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Looking for patterns in structures and trends in data is one
of the defining features of science in general, and

chemistry is no exception. Traditionally based upon back-
ground knowledge from experiments, chemical intuition, and
physics-based derivations, over the past decades chemical
research relied increasingly on the use of computers due to the
ever accelerating digital transformation of society. This has
resulted in the formation of a large, vibrant, and diverse
atomistic simulation community which by now boasts multiple
decades worth of expertise and tradition. It speaks to the
encouraging progress that nowadays many archetypical
problems in chemistry can be tackled successfully by
simulation, such as accurately predicting vibrational and
electronic spectra of small systems in vacuum or calculating
protein binding affinities of ligands in explicit solvent which
compare well to experimental measurements. The increasing
availability of experimental and calculated data, as well as the
growing confidence in statistical learning and mathematical
data processing schemes, makes it nowadays possible to also
automate some of the more repetitive chemical research tasks,
allowing us all to go beyond what traditionally could have been
done when relying on conventional techniques. For instance,
by using machine learning on large amounts of previously
acquired data (calculated or measured), available from the
rapidly growing body of literature, or through open access/
source protocols from well-established online repositories, it is
nowadays not out of the ordinary to search, detect, and exploit
hitherto unknown patterns and trends which were “hidden” in
the high dimensional nonlinear spaces directly relevant to
chemistry.
This is not to say that physics-based simulation techniques

and intuition-driven research has become moot. On the
contrary, the understanding of chemistry through the laws of
quantum mechanics and statistical mechanics, as well as
through extensive scholarship documenting decades, if not
centuries, of experimental observation, has proven invaluable
to further guide, develop, and inform the conception and
implementation of data-driven techniques. More specifically,
the synergistic application of machine learning and traditional
atomistic modeling continues to serve as an accelerator of
discovery, e.g. extending the reach, quality, and number of
high-end electronic structure calculations. But also scalable
approximate machine-learning potentials, trained on small
systems and used to infer solutions for problems of much
larger time and length scales, have had considerable success.
Last but not least, statistical sampling techniques have been
revisited, enabling a much accelerated and automatized
analysis of complex transitions or improved predictions and
understanding of order paramters. In conclusion there is ample

opportunity for optimism that historically cumbersome tasks
can be streamlined, harsh approximations of the quantum
behavior of electrons and nuclei can be overcome, and harmful
neglect of higher dimensions can be mitigated. We strongly
believe that this will open up countless possibilities to pursue
computational chemistry research projects at new levels, i.e.
with unprecedented accuracy, reliability, and scope. In the
remainder, we briefly outline the content of this thematic issue
which can loosely be grouped into two categories: First those
reviews which deal with machine learning at the atomistic scale
in a more universal sense, i.e. dealing with the statistically
rigorous definition of structural motifs at the atomic scale, the
detection of recurring patterns, and the rigorous determination
of quantitative structure−property trends throughout diverse
chemistries. The second category contains reviews which focus
on the specific problem of predicting accurate potential
energies (and derivatives), which are of extraordinary
importance for all molecular modeling applications.

I. PATTERNS THROUGHOUT CHEMISTRY

Unsupervised Learning Methods for Molecular Simulation
Data

Laio and co-workers contribute an account of unsupervised
learning studies in the context of the increasing availability of
large data sets stemming from molecular simulations, covering
the mathematical foundations of the methods as well as the
main ideas that have been used to adapt them to atomistic
modeling.

Physics-Inspired Structural Representations for Molecules
and Materials

Ceriotti and co-workers summarize the current understanding
of the process of building a mathematical representation of an
atomistic structure, oftentimes the first step into the
application of machine-learning algorithms. They highlight
the deep similarities that unite the most widely adopted
families of descriptors and the interplay between regression
and classification models and the underlying description of
their inputs.
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Combining Machine Learning and Computational
Chemistry for Predictive Insights into Chemical Systems

Keith and co-workers discuss the wider context within which
computational chemistry and machine learning methods can
be united. They also include concise tutorials of methods at the
intersection between computational and physical sciences.
Machine Learning for Electronically Excited States of
Molecules

Westermayr and Marquetand summarize the state of the art on
using machine learning to predict quantum properties. In
particular, the focus lies on electronically excited states, that
play a fundamental role in photochemical and photophysical
processes. Multiple aspects are covered ranging from the
calculation of absorption spectra to dynamics in the excited-
state and nonadiabatic effects.
Computational Discovery of Transition-Metal Complexes:
From High-Throughput Screening to Machine Learning

The contribution by Kulik and co-workers is a focused
overview of the application of computational chemistry and
machine-learning techniques to the computational discovery of
transition-metal complexes. From high-throughput data
generation, to the identification of structure−property
relations, it highlights the role played by automated data
analytics and the specific considerations that make this area of
application particularly suitable for machine learning.
Ab Initio Machine Learning in Chemical Compound Space

Huang and von Lilienfeld give a comprehensive historical
account of machine learning related work aimed at the
exploration of chemical compound space in ways that are
consistent with quantum mechanics. The review emphasizes
the importance of efficient and accurate surrogate models in
removing the bottlenecks imposed by the high computational
requirements of state-of-the-art quantum mechanical calcu-
lations, extending the portion of this enormous space that can
be investigated.

II. POTENTIAL ENERGIES

Four Generations of High-Dimensional Neural Network
Potentials

The comprehensive review of Behler details the historic
evolution of neural network potentials for materials, discussing
four generations of models that have incorporated increasingly
rich types of physical interactions and that are applicable to
systems with many degrees of freedom.
Gaussian Process Regression for Materials and Molecules

Csańyi and co-workers provide an introduction to Gaussian
process regression, focusing in particular on the construction of
Gaussian approximation potentialsthat learn from and
predict energy and forces between atomsbut covering also
symmetry-adapted extensions of the method that can be
applied to fit vectorial and tensorial properties.
Machine Learning Force Fields

In their review, Müller and co-workers present an overview of
the development and application of force fields trained on
quantum chemistry data, that combine the accuracy of first-
principles calculations with the efficiency of empirical force
fields. They emphasize the universality of machine-learning
force fields that do not rely on prior definition of chemical
bonds and how their accuracy is only limited by the quality and
amount of reference data.

Neural Network Potential Energy Surfaces for Small
Molecules and Reactions

Manzhos and Carrington outline the progress made possible
by the application of machine-learning techniques to generate
highly accurate approximations of the potential energy surfaces
for small molecules and reactions. They also discuss the
relevance for quantum dynamics calculations and the recent
advances that make it possible to use these methods for larger,
more complex molecules.
Machine Learning for Chemical Reactions

Meuwly focuses his review on studies related to reactive
processes. He summarizes the long history of machine-learning
applications in the field, that range from the use of Bayesian
inference for the incorporation of experimental information to
the explicit simulation of reactive networks using machine-
learning potentials.
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in Physics from ETH Zürich in 2010, under the supervision of
Professor Michele Parrinello. He spent three years in Oxford as a
Junior Research Fellow at Merton College and joined EPFL in 2013,
where he leads the laboratory for Computational Science and
Modeling. His research interests focus on the development of
methods for molecular dynamics and the simulation of complex
systems at the atomistic level, as well as their application to problems
in chemistry and materials scienceusing machine learning both as
an engine to drive more accurate and predictive simulations and as a
conceptual tool to investigate the interplay between data-driven and
physics-inspired modeling.

Cecilia Clementi is Einstein Professor of Physics at Freie Universitaẗ
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