of change in time of F(t) and G(t) are, respectively, f(t) and 

Table 1 
List of notations  

Variables Definitions 

B(t) Average remaining distance of travelling trips at t 

B̃(t) Average entering trips’ distances at t 

C Road capacity 
E(t) Cumulative entering flow at t 
F(t) Cumulative boarding flow at t 
G(t) Cumulative completed flow at t 
H(⋅) Heaviside function 

K(t, x) Number of active trips at t with a remaining distance not smaller than x 
L Total lane-miles of a network 
N Total number of trips 

V(ρ) Network speed-density relation 
d(t) Demand rate of seats by the waiting trips at t 
e(t) Entering rate at t 
f(t) Boarding rate at t 
g(t) Completion rate at t 
s(t) Supply rate of seats to the waiting trips at t 
v(t) Average travel speed at t 
x POV (privately operated vehicle) trip distance 
y FHV (for-hire vehicle) trip distance 

z(t) Characteristic travel distance at t  

ϒ(t) Wait time for a traveler boarding at t 
Φ(t, x) Proportion of trips with distances not smaller than x at t 

Φ̃(t, x) Proportion of the entering trips with distances not smaller than x at t  

δ(t) Waiting queue size at t 
λ(t) Number of traveling trips at t 
φ(t) Number of empty seats at t 

ϕ  Total cost function 
ρ(t) Per-lane vehicle density 

ρ*  Fleet-size cap for FHVs 

ρj  Jam density 
τ(z) Characteristic travel time with a characteristic travel distance of z 

π  Pooling ratio 
ξ  Extra trip mileage ratio 
γ  Cost coefficient for the traveling time 
β  Cost coefficient for the wait time 
ν  Penalty of late arrivals 
μ  Penalty for early arrivals 

ηm  Mode choice ratio for mode m, where m = {F, P}

1 In this study we focus on the real-time operation and management of the shared mobility system. Thus, we assume that the total travel demand is 
constant. 
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g(t), which represents the boarding and completion rates of trips. Notice that both F(t) and G(t) could be observed in practice, or 
predicted with the compartmental model if E(t) is given as an input. Given their importance for developing a feedback fleet-size 
management scheme, and the fact that observing them can be quite expensive, here we use the short-term prediction by the 
compartmental model to develop the schemes discussed in Sections 4 and Section 5. 

Fig. 1(c) illustrates the compartments in a mixed mobility system with both POVs and FHVs, where the subscripts P and F represent 
the two types of vehicles respectively. Here the total entering and completion rates are given by e(t) = eP(t) +eF(t) and g(t) = gP(t) +

gF(t), respectively. The total entering and completion cumulative flows are given by E(t) = EP(t) +EF(t) and G(t) = GP(t) + GF(t), 
respectively. 

2.2. Deterministic queueing models of waiting and traveling trips 

For the compartments in Fig. 1, we assume that the total number of trips, N, and the entering flows and flow-rates (E(t), and e(t)) are 
given. That is, we do not consider departure time choice or induced and suppressed demand caused by traffic congestion in a road 
network. Therefore, the dynamics of planned trips are known. In addition, the completion rate of trips is assumed to be determined by 
traveling trips. Therefore, the dynamics of passenger trips are purely determined by those in the waiting (if existing) and traveling 
compartments. 

For the traveling trips served by POVs, illustrated in Fig. 1(a) or (c), we can directly apply the traditional bathtub model for 
vehicular trips in Vickrey (1991), Vickrey (2020), Jin (2020), since passenger trips overlap with vehicular trips (assuming an occu
pancy of 1). In this model, trip dynamics are described in a relative space, with respect to individual trips’ distances to their desti
nations. As the relative space is independent of the absolute network topology, individual trips’ origins, destinations, routes, and links 
are implicit, and different trips’ trajectories can be described in a unified space-time domain. Two further assumptions are made: under 
the “bathtub” assumption, vehicles’ speeds are the same at a time instant and irrelevant to the their exact locations in a network; under 
the network fundamental diagram assumption, the vehicle speed at a time instant is determined by the vehicle density. Then the trip 
dynamics at the aggregate level can be described by a differential equation in terms of the number of trips with a remaining trip 
distance. In such a bathtub model, the demand pattern is given by the entering rate of trips as well as the distribution of entering trips 
with respect to their distances. For a general distribution of trip distances, the bathtub model can be written as a partial differential 
equation (Jin, 2020); but when the trip distances follow a time-independent negative exponential distribution, it becomes Vickrey’s 
bathtub model, which can be simplified as an ordinary differential equation (Vickrey, 1991; Vickrey, 2020). In a sense, the bathtub 
model can also be considered a network queue model in the relative space, where the queue size is the number of traveling trips, 
denoted by λ(t). Such a model is mathematically more tractable than traditional network traffic flow models depending on the network 
topology, which lead to a large number of differential equations, depending on the number of origins, destinations, routes, and links. At 

Fig. 1. Compartments of passenger trips in different mobility systems and trip flows between compartments: (a) Three compartments in a mobility 
system with POVs; e(t) and g(t) represent the entering and completion rates of trips, respectively, and E(t) and G(t) are the corresponding cumulative 
flows; (b) Four compartments in a shared mobility system with FHVs; f(t) represents the matching (boarding) rate of trips, and F(t) is the corre
sponding cumulative flow; (c) Compartments in a mixed mobility system with both POVs and FHVs. 
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the same time, this model still captures the impacts of not only the entering rates of trips, but also the distribution of trip distances. 
Therefore, the bathtub model strikes a balance between mathematical tractability and physical realism. Therefore, we attempt to use 
the bathtub model to describe the traveling trip dynamics in a shared mobility system with FHVs. 

However, for traveling trips served by FHVs, as illustrated in Fig. 1(b) or (c), we cannot directly apply the bathtub model, since the 
passenger trips and the vehicular trips can evolve separately. On one hand, with the pooling service, one FHV can carry multiple 
passengers at the same time, or can be traveling empty. On the other hand, the discrepancies among passengers’ locations and FHVs’ 
locations as well as the delays when matching passengers and FHVs can lead to extra mileage compared with each passenger’s trip 
distance. Thus, the bathtub model needs to be extended for traveling trips served by FHVs. In particular, the passenger trips are still 
described by the bathtub model, but the dynamics of FHVs are separately modeled. In the extended bathtub model, passengers’ trip 
distances are modified to incorporate the deadhead miles as well as the extra miles caused by re-routing with pooling services. 

Similarly, we lump together all waiting trips, and their exact locations in the road network are not explicitly tracked. With this 
simplification, we can describe their dynamics with Vickrey’s point queue model (Vickrey, 1969; Jin, 2015), where the state variable is 
the number of waiting trips, i.e., the waiting queue size, denoted by δ(t). Following (Jin, 2015), we can define the demand rate from the 
point queue by d(t), which can be determined by the waiting queue size and the entering rate. At the aggregate level, the demand rate 
represents the number of seats needed per unit time to accommodate the waiting passengers. 

Within the aforementioned point queue and bathtub models, the waiting and traveling compartments for the shared mobility 
system with FHVs can be viewed as a tandem of two deterministic queues (Newell, 1982): a waiting queue plus a traveling queue. Fig. 2 
illustrates the tandem of both waiting and traveling queues, in which δ(t) and λ(t) are the waiting and traveling queue sizes, 
respectively, and E(t),F(t), and G(t) are the arrival and departure curves for the two queues. 

2.3. Aggregate model of the matching process 

In reality, the boarding rate, f(t), is determined by the matching rate between waiting travelers and available FHVs. Such a dynamic 
matching problem is quite complex and relatively new in the literature (Agatz et al., 2011; Agatz et al., 2012; Yang et al., 2020). In 
addition, TNCs’ pricing schemes and other social-economic incentives influence drivers’ choice behaviors, which in turn determine the 
availability of FHVs in a road network (Wang and Yang, 2019). But in this study we aim to approximately calculate the real-time 
boarding rate at the aggregate level, such that the resulted compartmental model is still mathematically tractable. 

First, we examine the two types of mobility systems in terms of demand and supply. In the traditional mobility system served by 
POVs, travelers and POVs are integrated into traveler-vehicle units and pose a demand in terms of road space onto the infrastructure 
directly (Downs, 2004), as shown in Fig. 3(a). In contrast, for the shared mobility system served by FHVs, travelers and FHVs are 
separated. Thus, the mobility system has a two-layered structure, as shown in Fig. 3(b), where trips are served by FHVs, and FHVs share 
the road infrastructure (Lam et al., 1999; Shaheen et al., 2018). Consequently, in the shared mobility system, there are two-layers of 
demand and supply: on the first layer, the travelers impose a demand in terms of trips on FHVs, which supply seats; on the second layer, 
the vehicles impose a demand in terms of road space on the infrastructure, which supplies the road capacity. In this two-layered shared 
mobility system, the immediate stakeholders include passengers, drivers, mobility service vehicles, mobility service providers, and 
traffic system agencies. Moreover, there are complicated interactions and conflicts between the demand and the supply in both layers. 
For example, the supply of seats could be improved by providing more vehicles, but this imposes more demand in road space on the 
road network and therefore leads to more congestion. Conceptually, this demonstrates that the fleet-size management scheme is 
critical for the overall performance of a shared mobility system. 

In this study, we assume that the rate of change in the number of FHVs is determined by a deterministic and aggregate fleet-size 
management scheme, which depends on TNCs’ matching algorithms, traffic management agencies’ regulation policies, and the 
availability of the drivers of FHVs. In particular, TNCs can move an FHV into or out of a network, traffic management agencies can 
impose a limit on the number of FHVs in a network, and the driver of an FHV can choose to cruise on roads or leave roads and wait. 
Here we assume that the economic and other incentives are sufficiently high such that the number of FHVs is as large as determined by 
the fleet-size management scheme. 

Mathematically, we can determine the supply rate of seats, s(t), from the number of FHV seats, the number of traveling passenger 
trips, as well as the completion rate of passenger trips. Then we calculate the boarding rate, f(t), as the minimum of the demand rate of 
seats imposed by the waiting compartment, d(t), and the supply rate of seats, s(t). This aggregate model approximates the matching 
process between passengers and FHVs. 

The matching process among waiting passengers and available FHV seats could take up to several minutes, depending on pas
sengers’ ride-sharing choices, and the relative locations of the seats and waiting passengers. For example, it is possible that a waiting 
passenger may not be matched with the first available FHV seat, if they are too far away, or the FHV does not satisfy the passenger’s 
preferences in ride-sharing, driver rating, vehicle type, and so on. Therefore, the aggregate matching model best applies to a relatively 
dense network with large numbers of passengers and FHVs, where the waiting passengers and available FHV seats can be matched 
almost instantaneously. If the waiting passengers and available FHV seats cannot be matched instantaneously, there can be excess 
deadhead miles, which will be discussed in the following subsection. 

2.4. Pooling ratio and extra mileage ratio 

We assume that, with the pooling services (e.g., UberPool, Lyft Shared/Lyft Line), one FHV serves on average 1 +π travelers at the 
same time, where π⩾0 is called hereafter the pooling ratio. Thus, the total number of FHV seats is the product of the number of FHVs 
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and 1 + π. Intuitively, the pooling ratio depends on the fares charged by TNCs, passengers’ socioeconomic characteristics, TNCs’ 
matching methods, and other factors. Here, we assume that π is exogenously observed or given. In particular, we can calculate the 
average value of π by comparing the total actual trip miles of all travelers and the total non-empty vehicle miles traveled, since the ratio 
of the former to the latter equals 1 + π. 

When waiting passengers and available FHVs cannot be matched instantaneously, when the matched FHV and passenger are a 
distance apart from each other, and when an FHV is removed from a newtork after dropping off the passengers, there can induce some 
deadhead miles. In addition, FHVs may have to take detours to facilitate ride-sharing. Intuitively, these extra miles traveled by FHVs 
will increase traffic congestion and are equivalent to extra passenger trips’ distances. Therefore, we introduce another exogenous 
parameter, the average extra mileage ratio for all trips, denoted by ξ. In this sense, a trip whose POV distance2 is x has an FHV distance 
of y = (1 +ξ)x in the shared mobility system served by FHVs. In other words, a passenger trip with a length of x leads to a vehicular trip 
with a length of (1 + ξ)x. ξ is affected by the distribution of both the demand and the supply, the size of the network, and the matching 
algorithm, among other factors. Here, we define it exogenously. We can estimate ξ by comparing the total vehicle-miles traveled of 
FHVs and the total POV trip distances, since the ratio of the total vehicle-miles traveled to the total POV trip distances equals 1+ξ

1+π. 

3. Compartmental model for shared mobility systems with for-hire vehicles 

Here, we present a complete compartmental model for shared mobility systems with for-hire vehicles, illustrated in Fig. 1(b), by 
deriving two differential equations for the dynamics of waiting and traveling trips. 

Fig. 2. Illustration of the tandem waiting and traveling queues in a shared mobility system with FHVs.  

Fig. 3. Demand and supply in different mobility systems with (a) privately operated vehicles (POVs) and (b) for-hire vehicles (FHVs).  

2 Here the POV distance of a trip is assumed to be that served by a POV. 
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From the definitions of the variables, we have the following relations: 

f (t) = Ḟ(t), (1a)  

g(t) = Ġ(t). (1b)  

In addition, the waiting queue size is given by 

δ(t) = E(t) − F(t), (1c)  

and the number of traveling trips by 

λ(t) = F(t) − G(t). (1d) 

The unknown variables are F(t),G(t),f(t),g(t),δ(t), and λ(t), among which only two are independent due to the four relations in (1). 

3.1. Point queue model for waiting trip dynamics 

From (1), we have the following differential equation for the dynamics of the waiting queue size: 

δ̇(t) = e(t) − f (t), (2)  

where e(t) is given, but f(t) unknown. 
For the waiting trips, the demand rate of seats is given by (Jin, 2015) 

d(t) =
δ(t)
∊

+ e(t), (3)  

where ∊ is an infinitesimal positive number and equals the time-step size, Δt, in the discrete version.3 Thus, the demand of seats during 
the time interval between t and t +Δt is δ(t) + e(t)Δt, which equals the waiting queue size plus the number of entering trips. That is, d(t)
is the number of travelers that are waiting to board FHVs per unit time. 

For a road network with L lane-miles, the number of FHVs, i.e., the fleet size, at t is Lρ(t), where ρ(t) is the density of FHVs (unit: 
vehicles per mile per lane), and the number of seats is (1 + π)Lρ(t). We denote the number of empty (unassigned) seats by φ(t), which is 
given by 

φ(t) = (1 + π)Lρ(t) − λ(t). (4)  

When φ(t) > 0, the average number of travelers on each FHV is fewer than 1 + π; and when φ(t) = 0, all FHVs are fully utilized. By 
fully utilized we mean that FHVs are all either in use (with passenger(s) inside), or on route to pick up someone (assigned), or in the 
process of being removed from a network after dropping off passengers. From t to t + Δt, the number of available seats equal φ(t) plus 
those recently vacated by completed trips, g(t)Δt, and those due to the net change of FHVs in the system, (1 + π)Lρ̇(t)Δt. If we define by 
s(t) the supply rate of available seats at t, which is the maximum number of travelers that FHVs can accommodate per unit time, then 
we have 

s(t) =
φ(t)

∊
+ g(t) + (1 + π)Lρ̇(t). (5)  

Here g(t) is determined by the traveling trip dynamics discussed in the following subsection, and ρ̇(t) is determined by the fleet-size 
management schemes. Depending on whether FHVs are added to or removed from a road network, ρ̇(t) can take any sign. When ρ̇(t) =

0, the number of FHVs is constant over time.4 

Then the boarding rate is given by the minimum of d(t) and s(t). From (3) and (5) we have 

f (t) = min{d(t), s(t)} = min
{δ(t)

∊
+ e(t),

φ(t)
∊

+ g(t) + (1 + π)Lρ̇(t)
}

. (6)  

Note that in this point queue model, (2) with (6), the supply rate, s(t), varies in time. Therefore, it is different from the point queue of a 
single bottleneck considered in Vickrey (1969), where the capacity is constant. 

3.2. Bathtub model for traveling trip dynamics 

For the shared mobility system with FHVs, we assume the following network fundamental diagram for the speed-density relation 

3 Mathematically, the compartmental model is well-defined in the hyperreal domain. A rigorous mathematical treatment can be done in 
nonstandard analysis (Robinson, 1996), but it is beyond the scope of the paper.  

4 Note that, in contrast, the fleet size in a bus or metro system can be relatively constant during the peak periods. 
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v(t) = V(ρ(t)), (7)  

where v(t) is the average travel speed in the network. Here we assume that the boarding and alighting times and the impacts of other 
factors on the speed are already captured by the speed-density relation. We denote by z(t) the characteristic travel distance of the 
whole system: 

z(t) =

∫ t

0
v(s)ds. (8)  

For a signalized network, we use the following speed-density relation, which leads to a trapezoidal flow-density relation (Jin and Yu, 
2015; Ambühl et al., 2020): 

V(ρ) =
C
ρ ⋅ min

{
ρ

ρc1
, 1,

ρj − ρ
ρj − ρc2

}

, (9)  

where C is the road network capacity, determined by the green ratio and other signal settings, ρj is the jam density, and ρc1 and ρc2 are 
two critical densities. When ρ is between ρc1 and ρc2, the flow-rate is C. For ρ < ρc1, traffic is under-saturated; for ρ ∈ [ρc1,ρc2], traffic is 
saturated; and for ρ > ρc2, traffic is over-saturated. The corresponding flow-density relation is illustrated in Fig. 4(a). 

We denote the proportion of the trips entering the travel compartment at t with the POV distances not smaller than x by Φ̃(t,x). 

Then the distribution of the FHV distances is Φ̃
(

t, y
1+ξ

)
. If the average POV distance of trips entering the travel compartment at t is B̃(t), 

the average FHV distance is (1 + ξ)B̃(t). We further denote by K(t, y) the number of traveling trips at t with a remaining FHV distance 
not smaller than y. Then, the number of traveling trips is λ(t) = K(t, 0); and from the conservation of trips with a remaining FHV 
distance not smaller than y we have the following generalized bathtub model for traveling trip dynamics (Jin, 2020) 

∂
∂t

K(t, y) − V(ρ(t))
∂
∂y

K(t, y) = f (t)Φ̃
(

t,
y

1 + ξ

)
, (10)  

whose discrete version is K(t + Δt, y) = K(t, y + v(t)Δt) + f(t)Φ̃(t, y
1+ξ)Δt. Here the completion rate is 

g(t) = V(ρ(t))
∂
∂y

K(t, 0). (11)  

Further from (1) we can solve the traveling trips, λ(t), by 

λ̇(t) = f (t) − g(t), (12)  

which can also be derived from (10) by setting y = 0. Assuming the network is initially empty, we have the integral version of the 
generalized bathtub model: 

λ(t) =

∫ t

0
f (s)Φ̃

(
s,

z(t) − z(s)

1 + ξ

)
ds. (13)  

It is obvious that λ(t) is guaranteed to be non-negative for non-negative f(t). 
If we assume that all trips’ POV distances follow the same time-independent negative exponential distribution: 

Φ̃(t, x) = e−x
B, (14)  

Fig. 4. Trapezoidal network fundamental diagram: (a) Relationship between FHV flow-rate and FHV density; (b) Relationship between trip 
completion rate and number of traveling trips. 
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where B is the average POV trip distance; then the average FHV trip distance is (1 + ξ)B. In this case, K(t, y) = λ(t)e−
y

(1+ξ)B and λ(t)
satisfies the following ordinary differential equation 

λ̇(t) = f (t) −
1

(1 + ξ)B
V(ρ(t))λ(t), (15)  

which is an extension of the original bathtub model by (Vickrey, 1991; Vickrey, 2020; Small and Chu, 2003; Daganzo, 2007). Here 

g(t) =
1

(1 + ξ)B
V(ρ(t))λ(t). (16)  

Correspondingly, (13) can be simplified as 

λ(t) =

∫ t

0
f (s)e−

z(t)−z(s)

(1+ξ)B ds. (17)  

When all trips have the same POV distance of B, the generalized bathtub model is the basic bathtub model considered in Arnott et al. 
(2016), Arnott and Buli (2018), Jin (2020). In this case, 

Φ̃(t, x) = H(B − x) =

{
0, x > B;
1, x⩽B,

(18)  

where H(⋅) is the Heaviside function. Since the remaining FHV distance of any traveling trip y⩽(1 + ξ)B, (10) can be simplified as 
(y ∈ [0, (1 + ξ)B]): 

∂
∂t

K(t, y) − V(ρ(t))
∂
∂y

K(t, y) = f (t). (19)  

Correspondingly, the integral forms can be simplified as 

λ(t) = F(t) − F(τ(z(t) − (1 + ξ)B)), (20)  

where τ(z) is the characteristic travel time and an inverse function of z(t) for v(t) > 0 (Jin, 2020). 

3.3. Complete PWTC compartmental model 

Combining (2), (6), and (12), we have the following differential version of the PWTC compartmental model of shared mobility 
systems with FHVs: 

δ̇(t) = max
{

−
δ(t)
∊

, e(t) −
φ(t)

∊
− g(t) − (1 + π)Lρ̇(t)

}
, (21a)  

λ̇(t) = min
{δ(t)

∊
+ e(t) − g(t),

φ(t)
∊

+ (1 + π)Lρ̇(t)
}

, (21b)  

where the number of unused seats φ(t) can be written in terms of the two state variables as in (4), and the completion rate g(t) depends 
on the number of traveling trips at t as in (11), in which ∂

∂y K(t, 0) is determined by (10). From (4) we have φ̇(t) = (1 + π)Lρ̇(t) −λ̇(t), 
which combined with (21b) leads to 

φ̇(t) = max
{

−
φ(t)

∊
, −

δ(t)
∊

− e(t) + g(t) + (1 + π)Lρ̇(t)
}

. (22)  

Therefore, for a general trip distance distribution, the PWTC compartmental model comprises of five equations, (4), (10), (11), and 
(21), with six unknown variables, δ(t),λ(t),φ(t),g(t),K(t,y), and ρ(t). Among the five equations, (10) is a partial differential equation, 
(21) are two ordinary differential equations, and (4) and (11) are two algebraic equations. Here ρ(t) and ρ̇(t) are given by the fleet-size 
management scheme; therefore, they the control variables in the sense of control theory (Aström and Murray, 2008). Hence the PWTC 
compartmental model is an open-loop system. Notice that increasing the empty seats (φ(t) = (1 + π)Lρ(t) −λ(t)) increases the supply 
s(t) and, therefore, reduces the waiting queue size, but also reduces the speed v(t) and, therefore, increases the number of traveling 
trips. Thus, there is a trade-off that needs to be considered for the fleet-size management. 

For the PWTC compartmental model, δ(0) and λ(0) are given by the initial conditions, and e(t) by the boundary conditions. We have 
the following definition. 

Definition 3.1. A PWTC compartmental model for the shared mobility system with FHVs is well-defined if f(t), g(t), δ(t), λ(t)⩾0 for 
e(t), δ(0), λ(0)⩾0. 

The definition is self-evident for a physically meaningful model. 
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Lemma 3.2. In the PWTC compartmental model, δ(t) and φ(t) are always non-negative for δ(0), φ(0)⩾0. In addition, when φ(0) = 0 and the 
fleet-size management scheme satisfies 

(1 + π)Lρ̇(t)⩽e(t) +
δ(t)
∊

− g(t) −
φ(t)

∊
, (23)  

the FHVs are fully utilized with φ(t) = 0. 

Proof. Discretizing (21a) with ∊ = Δt we have δ(t + Δt) = δ(t) + max{ −δ(t),⋯} = max{0,⋯}⩾0. By induction, we can see that, if 
δ(0)⩾0, we have δ(t)⩾0 at any time t. Similarly, from the discrete version of (22), we can prove φ(t)⩾0 at any time t. 

When (23) is satisfied, from (22) we have φ̇(t) = −
φ(t)

∊ , which leads to φ(t + Δt) = 0. Thus φ(t) = 0 for any t, given φ(0) = 0. □ 

Lemma 3.2 implies that if the drivers of some empty FHVs decide to cruise in the network, then (23) is violated, and they become 
under-utilized. In contrast, if unassigned FHVs leave the roads, (23) is satisfied, and all FHVs are fully utilized. Therefore, any fleet-size 
management schemes satisfying (23) would prevent unassigned FHVs from contributing to congestion; in this study, we focus on such 
schemes. 

Theorem 3.3. If and only if the fleet-size management scheme satisfies 

(1 + π)Lρ̇(t)⩾ −
φ(t)

∊
− g(t), (24)  

s(t), f(t), λ(t), ρ(t), g(t) are all non-negative for e(t), λ(0)⩾0. That is, (24) is the sufficient and necessary condition for the PWTC compartmental 
model of shared mobility systems with FHVs to be well-defined in the sense of Definition 3.1. Intuitively, (24) makes sense because the 
maximum number of seats that can be taken out of the system equals φ(t)

∊ + g(t). 

Proof. From the definition of s(t) in (5), the condition on the fleet-size management scheme, (24), leads to s(t)⩾0. 
Then from (6) we have f(t)⩾0, since s(t)⩾0, and δ(t)⩾0 from Lemma 3.2. 
From (13), λ(t)⩾0, since f(t)⩾0. 
From (4), we have (1 + π)Lρ(t) = λ(t) + φ(t)⩾0, since λ(t)⩾0 and φ(t)⩾0 from Lemma 3.2. 
From the definition of K(t,y), we can see that ∂

∂y K(t, 0)⩾0 when λ(t)⩾0. Thus, from (11), we have g(t)⩾0. 
On the other hand, if (24) is violated, then s(t) < 0, and f(t) < 0. 
Therefore, (24) is the sufficient and necessary condition for the PWTC compartmental model to be well-defined. □ 

In the special case of a time-independent negative exponential distribution of trip distances, g(t) is determined by (16). Then, the 
PWTC compartmental model can be further simplified as 

δ̇(t) = max
{

−
δ(t)
∊

, e(t) −
(1 + π)Lρ(t) − λ(t)

∊
−

V(ρ(t))

(1 + ξ)B
λ(t) − (1 + π)Lρ̇(t)

}

, (25a)  

λ̇(t) = min
{

δ(t)
∊

+ e(t) −
V(ρ(t))

(1 + ξ)B
λ(t),

(1 + π)Lρ(t) − λ(t)
∊

+ (1 + π)Lρ̇(t)
}

. (25b)  

In this case, the PWTC compartmental model is a system of ordinary differential equations, with two variables, δ(t) and λ(t), and one 
control variable, ρ(t). For simplicity, hereafter we only consider this special case. 

4. Feedback fleet-size management schemes to limit waiting queue sizes 

In this section, we consider two fleet-size management schemes aiming to limit the waiting queue size, as a proxy for the wait times. 
The first one is the POV scheme, in which FHVs are operated as POVs. The second one is an approximation of the current TNCs’ fleet- 
size management scheme, aiming to guarantee short wait times. We refer to this second scheme as short waiting queue scheme. 

4.1. The POV scheme 

When FHVs are operated as POVs, a traveler is immediately assigned to an FHV when s/he sends a request (i.e. zero wait time), and 
the FHV is removed from the network once the trip is completed. However, the assigned FHV may need to travel a certain distance to 
pick up the user, which is captured by ξ. Thus, we obtain the following feedback fleet-size management scheme 

(1 + π)Lρ̇(t) = min
{(

1 + π)L
ρj − ρ(t)

∊
, e(t) +

δ(t)
∊

− g(t) −
φ(t)

∊

}
. (26)  

The first term on the right-hand side of (26) guarantees that ρ(t)⩽ρj with ρj as the jam density. The second term suggests that we add as 

many as FHVs to accommodate the demand in seats, e(t) +
δ(t)
∊ , and remove as many as FHVs for completed trips and empty seats, g(t) +

φ(t)
∊ . Here we assume that e(t) could be predicted (e.g., based on historical data or some type of real-time information) to use (26). 
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Notice that if e(t) is unknown, another integral controller is 

(1 + π)Lρ̇(t) = min
{(

1 + π)L
ρj − ρ(t)

∊
, αδ(t) − g(t) −

φ(t)
∊

}
(27)  

with α ∈ (0, 1
∊]. This fleet-size management scheme still satisfies which also satisfies (23), (24), and ρ(t)⩽ρj, but is less efficient in the 

sense that the waiting queue size approaches zero slower. 
Clearly, (26) satisfies (24), and the closed-loop control system, (21) and (26), is well-defined, according to Theorem 3.3. (26) also 

satisfies (23), and, from Lemma 3.2 we have φ(t) = 0, and all FHVs are fully utilized. In addition, we have the following theorem, 
whose proof is straightforward and omitted. 

Theorem 4.1. In the closed-loop control system, (21) and (26), the waiting queue size is zero with δ(t) = 0. Therefore, with the POV scheme, 
the closed-loop control system is equivalent to the bathtub model: 

λ̇(t) = e(t) − g(t), (28)  

where g(t) is given by (11). In this system, the only state variable is λ(t). Therefore, the shared mobility system with FHVs operates like the 
traditional mobility system with POVs, with the pooling ratio π and the extra mileage ratio ξ. 

4.2. The short waiting queue scheme 

One may argue that the TNCs would not use the POV scheme or ensure zero waiting queue size. However, in order to remain 
competitive with POVs which have no wait time, TNCs do attempt to ensure “short wait times to keep demand high” (NYC Taxi and 
Limousine Commission, 2019). Since ensuring a low enough wait time can be considered equivalent to ensuring short enough queue 
length on the waiting compartment, we add FHVs at the rate of max{0, e(t) +

δ(t)−δ0
∊ } with δ0 > 0 and remove vehicles at the rate of g(t) +

φ(t)
∊ . We then obtain the following feedback fleet-size management scheme: 

(1 + π)Lρ̇(t) = min
{(

1 + π)L
ρj − ρ(t)

∊
, max

{
0, e(t) +

δ(t) − δ0

∊

}
− g(t) −

φ(t)
∊

}
, (29)  

which also satisfies (23), (24), and ρ(t)⩽ρj. Thus from Lemma 3.2 we have φ(t) = 0, and the FHVs are fully utilized as in the POV 
scheme. The closed-loop system formed by (21) and (29) for ρ(t)⩽ρj can be re-written as 

δ̇(t) = max
{

−
δ(t)
∊

, min
{

e(t),
δ0 − δ(t)

∊

} }
, (30a)  

λ̇(t) = max
{

0, e(t) +
δ(t) − δ0

∊

}
− g(t). (30b)  

The closed-loop system reaches an equilibrium when δ̇(t) = 0, λ̇(t) = 0, and ρ̇(t) = 0. In an equilibrium state, therefore, δ(t) = δ0,λ(t)
= λ0, and ρ(t) = ρ0. From (30b) we have g(t) = e(t); from (29) we have φ(t) = 0; i.e., there are no empty seats. Further, from (12) we 
have f(t) = g(t). Thus, the equilibrium solution is almost the same as that for the POV scheme, except that the waiting queue size is 
non-zero, but δ0. Therefore, both zero or short waiting queue schemes lead to the POV-like scheme, in which the waiting queue size is 
fixed, φ(t) = 0, and f(t) = e(t). 

Around the equilibrium, with a small perturbation in the three variables, denoted by δ̃(t) = δ(t) −δ0, λ̃(t) = λ(t) −λ0, and ρ̃(t) =

ρ(t) −ρ0, then we have from (30) and (29) 

d
dt

δ̃(t) ≈ −
δ̃(t)
∊

, (31)  

d
dtλ̃(t) ≈

δ̃(t)
∊ , and (1 + π)L d

dtρ̃(t) ≈
δ̃(t)
∊ . From (31), we can see that the waiting queue size is indeed finite-time stable, since a small 

disturbance, δ̃(t), recovers to 0 in one time-step. Hence, the traveling trips and the fleet size are also finite-time stable. 

4.3. System performance with the POV-like fleet-size management schemes 

In this subsection we analyze the performance of the closed-loop system with the POV scheme and negative exponential distri
bution of trip distances. For such case, the closed-loop control system can be simplified as 

λ̇(t) = e(t) −
1

(1 + ξ)B
V

( λ(t)
(1 + π)L

)
λ(t). (32)  

For the trapezoidal network fundamental diagram, as shown in Fig. 4(a), the corresponding relationship between the completion rate, 

g(t) = 1
(1+ξ)B V

(
λ(t)

(1+π)L

)
λ(t), and the number of traveling trips, λ(t), is shown in Fig. 4(b). From the figure, we can see that the pooling 
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ratio and the extra mileage ratio change the maximum completion rate from LB C to 1+π
1+ξ

L
B C and the trip capacity from C to 1+π

1+ξ C; this is 
true for any network fundamental diagram. Evidently, if the increase in the pooling ratio overcompensates for the increase in the 
mileage ratio, i.e., π > ξ, the maximum completion rate of trips increases. Otherwise, it decreases. 

In addition, (32) can be re-written as 

λ̇(t) = e(t) −
1 + π
1 + ξ

L
B

C ⋅ min
{

λ(t)
(1 + π)Lρc1

, 1,
(1 + π)Lρj − λ(t)
(1 + π)L(ρj − ρc2)

}

.

For a constant entering rate, e(t) = e, we have the following observations:  

• When e < 1+π
1+ξ

L
B C, the system can have two equilibrium points: λ(t) = λ1 = (1 + ξ)e

C Bρc1, and λ2 = (1 + π)Lρj −(1 + ξ)e
C B(ρj −ρc2). 

It is easy to show that the first under-saturated equilibrium point is stable, but the second over-saturated one is unstable, and a small 
increase in the number of trips leads the system to the gridlock state.  

• When e = 1+π
1+ξ

L
B C, the system has many possible equilibrium points between (1 +π)Lρc1 and (1 + π)Lρc2.  

• When e > 1+π
1+ξ

L
B C, or equivalently, 

(1 + ξ)Be > (1 + π)LC, (33)  

the system converges to the gridlock state with λ = (1 +π)Lρj and v = 0. The left-hand side of (33) represents the demand, and the 
right-hand side the supply (Jin, 2020). In this sense, the deadhead and detour miles effectively increase the demand by ξ. 

Therefore, with the POV scheme, the shared mobility system is easier to get gridlocked, when the extra mileage ratio ξ is larger than the 
pooling ratio π. 

For the short waiting queue scheme, δ(t) = δ0 during the peak period, and the compartmental model is also equivalent to the 
bathtub model, (28). The above results also apply. 

Therefore, if the fleet-size management scheme only aims to limit the wait time, as in (26) or (29), the shared mobility system with 
FHVs operates like the traditional mobility system with HOVs, except with the pooling ratio of π, and the extra mileage ratio of ξ. 
Furthermore, if ξ > π, such a shared mobility system with FHVs is more congested than the traditional mobility system with HOVs. 
That is, FHVs can lead to more congestion, even if all POVs are replaced by FHVs. Conceptually, this explains why more congestion has 
been observed after the introduction of FHVs (Schaller, 2018). 

5. Improved fleet-size management scheme with capping 

In the preceding section, we showed that, if we only attempt to minimize the wait times, the shared mobility system leads to similar 
or worse congestion patterns than the ones caused by POVs when the pooling ratio is smaller than the extra mileage ratio. In addition, 
we demonstrated that the system could become gridlocked with the POV-like schemes, since the maximum value of ρ(t) is the jam 
density, ρj. That is, there is no cap on the FHV fleet size. In this section, we analyze the effect of capping the fleet size based on the 
compartmental model. 

5.1. Feedback fleet-size management scheme with capping 

Intuitively, if all trips are served by FHVs, it is possible to prevent the occurrence of gridlock or over-saturation by limiting the 
number of FHVs; i.e., by introducing a cap, ρ*, such that 

ρ(t)⩽ρ*. (34)  

This insight has been verified by simulations in Fagnant and Kockelman (2014), Martinez et al. (2015), Bischoff and Maciejewski 
(2016), which showed that it is possible to serve all trips with a much smaller fleet size than that of the POVs, as long as we allow for 
some wait times. 

To minimize the total cost, when the fleet size is below the cap ρ* the desired waiting queue size should be zero. Therefore, we 
revise (26) as 

(1 + π)Lρ̇(t) = min
{(

1 + π)L
ρ* − ρ(t)

∊
, e(t) +

δ(t)
∊

− g(t) −
φ(t)

∊

}
, (35)  

which satisfies (23), (24), and ρ(t)⩽ρj. Thus from Lemma 3.2 we have φ(t) = 0, and the FHVs are fully utilized. The closed-loop system 
can be re-written as 

δ̇(t) = max
{

−
δ(t)
∊

, e(t) − g(t) − (1 + π)L
ρ* − ρ(t)

∊

}
, (36a)  
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λ̇(t) = min
{δ(t)

∊
+ e(t) − g(t), (1 + π)L

ρ* − ρ(t)
∊

}
. (36b)  

With constant entering rate e(t) = e, this system can have the following two types of equilibrium states:  

1. In the first type of equilibrium states, the fleet size is smaller than the cap; i.e., ρ(t) = ρ < ρ*. We have from (35) that δ(t) = δ = 0 
and f(t) = g(t) = e. This equilibrium is similar to the one discussed in Section 4.2 and, thus, finite-time stable.  

2. In the second type of equilibrium states, the fleet size equals the cap; i.e., ρ(t) = ρ*. This occurs when the travel demand is high with 
e > f(t) = g(t), and the waiting queue size keeps increasing. Thus, (35) leads to 

(1 + π)Lρ̇(t) = (1 + π)L
ρ* − ρ(t)

∊
.

Thus, ρ(t) and λ(t) = (1 +π)Lρ(t) are exponentially stable around the equilibrium state. Note that the waiting queue size, δ(t), keeps 
increasing. 

5.2. Method for determining the optimal fleet-size cap 

In the traditional mobility system with POVs, which can be described by Vickrey’s bathtub, the system can reach a departure time 
user equilibrium during the peak period. As shown in Small and Chu (2003), the network needs to be saturated or even over-saturated 
in order for traveling costs to compensate the differences in the scheduling costs. Thus, the POV-like schemes without capping would 
lead to worse congestion with ξ > π in the departure time user equilibrium. 

Here, we propose to determine the optimal fleet-size by minimizing the total cost in the departure time user equilibrium during the 
peak period. For simplicity, we assume that the fleet size equals the maximum value of ρ(t) = ρ* during the whole peak period. 
Obviously, all FHVs should be fully utilized with λ(t) = (1 +π)Lρ* is constant, and the traveling compartment is in a steady state, where 
the completion rate g(t) = g* is constant: 

g* =
1 + π
1 + ξ

L
B

V(ρ*)ρ*. (37)  

The travel speed is the same for all the trips V(ρ*), and the average traveling time is B
V(ρ*)

. In addition, (36) can be simplified as Vickrey’s 
point queue model (Vickrey, 1969; Jin, 2015) 

δ̇(t) = max
{

−
δ(t)
∊

, e(t) − g*
}

, (38)  

where e(t) is determined by the departure time choice and the waiting queue size is the only state variable. 
We consider the following cost function for travelers 

ϕ(t) = βϒ(t) + γ
B

V(ρ*)
+ μmax

{

t* −
B

V(ρ*)
− t, 0

}

+ νmax
{

t − t* +
B

V(ρ*)
, 0

}

, (39)  

where ϒ(t) =
δ(t−ϒ(t))

g* is the wait time for a traveler boarding at t, t* the ideal arrival time, β the cost coefficient for the wait time, γ the 
cost coefficient for the traveling time, μ the penalty for early arrivals, and ν the penalty for late arrivals. In the departure time user 
equilibrium, the waiting cost and the early and late arrival penalties are balanced, and all travelers have the same total cost: 

ϕ* =
N

(1
μ + 1

ν)g* + γ
B

V(ρ*)
. (40)  

The solutions are illustrated in Fig. 5. Notice that these cumulative flow functions are only an approximation. They are accurate when 
the system reaches the equilibrium with Lρ* vehicles. However, at the beginning (during congestion formation) or at the end (during 
congestion alleviation) the FHVs fleet size is ρ(t) < ρ*, and the constant flow is only an approximation. 

We define the following optimization problem to find the optimal fleet-size cap: 

min
ρ*

ϕ* =
N

(1
μ + 1

ν)g* + γ
B

V(ρ*)
. (41)  

Theorem 5.1. For the trapezoidal network fundamental diagram defined in (9), the optimal FHV density is ρc1. 

Proof. When ρ⩽ρc1, a larger ρ leads to a larger g* but the same speed; thus the cost at ρc1 is the smallest. When ρ ∈ [ρc1,ρc2], increasing 
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ρ leads to the same g* but smaller speeds, and, thus larger costs. When ρ⩾ρc2, increasing ρ leads to smaller g* and lower speeds, and, 
thus larger costs. Therefore, the cost at ρc1 is the smallest. □ 

For example, the total lane-miles of New York City were about 19,000 in 2018 5, and the number of registered vehicles was about 
five million in 2016 6. That is, if all trips are served by FHVs, Theorem 5.1 shows that the optimal number of vehicles is about one 
million (assuming ρj = 230 vpmpl, and ρc1 = 0.25ρj). As it is not viable economically to hire one million drivers to serve the city’s 
travel demand, it can only occur in the era of autonomous vehicles for 100% of the trips to be served by FHVs. However, it is viable to 
replace five million POVs by one million autonomous FHVs. Therefore, it is reasonable to assume that ”the number of FHVs is as large 
as determined by the fleet-size management scheme”, as in Section 2.3. 

Theorem 5.1 is not only relevant for policy making, but it also reveals an important property of the optimal FHV fleet size when 
considering trapezoidal network fundamental diagrams. The optimal FHV fleet size is independent of the extra mileage ratio, ξ. This 
parameter does affect the total cost for the users, since higher deadhead and detour miles reduce the completion rate of trips (37) but 
not the optimal size of the fleet. In other words, ρ* is given by the capacity of the network, and these results hold independently of any 
approximation we might use to describe the deadhead and detour miles. 

For any general flow-density relationship, the solution of the optimization problem (41) cannot be in the over-saturated regime, 
where both the completion rate and the speed decrease as a function of density. Therefore, the feedback fleet-size management scheme 
based on the optimal fleet-size cap can help to prevent over-saturation or hypercongestion (Small and Chu, 2003). Notice that μ and γ 
do not influence the solution of ρ* for a trapezoidal flow-density relationship; however, these parameters may play a role for other 
flow-density shapes, e.g., the Greenshields shape (Vickrey, 1991; Vickrey, 2020). 

Note that the optimal fleet-size cap is obtained based on the assumption of a constant fleet size in the departure time user equi
librium. Such a solution is attractive, since, practically, such a cap is relatively easy to implement by traffic system agencies. We believe 
that the total travel cost in such a user equilibrium should be smaller than that in the POV user equilibrium or other user equilibria; but 
a rigorous proof is out of the scope of this study, since no simple analytical or numerical solution methods are available for such user 
equilibria in the literature. 

In (39), the cost is linearly proportional to the wait time ϒ(t). In reality, it is possible that, especially when travelers expect 
relatively low wait times, the cost increases nonlinearly (e.g., quadratically) in the wait time, then we can relax the constraint on the 
wait time or the waiting queue by revising (29) as 

(1 + π)Lρ̇(t) = min
{(

1 + π)L
ρ* − ρ(t)

∊
, max

{
0, e(t) +

δ(t) − δ0

∊

}
− g(t) −

φ(t)
∊

}
, (42)  

which can lead to more congestion but lower wait times. That is, it is possible that the optimal cap ρ* > ρc,1 in this case. In addition, if 
considering the initiation and dissipation stages, there can be an optimal δ0 > 0. 

6. Compartmental model and fleet-size management for mixed mobility systems 

It is estimated that “FHVs make up nearly 30% of all traffic” in downtown Manhattan (NYC Taxi and Limousine Commission, 2019). 

Fig. 5. Solution of the departure time user equilibrium in the shared mobility system with a fixed number of FHVs.  

5 See https://www1.nyc.gov/office-of-the-mayor/news/254-18/pave-baby-pave-mayor-de-blasio-record-5-000-lane -miles-city-roadways-have- 
been-repaved#/0  

6 See https://www.statista.com/statistics/196061/number-of-registered-automobiles-in-new-york/ 
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In this section, we extend the compartmental model for such a mixed system and discuss the corresponding fleet-size management 
problem. 

6.1. Coupled compartmental model for mixed mobility systems with POVs and FHVs 

For the mixed mobility system with two modes, FHVs and POVs, we extend the compartmental model for the FHV trip dynamics, 
and apply the bathtub model for the POV trip dynamics (Jin, 2020), as depicted in Fig. 1b. Both FHVs and POVs share the same road 
network; thus, the two dynamics are coupled together. 

In the following, the variables for the FHV trips are denoted by subscript F, and those for the POV trips by subscript P. The total 
number of trips is N = NF + NP, where NF and NP are respectively the total number of trips for FHVs and POVs. Fig. 6 illustrate the 
coupled queuing systems for both modes. Notice that the left tandem queue in Fig. 6 is similar to that in Fig. 2, but now the completion 
rate of trips served by FHVs, gF(t), depends on the speed of the system which has both POVs and FHVs. 

We assume that both types of vehicles have the same contribution to traffic dynamics, and the speed-density relation is 

v(t) = V(ρP(t) + ρF(t)). (43)  

For simplicity, we assume that all trips’ distances follow the same negative exponential distribution with the average distance B. Thus, 
the average distance of FHV trips is (1 +ξ)B to account for the deadhead and detour miles; but the average POV trip distance is still B.  

• Each POV is assumed to serve only one traveler with λP(t) = LρP(t). Notice that in many places, POV drivers might also be 
encouraged to carpool. Therefore, this could be included in the formulation as λP(t) = (π̂ + 1)LρP(t), where π̂ is the average 
passengers pooled in POVs. The dynamics of the POV trips can be described by Vickrey’s bathtub model (Vickrey, 1991; Vickrey, 
2020): 

λ̇P(t) = eP(t) −
1
B

v(t)λP(t). (44)    

• The pooling ratio of FHVs is still denoted by π. The dynamics of the FHV trips can be described by the modified version of (25): 

δ̇(t) = max
{

−
δ(t)
∊

, eF(t) −
φ(t)

∊
−

v(t)
(1 + ξ)B

λF(t) − (1 + π)Lρ̇F(t)
}

, (45a)  

λ̇F(t) = min
{δ(t)

∊
+ eF(t) −

v(t)
(1 + ξ)B

λF(t),
φ(t)

∊
+ (1 + π)Lρ̇F(t)

}
. (45b)   

6.2. Fleet-size management schemes for FHVs in a mixed mobility system 

In the two-commodity system, we assume that the fleet size of POVs cannot be controlled, but can manage the fleet size of FHVs. 
According to the analyses in Section 4, if the fleet-size management scheme aims to limit the wait time as in (29), then FHVs operate 

like POVs, and the compartmental model for the FHV trip dynamics can be approximated by a bathtub model. If ξ > π, introducing 
FHVs worsens traffic congestion in the whole road network. 

Therefore, we apply the same fleet-size management scheme with capping as in (35): 

(1 + π)Lρ̇F(t) = min
{(

1 + π)L
ρ*

F − ρF(t)
∊

, eF(t) +
δ(t)
∊

− gF(t) −
φ(t)

∊

}
, (46)  

where gF(t) =
v(t)

(1+ξ)BλF(t). Here the cap on the FHV fleet size is Lρ*
F. Similarly to Section 5, the proposed fleet-size management scheme 

leads to φ(t) = 0. 
The boundary conditions on eF(t) and eP(t), and the initial conditions on δ(0),ρF(0), and ρP(0) are assumed to be given. In particular, 

we are interested in finding ρ*
F, such that the total time for travelers is minimized: 

min
ρ*

F

ϕ =

∫ T

0
(E(t) − GF(t) − GP(t))dt. (47)  

The total time can be calculated as the sum of the area between EF(t) and GF(t) and the area between EP(t) and GP(t) in Fig. 6. Assuming 
the value of time, c, is the same for all users and for the waiting and traveling compartments, then c ⋅ ϕ represents the total cost for the 
travellers. 

Intuitively, with different FHV fleet-sizes, the POVs could change their departure times accordingly, and travelers could also change 
their modes. To include these choice behaviors endogenously, one needs to solve the departure time user equilibrium for both modes 
and also consider fares for FHVs, car ownership and operation costs, even though the trip dynamics model in the preceding subsection 
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directly applies. Such comprehensive treatments are beyond the scope of this study. Therefore, here we consider these choice behaviors 
exogenously7, by assuming that eF(t) = ηFe(t) and eP(t) = ηPe(t) with given values ηF + ηP = 1. Note that ηP is at most the ratio of 
passengers that own a vehicle, while ηF represents the passengers without a POV that have to rely on FHVs to travel plus the passengers 
that own a POV and still decide to use FHVs. In a real application, we could obtain the demand for each mode from empirical data. To 
demonstrate the methodology to obtain the optimal fleet cap under a mixed environment, here we assume a trapezoidal demand. 
Starting from 0 veh/h, with e(t) increasing for 1 h, staying stable for 1 h at emax, and then decreasing again to 0 veh/h over a 1 h period. 
Thus, the total number of trips considered is N = 2emax. Then, we can define the maximum demand ratio as: 

R = emax
(1 + ξ)B

(1 + π)LC
, (48)  

which depends on the maximum completion rate of trips of FHVs, as illustrated in Fig. 4(b). For R ≤ 1 there is no need to cap the FHV 
fleet size, since the demand of the road network (the product of the trip rate and the effective trip distance) does not exceed the supply 
(the product of the road capacity per-lane, the total lane miles, and the effective vehicle occupancy). Thus we only consider cases with 
R > 1. 

Even with the aforementioned simplifications, (47) cannot be analytically solved, and we resort to numerical solutions. The 
coupled compartmental model for a mixed mobility system can be numerically solved by the Euler forward method with ∊ = Δt. Fig. 7 
shows the total time of travellers [in minutes] as a function of the FHVs cap for different values of R and different mode choice ratios ηF. 
The analysis is normalized in terms of city size L and for a normalized network fundamental diagram, by C and ρj. In this particular 
case, we have chosen ρc,1 = 0.2ρj and ρc,2 = 0.5ρj. From the figures, we want to highlight the following observations. The total travel 
time is unimodal or flat in the fleet-size cap, for each demand R and mode split considered. Thereafter, there is a unique value or 
interval of ρ*

F for the minimum total cost. Caps that are either too small or too large are very detrimental to the system in terms of total 
cost. This demonstrates the necessity of introducing a proper fleet-size cap for FHVs, even in the mixed system. 

7. Conclusion 

In this paper, we presented a compartmental modeling framework to describe trip dynamics and traffic congestion in shared 
mobility systems with FHVs (for-hire vehicles), in which trips are categorized into four compartments: planned, waiting, traveling, and 
completed. We then applied the point queue model and the bathtub model to describe the dynamics of the waiting and traveling trips, 
respectively. Both models are coupled together by the supply of seats resulting from the traveling compartment and the fleet-size 
management scheme. We presented the sufficient and necessary condition on the fleet-size management scheme for the model to 
be well-defined, as well as the condition for FHVs to be fully utilized. In addition, we introduced two parameters to capture the pooling 
ratio and the extra mileage ratio caused by the FHV’s deadhead and detour miles. The resulting model is a system of ordinary and 
partial differential equations, which can also be considered a tandem fluid queueing model. 

We then discussed two types of feedback fleet-size management schemes for the shared mobility system with 100% autonomous 
FHVs. In all these fleet-size management strategies, the compartmental model is well-defined, and the FHVs are fully utilized, i.e. the 
vehicles are either carrying a passenger, assigned to pick up a passenger, or in process of being removed from the system. The first type 
of fleet-size management strategies are referred to as POV-like schemes, and aim to limit the waiting queue size without imposing any 
caps on the FHV fleet size. We demonstrated that FHVs operate like POVs, and the compartmental model is almost the same as the 

Fig. 6. Illustration of the two queuing systems in mixed environment with both FHVs and POVs. This queuing system is equivalent to the 
compartmental representation in Fig. 1(b). 

7 In reality, it is possible that passengers without POVs or viable public transportation have to rely on FHVs to travel, and passengers with POVs do 
not use FHVs at all. In this case, mode choice is irrelevant. 
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bathtub model for the traveling trips. When the extra mileage ratio is larger than the pooling ratio, the POV-like schemes lead to worse 
congestion in the road network. In the second type of fleet-size management schemes, a cap is introduced for the FHV fleet size. We 
demonstrated that the compartmental model is approximately the same as the point queue model for the waiting trips. Moreover, the 
optimal fleet-size cap can be derived by minimizing the total traveler’s cost in the departure time user equilibrium. In particular, an 
optimal cap can prevent the occurrence of over-saturated traffic (or hypercongestion) and, therefore, could potentially improve the 
safety and environmental impacts of the transportation system. Finally, we presented coupled compartmental models for mixed 
mobility systems with both POVs and FHVs, and numerically demonstrated the necessity of a FHV fleet-size cap. In a given city, the 
proposed methodology can be applied to determine the optimal cap that leads to thelowest total cost, if we are able to observe the 
demand pattern for private cars and for-hire vehicles. 

This study helps to reconcile the conflicting results regarding the congestion relieving effects of FHVs in the literature. We find that, 
when the pooling ratio is smaller than the extra mileage ratio, the overall system’s performance can deteriorate with the POV-like 
schemes employed by TNCs that aim to limit wait times. However, the system can prevent over-saturation or hypercongestion with 
a fleet-size cap. A major policy implication of this study is that capping the FHV fleet size is a viable measure to mitigate the congestion 
effects of extra deadhead and detour miles caused by FHVs. If all trips are served by FHVs in the future, the optimal cap can be obtained 
by solving the departure time user equilibrium at a single bottleneck as in (41). We have shown that this optimal cap is unique for the 
trapezoidal network fundamental diagram in Fig. 4a) and and does not depend on the deadhead and detour miles when the total cost is 
linear in the wait time. Thus, for real-world implementations, it is important to use real data to calibrate the network fundamental 
diagram including, especially, the critical density ρc1, which reflects the optimal fleet size according to Theorem 5.1. For a mixed 
system, however, we need to consider the mode choice among POVs and FHVs as well as the departure time choice in both modes to 
obtain more realistic FHV fleet-size caps, which can be the subject of future analytical and numerical studies. Empirically, it will also be 
important to observe, estimate, and calibrate the distribution patterns in space and time of multi-modal demands. 

We would like to emphasize that, even though the compartmental model in this work is built on several simplifications and as
sumptions, it has led to valuable theoretical insights on the impacts of different fleet-size management schemes on the system per
formance. Practically, with well calibrated parameters, such a model can be used to predict congestion dynamics and devise large-scale 
mitigation schemes. The compartmental model has very low data requirements and computational costs. This is in the same spirit of 
other compartmental models, e.g., SIR model used by epidemiologists. The parsimonious nature of our model is inherited from that of 
the point queue model and the bathtub model. 

The compartmental model provides a simple framework for evaluating the impacts of the pooling ratio and the extra mileage ratio. 
They both affect the maximum trip completion rate of a road network, as shown in Fig. 4(b). Therefore, it is important to calibrate both 
parameters with empirical data. In addition, to improve the system performance, the TNCs should increase the pooling ratio and 
reduce the deadhead and detour miles of FHVs. In practice, these parameters can be time-dependent, affected by demand patterns, 
traffic conditions, TNCs’ matching algorithms, drivers’ decisions, and other factors. The corresponding compartmental model can be 
numerically solved to evaluate their impacts on the system performance and develop efficient fleet-size management schemes. In 
reality, there can be delays in the matching process as well as the fleet-size management scheme; thus, more realistically, the resulted 
compartmental model should include delay-differential equations. However, they are much more challenging than the ordinary dif
ferential equations; thus, they are left for future research. 

Fares, congestion pricing, and other prices are important when we explicitly consider FHV drivers’ choice to provide services or 
not, and passengers’ mode choice behavior. For the former, we assume in this study that the economic and other incentives are 
sufficiently high such that the number of FHVs is as large as determined by the fleet-size management scheme. In the future, we will 
consider how to manage the fleet size with economic measures, including fares and congestion pricing. For the latter, we either assume 
100% autonomous for-hire vehicles without mode choice in Sections 4 and 5, or assume exogenous demands for different modes in a 

Fig. 7. Impacts of different fleet-size caps on the total time in a mixed mobility system with π = 0.2 and ξ = 0.5: (a) ηF = 0.25, (b) ηF = 0.4 and (c) 
ηF = 0.55. 
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mixed mobility system considered in Section 6. In the future, we will explicitly consider choice among for-hire vehicles, public 
transportation, and other modes. For such studies, we need to include fares, costs for purchasing and maintaining cars, congestion 
pricing, and other costs. 

In the future we are also interested in studying how different operational matching algorithms, economic incentives, and het
erogeneous spatial distributions of trips would affect the pooling ratio and the extra mileage ratio in the model and, therefore, the 
congestion dynamics in the network. A better understanding of these impacts would help us to devise better matching algorithms, 
economic measures, and fleet-size management schemes to optimize the system performance with respect to congestion and envi
ronmental impacts as well as the benefits of all related stakeholders. The model proposed in this paper could easily served as the 
foundation and first building block for all those extensions. Its parsimonious nature not only allows us to derive general insights quite 
easily, but to add future modules as needed. Moreover, the proposed model can be used with minimal extensions to study a future 
mobility service, where FHVs are autonomous and the number of FHVs in the system is controlled directly by the TNCs or traffic 
management agencies. 

In the future, one can also extend the compartmental modeling framework for parking systems (Cao and Menendez, 2015) and 
other multi-modal shared mobility systems, including subway and bus systems (Loder et al., 2017). For different systems, the com
partments may be different, and the trip dynamics models (e.g., point queue and bathtub models) could also be different. With such 
compartmental models, one can further consider the planning, operation, and control strategies of transit agencies (Ibarra-Rojas et al., 
2015; Desaulniers and Hickman, 2007) as well as congestion pricing and other control measures. Notice that congestion pricing on 
POVs would affect the departure time and mode choices. Thus, the compartmental models can also be used to develop such strategies. 
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