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Abstract
Rank minimization is of interest in machine learning applications such as recom-
mender systems and robust principal component analysis. Minimizing the convex 
relaxation to the rank minimization problem, the nuclear norm, is an effective tech-
nique to solve the problem with strong performance guarantees. However, non-
convex relaxations have less estimation bias than the nuclear norm and can more 
accurately reduce the effect of noise on the measurements. We develop efficient 
algorithms based on iteratively reweighted nuclear norm schemes, while also uti-
lizing the low rank factorization for semidefinite programs put forth by Burer and 
Monteiro. We prove convergence and computationally show the advantages over 
convex relaxations and alternating minimization methods. Additionally, the compu-
tational complexity of each iteration of our algorithm is on par with other state of 
the art algorithms, allowing us to quickly find solutions to the rank minimization 
problem for large matrices.

Keywords  Rank minimization · Matrix completion · Nonconvex regularizers · 
Semidefinite programming

1  Introduction

We consider the rank minimization problem with linear constraints formulated as
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where Sn denotes the set of symmetric n × n matrices, A ∶ S
n
→ ℝ

m is an lin-
ear map, b ∈ ℝ

m is the measurement vector, and �(X) is an L- smooth func-
tion. A common example is matrix completion, in which the linear constraint is 
PΩ(M) = PΩ(X) , where Ω is the set of indices (i, j) of known points in the matrix, 
and PΩ ∶ ℝ

m×n
→ ℝ

m×n is the projection onto the set of matrices which the entry 
(i, j) vanishes for all (i, j) ∉ Ω . Formally, we define PΩ as

Additionally, in the presence of noise, we can penalize the constraint by adding 
�(X) =

�

2
||PΩ(X −M)||2

F
 to the objective function, with a parameter � . Solving the 

rank minimization problem directly is impractical due to the rank function being 
non-convex and highly discontinuous. In practice, it is common to instead mini-
mize the convex relaxation to the rank function known as the nuclear norm, which 
is defined as the sum of the singular values of the matrix, or in the case of positive 
semidefinite matrices, the trace.

The nuclear norm, denoted by ��X��∗ = ∑n

i=1
�i(X) where �i(X) is the ith singular 

value of X, is the tightest convex relaxation, and in the case of matrix completion on 
an n by n matrix known to be at most rank r, it has been shown to exactly recover 
the original matrix with high probability if at least Cnr log(n) entries are observed, 
for an absolute constant C, under the assumption that the original matrix satisfies 
the incoherence property [5]. However, minimizing the nuclear norm is not always 
the best approach. As observed in the similar problem of l0 norm minimization, the 
convex relaxation, the l1 norm, introduces an estimation bias [33]. Consider the fol-
lowing rank minimization problem:

where M̃ is a low rank matrix, M, plus Gaussian noise. As we show in Sect. 2, the 
minimizer to the expected value of the nuclear norm regularized formulation is 
p�

p�+1
M , where p =

|Ω|
mn

 . The bias of this formulation comes from the nuclear norm 
not only minimizing the smallest singular values, which correspond to the noise, but 
also the largest singular values, which correspond to the signal.

min
X∈Sn

rank(X) + �(X)

subject to A(X) = b

X ⪰ 0

PΩ(X)ij =

{
0 (i, j) ∉ Ω

Xij (i, j) ∈ Ω

min
X

trace(X)

subject to A(X) = b

X ⪰ 0

min
X∈ℝm×n

||X||∗ + 𝛽

2
||PΩ(M̃ − X)||2

F
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Another common approach to fitting a low rank matrix to a set of measurements 
is rank constrained optimization, wherein one attempts to find a rank r matrix that 
minimizes an objective function.

The most common approach utilizes the low rank factorization X = UVT for 
U ∈ ℝ

m×r and V ∈ ℝ
n×r

Because r is typically much smaller than the size of the matrix, this greatly reduces 
the number of variables.

In addition to finding a matrix of a given rank, this technique can be used in 
nuclear norm minimization as well [18, 22, 23]. The nuclear norm can be character-
ized as follows:

and so, to minimize a weighted sum of the nuclear norm and a quadratic loss func-
tion, we can minimize the following

1.1 � Contributions

In this paper, we consider the following general relaxation to the rank minimization

where �i(X) denotes the ith eigenvalue of X. We impose the following assumptions 
on all � throughout the paper.

Assumption 1  For a function � ∶ [0,∞) → [0,∞) , 

	 (i)	 � is concave
	 (ii)	 � is monotonically increasing
	 (iii)	 �(0) = 0

	 (iv)	 For all x ∈ [0,∞) , every subgradient of � is finite. Because � is concave, it is 
sufficient to say 

min
X∈ℝm×n

||A(X) − b||2 subject to rank(X) = r

min
U∈ℝm×r ,V∈ℝn×r

||A(UVT ) − b||2

||X||∗ = min
U,V

1

2

(||U||2
F
+ ||V||2

F

)

subject to X = UVT

min
U∈ℝm×r ,V∈ℝn×r

1

2

(||U||2
F
+ ||V||2

F

)
+

�

2
||A(UVT ) − b||2

(1)
min
X

n∑
i=1

�(�i(X)) + �(X)

subject to A(X) = b

X ⪰ 0
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Additionally, we may also impose one or both of the following two 
assumptions:

Assumption 2  The function �(x) is strictly concave on [0,∞).

Assumption 3  The function �(x) is differentiable on [0,∞).

Examples of functions meeting these assumptions that are commonly used as 
surrogates to the l0 norm are shown in Table 1. For each of the functions listed 
with the exception of the Shatten-p norm and the LogDet relaxation, the deriva-
tive approaches 0 for large values of x, which would expect to greatly reduce the 
estimation bias.

To simplify notation, when applied to a positive semidefinite matrix, the func-
tion � ∶ S

n
+
→ ℝ+ is the sum of the regularizer � applied to the eigenvalues of the 

matrix. That is,

In this paper, we show by construction that for any regularizer meeting Assump-
tion 1, the optimization problem (1) can be posed as a bi-convex optimization prob-
lem. Our bi-convex formulation serves as an abstraction of that presented by Mohan 
and Fazel [17], and can be used to derive similar iterative reweighted problems. 
Using our abstraction, we are able to utilize the low-rank factorization method for 

lim
x→0+

sup
w∈𝜕𝜌(x)

w = 𝜅 < +∞

�(X) =

n∑
i

�(�i(X))

Table 1   Examples of typical 
concave relaxations used in 
sparse optimization and their 
supergradients. For each 
regularizer, � is a positive 
parameter. For SCAD, we take 
𝛽 > 1 , and for the Schatten-p 
norm, 0 < p ≤ 2 . Each of these 
functions satisfies Assumption 1

�(x) ��(x)

Trace inverse [8] 1 −
�

�+x

�

(�+x)2

Capped l1 norm 
[29]

min(�x, 1) ⎧⎪⎨⎪⎩

𝛾 , x <
1

𝛾

[0, 𝛾] x =
1

𝛾

0, x ≥
1

𝛾

LogDet [7, 17] log(x + �)
�

�+x

Schatten-p norm 
[12]

(x + �)
p

2
p

2�
(x + �)

p

2
−1

SCAD [6] ⎧⎪⎨⎪⎩

𝛾x x ≤ 𝛾
−x2+2𝛾𝛼x−𝛾2

2(𝛼−1)
𝛾 ≤ x ≤ 𝛼𝛾

𝛾2(𝛼+1)

2
x > 𝛼𝛾

⎧⎪⎨⎪⎩

𝛾 x ≤ 𝛾
𝛼𝛾−x

(𝛼−1)
𝛾 ≤ x ≤ 𝛽𝛾

0 x > 𝛼𝛾

Laplace [26] 1 − e−�x �e−�x
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solving SDPs proposed by Burer and Monteiro [3] in order to reduce the number of 
variables to O(nr) where r is an upper bound on the rank of the matrix, and extend 
the results to rectangular matrices as well. We derive algorithms based on the low 
rank factorization and prove convergence.

1.2 � Previous works on nonconvex approaches to rank minimization

In order to more closely approximate the rank of a matrix, Fazel et al. proposed the 
LogDet heuristic for positive semidefinite rank minimization [7]. Instead of a con-
vex function, the authors use the following smooth, concave function as a surrogate 
for the rank function.

where � is a positive parameter. While nonconvex, the authors put forwards a Major-
ize-Minimization (MM) algorithm to find a local optimum. At each iteration, the 
first order Taylor expansion centered at the previous iterate is solved as a surrogate 
function. The algorithm is simplified to solving the following SDP at each iteration.

where W (k) = (X(k−1) + �I)−1 . We can view this algorithm as an iterative reweight-
ing of the nuclear norm. The iterative reweighted scheme was later generalized 
by Mohan and Fazel [17] to minimize a class of surrogate functions known as the 
smooth Schatten-p function, defined as

for 0 < p ≤ 2 . The weight matrix for the Schatten-p function is 
W (k) = (X(k−1) + �I)

p

2
−1 . Mohan and Fazel extend the algorithm for non square 

matrices by solving

where W (k) = (X(k−1)TX(k−1) + �I)−1 at each iteration. The authors prove asymptotic 
convergence of the iterative reweighted algorithm for 0 ≤ p ≤ 1 . While this algo-
rithm does give superior computational results, it can be very time consuming in 
the positive semidefinite case and will not scale well for large problems. We show in 
Sect. 5 how this can be improved by taking advantage of the low rank property of X.

In recent years, many functions have been proposed as alternative non-convex 
surrogates to the rank function in addition to the logdet heuristic. Zhang et al. [34] 

log(det(X + �I)) =

n∑
i=1

log(�i(X) + �)

X(k + 1) = argmin
X

⟨
W (k),X

⟩

subjected to A(X) = b

X ⪰ 0

fq(X) = Tr(X + �I)
p

2 =

n∑
i=1

(�i(X) + �)
p

2

(2)
X(k+1) =argmin

X

⟨W (k),XTX⟩
subject to A(X) = b
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proposed minimizing the truncated nuclear norm for a general matrix X ∈ ℝ
m×n , 

defined for a fixed constant r as

where �i(X) denotes the ith largest singular value. If we consider the large singular 
values to represent the signal and the small singular values the noise, as in the case 
of noisy image reconstruction, then this minimizes only the noise.

The idea of minimizing a concave function of the eigenvalues has been gener-
alized by Lu et al. [4, 15], to any monotonically increasing and Lipschitz differ-
entiable function. These works consider an unconstrained problem with a general 
loss function �(X).

As with the LogDet algorithm, one can derive an MM algorithm using the first order 
Taylor expansion about the objective function. The authors include a proximal term. 
At each iteration, the authors propose solving the following problem

where Y = Xk − ∇�(Xk) and wi = ��
�
(�i(X

k)) . Much like the popular Singular Value 
Thresholding method put forth by Cai, Candès, and Shen [11], this has a closed form 
involving the shrinkage operator defined as St(Σ) = Diag(Σii − ti)+ . The authors 
prove that the subproblem has a closed form solution

where UΣVT is the singular value decomposition of Y.
The shrinkage operator, however, requires computing the singular value 

decompositon of a possibly very large matrix, which can be time consuming and 
inefficent even when only the top few singular values are needed. Similar algo-
rithms presented by Yao et al. address this problem by showing one only needs 
to find the singular value decomposition of a much smaller matrix, making the 
method suitable for large scale problems [31, 32].

||X||r,∗ =
min(m,n)∑
i=r+1

�i(X)

minX

min(m,n)∑
i=1

�(�i(X)) + �(X)

Xk+1 =min

min(m,n)�
i=1

wi�i(X) + ⟨∇�(Xk),X − Xk⟩ + �

2
��X − Xk��

=min

min(m,n)�
i=1

wi�i(X) +
�

2
��X − Y��

Xk+1 = US�w(Σ)V
T



279

1 3

Low-rank factorization for rank minimization with nonconvex…

2 � Equivalent biconvex formulation

It was shown by Mohan and Fazel [17] that the LogDet heuristic can be reformu-
lated as a bi-convex problem with an additional variable W as follows

This allowed the authors to reformulate the MM algorithm outlined in Eq. (2) as an 
alternating method, which was of use when showing convergence of the algorithm. 
We now show that an extension of this reformulation can be used for any surrogate 
to the rank function satisfying Assumption 1.

Proposition 1  For a function � satisfying Assumption 1, consider the following bi-
convex semidefinite program

where � = sup ��(0) , the function G ∶ 𝕊
n
+
→ ℝ defined as G(W) =

∑
g(�i(W)) satis-

fies the following condition:

Any KKT point X∗ of the general nonconvex relaxation (1) can be used to construct 
a KKT point (X∗,W∗) of (4) where W∗ ∈ ��(X∗) . Likewise, for any (X∗,W∗) pair 
that is a KKT point of (4), X∗ is a KKT point of (1) and W∗ ∈ ��(X∗).

Remark 1  In previous works, it has been shown that the rank minimization prob-
lem (1) is equivalent to the following semidefinite program with complementarity 
constraints:

Intuitively, the eigenvalues of the matrix I − U are the l0 norm of the eigenvalues of 
X, which implies that n − trace(U) is the rank of X [13, 20, 21]. Shen and Mitchell 
[21] studied the problem when the complementarity constraint is relaxed as a pen-
alty term.

(3)

min
X,W

⟨X,W⟩ + �trace(W) − log det(W)

subject to A(X) = b

X ⪰ 0

I ⪰ W ⪰ 0

(4)

min
X,W

⟨X,W⟩ + G(W) + �(W)

subject to A(X) = b

X ⪰ 0

�I ⪰ W ⪰ 0

(5)�g(w) = {−x ∶ w ∈ ��(x)}.

(6)

min
X,U

n − trace(U) + �(X)

subject to ⟨X,U⟩ = 0

A(X) = b

X ⪰ 0

0 ⪯ U ⪯ I
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The penalty formulation is a biconvex semidefinite program in the form of (4), with 
W =

1

�
U and G(W) = −

1

�
trace(W) . This is equivalent to the semidefinite program 

(1) with �(x) being the capped l1 norm, min( 1
�
x, 1)

We want to work with the derivative of the inverse of the derivative of �(x) , but 
this is only defined as stated if �� (x) satisfies Assumptions 2 and 3. Under only 
Assumption 1, we define the function

Note that if t ≥ � then t ∈ ��(0) , so q(t) = 0 for t ≥ � . The function q(t) is defined for 
t > 𝛽 , since �(x) is concave; q(�) is also defined if � is attained. We let J denote the 
domain of q(t) and J̄ ∶= {w ∈ J ∶ w ≤ 𝜅} . Note that q(t) is lower semicontinuous; 
it is continuous if Assumptions 2 and 3 hold, in which case it is the inverse function 
of the derivative of �(x) for t ∈ J̄ . We can now define the function g ∶ J → [0,∞) as

Lemma 1  The function g(w) is decreasing and convex on its domain J. It is strictly 
convex for w ≤ � if Assumption  3 holds. It is differentiable for w ≤ � if Assump-
tion 2 holds.

Lemma 2  For each x ∈ [0,∞) , there exists w ∈ ��(x) such that

Further, the subdifferential is given by

If �(x) also satisfies Assumptions 2 and 3 then

Example 1  Let �(x) be the continuous nondifferentiable function

(7)

min
X,U

n − trace(U) + �⟨X,U⟩ + �(X)

subject to A(X) = b

X ⪰ 0

0 ⪯ U ⪯ I

(8)q(t) ∶= inf{x ∈ [0,∞) ∶ t ∈ ��� (x)}.

(9)g(w) ∶=
∫

�

w

q(t)dt.

(10)−x ∈ �g(w).

(11)�g(w) = {−x ∶ w ∈ ��(x)}.

(12)g�((��)−1(x)) = −x.

�(x) =

⎧
⎪⎨⎪⎩

4x if 0 ≤ x ≤ 2

6x − x2 if 2 ≤ x ≤ 3

9 if x ≥ 3
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which is nondifferentiable at x = 2 and is only strictly concave for x ∈ [2, 3] . We 
have � = 0 and � = 4 . Then

and

Further,

The lack of strict concavity on the two line segments leads to the two intervals of 
subgradients �g(w) for w = 0 and w = 4 . The nondifferentiability at x = 2 leads 
to multiple values of w having the same set of subgradients �g(w) , namely {2} for 
2 ≤ w < 4.

Proofs of lemmas

Proof  Proof of Lemma 1:
Monotonicity of g(w) follows from the nonnegativity of q(t).
To show convexity, we consider w1 < w2 , with w1,w2 ∈ J , and 0 ≤ � ≤ 1 . We 

have

so g(w) is convex.
If Assumption 3 holds then q(t) is strictly decreasing for 𝛽 < w1 ≤ 𝜅 , so the ine-

quality above holds strictly, so g(w) is strictly convex.

q(t) =

⎧
⎪⎨⎪⎩

3 −
1

2
t if 0 ≤ t ≤ 2

2 if 2 ≤ t < 4

0 if t ≥ 4

g(t) =

⎧
⎪⎨⎪⎩

9 +
1

4
t2 − 3t if 0 ≤ t ≤ 2

2(4 − t) if 2 ≤ t ≤ 4

0 if t ≥ 4

𝜕g(w) =

⎧
⎪⎪⎨⎪⎪⎩

[−∞,−3] if w = 0

{
1

2
w − 3} if 0 < w ≤ 2

{−2} if 2 ≤ w < 4

[−2, 0] if w = 4

{0} if w > 4

g(�w1+ (1 − �)w2) = ∫
�

�w1+(1−�)w2
q(t)dt

= � ∫
�

w1
q(t)dt + (1 − �) ∫

�

w2
q(t)dt − � ∫

�w1+(1−�)w2

w1
q(t)dt

+ (1 − �) ∫
w2

�w1+(1−�)w2
q(t)dt

≤ �g(w1) + (1 − �)g(w2)

− �(�w1 + (1 − �)w2 − w1) g(�w1 + (1 − �)w2)

+ (1 − �)(w2 − �w1 + (1 − �)w2) g(�w1 + (1 − �)w2)

from monotonicity of q(t)

= �g(w1) + (1 − �)g(w2),
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If Assumption 2 holds then q(t) is continuous on J, so g(w) is differentiable. 	�  ◻

Proof  Proof of Lemma 2:
Since g(w) is convex, the subdifferential of g(w) for a slope w ∈ J is defined as

It follows that given x ∈ [0,∞) , we can choose w̄ ∈ 𝜕f (x) , and we will have 
−x ∈ 𝜕g(w̄).

If Assumptions  2 and  3 hold then ��(x) = {��(x)} , x is the unique point with 
derivative ��(x) , and g(w) is differentiable from Lemma  1. Setting w̄ = 𝜌�(x) , the 
Fundamental Theorem of Calculus implies that

as required. 	�  ◻

Before proving Proposition 1, we consider the following lemma.

Lemma 3  Let X be a positive definite matrix. Let G(W) =
∑n

i=1
g(�i(W)) be a convex 

function for any matrix W ∈ �
n
+
 . Let � be a positive constant. If W̃ is a minimizer of:

Then Ŵ is also a minimizer with the same objective value, where

and vi is the eigenvector of X corresponding to the ith largest eigenvalue.

Proof  First, note the Ŵ is a feasible point and G(Ŵ) = G(W̃) , as the two matrices 
have the same eigenvalues.

The proof relies on the Hoffman-Wielandt inequality [10], which states that for 
any symmetric matrices A and B,

𝜕g(w) = {𝜉 ∶ 𝜉h ≤ g(w + h) − g(w) ∀w + h ∈ J}

= {𝜉 ∶ 𝜉h ≤ − ∫
w+h

w
q(t)dt ∀w + h ∈ J}

= {𝜉 ∶ 𝜉h ≤ −hq(w + h) ∀w + h ∈ J}

from monotonicity of q(t)

= {𝜉 ∶ 𝜉 ≤ −q(w + h) ∀ h > 0, w + h ∈ J}

∩ {𝜉 ∶ 𝜉 ≥ −q(w + h) ∀ h < 0, w + h ∈ J}

= {𝜉 ∶ 𝜉 ≤ −x ∀ x ∈ [0,∞) with w + h ∈ J ∩ 𝜕f (x), h > 0}

∩ {𝜉 ∶ 𝜉 ≥ −x ∀ x ∈ [0,∞) with w + h ∈ J ∩ 𝜕f (x), h < 0}

= {−x ∶ w ∈ 𝜕f (x)} from concavity of 𝜌(x).

g�(��(x)) = −q(��(x)) = −x,

minW∈�n
+

⟨X,W⟩ + G(W)

subject to 0 ⪯ W ⪯ �I

Ŵ =

n∑
i=1

𝜆n−i+1(W̃)viv
T
i

||A − B||2
F
≥ ||�(A) − �(B)||2
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where �(A) denotes the vector of eigenvalues of A in descending order. When 
applied to the matrices X and −W̃ , we have

Expanding these terms gives us the following:

Using the fact that the Frobenius norm of a matrix is the norm of the eigenvalues, 
and using the simultaneous diagonalizability of Ŵ and X, we have:

So, Ŵ is a feasible point with an objective value no more than that of W̃ , and is also 
a minimizer. 	�  ◻

Additionally, we present the technical lemma about the gradient of the objective 
function in (1), which is paramount when deriving algorithms and optimality con-
ditions. First and second derivatives of the eigenvalue function have been studied 
extensively by Mangus [16] and Andrew et al. [2].

Lemma 4  Let vi denote the eigenvector corresponding to the ith eigenvalue of X. If 
�i(X) is a simple eigenvalue,

If �i(X) = �i+1(X) = ⋯ = �i+k(X) , then

Lemma 4 allows us to easily compute the subgradient of the objective function.

where V denotes the matrix of eigenvectors of X. We can now prove Proposition 1.

Proof  We start by considering KKT points of (4). The feasible pair (X, W) is a KKT 
point if there exists a subgradient Z of G(W) such that 

||X − (−W̃)||2
F
≥

n∑
i=1

(
𝜆i(X) − 𝜆i(−W̃)

)2
=

n∑
i=1

(
𝜆i(X) + 𝜆n−i+1(W̃)

)2
.

��X��2
F
+ ��W̃��2

F
+ 2⟨X, W̃⟩ ≥ ��𝜆(X)��2 + ��𝜆(W̃)��2 + 2

n�
i=1

𝜆i(X)𝜆n−i+1(W̃)

⟨X, W̃⟩ ≥
n�
i=1

𝜆i(X)𝜆n−i+1(W̃) = ⟨X, Ŵ⟩

(13)
d

dX
�i(X) = viv

T
i

d

dX

k∑
j=0

�i+j(X) =

k∑
j=0

vi+jv
T
i+j

(14)��(X) =

{
Vdiag(y1, y2,… yn)V

T
|||| yi ∈ ��(�i(X))

}

(15a)0 ⪯ W ⟂ X + Z + Y ⪰ 0
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 By Lemma 4, if W has eigenvectors VW and eigenvalues w1,w2,… ,wn , then

We start by claiming that X and W (and hence Z and Y) are simultaneously diago-
nalizable by citing Lemma 3. Equation (15c) shows that Y and W are simultaneously 
diagonalizable. Hence X, W, Y, and Z are all simultaneously diagonalizable, and the 
KKT conditions (15a) and (c) simplify to the following. 

 If 0 < 𝜆i(W) < 𝜅 , we have that �i(Y) = 0 , and so Eqs. (16a) and (b) are satisfied if 
�i(X) + �i(Z) = 0 . By construction of g from Lemma 2, there exists wi ∈ ��(�i(X)) 
and zi ∈ −�g(wi) such that �i(Z) = zi, �i(W) = wi is a solution.

When the upper bound on the eigenvalue of W is an active constraint, i.e. 
when �i(W) = � , then there exists zi ∈ �g(�) such that �i(X) + zi ≤ 0 . Because 
�g(�) = {0} , �i(X) = 0 , which is to say �i(W) ∈ ��(�i(X)).

Finally, we consider when �i(W) = 0 . Equation (16a) becomes

for some zi ∈ �g(0) . By Lemma  2, we have that 0 ∈ ��(−zi) . Because � is con-
cave and nondecreasing, if 0 ∈ ��(x1) , then 0 ∈ ��(x2) for all x2 ≥ x1 , and so 
�i(W) = 0 ∈ ��(�i(X)).

We can now say that, in general, any KKT point satisfies �i(W) ∈ ��(�i(X)) for 
i = 1, .., n , and by Lemma 4, W ∈ ��(x) . The KKT conditions for (1) state that there 
exists a U ∈ ��(x) such that

With the assignment U = W , it is clear that if (X, W) is a KKT point of (4), then X is 
a KKT point of (1).

Conversely, consider any X that is a KKT of (1) with dual variable � . Then, the 
assignment W ∈ ��(x) and Y = 0 satisfy (15b) and (15c). By Lemma 2, we have that 
there exists a Z ∈ �G(W) such that Z = −X and (15a) is satisfied. 	�  ◻

Such a function is shown for various choices of nonconvex regularizers in 
Table 2, and can be easily verified by showing that Eq. (5) holds. We note that the 
function G(W) is used primarily for theoretical analysis and derivation of algo-
rithms. In practice, one only needs the function ��(x).

(15b)0 ⪯ X ⟂

∑
i

�iAi +W + ∇�(X) ⪰ 0

(15c)0 ⪯ Y ⟂ �I −W ⪰ 0

�G(W) =

{
VWdiag(z1, z2,… , zn)V

WT |||| zi ∈ �g(w)

}
.

(16a)0 ≤ �i(W) ⟂ �i(X) + �i(Z) + �i(Y) ≥ 0 ∀i = 1, ..., n

(16b)0 ≤ �i(Y) ⟂ � − �i(W) ≥ 0 ∀i = 1, ..., n

�i(X) ≥ −zi

0 ⪯ X ⟂

∑
�iAi + U + ∇�(X) ⪰ 0
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2.1 � Low‑rank factorization

While the MM algorithm is efficient in the non-symmetric case, with each iter-
ation having closed form updates which can be calculated in O(nm2) time, the 
algorithm is not scalable in the positive semidefinite case, as it needs to solve a 
semidefinite program at each iteration. Instead, we take advantage of the low rank 
factorization for semidefinite programs as presented by Burer and Monteiro [3] 
and utilized to solve the nuclear norm minimization problem by Tasissa and Lai 
[25]. Let r be an upper bound on the rank of the matrix we seek to reconstruct. 
Then, if X is positive semidefinite, we have that there exists a matrix P ∈ ℝ

n×r 
such that X = PPT.

While X is replaced with a variable of drastically reduced size, W is left as a positive 
semidefinite matrix of size n. To reduce the size of W, we propose minimizing the 
rank of PTP instead of the rank of PPT.

Intuitively, this should be equivalent due to the fact that the non-zero eigenvalues of 
PPT are equivalent to the nonzero eigenvalues of PTP . We prove this intuition in the 
following proposition.

Proposition 2  Let P∗ ∈ ℝ
n×r have the singular value decomposition 

P∗ =
∑r

i=1
viu

T
i
�P
i
 . If (P∗,Wn) is an optimizer of (17), then

(17)
min

P∈ℝn×r ,W∈Sn
+

⟨PPT ,W⟩ + G(W) + �(PPT )

subject to A(PPT ) = b, 0 ⪯ W ⪯ �I

(18)
min

P∈ℝn×r ,W∈Sr
+

⟨PTP,W⟩ + G(W) + �(PPT )

subject to A(PPT ) = b, 0 ⪯ W ⪯ �I

W∗
n
=

n∑
i=1

�W
i
viv

T
i
=

r∑
i=1

�W
i
viv

T
i
+ �

n∑
i=r+1

viv
T
i
,

Table 2   Function G(W) and constants � that satisfy the conditions in Proposition 1 for various concave 
relaxations of the rank function

�g(w) G(W) �

Trace inverse � + w
−

1

2 trace(�W − 2
√
W)

1

�

Capped l1 norm −1

�

−1

�
trace(W) �

LogDet � −
�

w
�trace(W) − � log det(W) 1

Schatten-p norm
� −

(
w

p

) 1

p−1 trace(�W −
2−p

p
W

p

p−2 )
p

2�
�

p

2
−1

SCAD −�� + (� − 1)w trace(
�−1

2
W2 − ��W) �

Laplace −
1

�
log(

w

�
)

∑
i

�i(W)

�
(log(

�i(W)

�
) − 1) �
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and if (P∗,Wr) is an optimizer of (18), then W∗
r
=
∑r

i=1
�W
i
uiu

T
i
 . Furthermore, 

(P∗,W∗
r
) is an optimizer of (18) if and only if (P∗,W∗

n
) is an optimizer of (17).

Proof  We start by proving that W∗
n
 and W∗

r
 have the eigenvalue decompositions 

stated in the proposition. By the same reasoning as in Proposition  1, any matrix 
W ∈ ��(P∗P∗T ) is an optimizer to the convex semidefinite program:

So, if P∗P∗T =
∑r

i=1
(�P

i
)2viv

T
i
 , then there is a minimizer (P∗,W∗

n
) such that W∗

n
 has 

the eigendecompositon 
∑r

i
�W
i
viv

T
i
+
∑n

i=r+1
�viv

T
i
 , where �W

i
∈ ��

(
(�P

i
)2
)
 and 

� = sup ��(0) . Likewise, (P∗,Wr) is an optimizer of (18), then W∗
r
=
∑r

i=1
�W
i
uiu

T
i
 is 

an optimizer, where �W
i
∈ ��

(
(�P

i
)2
)
.

Next, we will show that if (�P,�Wr) was a feasible descent direction in (18) at 
(P∗,W∗

r
) , then we can construct a feasible direction for (17) at (P∗,W∗

n
) , and vice 

versa. If (�P,�Wr) was a feasible descent direction, then, there exists a subgradient 
Zr ∈ �G(W∗

r
) such that

We claim that (�P,�Wn) is a descent direction in (17) with

where U ∈ ℝ
r×r is the matrix whose columns are the eigenvectors of Wr , and 

V ∈ ℝ
n×r is the matrix whose columns are the first r eigenvectors of Wn . First note 

that, P∗Wr =
∑r

i=1
viui�

W
i
�P
i
= W∗

n
P∗ , and �P is a feasible direction in (17).

Next, consider the gradient of the objective of (17) with respect to W,

where zi ∈ �g(�W
i
) and z� ∈ �g(�) . Specifically, we chose zi = �i(Zr) , Zr be the r 

by r matrix with eigenvectors U and eigenvalues z1,… , zr so that Zr ∈ G(Wr) . By 
Lemma 2, 0 ∈ �g(�) , and so the rank r matrix

is a subgradient of G with respect to Wn . Consider the inner product of the gradient 
of the objective of (17) with respect to Wn and the proposed descent direction for Wn.

Combining these facts gives us that (�P,�Wn) is a descent direction:

min
W∈Sn

+

⟨P∗P∗T ,W⟩ + G(W)

subject to 0 ⪯ W ⪯ �I

(19)2⟨P∗W∗
r
+ ∇𝜙(P∗P∗T )P∗,𝛥P⟩ + ⟨P∗TP∗ + Zr,𝛥Wr⟩ < 0.

�Wn = VrU
T�WrUV

T
r
,

P∗P∗T + ∇G(W∗
n
) =

r∑
i=1

viv
T
i

(
�P
i
+ zi

)
+

n∑
i=r+1

viv
T
i
(z�)

Zn ∶= VrU
T
(
P∗TP∗ + Zr

)
UVT

r

⟨P∗P∗T + Zn,�Wn⟩ = ⟨VrU
T
�
P∗TP∗ + Zr

�
UVT

r
,�Wn⟩

=⟨�P∗TP∗ + Zr
�
,UVT

r
�WnVrU

T⟩
=⟨�P∗TP∗ + Zr

�
,�Wr⟩
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The proof of the other direction is similar. 	�  ◻

2.2 � Extension to nonsymmetric matrices

To extend these methods to general nonsymmetric matrices X ∈ ℝ
m×n , we can mini-

mize the rank of PSD matrix XTX , as done by Mohan and Fazel [17]. However, this 
is computationally inefficient as each iteration requires finding the eigendecomposi-
tion of XTX . With this in mind, we put forth a separate extension in which we mini-
mize the rank of the following auxiliary variable

It was shown by Liu et  al. that for any X, there exists G and B such that 
rank(X) = rank(Z) and Z ⪰ 0 [14]. We can thus solve the following minimization 
problem

While inefficient on its own due to the matrix W being (m + n) × (m + n) , this for-
mulation allows us to utilize the Burer-Monteiro approach which allowed us to effi-
ciently solve the semidefinite case in Algorithm 1. We utilize the same upper bound 
r on the rank of X as before and introduce the matrix P ∈ ℝ

(m+n)×r such that 

Z = PPT . We decompose P into Pm and Pn such that P =

[
Pn

Pm

]
 so that X = PmP

T
n
 . As 

before, we minimize the rank of PTP = PT
m
Pm + PT

n
Pn.

We note that for the special case of minimizing the nuclear norm, W = I , we have 
the well known alternating minimization method when using a quadratic loss func-
tion [18, 22, 23] as follows:

2⟨W∗
n
P∗ + ∇𝜙(P∗P∗T )P∗,𝛥P⟩ + ⟨P∗P∗T + Zn,𝛥Wn⟩

=2⟨P∗W∗
r
+ ∇𝜙(P∗P∗T )P∗,𝛥P⟩ + ⟨P∗TP∗ + Zr,𝛥Wr⟩ < 0

Z =

[
G XT

X B

]

(20)

min
Z,W

⟨Z,W⟩ + G(W) + �(X)

subject to A(X) = b

Z =

�
G XT

X B

�
⪰ 0

0 ⪯ W ⪯ �I

(21)
min

W,Pm,Pn

⟨PT
m
Pm + PT

n
Pn,W⟩ + G(W) + �(PmP

T
n
)

subject to A(PmP
T
n
) = b, 0 ⪯ W ⪯ �I

(22)min
Pm,Pn

||Pn||2F + ||Pm||2F +
�

2
||A(PmP

T
n
) − b||2.
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3 � Algorithms

In most practical applications, we expect noise in our measurements, and thus an 
equality constraint may not be practical. For the algorithms in this section, we 
restrict our focus to the problem of rank minimization with a quadratic loss function, 
�(X) =

�

2
||A(X) − b||2

F
 , and no linear constraints. Utilizing the low-rank factoriza-

tion technique, for the case of non symmetric matrices, we seek to minimize

3.1 � Alternating methods for rectangular matrices

While the formulation for rectangular matrices could be solved by simply using 
Algorithm 1, we propose an ADMM algorithm wherein we alternate over the vari-
ables Pm , Pn , and W. By doing so, the subproblems in Pm and Pn are strongly convex. 
The subproblems are as follows:

The gradients of which can be calculated as

where F(Pm,Pn,W) is the objective function of (23).
The update for W is derived from Proposition 1, and is similar to that of other 

iteratively reweighted methods [7, 12, 17].

Because we are minimizing the rank of the the smaller matrix PTP , this update is 
calculated in O(r3) operations.

(23)
min
X,W

⟨PT
m
Pm + PT

n
Pn,W⟩ + G(W) +

�

2
��A(PmP

T
n
) − b��2

subject to 0 ⪯ W ⪯ �I

(24)
Pk
m
= argminPm

⟨PT
m
Pm,W⟩ + �

2
��A(PmP

T
n
) − b��2

F

Pk
n
= argminPn

⟨PT
n
Pn,W⟩ + �

2
��A(PmP

T
n
) − b��2

F

∇Pm
F(Pm,Pn,W) = PmW + �A∗(A(PmP

T
n
) − b)Pn

∇Pn
F(Pm,Pn,W) = PnW + �A∗(A(PmP

T
n
) − b)TPm

Wk = ∇�(PkTPk)
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Algorithm 1 Alternating Minimization for Rank Minimization with a Gen-
eral Nonconvex Regularizer (GenAltMin)
Input: A, b
Output: Stationary point X of (23)

Initialization :P 0 = rand(n, r), W 0 = I.
1: for k = 1, .., do
2: Solve

Pk
m = argminPm

〈PT
mPm,W 〉+ β

2
||A(PmPT

n )− b||2F

3: Solve
Pk
n = argminPn

〈PT
n Pn,W 〉+ β

2
||A(PmPT

n )− b||2F

4: [V k, Σk] = eig(PkT
Pk)

5: Wk = V kρ′(Σk)V KT

6: Check for Convergence
7: end for
8: return X

3.2 � Alternating steepest descent

For alternating minimization without a regularizer, it has been shown computation-
ally effective to, instead of solving subproblems to optimality, take one step in the 
gradient direction at each iteration [24]. For the Pn and Pm updates, we can calculate 
the steepest descent step size. Let dm and dn denote the gradient in the Pm and Pn 
subproblems. Then, the steepest descent step sizes tm and tn for each subproblem 
respectively are can be calculated as follows

Note that the step sizes can be calculated with O((m + n)r2 + r|Ω|) computations. 
Because solving W to optimality is computationally inexpensive by comparison, 
we update W in the same way as in Algorithm 1. The parameters � and � are also 
updated in the previously mentioned way.

tm =
�⟨A(dmP

T
n
),A(PmP

T
n
) − b⟩ + 2⟨PT

m
dm,W⟩

���A(dmP
T
n
)��2 + 2⟨dT

m
dm,W⟩

tn =
�⟨A(Pmd

T
n
),A(PmP

T
n
) − b⟩ + 2⟨PT

n
dn,W⟩

���A(Pmd
T
n
)��2 + 2⟨dT

n
dn,W⟩
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Algorithm 2 Alternating Steepest Descent with General Nonconvex Regu-
larizer (GenASD)
Input: A, b
Output: Stationary point X of (23)

Initialization :P 0
n = rand(n, r), W 0 = I.

1: for k = 1, .., do
2: dkm = Pk−1

m W + βA∗(A(Pk−1
m Pk−1

n
T )− b)Pk−1

n

3: tkm = β〈A(dmPT
n ),A(PmPT

n )−b〉+2〈PT
mdm,W 〉

β||A(dmPT
n )||2+2〈dTmdm,W 〉

4: Pk
m = Pk−1

m − tkmdkm
5: dkn = Pk−1

n W + βA∗(A(PmPk−1
n

T )− b)TPk
m

6: tkn = β〈A(PmdTn ),A(PmPT
n )−b〉+2〈PT

n dn,W 〉
β||A(PmdTn )||2+2〈dTndn,W 〉

7: Pk
n = Pk−1

n − tknd
k
n

8: [V k, Σk] = eig(PT
n Pn + PT

mPm)
9: Wk = V kρ′(Σk)V KT

10: βk+1 = min 1.2βk, βmax), γk+1 = max 0.8γk, γmin)
11: Check for Convergence
12: end for
13: return X = PmPT

n

3.3 � Convergence

Each of the algorithms presented in this section is guaranteed to converge by the main 
result in [28]. Xu and Yin show convergence of coordinated block descent algorithms 
to solve nonconvex optimization problems of the following form:

Denote

and

Xu and Yin analyze three types of updates:

(25)min
x∈X

F(x1,… , xs) ≡ f (x1,… , xs) +

s∑
i=1

si(xi)

f k
i
(xi) = f (xm

1
,… , xk

i−1
, xi, x

k−1
i+1

,… xk−1
s

)

X
k
i
(xi) = X(xm

1
,… , xk

i−1
, xi, x

k−1
i+1

,… xk−1
s

).

(26)xk
i
= argmin

xi∈X
k
i

f k
i
(xi) + ri(xi)

(27)xk
i
= argmin

xi∈X
k
i

f k
i
(xi) +

Lk−1
i

2
||xk−1

i
− xk−2

i
||2 + ri(xi)
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where x̂k−1
i

= xk−1
i

+ wk(xk−1
i

− xk−2
i

) , and wk ≥ 0 is the extrapolation weight.
The authors assume that F is continuous, bounded, and has a minimizer. Addi-

tionally, they make assumptions on f k
i
 depending on the type of update used. For the 

standard update (26), f k
i
 must be strongly convex, and for the proximal linear update 

(28), ∇f k
i
 must be Lk

i
-Lipshitz differentiable. For the proximal update (27), no addi-

tional assumptions are made; f k
i
 need not even be convex.

In both of the algorithms presented in this section, the W update is solved to opti-
mality, and thus G(W) is required to be strongly convex. As shown in Lemma 1, this 
is satisfied for any differentiable regularizer satisfying Assumption 1.

In Algorithm  1, we utilize the standard update, and so our objective function 
must be strongly convex. Because the quadratic loss function is block convex in both 
Pm and Pn , it typically samples a small portion of the matrix and will not be strongly 
convex. However, the terms ⟨PT

m
PT
m
,Wk⟩ and ⟨PT

n
PT
n
,Wk⟩ are strongly convex so long 

as Wk is full rank. Assumption 2 is then necessary to ensure convergence, as strong 
concavity in � ensures � is strictly increasing and that that 0 ∉ ��(x) for any finite x.

Lastly, because ∇Pm
F and ∇Pn

F are linear, Algorithm 2 converges.
While the capped l1 norm is non-differentiable, meaning none of the algorithms 

in this section are guaranteed to converge when using it as the regularizer, one can 
modify the algorithms slightly so that it does converge as in Shen and Mitchell [21]. 
The authors utilize the proximal linear update for W as follows:

When this update is used in any of the algorithms in this section, convergence is 
guaranteed without assuming differentiablity of the regularizer.

4 � Numerical results

Algorithms 1 and 2 were implemented in MATLAB R2018b, and the source code 
to run the algorithms and reproduce every result in this section is publicly available 
at https://​github.​com/​april​1729/​GenAl​tMin. The numerical experiments were con-
ducted on a Dell Laptop running Windows 10 with 16 GB of ram and an Intel Core 
i3-4030U CPU @ 1.90 GHz.

4.1 � Synthetic data for rectangular matrices

We now test Algorithms 1 and 2 utilizing synthetically generated low rank matrices 
with additive Gaussian noise. Throughout this section, we generate a matrix of size 
m by n with rank r and noise parameter d by the following Matlab command: 

(28)xk
i
= argmin

xi∈X
k
i

⟨∇f k
i
(x̂k−1

i
), xi⟩ +

Lk−1
i

2
��xi − x̂k−1

i
��2 + ri(xi)

Wk+1 = proj
0⪯W⪯I

(
Wk +

1

Lk
(Xk+1 + �I) + wk(Wk −Wk−1)

)

https://github.com/april1729/GenAltMin
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M = randn(m,r) * randn(r,n) + d * randn(m,n)

Figures 1a and b show the Relative Frobenius Norm Error (RFNE) of the solu-
tion recovered by the nuclear norm and by the trace inverse regularizer with vary-
ing percentages of known data, along with the relative Frobenius norm of the noise 
matrix as a baseline. We plot these results for a 300 by 200 matrix and a 1000 by 
500 matrix, each averaged over 10 randomly generated instances. In both figures, the 
trace inverse is able to outperform the baseline when only 20% of the data is avail-
able. Note that in each case, the trace inverse regularizer outperforms the nuclear 
norm.

To show that the superiority of the nonconvex regularizer is not just for certain 
choices of � , we show how each method performs for values of � between 10−3 and 
10 for the smaller problem and 10−4 and 1 for the larger problem in Fig. 2a and b 
respectively. When the parameter is differed by an orders of magnitude, the results 
for the trace inverse regularizer are hardly affected, while the accuracy of the opti-
mal solution to the nuclear norm problem varies a significant amount. In fact, every 
value of � for the trace inverse regularizer outperformed the optimal value of � for 
the nuclear norm regularizer.

In order to illustrate the estimator bias of the nuclear norm formulation compared 
to nonconvex approaches, we plot the singular values of the reconstructed matrix 
utilizing both the trace inverse regularizer and the nuclear norm, along with the sin-
gular values of the original matrix. We show this plot for varying values of � of for 
a 300 by 200 matrix with rank 5 in Fig. 3. We plot the first r singular values and the 
next r singular values on a different scale, where r is the rank of the matrix being 
recovered.

For values of � that are smaller than 0.01, the solution is the zero matrix, and for 
values of � larger than 0.1, the solution is not the correct rank. As expected, there is 
a very small range in which we obtain a matrix with the correct rank. Additionally, 
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(a) m = 300, n = 200, r = 5, d = 0.05
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(b) m = 1000, n = 500, r = 10, d = 0.1

Fig. 1   RFNE of the matrix recovered from Algorithm 2 using both the nuclear norm and trace inverse 
regularizer for varying amounts of data known, along with the RFNE of the noise
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when the nuclear norm algorithm gives a matrix with the correct rank, the singular 
values reconstructed using the nuclear norm are noticeably smaller. This is due to 
the fact that the nuclear norm puts equal weight on minimizing each singular value, 
including the ones that should not be zero. So, by increasing � , the singular values 
that are supposed to be zero become larger, and by decreasing � , the singular values 
that are not supposed to be zero become too small.

By contrast, the top r singular values for the matrix reconstructed with Algo-
rithm 2 are approximately equal to the singular values of the original matrix. For 
values of � less than 0.01 in the first case and 0.001 in the second case, the solution 
to the trace inverse formulation is the correct rank. As opposed to the convex relaxa-
tion, the nonconvex method has a sufficiently large range of � that give a matrix of 
the correct rank.

While this shows that the nonconvex formulations are significantly more robust 
to the choice of � , one may wonder if the added parameter controlling the curva-
ture of the regularizer, � , may contribute to more variability with parameter choices. 
Figure  4 shows the RFNE for choices of � distributed between 0.03125 and 256. 
Surprisingly, the figure shows that for a large range of choices of � , the results are 
identical. It is only at � = 0.125 that the nonconvex formulation loses the stability it 
usually has. This behavior is expected due to the fact that the trace inverse regular-
izer converges to the rank function as � approaches 0. For values of � larger than the 
smallest non-zero singular value of the original low rank matrix (roughly 200), the 
trace inverse formulation behaves more similarly to the nuclear norm, which one 
could also expect as the derivative of the nonconvex regularizer is approximately a 
constant for large values of �.

Due to the remarkable consistency of the algorithm for varying choices of � , 
parameter tuning is not an issue in practice. Ideally, the choice of � would be 
approximately half of the largest nonzero singular value of the original low rank 
matrix so that the gradient of the regularizer is small for the top r singular values. 
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Fig. 2   RFNE for varying amounts of data known for Algorithm 2 for both the nuclear norm and trace 
inverse regularizer, along with the RFNE of the noise. The two figures show the results for different trade 
off parameters



294	 A. Sagan, J. E. Mitchell 

1 3

While this quantity cannot be directly measured with incomplete noisy data, it 
can be (very roughly) approximated as follows:

where r is a rough estimate of the rank of the matrix. Note that, unlike rank con-
strained optimization methods which rely heavily on the rank of the matrix to be 

𝛾 =
1

2
√
rp

��PΩ(M̃)��F

Fig. 3   Singular value distribution for the matrices recovered utilizing Algorithm 2 with the trace inverse 
regularizer and nuclear norm regularizer with m = 300, n = 200, r = 5, d = 0.05 , and p = 0.2
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recovered being known exactly, Fig. 4 indicates that our method will perform well 
even when the estimate of the rank is off by orders of magnitude.

Before moving on to larger, real data sets, we demonstrate the difference in speed 
between Algorithm 1 and Algorithm 2. Figures 5a and b plot the convergence of the 
two algorithms on matrices that are 300 by 200 and 1000 by 500 respectively. First, 
note that in both figures the two methods converge to the same local optima, sug-
gesting one need not worry about the difference in quality of the output between the 
two algorithms.

For the smaller case, while clear that taking only one step converges faster than 
solving the subproblems to optimality, they both converge in under 2 seconds. When 
solving the subproblems to optimality, however, only 4 iterations are needed to 
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Fig. 4   RFNE of the matrix recovered by Algorithm 2 utilizing the trace norm regularizer with values of 
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noisy matrix and the optimal value to the nuclear norm minimization problem
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converge. In the larger case, the difference is much more apparent. GenASD still 
converges in less than half of a second, where as solving the subproblems to opti-
mality takes about 17 seconds.

We compare our algorithm to three other common matrix completion algo-
rithms in Table 3. The algorithm presented by Yao et al. [30], Fast Nonconvex Low-
Rank Matrix Learning (FaNCL), is the only other work we know of that solves (1) 
with iterations having computational complexity O(r|Ω|) . The authors utilize non-
convex regularizers similar to the ones discussed in this paper, and use singular value 
thresholding with iteratively reweighted thresholds. The FaNCL algorithm was later 
improved upon in [32] by incorporating a momentum term for faster convergence. 
We only compare to the earlier work as that was the code we had available.

We also compare to FPC, which solved the nuclear norm minimization problem 
[19], and LMaFit, which solves the rank constrained problem [27]. Because LMaFit 
requires an estimate of the rank, we show results when the algorithm is given the 
correct rank and a rank twice as large as the original matrix to demonstrate the 
advantage of a rank minimization approach.

With minor exceptions, the algorithm presented in this paper, FaNCL, and LMaFit 
when given the correct rank all give approximately the same quality result. GenAltMin 
solves the problem faster than FaNCL in every case. Although GenAltMin and FaNCL 
take approximately the same amount of time per iteration, singular value thresholding 

Table 3   Comparison of four different matrix completion algorithms on randomly generated low rank 
matrices. The algorithm LMaFit reconstructs a matrix of a given rank k. The table shows the results 
when the algorithm is given the exact rank(k = r ) and an incorrect rank ( k = 2r)

 GenASD  FaNCL FPC  LMaFit

 r  Noise  p Trace inverse  SCAD Log Sum Capped L1 norm k=r k=2r

m=300, n=200
5  0.05  0.1  0.0234 0.0232  0.0994  0.0546  0.2374  0.0273 0.2892
 5  0.05  0.3  0.0089  0.0089 0.0128  0.0092  0.0171  0.0089  0.1035
 5  0.1  0.1  0.0399  0.0402 0.0906  0.0476  0.2573  0.3616  0.3027
 5  0.1  0.3  0.018  0.018 0.0203  0.0181  0.0334  0.018  0.1039
 10  0.05  0.1  0.7321  0.0476 0.2853  0.1742  0.6683  1.1706  0.8913
 10  0.05  0.3  0.0094  0.0093 0.0156  0.0098  0.0202  0.0093  0.1267
 10  0.1  0.1  0.7726  0.091 0.3515  0.1942  0.6349  0.8075  0.8429
 10  0.1  0.3  0.0193  0.0193 0.0233  0.0195  0.0428  0.0193  0.1679
 m=1000, n=500
 5  0.1  0.05  0.031  0.0311 0.0493  0.039  0.1436  0.0314  0.2074
 5  0.1  0.1  0.0188  0.0188 0.023  0.0197  0.0484  0.0188  0.1352
 5  0.3  0.05  0.1723  0.0947 0.1503  0.1216  0.3023  0.0943  0.2946
 5  0.3  0.1  0.0994  0.0582 0.0894  0.057  0.1061  0.0566  0.1333
 10  0.1  0.05  0.8952  0.0424 0.4071  0.0795  0.5504  0.0475  0.6989
 10  0.1  0.1  0.0207  0.0207 0.0273  0.0222  0.0684  0.0208  0.1612
 10  0.3  0.05  0.8675  0.1231 0.5028  0.1544  0.5626  0.1258  0.7173
 10  0.3  0.1  0.1139  0.0623 0.1013  0.063  0.1563  0.0622  0.2003
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methods take significantly more iterations. Our algorithm outperforms FPC for reasons 
discussed earlier in this section, and also LMaFit when the rank is not well known.

4.2 � Collaborative filtering

Perhaps the most widely known application of rank minimization is the Netflix Prob-
lem, wherein the goal is to predict how a user would rate a movie based on how she 
rated other movies, along with how other users with similar taste rated said movie. To 
formulate this as a matrix completion problem, we have a sparse matrix whose columns 
correspond to different movies and whose rows correspond to different users, with the 
entries of the matrix being how a user rated a specific movie. We expect that if every 
entry of this matrix was observed, the matrix would be low rank because the number 
of factors contributing to how much someone enjoys a movie is far less than the total 
number of movies or users in the data set.

We utilize Algorithm 4.2 and LMaFit on the MovieLens100k and MovieLens1m 
datasets [1], and the Jester dataset [9]. Both MovieLens datasets consist of ratings on 
various movies, rated from 1 to 5, and the Jester dataset consists of ratings on jokes, 
rated -10 to 10. The MovieLens100k dataset has 1000 users, 1700 movies, and 100,000 
measurements, the MovieLens1m dataset has 6000 users, 4000 movies, and 1 million 
measurements, and the Jester dataset has 24,983 users, 101 jokes, and 689,000 meas-
urements. Note that while the movie lens datasets are both very sparse (approximately 
5%), the Jester dataset has 27% of all possible ratings.

For each dataset, we separate the data into five partitions, and for each partition we 
use the remaining four partitions to find a low rank matrix, and the fifth partition to test 
our results. In Table 4, we report the normalized mean absolute error (NMAE), defined 
as

NMAE =
1

nratings

∑
i

|yi − ỹi|
ymax − ymin

Table 4   NMAE utilizing Algorithm 2 with the trace inverse regularizer and with the nuclear norm regu-
larizer, along with LMaFit

The bold values indicate the best performance across all methods tested and are significant

 MovieLens100k  MovieLens1m  Jester

 Fold  TI  NN  LmaFit  TI  NN  LmaFit  TI  NN  LmaFit

 1  0.1724  0.1812  0.1800 0.1683  0.1695  0.1820  0.1570 0.1607  0.1600
2  0.1719  0.1799  0.1775 0.1676  0.1699  0.1811  0.1577 0.1610  0.1601
 3  0.1702  0.1785  0.1781 0.1682  0.1695  0.1825  0.1572 0.1604  0.1596
 4  0.1715  0.1789  0.1787 0.1685  0.1703  0.1824  0.1572 0.1603  0.1602
 5 0.1732  0.1822  0.1788  0.1678 0.1691  0.1815  0.1574  0.1612  0.1601
 Avg  0.1719  0.1802  0.1786 0.1681  0.1697  0.1819  0.1573 0.1607  0.1600
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where nratings is the total number of ratings used in the testing set, y is the measure-
ments from the dataset, ỹ are the predictions from the low rank matrix, and ymax and 
ymin are the maximum and minimum ratings for the dataset (5 and 1 for the Mov-
ieLens dataset, and -10 and 10 for the Jester dataset). In each case, we use 10 as the 
upper bound on the rank. We found that the NMAE for LMaFit is minimized when 
constrained to a rank 1 matrix, which is what is reported.

In every fold in each of the three datasets, Algorithm  4.2 utilizing the trace 
norm regularizer outperforms the nuclear norm regularizer and LMaFit. To gain 
insight as to why the trace inverse regularizer outperforms the other methods, 
we examine the singular value distribution of the resulting low rank matrix. The 
singular values for the matrices recovered from the MovieLens1M dataset with-
holding fold 5 is shown for each method in Fig. 6. Comparing the trace inverse 
to the nuclear norm, the first singular value of the matrix recovered with the trace 
inverse regularizer is larger, and the rest are smaller, which is expected because 
the trace inverse puts more weight on minimizing smaller singular value and 
less weight on minimizing larger singular values. Because the ratings matrix is 
close to a rank one matrix, penalizing the largest singular value is disadvanta-
geous because we expect it to be large. Additionally, as opposed to the result 
from LMaFit, the remaining 9 singular values are nonzero. This demonstrates the 
advantage of rank minimization methods over rank constrained methods: while 
we may want to put more emphasis on the first singular value, the remaining sin-
gular values are still important. In a rank constrained paradigm, there is no way to 
both keep singular values and also minimize them.
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5 � Conclusions

We have shown that the problem of minimizing the rank of a matrix using non-
convex regularizers can be posed as a bi-convex semidefinite optimization prob-
lem. By doing so, we were able to derive efficient algorithms using a low rank 
factorization and show convergence.

The methods are shown to be computationally superior to methods based off 
of the nuclear norm relaxation, and that the estimator bias is drastically reduced 
by using nonconvex regularizers. We show that the quality of the result from our 
algorithm hardly changes when either of the parameters are changed by multiple 
orders of magnitude. Additionally, we show that our method is faster than other 
existing methods based off of nonconvex regularizers.

References

	 1.	 Movielens. https://​group​lens.​org/​datas​ets/​movie​lens/. Accessed: 2019-11-21
	 2.	 Andrew, A., Chu, K., Lancaster, P.: Derivatives of eigenvalues and eigenvectors of matrix func-

tions. SIAM J. Matrix Anal. Appl. 14(4), 903–926 (1993). https://​doi.​org/​10.​1137/​06140​61
	 3.	 Burer, S., Monteiro, R.: A nonlinear programming algorithm for solving semidefinite programs 

via low-rank factorization. Math. Program. 95(2), 329–357 (2003). https://​doi.​org/​10.​1007/​
s10107-​002-​0352-8

	 4.	 C.  Lu J.  Tang, S.Y., Lin, Z.: Generalized nonconvex nonsmooth low-rank minimization. Pro-
ceedings of the IEEE computer society conference on computer vision and pattern recognition 
(2014). https://​doi.​org/​10.​1109/​CVPR.​2014.​526

	 5.	 Candès, E., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE 
Trans. Inf. Theor. 56(5), 2053–2080 (2010). https://​doi.​org/​10.​1109/​TIT.​2010.​20440​61

	 6.	 Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. 
J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

	 7.	 Fazel, M., Hindi, H., Boyd, S.P.: Log-det heuristic for matrix rank minimization with applica-
tions to hankel and euclidean distance matrices. Proceedings of the 2003 American Control Con-
ference, 2003. 3, 2156–2162 vol.3 (2003)

	 8.	 Geman, D.: Chengda Yang: nonlinear image recovery with half-quadratic regularization. IEEE 
Trans. Image Process. 4(7), 932–946 (1995)

	 9.	 Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filter-
ing algorithm. Inf. Retr. 4(2), 133–151 (2001). https://​doi.​org/​10.​1023/A:​10114​19012​209

	10.	 Hoffman, A.J., Wielandt, H.W.: The variation of the spectrum of a normal matrix. Duke Math. J. 
20(1), 37–39 (1953). https://​doi.​org/​10.​1215/​S0012-​7094-​53-​02004-3

	11.	 Cai, J., Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. 
SIAM J. Optim. 20(4), 1956–1982 (2010)

	12.	 Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained 
smoothed lq minimization. SIAM J. Num. Anal. 51(2), 927–957 (2013). https://​doi.​org/​10.​1137/​
11084​0364

	13.	 Li, Q., Qi, Hd.: A sequential semismooth newton method for the nearest low-rank correlation matrix 
problem. SIAM J. Optim. 21(4), 1641–1666 (2011)

	14.	 Liu, Z., Vandenberghe, L.: Interior-point method for nuclear norm approximation with application 
to system identification. SIAM J. Matrix Anal. Appl. 31(3), 1235–1256 (2010). https://​doi.​org/​10.​
1137/​09075​5436

	15.	 Lu, C., Zhu, C., Xu, C., Yan, S., Lin, Z.: Generalized singular value thresholding. arXiv 
abs/1412.2231 (2014). arXiv: 1412.2231

	16.	 Magnus, J.: On differentiating eigenvalues and eigenvectors. Econo. Theory 1(2), 179–191 (1985). 
https://​doi.​org/​10.​1017/​s0266​46660​00111​29

https://grouplens.org/datasets/movielens/
https://doi.org/10.1137/0614061
https://doi.org/10.1007/s10107-002-0352-8
https://doi.org/10.1007/s10107-002-0352-8
https://doi.org/10.1109/CVPR.2014.526
https://doi.org/10.1109/TIT.2010.2044061
https://doi.org/10.1023/A:1011419012209
https://doi.org/10.1215/S0012-7094-53-02004-3
https://doi.org/10.1137/110840364
https://doi.org/10.1137/110840364
https://doi.org/10.1137/090755436
https://doi.org/10.1137/090755436
https://doi.org/10.1017/s0266466600011129


300	 A. Sagan, J. E. Mitchell 

1 3

	17.	 Mohan, K., Fazel, M.: Iterative reweighted least squares for matrix rank minimization. 2010 48th 
Annual Allerton Conference on communication, control and computing (Allerton) (2010).https://​
doi.​org/​10.​1109/​aller​ton.​2010.​57069​69

	18.	 Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. 
In: Proceedings of the 22nd International Conference on machine learning, ICML’05, p. 713–719. 
Association for Computing Machinery, New York, NY, USA (2005). https://​doi.​org/​10.​1145/​11023​
51.​11024​41

	19.	 Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimi-
zation. Math. Program. 128, 321–353 (2009)

	20.	 Sagan, A., Shen, X., Mitchell, J.E.: Two relaxation methods for rank minimization problems. J. 
Optim. Theory Appl. 186(3), 806–825 (2020). https://​doi.​org/​10.​1007/​s10957-​020-​01731-

	21.	 Shen, X., Mitchell, J.: A penalty method for rank minimization problems in symmetric matrices. 
Comput. Optim. Appl. 71(2), 353–380 (2018). https://​doi.​org/​10.​1007/​s10589-​018-​0010-6

	22.	 Srebro, N., Rennie, J.D.M., Jaakkola, T.S.: Maximum-margin matrix factorization. In: Proceedings 
of the 17th International Conference on neural information processing systems, NIPS’04, p. 1329–
1336. MIT Press, Cambridge, MA, USA (2004)

	23.	 Hastie, T., Mazumder, R., Lee, J.D., Zadeh, R.: Matrix completion and low-rank svd via fast alter-
nating least squares. J. Mach. Learn. Res. 16(104), 3367–3402 (2015)

	24.	 Tanner, J., Wei, K.: Low rank matrix completion by alternating steepest descent methods. Appl. 
Comput. Harmonic Anal. (2015). https://​doi.​org/​10.​1016/j.​acha.​2015.​08.​003

	25.	 Tasissa, A., Lai, R.: Exact reconstruction of euclidean distance geometry problem using low-rank 
matrix completion. IEEE Trans. Inform. Theory 65(5), 3124–3144 (2019). https://​doi.​org/​10.​1109/​
tit.​2018.​28817​49

	26.	 Trzasko, J., Manduca, A.: Highly undersampled magnetic resonance image reconstruction via 
homotopic �

0
 -minimization. IEEE Trans. Med. Imag. 28(1), 106–121 (2009)

	27.	 Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a 
nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012). 
https://​doi.​org/​10.​1007/​s12532-​012-​0044-1

	28.	 Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with 
applications to nonnegative tensor factorization and completion. SIAM J. Imag. Sci. 6(3), 1758–
1789 (2013). https://​doi.​org/​10.​1137/​12088​7795

	29.	 Lou, Y., Yin, P., Xin, J.: Point source super-resolution via non-convex l
1
 based methods. J. Sci. Com-

put. 68(3), 1082–1100 (2016)
	30.	 Yao, Q., Kwok, J., Zhong, W.: Fast low-rank matrix learning with nonconvex regularization. 2015 

IEEE International conference on data mining (2015). https://​doi.​org/​10.​1109/​icdm.​2015.9
	31.	 Yao, Q., Kwok, J.T., Gao, F., Chen, W., Liu, T.Y.: Efficient inexact proximal gradient algorithm for 

nonconvex problems. Proceedings of the Twenty-Sixth International Joint Conference on artificial 
intelligence (2017). https://​doi.​org/​10.​24963/​ijcai.​2017/​462

	32.	 Yao, Q., Kwok, J.T., Wang, T., Liu, T.: Large-scale low-rank matrix learning with nonconvex regu-
larizers. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2628–2643 (2019). https://​doi.​org/​10.​1109/​
TPAMI.​2018.​28582​49

	33.	 Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Annal. Stat. 38(2), 
894–942 (2010)

	34.	 Zhang, D., Hu, Y., Ye, J., Li, X., He, X.: Matrix completion by truncated nuclear norm regulari-
zation. 2012 IEEE Conference on computer vision and pattern recognition pp. 2192–2199 (2012). 
https://​doi.​org/​10.​1109/​CVPR.​2012.​62479​27

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1109/allerton.2010.5706969
https://doi.org/10.1109/allerton.2010.5706969
https://doi.org/10.1145/1102351.1102441
https://doi.org/10.1145/1102351.1102441
https://doi.org/10.1007/s10957-020-01731-
https://doi.org/10.1007/s10589-018-0010-6
https://doi.org/10.1016/j.acha.2015.08.003
https://doi.org/10.1109/tit.2018.2881749
https://doi.org/10.1109/tit.2018.2881749
https://doi.org/10.1007/s12532-012-0044-1
https://doi.org/10.1137/120887795
https://doi.org/10.1109/icdm.2015.9
https://doi.org/10.24963/ijcai.2017/462
https://doi.org/10.1109/TPAMI.2018.2858249
https://doi.org/10.1109/TPAMI.2018.2858249
https://doi.org/10.1109/CVPR.2012.6247927

	Low-rank factorization for rank minimization with nonconvex regularizers
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Previous works on nonconvex approaches to rank minimization

	2 Equivalent biconvex formulation
	2.1 Low-rank factorization
	2.2 Extension to nonsymmetric matrices

	3 Algorithms
	3.1 Alternating methods for rectangular matrices
	3.2 Alternating steepest descent
	3.3 Convergence

	4 Numerical results
	4.1 Synthetic data for rectangular matrices
	4.2 Collaborative filtering

	5 Conclusions
	References




