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Abstract. In this work we establish a simple yet effective strategy, based on intermittent diffusion, for enabling
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1. Introduction. Motion planning for multi-robot systems has drawn significant attention in
recent years due to the emergence of a number of new application scenarios, e.g., [40, 69]. Compared
to single robot systems, multi-robot systems have many benefits, including spatial distribution,
efficiency and robustness at completing a task due to division of labor, localization, information-
sharing, redundancy, and potentially lower cost. On the other hand, motion planning for multi-robot
systems must face significant challenges, such as collisions, deadlock due to the presence of local
minima in the multi-objective functions from which the controllers are derived, and uncertainty
introduced from the environment and stochastic effects in the system [38]. Computationally, the
motion planning problem can be NP-hard and not solvable in polynomial time even for some
two-dimensional cases [60]. Furthermore, all of these difficulties are exacerbated when the robots
are limited in capabilities, for example, short-range communications. Addressing those existing
challenges and satisfying the ever-growing desire for new missions demand novel strategies and
developments in both control engineering and their underlying mathematical theory.

There is a vast literature for path planning that spans widely known methods, including graph-
based approaches such as A*, D*, or D*-lite, [13, 18, 24, 37, 35, 36, 65, 45], randomized algorithms
such as Probabilistic Road Maps (PRM) [55, 33, 2, 56], and tree-search algorithms, including
Rapidly-exploring Random Tree (RRT) [52, 41, 20, 57, 32]. These methods find trajectories, of-
ten optimal ones, by generating feasible paths defined by nodes on a lattice or random tree that
characterizes the space of possible configurations.

Much progress has been made in adapting existing methods to cooperative path planning
problems for relatively small groups of robots [4, 7, 19, 27, 42, 54, 60, 23, 61, 48, 1, 69, 25, 49] or the
design of cooperative motion strategies without explicit preplanning of optimal paths [64, 47, 14, 42].
Readers are referred to a few survey papers on aerial swarm robots [10] and collective behavior of
multi-agent algorithms [63] that provide extensive lists of papers and summaries of many methods
appeared in recent years. It is worth noting that one of the conclusions in [63] highlights the artificial
potential functions (APF) method for its versatility, simplicity, scalability and high expressivity in
swarm robots, and calls for new developments in both theory and algorithms that share the key
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properties of APF.
APF is proposed in [34]. It formulates the shape-formation problem as a problem of minimizing

a potential composed of an attractive field, based on the desired shape, and a repelling field based
on obstacles. Designed originally for single-robot trajectories [8, 67], these theories and methods
have been extended and improved upon over the past several decades, including the addition of
simulated annealing and an extension to dynamic environments [62, 22, 58, 68, 59, 51]. Due to its
simplicity and scalability, APF methods can handle large groups of robots, in which each robot
regards others as obstacles, and higher dimensional problems efficiently. Recently, in [26], potential
based methods were succesfully used to develop decentralized controllers for shape formation of a
swarm of robots. However, a well-known limitation of APF is the presence of local minima caused
by the repelling forces of obstacles, leading to potential deadlocks.

In this paper, we advocate designing motion planning methods for multi-robot systems by
equipping APF with new ideas, such as intermittent diffusion, in recent developments in stochastic
differential equations (SDEs) and global optimization, and Wasserstein gradient flows in probability
space. We cast the motion planning for a group of robots as transporting one point-mass distribution
(initial shape) to another point-mass distribution (target shape). Unlike many existing motion
planning problems in which each robot knows its target configuration, we do not assume that the
robots know their precise destination, rather they must form the desired shape or distribution in
the end. We propose a strategy that produces algorithms to control the group dynamics using
carefully designed potentials and stochasticity. Our contributions include

1. Design two dynamical systems, based on the idea of intermittent diffusion, that alternately
produce the motion trajectories for a group of robots.

2. Prove that our strategy produces collision-free motions in both continuous and discrete
settings.

3. Prove the convergence to the desired shape by using optimal transport theory. Demon-
strating the approach can overcome the problem of local minima and deadlocks.

It is worth mentioning that our approach is closely related to the theory of optimal transport
[31, 66], a mathematical branch that finds many successful applications in optics, econometrics, and
computer graphics [3, 12, 17, 21, 50, 70], just to name a few. The connection between our approach
and optimal transport theory has two different aspects. In theory, our proof for the convergence is
through intermittent diffusion, whose proof relies on optimal transport theory. In our algorithm, the
paths produced can be viewed as randomly perturbed particle motions, whose distribution density
satisfies the well-known Fokker-Planck equation, which is regarded as a gradient flow of the relative
entropy in optimal transport theory. This gradient flow viewpoint, which ensures its convergence to
the Gibbs distribution, inspired our design. We use the target shape to create a Gibbs distribution,
which guides the particle motions to produce the path.

We also want to mention that the proposed method differs from similar applications of optimal
transport to robot path-planning [5, 11, 39], in which either linear programming, quadratic pro-
gramming, or primal-dual method is used to identify the transport map. Instead of resorting to
optimization methods in computations, we directly prescribe the gradient like dynamics for each
robot to generate its trajectory using local information. The resulting equations can be simulated
by robust numerical algorithms and executed efficiently. Furthermore, although our method shares
a lot of similarities with APF, there are key differences. We add intermittent random perturbations
in our dynamics to avoid deadlock, which overcomes the main limitation of APF at a moderately
increased computation cost. As in the method of evolving junctions (MEJ) [46, 44], it can be shown
that the intermittent dynamics converges to the desired shape much quicker than the continuous
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white noise perturbations. In addition, the repelling fields from obstacles in APF methods affect
the potential everywhere in the domain, while in the proposed method, each robot is viewed as a
dynamically moving obstacle to the other robots, and its repelling effect is restricted to a small,
local region.

When viewing motion planning for multi-robot systems as transport of distributions, we note
that there is recent work inspired by statistical physics [6, 71], in which rigorous error estimates have
been obtained between partial differential equations (PDEs) that model the swarm dynamics and
the target distribution, enabling desired coverage performance. PDEs have also been used in [16] to
generate velocity fields that govern the motion-planning and incorporate collision avoidance. In [15],
the controllability properties of the advection-diffusion equation are used to derive conditions on the
target probability distribution that guarantee convergence in finite time for certain control inputs.
In addition, there are also other stochastic methods for path planning and control [29, 30, 43].

The paper is organized as follows. In §2, we present the basic optimal transport theory and
Fokker-Planck equation that inspire us to design the dynamics. In §3, we formulate the continuous
problem in terms of a system of SDEs. The discretized problem is described in §4. In §5 we provide
numerical simulations of the shape formation problem for different shapes and different size groups.
We provide theoretical guarantees for global convergence of the system and collision avoidance,
both in the continuous and discrete settings in §6.

2. Relations between SDEs and optimal transport. In this section, we briefly review
the connections among stochastic differential equations (SDEs), Fokker-Planck equation, Gibbs
distribution, free energy, and optimal transport distance. These relations provide the theoretical
foundation on which we design the dynamics for the motion planning of a group of robots.

Let us consider a potential function Ψ(y), in which y ∈ RNd represents the locations of N
robots in a bounded domain Ω ⊂ Rd. The white noise perturbed gradient flow refers to a SDE

(2.1) dY (t) = −∇Ψ(Y (t))dt+ σdW (t),

where W (t) is the standard Nd-dimensional Brownian motion and σ a given constant. Denoting
ρ(t, y) the density function for the random variable Y (t), the evolution of ρ is governed by the
Fokker-Planck equation according to the classical diffusion theory, i.e.

(2.2)
∂ρ

∂t
= ∇ · (∇Ψ(y)ρ) +

1

2
σ2∆ρ.

By directly plugging in the well known Gibbs distribution

ρ∗(y) = P−1 exp(−2Ψ(y)/σ2),(2.3)

where P =

∫
RNd

exp(−2Ψ(y)/σ2)dx,(2.4)

we see that ρ∗ is a steady state solution of (2.2), because it satisfies the equation and it is time
independent. In other words, Gibbs distribution is an invariant measure of the system (2.1). From
the exponential form of ρ∗(y), we also observe that the density ρ∗(y) takes the largest value when
Ψ(y) reaches its global minimum.

We would like to remark that in order for the Gibbs distribution to be well-defined, P in (2.3)
must be a finite number. This can be guaranteed by requiring that the potential function Ψ(y)
grows quadratically when |y| tends to infinity. In this study, our interest is within a bounded region.
Therefore, we can assume that Ψ(y) is defined with such a property at infinity.
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The understanding about the connections between Fokker-Planck equation and Gibbs distribu-
tion has been greatly enriched in the past few decades, thanks to the new developments in optimal
transport theory. In short, defining the 2-Wasserstein distance between any two density functions
ρ1(y) and ρ2(y) by

(W2(ρ1, ρ2))2 = inf
v

∫ 1

0

∫
Ω

v2ρdydt,

where the velocity field v(t, y) and density ρ(t, y) satisfy the transport equation

(2.5)
∂ρ

∂t
+∇ · (vρ) = 0,

with boundary values given by

ρ(0, y) = ρ1(y), ρ(1, y) = ρ2(y),

induces a metric in the probability density space and turns the space into a Riemannian manifold
to which one can apply various geometric operations. One of the most impactful results reveals
that the Fokker-Planck equation is the gradient flow, with respect to the 2-Wasserstein metric, of
a free energy given by

G(ρ) =

∫
Ω

Ψ(y)ρ(y)dy +
1

2
σ2

∫
Ω

ρ(y) log ρ(y)dy,

in which the first term is the potential energy while the second is called entropy [28]. Following
the properties of gradient flow, one can prove that Gibbs distribution is the unique attractor of the
Fokker-Planck equation (2.2), and its convergence rate to the Gibbs distribution is exponential, see
Theorem 24.7 in [66] for details.

Our idea for motion planning is finding a potential such that the target shape is where the
potential attains its global minima if shape formation is the task, or the target distribution is the
Gibbs distribution if the goal is to move a group of robots to a given distribution, The exponential
convergence of (2.2) to the Gibbs distribution from any initial distribution forms the basis that
guarantees the success of planned motions. The potential is used in conjunction with (2.1) to create
two deterministic dynamics that are used alternately to produce the trajectories for all robots. In
the design, we must ensure that (a) the motions are collision-free; (b) there is no deadlock, and; (c)
the dynamics converge to the desired shape. In the rest of this paper, we use shape formation as the
task to illustrate our strategy. Its extension to the distribution case requires simple modifications,
which will be omitted in the paper.

Remark: Besides the strategy that we propose here, there are different ways to apply optimal
transport theory for motion planning. For example, one may view the robots as a collection of
point mass and move them according to the transport equation (2.5) for which the initial and
target distributions are used as ρ1 and ρ2 respectively. This amounts to finding a velocity v
while maintaining point masses throughout the optimization procedure. We do not adopt this
view in this paper. Instead, we directly design dynamics based on formulation (2.1), because the
resulting algorithm is simple and efficient in implementation, yet has desirable properties that can
be rigorously proved.

It is worth noting that the convergence to the Gibbs distribution for the solution of the Fokker-
Planck equation does not have a direct guarantee for the convergence of the SDE (2.1) to a desirable
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shape. The subtlety lies in the fact that the convergence for the SDE is only in the distribution
sense. The solution of (2.1) with a positive constant σ never settles down asymptotically. To make
the solution converge, one has to reduce the value of σ gradually to zero, which is precisely the
idea used in simulated annealing. However, it is well known that the reduction rate of σ must be
slower than a logarithmic function in time to avoid local traps. To speed up the convergence, we
borrow ideas from intermittent diffusion [9], a stochastic strategy developed for global optimization
that can improve the convergence with the probability of success increased to 1 as a geometric
sequence, a rate that is much faster than logarithmic functions. Besides, directly applying random
perturbations to the motions can cause wasteful jittering effects which we want to avoid in our
design.

3. Model setup. Suppose Γ ⊂ R2 is a set of spatial locations that form a desired shape, and
consider the trajectories of N robots given by

X(t) = (X1(t), . . . , XN (t)),

where Xi(t) is a curve in R2 describing the position of the ith robot at time t ≥ 0. The objective
is to produce paths {X(t)}0≤t≤T from an initial state X(0) = X0 to a final state X(T ) such that
X(T ) ∈ Γ. Our strategy is to design modified gradient flows whose solutions prescribe the path
X(t) for all robots.

In order to do so, we first introduce a shape function F (X) that is smooth and has a global
minimum only for X ∈ Γ. A convenient choice, among many candidates, is the distance function,

F (X) =
1

N

N∑
i=1

µ(Xi); µ(Xi) = min
X′∈Γ

‖Xi −X ′‖2,(3.1)

where ‖·‖ is the Euclidean norm: ‖x‖ =
√
x2

1 + x2
2. Then, F (X) is a non-negative function achieving

its minimum only when ∪Ni=1X
i ⊂ Γ. Figure 1 illustrates the level-sets of F (X) corresponding to

two different target shapes.
We also introduce a penalty function G(X) that takes a large value when X exhibits undesirable

behavior. In multi-robot systems, one of the main objectives is to ensure that the trajectories are
collision-free, meaning the pairwise distances ‖Xi(t) − Xj(t)‖, j 6= i must be larger than a given
positive value r, for all t > 0. For example, we can select the penalty G(X) as the following smooth,
“repelling” function that peaks when the pairwise distances are small,

G(X) =


G0

N∑
i=1

∑
j 6=i

ϕ(‖Xi −Xj‖/2), if ‖Xi −Xj‖ < R,

0, otherwise

,(3.2)

where the function ϕ ∈ C1(0,∞) can be chosen as a decreasing function having the following
properties

lim
x→R−

ϕ(x) = lim
x→R−

ϕ′(x) = 0.(3.3)

For instance, ϕ(x) = 1
x exp ( −1

R2−x2 ) can be picked to satisfy the requirements. Here, the
constant R > r is related to the sensing radius of each robot, and the constant G0 is calibrated
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Fig. 1. Surface plot and contour plot of the distance function µ(Xi) in (3.1) for two different shapes Γj , j = 1, 2.

according to the initial positions of robots and to achieve desirable dynamics. Further constraints
on the system, such as obstacle avoidance, can also be easily included. To simplify the presentation,
we do not consider obstacle avoidance in this paper.

Combining the shape function (3.1) with the penalty function (3.2), we obtain the potential
function

(3.4) Ψ(X) = F (X) +G(X).

Then the trajectories of the robots are primarily generated by the gradient flow that minimizes
Ψ(X), i.e.

(3.5)
dXi(t)

dt
= −(∇Ψ(X(t)))i.

Following it, the robots get to the desired shape when F (X) = 0, while minimizing G(X) helps to
spread out their locations in addition to avoid collisions.

However, the path generated by such a simple gradient flow may suffer a well known shortcoming
that the trajectories can get trapped in locations corresponding to local minimizers. To overcome
this limitation, we use ideas from intermittent diffusion. More precisely, we intermittently add
random perturbations to (3.5), leading to the following SDEs,

(3.6)

{
dY i(t) = −(∇Ψ(Y (t)))idt+ σ(t)dW (t), t > 0,

Y (0) = Y0,

where W (t) is the standard Brownian motion in R2 and σ(t) is a piecewise constant function
alternating between zero and a positive value, i.e.

(3.7) σ(t) =

{
0 if t ∈ [Sk, Tk]

σk if t ∈ [Tk−1, Sk].
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Here we partition [0, T ] as ∪Kk=1([Tk−1, Tk]) with T0 = 0, TN = T and Sk ∈ [Tk−1, Tk].
We want to highlight that the random perturbations are added to the gradient flow to avoid

trajectories being trapped at local minimizers. Therefore, the constant σk doesn’t have to be small.
This is different from the choice used in simulated annealing, in which the corresponding coefficient,
also called temperature, must go to zero asymptotically. The effectiveness of random perturbations
can be verified by numerical experiments and comes with guarantees based on optimal transport
theory. More precisely, the solution of (3.6) converges to the global minimizer in the distribution
sense according to the Gibbs distribution. The Gibbs distribution is an invariant measure of the
system (3.6), and ρ∗(X) takes the largest value when Ψ(X) reaches its global minimum. Further
details of the theory are provided in §6.

Unlike many other applications of SDEs, it is important to emphasize that the random portion
of the solution Y (t) when t ∈ [Tk−1, Sk] is not used as the trajectories for the robots due to inefficient
jittering motions. Instead, Y (t) is only computed virtually to create the vector Y (Sk), denoted as
Ŷ in the rest of the paper, of intermediate positions to move the robots to. Once this position Ŷ
is computed, we define another objective function

(3.8) F̂ (X) =
1

N

N∑
i=1

‖Xi − Ŷ i‖2.

Using it together with G(X), we create another gradient flow

(3.9)
dXi(t)

dt
= −

(
∇
(
F̂ (X(t)) +G(X(t))

))
i
.

In the end, the path X(t) of the robots is generated by alternating between two gradient flows (3.5)
and (3.9). The implementation of the method is given in the next section.

4. Implementation. The gradient flows and the SDEs presented in the previous section must
be solved numerically when calculating the path. We employ the simple Euler scheme to do so in
this paper. More precisely, we compute

(4.1) Xi
n+1 = Xi

n −∆t(∇Ψ(Xn)))i,

where ∆t is the step size, Ψ(X) takes F (X)+G(X) for (3.5) and F̂ (X)+G(X) for (3.9) respectively.
The SDEs (3.6) is discretized as

(4.2) Y in+1 = Y in −∆t(∇Ψ(Yn))i + ξn
√

∆t,

where ξn ∈ R2 is a normally distributed random vector generated at each iteration.
As mentioned in the previous section, the path is generated by alternating between (3.5) and

(3.9). This is implemented by repeating a 2-step strategy. In the first step, the robots are moved,
using (3.9), toward temporary destinations computed by a simulation of (4.2). After the temporary
locations are reached, the second step has the robots follow (3.5) toward the desired shape. The
robots then repeat the two steps until the task is accomplished. Details are presented in Algorithm
4.1, and the computed descent directions in two different iterations are plotted in Figure 2. Again,
we want to re-iterate that Yn is not part of the trajectories. They are computed only virtually to
generated the intermediate positions Ŷ .

This algorithm is a practical modification of the theory developed in the later sections. The
main difference is in the diffusion stage of the algorithm, the aim is to produce trajectories that are
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Algorithm 4.1 Intermittent diffusion based motion-planning

1: Initialization: Given a feasible initial configuration X0 in a computational domain Ω =
[−M,M ]d, and a tolerance ε > 0. Pick ID parameters (α, β), a small number τ > 0 and a
positive integer smax as the maximum iteration number in step 3. Set Xopt = X0, n = 0.

2: Virtual diffusion: If Ψ(Xopt) > ε, set k = k + 1,m = 0. Generate two random positive
numbers d, t ∈ (0, 1) and set σ = αd and V = βt. Define Y 0 = Xopt, and perform the following
simulation for m∆t ≤ V :

Y im+1 = Y im − (
1

N
∇µ(Y im) + (∇G(Ym))i)∆t+ σξim

√
∆t,(4.3)

in which ξim is a standard normal random variable. Record the final locations Ŷ = Ym.
3: Gradient descent toward Ŷ : For 1 ≤ i ≤ N , define

F̂i(X
i) =

1

N
‖Xi − Ŷ i‖2.

Set s0 = n. Compute the following iterations until maxi ‖Xi
n+1 −Xi

n‖ < τ or n > s0 + smax,

Xi
n+1 = Xi

n − (∇F̂i(Xi
n) + (∇G(Xn))i)∆t.

If Xi
n+1 6∈ Ω, set Xi

n+1 = Xi
n+1 − 2sgn(Xi

n+1) mod (‖Xi
n+1‖∞,M).

4: Gradient descent toward Γ: Calculate the following iterations until ‖Xi
n+1 −Xi

n‖ < τ :

Xi
n+1 = Xi

n − (
1

N
∇µ(Xi

n) + (∇G(Xn))i)∆t

If Xi
n+1 6∈ Ω, set Xi

n+1 = Xi
n+1 − 2sgn(Xi

n+1) mod (‖Xi
n+1‖∞,M). If Ψ(Xn) < Ψ(Xopt), set

Xopt = Xn.
5: Repeat steps 2,3, and 4 until Ψ(X) < ε.

influenced by both the desired shape and random noise. This procedure is performed offline to save
resources; a random path simulated by a robot may be costly even if the ending location is close
to the starting position of the robot. Instead of a random path, it is more efficient for the robots
to move directly toward these temporary locations. Therefore, in the implementation, each robot
moves to its computed destination following a gradient flow, without regard for the shape density
function. By doing this, the energy of the system will possibly be increased. This is reflected in the
variance of the energy functional in Figure 4.

In §6, we shall prove that the Algorithm 4.1 generates a guaranteed collision-free path for each
robot that converges to the desired shape. Before doing so, we present a few numerical experiments
to illustrate the performance in the next section.

5. Numerical Results.

In our numerical experiments, we confine the robots in a square domain given by Ω = [−M,M ]×
[−M,M ]. We assume that each robot has knowledge of its location Xi, the gradient of the shape
function (∇F (X))i = ∇Fi(X), and a sensing radius R, meaning that a robot can only detect other
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Fig. 2. The arrows indicate the directions (∇G(X))i (blue) and (∇F (X))i (red) at the beginning of the iterations
(left) and midway through the iterations (right).

Table 1
Simulation parameters

Symbol Description Value

G0 Repelling function amplitude .01
R Robot sensor radius 10r
∆t Time step .1r
α ID Diffusion scale r
β ID Time scale 10
M Computational domain size 6

robots if they are within a circular region centered at Xi with radius R. This R is also the parameter
we use in G(X):

G(X) = G0

N∑
i=1

N∑
j=1
j 6=i

cot(π/2(‖Xi −Xj‖2)/R2).

We note that this choice of G is different from the function we mentioned in Section 3, demon-
strating the flexibility of choosing G.

We evaluate the success of the algorithm by determining if the robots are in the desired region,
distributed uniformly, and if the nearest-neighbors difference is minimized.

The numerical tests are performed on two shapes. The first shape consisting of points in the set
Γ1, corresponds to a handwritten letter ‘Q’. In this case, the closed loop feature poses difficulties.
The second shape consisting of points in the set Γ2, is a Chinese character, pronounced as ‘JIE’,
with multiple complicated strokes and two disconnected components. The initial positions for the
robots are either clustered at a corner (demonstrated for shape Γ1) or randomly distributed in the
domain (demonstrated for shape Γ2). The time evolution, shown in two cases in Figure 3, indicates
that the robot trajectories driven by our proposed algorithm drive the robots to the desired shapes

9



Table 2
Final objective function value for both target shapes and varied robot radii (r), starting from a random initial-

ization.

r N Ψ(XID) Ψ(XGD)

‘Q’

.1 50 0.02537 0.02808
.05 150 0.02905 0.02931
.01 1,000 0.00066 0.00223

‘Jie’

.1 200 0.12891 0.13273
.05 400 0.05964 0.06545
.01 3,000 0.00702 0.01648

Fig. 3. Time evolution generated by the Intermittent Diffusion based Algorithm 4.1. The color of the ith robot
indicates the value of µ(Xi).

without suffering from congestion or getting stuck at local minimizers.
To test the scalability of our algorithm, we varied the size of the robot radius (resulting in

different values of N). The choice of N is based on a-priori knowledge that there is a global
minimum with N robots positioned entirely in the desired shape, determined by trial and error.

From the experiments, we observe that the faster convergence occurs with a random initial
configuration that minimizes congestion from the start and provides the robot group immediate
access to all sides of the target shape. When robots are initialized in a cluster near one end of the
domain, they risk stagnating near the corner of the shape and missing entire sections of the shape
unless intermittent diffusion becomes active.

We compared our method to a standard gradient descent with the potential Ψ, which is the
result of APF. From the energy plots shown in Figure 4, it is clear that gradient descent (APF) alone
leaves some robots trapped in local minima. After about 2000 iterations, the congestion caused by
the gradient descent iterations is not resolved. Furthermore, the energy decays at a much slower
rate than in the iterations produced by Algorithm 4.1.

6. Mathematical Underpinnings. In this section, we justify theoretically that the gener-
ated path using the proposed method can achieve the desired shape while maintaining collision-free
motions. We start with the collision-free property first.

Our model determines the trajectories of the robots based on two different gradient flows, (3.5)
and (3.9) respectively. In both cases, the energy functional Ψ(X) consists of a potential F (X) (or

10



Fig. 4. Plots of the potential function ψ(X) versus the iteration number for both the gradient descent algorithm
and Algorithm 4.1. Robots are initialized in the corner of the domain (for ‘Q′) and randomly (for ‘Jie’) and r = .05.

F̂ (X)) that attracts the robots to the destinations, and the repelling function G(X) that keeps
them away from each other. In our theoretical study, it suffices to consider a general potential F
that is differentiable, is bounded, and has minimizers only at the desired regions. In this general
setting, the governing equation for the path is still given by the gradient flow presented in (3.5).

6.1. Continuous time collision avoidance. Recall that the location of the ith robot is given
by Xi, and the set of admissible robot coordinates is X , where

X = {(X1, . . . , XN ) | Xi ∈ Ω, inf
i,j 6=i
‖Xi −Xj‖ > r > 0}.

We note that the repelling function G(X) satisfies (3.2), for a function ϕ satisfying (3.3), which
implies G(X) is a C1 function on X .

Let X0 ∈ X be the initial robot locations with smallest pairwise distance given by

m0 := min
i6=j
{‖Xi

0 −X
j
0‖} > r.

Suppose that the decreasing function ϕ(x) satisfies

(6.1) G0ϕ(r) > E0 := Ψ(X0).

This can be achieved for ϕ(x) satisfying the property

ϕ(r) > N2ϕ(m0) +
2M

G0
.

Then we have the following theorem.

Theorem 6.1. For any trajectory X(t) = (X1(t), . . . , XN (t)), N > 1 generated by (3.5) with
initial position X(0) = X0 ∈ X , the inequality

(6.2) inf
i,j 6=i
‖Xi(t)−Xj(t)‖2 > r2

holds for all t > 0.
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Proof. The function Ψ(X(t)) is non-increasing along the solution of (3.5) since it satisfies

d

dt
(Ψ(X)) =

N∑
i=1

(∇Ψ(X))i ·
dXi

dt

= −
N∑
i=1

‖(∇Ψ(X))i‖2 ≤ 0.

Assume there is a time t∗ > 0 such that ‖Xi(t∗)−Xj(t∗)‖2 ≤ r2 for some i, j 6= i, then

Ψ(X(t∗)) = F (X(t∗)) +G(X(t∗)) ≥ G0ϕ(r) > E0 = Ψ(X0).

Here we used that F is non-negative by construction. This is a contradiction, because Ψ(X(t)) is
non-increasing, so we must have Ψ(X(t∗)) ≤ E0.

6.2. Discrete time collision avoidance. Equation (3.5) and (3.9) are solved in discrete
time using the iterations

Xi
n+1 = Xi

n − (∇Ψ(Xn))i ∆t,(6.3)

where Xn ' X(tn) and tn = n∆t for some fixed time step ∆t > 0. It is known that the Euler
scheme converges to the continuous solution if ∇Ψ is L−Lipschitz continuous in space. This ensures
no collision in the discrete case when the step size is small enough. In the next theorem, we present
such a result, and prove it by using a standard argument from [53].

Theorem 6.2. Suppose Ψ ∈ C1(X ) is a positive function that is bounded below and ∇Ψ is L−
Lipschitz continuous in space. Then, if ∆t ≤ 1

L , one step of the gradient method (6.3) will not
increase the objective function Ψ, that is Ψ(Xn+1) ≤ Ψ(Xn).

Proof. Denote the Euclidean inner product by 〈X,Z〉 =
(∑N

i=1X
i · Zi

)1/2

For X,Z ∈ X , we

can express Ψ(Z)−Ψ(X) by

Ψ(Z)−Ψ(X) =

∫ 1

0

〈∇Ψ(X + τ(Z −X)), Z −X〉dτ

= 〈∇Ψ(X), Z −X〉+

∫ 1

0

〈∇Ψ(X + τ(Z −X))−∇Ψ(X), Z −X〉dτ.

This results in

Ψ(Z)−Ψ(X)− 〈∇Ψ(X), Z −X〉 =

∫ 1

0

〈∇Ψ(X + τ(Z −X))−∇Ψ(X), Z −X〉dτ

≤
∫ 1

0

N∑
i=1

‖(∇Ψ(X + τ(Z −X))i)− (∇Ψ(X))i‖
N∑
i=1

‖Zi −Xi‖dτ

≤
∫ 1

0

Lτ
N∑
i=1

‖Zi −Xi‖2dτ =
L

2

N∑
i=1

‖Zi −Xi‖2.
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Taking Zi = Xi
n+1 = Xi

n − (∇Ψ(Xn))i∆t, we have

Ψ(Xn+1) ≤ Ψ(Xn)−∆t
N∑
i=1

‖(∇Ψ(Xn))i‖2 +
L∆t2

2

N∑
i=1

‖(∇Ψ(Xn))i‖2

= Ψ(Xn)−∆t(1− L∆t

2
)
N∑
i=1

‖(∇Ψ(Xn))i‖2.

Therefore Ψ(Xn+1) ≤ Ψ(Xn) if ∆t ≤ 2
L .

We remark that ∇Ψ(X) = F (X) +G(X), with G(X) being defined through ϕ(x), satisfies the
L-Lipschitz condition in the domain of interest, because ϕ(x) is a C1 function on the closed interval
[r, 2M ]. The Lipschitz constant L depends on the choice of ϕ, the size of computational domain Ω,
and the number of robots in the group.

Corollary 6.3. The discrete trajectory Xn computed by (4.1) satisfies

(6.4) inf
i6=j
‖Xi

n −Xj
n‖2 > r2,

for all n ≥ 0, provided E0 = Ψ(X0) < G0ϕ(m0).

The proof of this corollary follows directly from the proof of Theorem 6.1 and the result of
Theorem 6.2.

6.3. Convergence to the global minima in probability. As described in the model, the
goal of introducing (3.9) is to move the robots to the intermediate locations generated by the
SDEs (3.6). Therefore, the convergence of the trajectories to the desired shape means that the
solutions of (3.6) march to the global minima of Ψ(x), which is guaranteed by the theory of optimal
transport. More precisely, the idea of combining (3.5) and (3.9) comes from the intermittent
diffusion. Together, the dynamics can be equivalently described by a uniform formula given in
(3.6), in which (3.5) is performed when σ = 0, and (3.9) reaches the same spatial locations as (3.6)
when σ is not zero. Hence the question of whether or not X(t) converges to the desired shape can
be investigated by examining the distributions of trajectories in (3.6).

We recall from Section 2 that the probability density function ρ(y, t) of the stochastic process
Y (t) from (3.6) evolves according to the Fokker-Planck equation, which is a transport equation
when σ = 0, and a diffusion equation when σ > 0. In the diffusion case, the asymptotic solution,
also called the steady state, is the Gibbs distribution defined in (2.3), suggesting the probability
that X(t) is within the attractive neighborhood, denoted by Û , of the global minimum of Ψ is
positive if t is large enough. Here Û is defined as the neighborhood of Γ, in which the trajectory
of the gradient flow (3.5) with any initial configuration X0 ∈ Û satisfies limt→∞ µ(Xi(t)) = 0,
where µ is the distance function to Γ defined in (3.1). By the subsequent gradient flow (3.5), X(t)
remains inside of the target Γ or moves arbitrarily close to it. This suggests that there is a positive
probability that X(t) is within a small neighborhood of Γ after one cycle of intermittent diffusion
(σ taking positive and then zero values once) is also positive. Repeating the cycle of intermittent
diffusion, we obtain the following convergence theorem.

Theorem 6.4. Suppose Ψ(x) attains its global minima on a set Γ of positive Lebesgue measure,
and let U ⊆ Û be a small neighborhood of Γ. Then for any 0 < η < 1 there exist constants T ∗ > 0,
σ0 > 0 and K0 > 0 such that if (Ti − Si) > T ∗, σi < σ0 for 1 ≤ i ≤ K and K > K0, the solution
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Xopt calculated by Algorithm 4.1 satisfies

P(Xopt ∈ U) ≥ 1− η.

where P is the probability function.

The proof of this theorem essentially follows the same steps as the proof in [9], in which the
convergence of the density is considered in the L1 sense by using the Csiszar-Kullback inequality
(see Remark 22.12 in [66]). For the completeness of this paper, we present a sketch of the proof
modified to guarantee convergence in the W2 sense.

Proof. By the construction of Φ(X), its value is non-negative and reaches the minimum 0 only
if X ∈ Γ. This suggests that the Gibbs distribution ρ∗(y) attains its maximum when y ∈ Γ. Since
Γ has a positive Lebesgue measure, so does Û ⊃ Γ. Hence there exits a positive constant ν such
that ∫

y∈Û
ρ∗(y)dy = 2ν > 0.

In fact, 2ν ∈ (0, 1] approaches 1 when σ tends to 0 according to the property of Gibbs distribution.
From Theorem 24.7 and discussions following in Example 24.8 and Remark 24.12 in [66], we

have
W2(ρ(y, t), ρ∗(y)) < Ce−λt,

where C and λ are constants, λ is related to the well-known Log-Sobolev inequality (see Definition
21.1 in [66]), and ρ(y, t) is the solution of Fokker-Planck equation (2.2) with σ > 0. This implies
that there exists a constant T ∗ > 0 such that∫

y∈Û
ρ(y, t)dy > ν,

for arbitrary t > T ∗. It suggests that there is a positive probability greater than ν, that Y (Ti) is in
Û when (Ti − Si) > T ∗ in the virtual diffusion process (3.6). Because Ŷ = Y (Ti) is used in (3.9),
we conclude that the initial position X(Ti) = Ŷ for the gradient flow (3.5) belongs to Û with a
positive probability. The trajectories X(t) that start from X(Ti) are pushed into the neighborhood
U exponentially fast due to the definition of Û and gradient flow properties.

In other words, the probability that the trajectory X(t) does not end in U is at most (1 − ν)
every time when one virtual diffusion and gradient flow cycle is completed. If such a cycle is
performed K times, the probability that X(t) does not reach U is (1− ν)K . Since 0 ≤ (1− ν) < 1,
there exist a K0 > 0 such that (1− ν)K < η for any K > K0. Therefore,

P(Xopt ∈ U) ≥ (1− (1− ν)K) ≥ (1− η),

which completes the proof.

The proof also indicates that (1 − η) approaches 1 in the manner of

η = O((1− ν)K),

which forms a geometric sequence in terms of K. This is a much quick convergence rate than
the logarithm function owned by the simulated annealing. We would like to point out that the
convergence result presented in Theorem 6.4 is in the sense of probability, which is different from the
usual deterministic convergence results given in the Lp-norm or maximum norm, but our numerical
experiments show that Xopt always reaches the desired shape Γ without failure if the parameters
are selected properly.
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7. Conclusions and Future Work. We present a motion planning strategy for a large group
of robots to accomplish shape formation, one of the fundamental tasks in many applications that
employ multi-robot systems. Typical challenges include how to avoid collisions and deadlocks in
motion planning and how to achieve the desired shape with assurance. Those challenges become
more significant for large groups of of robots and robots with low functionality. In our method, we
calculate the individual robot trajectories by alternating two gradient flows that involve an attrac-
tive potential, a repelling function, and a process of intermittent diffusion. The potential attracts
robots to form the targeted shape, while the repelling function is designed to ensure collision-free
motions. The intermittent diffusion, originally a stochastic approach but here realized by determin-
istic means, overcomes situations with deadlocks. Our strategy is inspired by recent developments
in the theory of optimal transport which in turn provides the basis for theoretical guarantees of colli-
sion avoidance and global convergence. Numerical experiments confirm that the proposed algorithm
is simple, yet effective in achieving the desired objectives.

The presentation here in the two-dimensional setting can be extended to higher dimensions
with straight forward adaptations. The proposed strategy can also be adapted to accommodate
inhomogeneous multi-robot systems, in which robots may have different functionalities. In this
scenario, the differences among robots must be reflected throughout the selections of the potential
functions, including both F (x) and G(x). On the technical side, this may not be easy to accomplish
and it is in our plan for further investigation.
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