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Abstract

Rank minimization is of interest in machine learning applications such as recom-
mender systems and robust principal component analysis. Minimizing the convex
relaxation to the rank minimization problem, the nuclear norm, is an effective tech-
nique to solve the problem with strong performance guarantees. However, non-
convex relaxations have less estimation bias than the nuclear norm and can more
accurately reduce the effect of noise on the measurements. We develop efficient
algorithms based on iteratively reweighted nuclear norm schemes, while also uti-
lizing the low rank factorization for semidefinite programs put forth by Burer and
Monteiro. We prove convergence and computationally show the advantages over
convex relaxations and alternating minimization methods. Additionally, the compu-
tational complexity of each iteration of our algorithm is on par with other state of
the art algorithms, allowing us to quickly find solutions to the rank minimization
problem for large matrices.

Keywords Rank minimization - Matrix completion - Nonconvex regularizers -
Semidefinite programming

1 Introduction

We consider the rank minimization problem with linear constraints formulated as
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i k(X X
min rank(X) + ¢(X)
subject to AX)=b
X>0

where S" denotes the set of symmetric n X n matrices, A : §" - R™ is an lin-
ear map, b € R™ is the measurement vector, and ¢(X) is an L- smooth func-
tion. A common example is matrix completion, in which the linear constraint is
Po(M) = Po(X), where Q is the set of indices (i, j) of known points in the matrix,
and Pg : R™" — R™" is the projection onto the set of matrices which the entry
(7, j) vanishes for all (i,j) ¢ Q. Formally, we define P, as

_JO GHeQ
PaX0; = {xl (i) € Q

Additionally, in the presence of noise, we can penalize the constraint by adding
dX) = gllPQ(X - M)| |12F to the objective function, with a parameter f. Solving the
rank minimization problem directly is impractical due to the rank function being
non-convex and highly discontinuous. In practice, it is common to instead mini-
mize the convex relaxation to the rank function known as the nuclear norm, which
is defined as the sum of the singular values of the matrix, or in the case of positive
semidefinite matrices, the trace.

rrg(in trace(X)

subjectto AX)=b
X>0

The nuclear norm, denoted by ||X]||, = Z:.’zl 6,(X) where 0,(X) is the i singular
value of X, is the tightest convex relaxation, and in the case of matrix completion on
an n by n matrix known to be at most rank r, it has been shown to exactly recover
the original matrix with high probability if at least Cnrlog(n) entries are observed,
for an absolute constant C, under the assumption that the original matrix satisfies
the incoherence property [5]. However, minimizing the nuclear norm is not always
the best approach. As observed in the similar problem of /, norm minimization, the
convex relaxation, the /; norm, introduces an estimation bias [33]. Consider the fol-
lowing rank minimization problem:

min [[X]], + 2

s v 2
min_ INCESSI

where M is a low rank matrix, M, plus Gaussian noise. As we show in Sect. 2, the
minimizer to the expected value of the nuclear norm regularized formulation is

[%M , where p = % The bias of this formulation comes from the nuclear norm

not only minimizing the smallest singular values, which correspond to the noise, but
also the largest singular values, which correspond to the signal.
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Another common approach to fitting a low rank matrix to a set of measurements
is rank constrained optimization, wherein one attempts to find a rank » matrix that
minimizes an objective function.

min ||.A(X) — b||? subject to rank(X) = r
XERIUXVI

The most common approach utilizes the low rank factorization X = UVT for
UeR™ andV € R™

min _ |[[AWOVT) - b]||?

UeRmxr y eRnxr

Because r is typically much smaller than the size of the matrix, this greatly reduces
the number of variables.

In addition to finding a matrix of a given rank, this technique can be used in
nuclear norm minimization as well [18, 22, 23]. The nuclear norm can be character-
ized as follows:

IXIL = min  S(IUIZ+IVIE)
subject to X=UvT

and so, to minimize a weighted sum of the nuclear norm and a quadratic loss func-
tion, we can minimize the following

. 1
min -
UeRmxr V eRnxr 2

(U1 +1IVIE) + S iA@vn - bip

1.1 Contributions

In this paper, we consider the following general relaxation to the rank minimization

min 21 P(A(X)) + (X)

= 1
subject to AX)=b &
X>0

where 1;(X) denotes the i eigenvalue of X. We impose the following assumptions
on all p throughout the paper.

Assumption 1 For a function p : [0, c0) — [0, c0),

(i) pisconcave
(i) pis monotonically increasing
(iii) p(0)=0
(iv) Forall x € [0, ), every subgradient of p is finite. Because p is concave, it is
sufficient to say
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lim sup w=k <+
x—=0+ WEp(x)

Additionally, we may also impose one or both of the following two
assumptions:

Assumption 2 The function p(x) is strictly concave on [0, o).

Assumption 3 The function p(x) is differentiable on [0, c0).

Examples of functions meeting these assumptions that are commonly used as
surrogates to the /, norm are shown in Table 1. For each of the functions listed
with the exception of the Shatten-p norm and the LogDet relaxation, the deriva-
tive approaches 0 for large values of x, which would expect to greatly reduce the
estimation bias.

To simplify notation, when applied to a positive semidefinite matrix, the func-
tion p : S — R, is the sum of the regularizer p applied to the eigenvalues of the
matrix. That is,

p(X) =) p(A(X))

In this paper, we show by construction that for any regularizer meeting Assump-
tion 1, the optimization problem (1) can be posed as a bi-convex optimization prob-
lem. Our bi-convex formulation serves as an abstraction of that presented by Mohan
and Fazel [17], and can be used to derive similar iterative reweighted problems.
Using our abstraction, we are able to utilize the low-rank factorization method for

Table 1 Examples of typical

. - p(x) 9p(x)
concave relaxations used in
sparse optimization and their Trace inverse [8] 1~ 7
supergradients. For each oo G+ .
regularizer, y is a positive Capped /; norm min(yx, 1) reoox<2
parameter. For SCAD, we take [29] [0,y] x= 1
f > 1, and for the Schatten-p 0 > i
norm, 0 < p < 2. Each of these ’ vy
functions satisfies Assumption 1 LogDet [7, 17] log(x +7) r
’ r+x
Schatten-p norm (4 )5 2y 4p)s!
[12] 24
SCAD [6] r x<y ,  x<y
—x*+2yax—y <x< ay—x
—z(zi"lj” y<x<Zay O(—H) y<x<pr
@ >
3 x> ay X > ay
Laplace [26] 1—e ye ¥
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solving SDPs proposed by Burer and Monteiro [3] in order to reduce the number of
variables to O(nr) where r is an upper bound on the rank of the matrix, and extend
the results to rectangular matrices as well. We derive algorithms based on the low
rank factorization and prove convergence.

1.2 Previous works on nonconvex approaches to rank minimization

In order to more closely approximate the rank of a matrix, Fazel et al. proposed the
LogDet heuristic for positive semidefinite rank minimization [7]. Instead of a con-
vex function, the authors use the following smooth, concave function as a surrogate
for the rank function.

n

log(det(X + y1)) = )" log(A(X) + )

i=1

where y is a positive parameter. While nonconvex, the authors put forwards a Major-
ize-Minimization (MM) algorithm to find a local optimum. At each iteration, the
first order Taylor expansion centered at the previous iterate is solved as a surrogate
function. The algorithm is simplified to solving the following SDP at each iteration.

X%+ D = argmin (W®, X)
X

subjected to AX)=b
X>0

where W® = (X*=D 4 §1)~!. We can view this algorithm as an iterative reweight-
ing of the nuclear norm. The iterative reweighted scheme was later generalized
by Mohan and Fazel [17] to minimize a class of surrogate functions known as the
smooth Schatten-p function, defined as

£,00=TeX +yD)2 = Y (4(X) +7)*

i=1

for O0<p<2. ’l;he weight matrix for the Schatten-p function is
w0 = (x*-D +y1)5_l. Mohan and Fazel extend the algorithm for non square
matrices by solving

XD =argmin (W® XTX)
X )
subject to AX)=b

where W® = (x*-D"x*=D 4 y1)~1 at each iteration. The authors prove asymptotic
convergence of the iterative reweighted algorithm for 0 < p < 1. While this algo-
rithm does give superior computational results, it can be very time consuming in
the positive semidefinite case and will not scale well for large problems. We show in
Sect. 5 how this can be improved by taking advantage of the low rank property of X.

In recent years, many functions have been proposed as alternative non-convex
surrogates to the rank function in addition to the logdet heuristic. Zhang et al. [34]
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278 A. Sagan, J. E. Mitchell

proposed minimizing the truncated nuclear norm for a general matrix X € R™",
defined for a fixed constant r as

min(m,n)

XN, = ), o,

i=r+1

where o,(X) denotes the i largest singular value. If we consider the large singular
values to represent the signal and the small singular values the noise, as in the case
of noisy image reconstruction, then this minimizes only the noise.

The idea of minimizing a concave function of the eigenvalues has been gener-
alized by Lu et al. [4, 15], to any monotonically increasing and Lipschitz differ-
entiable function. These works consider an unconstrained problem with a general
loss function ¢(X).

min(m,n)

ming, Y p(,(X)) + p(X)
i=1

As with the LogDet algorithm, one can derive an MM algorithm using the first order
Taylor expansion about the objective function. The authors include a proximal term.
At each iteration, the authors propose solving the following problem

min(m,n)

X =min Y we(X) + (VX)X — XF) + gux — X¥|]
i=1

min(m,n)

. H
=min 3 wio(X) + Z|IX = V|
i=1

where Y = X* — Vg(X*) and w, = o, (6,(X*)). Much like the popular Singular Value
Thresholding method put forth by Cai, Candes, and Shen [11], this has a closed form
involving the shrinkage operator defined as S,(X) = Diag(Z; —t;),. The authors
prove that the subproblem has a closed form solution

X+ =vus,, v’

where UZVT is the singular value decomposition of Y.

The shrinkage operator, however, requires computing the singular value
decompositon of a possibly very large matrix, which can be time consuming and
inefficent even when only the top few singular values are needed. Similar algo-
rithms presented by Yao et al. address this problem by showing one only needs
to find the singular value decomposition of a much smaller matrix, making the
method suitable for large scale problems [31, 32].
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2 Equivalent biconvex formulation

It was shown by Mohan and Fazel [17] that the LogDet heuristic can be reformu-
lated as a bi-convex problem with an additional variable W as follows

I}I{lg]l (X, W) + ytrace(W) — log det(W)

subject to AX) = b 3)
X>0
I>W>0

This allowed the authors to reformulate the MM algorithm outlined in Eq. (2) as an
alternating method, which was of use when showing convergence of the algorithm.
We now show that an extension of this reformulation can be used for any surrogate
to the rank function satisfying Assumption 1.

Proposition 1 For a function p satisfying Assumption 1, consider the following bi-
convex semidefinite program

I)EHMI} (X, W) + G(W) + (W)

stibject to AX)=1»b )
X>0
kI >W>0

where k = sup dp(0), the function G : S’} — R defined as G(W) = Y g(A,(W)) satis-
fies the following condition:

ogw) = {—x : w € dp(x)}. 3)

Any KKT point X* of the general nonconvex relaxation (1) can be used to construct
a KKT point (X*, W*) of (4) where W* € 0p(X™*) . Likewise, for any (X*, W*) pair
that is a KKT point of (4), X* is a KKT point of (1) and W* € dp(X™).

Remark 1 In previous works, it has been shown that the rank minimization prob-
lem (1) is equivalent to the following semidefinite program with complementarity
constraints:

r)r(nlgl n — trace(U) + $p(X)

subject to (X, U)=0

AX)=b (6)
X>0

0<U=I

Intuitively, the eigenvalues of the matrix / — U are the [, norm of the eigenvalues of
X, which implies that n — trace(U) is the rank of X [13, 20, 21]. Shen and Mitchell
[21] studied the problem when the complementarity constraint is relaxed as a pen-
alty term.
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280 A. Sagan, J. E. Mitchell

I}I{llLIII n — trace(U) + y(X, U) + ¢p(X)

sﬁbject to AX)=1b )
X>0
o<U<XI

The penalty formulation is a biconvex semidefinite program in the form of (4), with
W= iU and G(W) = —%trace(W). This is equivalent to the semidefinite program

(1) with p(x) being the capped /; norm, min(ix, 1)

We want to work with the derivative of the inverse of the derivative of p(x), but
this is only defined as stated if p,(x) satisfies Assumptions 2 and 3. Under only
Assumption 1, we define the function

g(1) := inf{x € [0,00) : 1t € dp,(x)}. ®)

Note that if r > x thent € dp(0), so g(t) = 0 forz > . The function ¢(¢) is defined for
t > f, since p(x) is concave; g(f) is also defined if f is attained. We let J denote the
domain of g(r) and J := {w €J : w < «k}. Note that g(¢) is lower semicontinuous;
it is continuous if Assumptions 2 and 3 hold, in which case it is the inverse function
of the derivative of p(x) for t € J. We can now define the function g : J — [0, o) as

gw) 1= / q(t)dt. ©)

Lemma 1 The function g(w) is decreasing and convex on its domain J. It is strictly
convex for w < k if Assumption 3 holds. It is differentiable for w < k if Assump-
tion 2 holds.

Lemma 2 For each x € [0, ), there exists w € dp(x) such that
—x € dg(w). (10)
Further, the subdifferential is given by
ogw) = {—x : w € dp(x)}. (11)
If p(x) also satisfies Assumptions 2 and 3 then
g @) = -x. (12)

Example 1 Let p(x) be the continuous nondifferentiable function

4x if0<x<2
px) = 6x—x> if2<x<3
9 ifx>3
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which is nondifferentiable at x = 2 and is only strictly concave for x € [2,3]. We
have f = 0 and x = 4. Then

3—%tﬁ0§t§2

q(t) =52 if2<t<4
0 ift >4
and
9+it2—3t ifo<r<?2
glt) =424 -1 if2<r<4
0 ift>4
Further,

[—o00,—3] ifw=0
@w—3}ﬂo<wsz

agw) = 3 {-2} if2<w<4
[=2,0] ifw=4
{0} ifw>4

The lack of strict concavity on the two line segments leads to the two intervals of
subgradients dg(w) for w = 0 and w = 4. The nondifferentiability at x =2 leads
to multiple values of w having the same set of subgradients dg(w), namely {2} for
2<w<4

Proofs of lemmas

Proof Proof of Lemma 1:

Monotonicity of g(w) follows from the nonnegativity of g(t).

To show convexity, we consider w; < w,, with w;,w, €J, and 0 < 1 < 1. We
have

gum+a—@%ﬁqamwwwm
L[ q@ode + (1= ) [ qlode — 4 [0 goyar
F =D [0, a0
Agwy) + (1 = D)g(w,)
— AAw; + (1 = Dw, —w)) g(Aw; + (1 = Dw,)
+ (1= Dwy — Aw; + (1 = Hw,) g(Aw; + (1 — AHw,)
from monotonicity of g(f)
= Aglw)) + (1 = Dg(wy),

IA

so g(w) is convex.
If Assumption 3 holds then g(¢) is strictly decreasing for f < w, < k, so the ine-
quality above holds strictly, so g(w) is strictly convex.

@ Springer



282 A. Sagan, J. E. Mitchell

If Assumption 2 holds then ¢g(z) is continuous on J, so g(w) is differentiable. O

Proof Proof of Lemma 2:
Since g(w) is convex, the subdifferential of g(w) for a slope w € J is defined as

ogw) = {& : Eh < gw+h) — gw)Vw+heJ}
=(e:eh< - ["TgndVw+hel)
={&: & < —hgqw+h)Vw+heJT}

from monotonicity of g(r)

={& . EL —gqw+hWVh>0,w+hel]}
N{E:E&>—-qgw+hVh<0,w+helJ}

={¢: & < —xVxe[0,00)with w+h €JNIf(x), h >0}
N{&:&>—-xVxel[0,00)with w+heJnadf(x), h <0}

={—-x : weodf(x)} from concavity of p(x).

It follows that given x € [0, 0), we can choose w € df(x), and we will have
—x € ag(w).

If Assumptions 2 and 3 hold then dp(x) = {p’(x)}, x is the unique point with
derivative p’(x), and g(w) is differentiable from Lemma 1. Setting w = p’(x), the
Fundamental Theorem of Calculus implies that

g0 W) = —q(p' ) = —x,
as required. O
Before proving Proposition 1, we consider the following lemma.
Lemma 3 Let X be a positive definite matrix. Let G(W) = Z:l=1 8(4,(W)) be a convex
Junction for any matrix W € S',. Let k be a positive constant. If W is a minimizer of:

minyce: (X, W) + G(W)
subject to 0 < W < kI

Then W is also a minimizer with the same objective value, where
n
37 _ iy, T
W= Z Anmir1 (Wvv;
i=1

and v; is the eigenvector of X corresponding to the ith largest eigenvalue.

Proof First, note the W is a feasible point and G(W) = G(W), as the two matrices
have the same eigenvalues.

The proof relies on the Hoffman-Wielandt inequality [10], which states that for
any symmetric matrices A and B,

[JA = BI[3 > [|A/(A) — A(B)||?
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where A(A) denotes the vector of eigenvalues of A in descending order. When
applied to the matrices X and —W, we have

n

X = CWIE 2 Y (400 = 4=1)7 = 3 (A0 + Ay (W),
i=1

i=1

Expanding these terms gives us the following:

XIZ + W+ 200 W) > [[ACO1 + A2 +2 D 44,41 (W)
i=1

Using the fact that the Frobenius norm of a matrix is the norm of the eigenvalues,
and using the simultaneous diagonalizability of W and X, we have:

W) 2 ) 404, (W) = (X, W)
i=1

So, W is a feasible point with an objective value no more than that of W, and is also
a minimizer. O

Additionally, we present the technical lemma about the gradient of the objective
function in (1), which is paramount when deriving algorithms and optimality con-
ditions. First and second derivatives of the eigenvalue function have been studied
extensively by Mangus [16] and Andrew et al. [2].

Lemma 4 Let v; denote the eigenvector corresponding to the i™ eigenvalue of X. If
A;(X) is a simple eigenvalue,

dX/ll(X) =V; V (13)
If2,(X) = A (X) = -+ = 4, (X), then
k k
d
_X 2 2 VitV l+]
j=0 j=0

Lemma 4 allows us to easily compute the subgradient of the objective function.

0p(X) = {Vdiag(yl, Var e YOV

i € dp(ﬂ,-(X))} (14)
where V denotes the matrix of eigenvectors of X. We can now prove Proposition 1.

Proof We start by considering KKT points of (4). The feasible pair (X, W) is a KKT
point if there exists a subgradient Z of G(W) such that

O<WLX+Z+Y>0 (15a)
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284 A. Sagan, J. E. Mitchell

0=X L ) wA+W+VeX) >0 (15b)
0<Y1lxkl-W=>0 (15¢)
By Lemma 4, if W has eigenvectors V" and eigenvalues w,, w,, ..., w,, then

IG(W) = {VWdiag(zl,zz, gV

Z; S ag(W) } .

We start by claiming that X and W (and hence Z and Y) are simultaneously diago-
nalizable by citing Lemma 3. Equation (15¢) shows that Y and W are simultaneously
diagonalizable. Hence X, W, Y, and Z are all simultaneously diagonalizable, and the
KKT conditions (15a) and (c) simplify to the following.

0<AW) L AX) + 4D+ A4,(Y) >0 Vi=1,..,n (16a)

0<A(Y) Lx—A(W)>0 Vi=1,..n (16b)

If 0 < 4;(W) < k, we have that 4;(Y) = 0, and so Eqgs. (16a) and (b) are satisfied if
4;(X) + 2,(Z) = 0. By construction of g from Lemma 2, there exists w; € dp(4;(X))
and z; € —dg(w;) such that 1,(Z) = z;, 4,(W) = w; is a solution.

When the upper bound on the eigenvalue of W is an active constraint, i.e.
when 4,(W) =k, then there exists z; € dg(x) such that 4,(X)+z; <0. Because
0g(x) = {0}, 4,(X) = 0, which is to say 4,(W) € dp(4,(X)).

Finally, we consider when 4,(W) = 0. Equation (16a) becomes

4X) 2 -z

for some z; € dg(0). By Lemma 2, we have that 0 € dp(—z;). Because p is con-
cave and nondecreasing, if 0 € dp(x;), then 0 € dp(x,) for all x, > x;, and so
A(W) = 0 € 0p(4,(X).

We can now say that, in general, any KKT point satisfies 1,(W) € dp(4,(X)) for
i=1,.,n,and by Lemma 4, W € dp(x). The KKT conditions for (1) state that there
exists a U € dp(x) such that

0§XJ_Z/4iA,-+U+V¢(X)z0

With the assignment U = W, it is clear that if (X, W) is a KKT point of (4), then X is
a KKT point of (1).

Conversely, consider any X that is a KKT of (1) with dual variable u. Then, the
assignment W € dp(x) and Y = 0 satisfy (15b) and (15¢). By Lemma 2, we have that
there exists a Z € 0G(W) such that Z = —X and (15a) is satisfied. O

Such a function is shown for various choices of nonconvex regularizers in
Table 2, and can be easily verified by showing that Eq. (5) holds. We note that the
function G(W) is used primarily for theoretical analysis and derivation of algo-
rithms. In practice, one only needs the function p’(x).
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Table2 Function G(W) and constants « that satisfy the conditions in Proposition 1 for various concave
relaxations of the rank function

ag(w) G(W) K
Trace inverse — trace(y W — 2/W) %
Capped [, norm ‘71 _TItrace( W) 14
LogDet y - f ytrace(W) — y log det(W) 1
Schatten-p norm = _2pwis 2,51

y_(;): i trace(y W . Wr2) 5’
SCAD —ay + (@ — Dw trace(%] W2 —ayW) Y
Laplace _1 w A4W) AWy

p > log(2) > ,—(dog(===) — 1) 4

2.1 Low-rank factorization

While the MM algorithm is efficient in the non-symmetric case, with each iter-
ation having closed form updates which can be calculated in O(nm?) time, the
algorithm is not scalable in the positive semidefinite case, as it needs to solve a
semidefinite program at each iteration. Instead, we take advantage of the low rank
factorization for semidefinite programs as presented by Burer and Monteiro [3]
and utilized to solve the nuclear norm minimization problem by Tasissa and Lai
[25]. Let r be an upper bound on the rank of the matrix we seek to reconstruct.
Then, if X is positive semidefinite, we have that there exists a matrix P € R™"
such that X = PPT.

min (PPT, W) + G(W) + ¢(PPT)
PER™" WES',

subject to APPY=b, 0< W < kI

a7)

While X is replaced with a variable of drastically reduced size, W is left as a positive
semidefinite matrix of size n. To reduce the size of W, we propose minimizing the
rank of PTP instead of the rank of PPT.

i p'p pp"
rer s (PTP,W) + G(W) + ¢(PP")

subject to APPTY=b, 0< W <kl

(18)

Intuitively, this should be equivalent due to the fact that the non-zero eigenvalues of
PPT are equivalent to the nonzero eigenvalues of P P. We prove this intuition in the
following proposition.

Proposition 2 Ler P* € R™" have the singular value decomposition
P = z::l viul.Taf. If (P*, W,) is an optimizer of (17), then

n r n
* W, T _ W, T T
w —Z/II. vV, —Zﬂi v, +K Z LAY
i=1 i=1

i=r+1
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286 A. Sagan, J. E. Mitchell

and if (P*,W,) is an optimizer of (18), then W' = er ]AWuu Furthermore,

(P*, W) is an optimizer of (18) if and only if (P*, W) is an optimizer of (17).

Proof We start by proving that W* and W* have the eigenvalue decompositions
stated in the proposition. By the same reasoning as in Proposition 1, any matrix
W € dp(P*P*T) is an optimizer to the convex semidefinite program:

[nin ( , W)+ G(W)

+

subject to 0<W=xx«kl

So, if P*P*" =Y (6F)?vpy!, then there is a minimizer (P*, W*) such that W* has
the eigendecompositon Zi Alel-viT + X, kvl where A € 0p((67)?) and
k = sup dp(0). Likewise, (P*, W,) is an optimizer of (18), then W* = " AVuu! is
an optimizer, where 1) € dp((aP ).

Next, we will show that if (4P, AW,) was a feasible descent direction in (18) at
(P*, W), then we can construct a feasible direction for (17) at (P*, W), and vice
versa. If (AP, AW,) was a feasible descent direction, then, there exists a subgradient
Z, € 0G(W?) such that

2P W + V(P PP, AP) + (P*TP* + Z,, AW,) < 0. (19)
We claim that (4P, AW,) is a descent direction in (17) with
AW, = V.U AW, UV,

where U € R™ is the matrix whose columns are the eigenvectors of W,, and
V € R™" is the matrix whose columns are the first r eigenvectors of W,. First note
that, P*W, = Y"_ v, Wel = = W P*, and AP is a feasible direction in (17).

i=1 "i%i% Vi

Next, consider the gradient of the objective of (17) with respect to W,
PP+ VGWY) = 2 (o +2,) + Z vl (z,)
i=1 i=r+1

where z; € 6g(ﬂlW) and z,. € dg(k). Specifically, we chose z; = 4,(Z,), Z, be the r
by r matrix with eigenvectors U and eigenvalues z,, ..., z, so that Z. € G(W,). By
Lemma 2, 0 € dg(k), and so the rank » matrix

z, :=v,U" (PP +z,)UV"

is a subgradient of G with respect to W, . Consider the inner product of the gradient
of the objective of (17) with respect to W, and the proposed descent direction for W,,.

(PP 42, 4W,) = (V,UT (P"'P" +Z,)UV] . AW,)
=((P*"P* +Z,), UV AW, V,U")
=((P"P* +2,), 4W,)

Combining these facts gives us that (4P, AW,)) is a descent direction:

@ Springer



Low-rank factorization for rank minimization with nonconvex... 287

AW!P* + V(P P*")P*, AP) + (P*P*" + Z,, AW,)
=2(P*W? + V(P*P*")P*, AP) + (P*"P* + Z,, AW,) < 0

The proof of the other direction is similar. O

2.2 Extension to nonsymmetric matrices

To extend these methods to general nonsymmetric matrices X € R™ ", we can mini-
mize the rank of PSD matrix X7X, as done by Mohan and Fazel [17]. However, this
is computationally inefficient as each iteration requires finding the eigendecomposi-
tion of X7 X. With this in mind, we put forth a separate extension in which we mini-
mize the rank of the following auxiliary variable

G X"
2= [¢ %)

It was shown by Liu et al. that for any X, there exists G and B such that
rank(X) = rank(Z) and Z > 0 [14]. We can thus solve the following minimization
problem

I?w (Z, W)+ GW) + p(X)
sﬁbject to AX)=b
G X" (20)
[0
0<W<«kl

While inefficient on its own due to the matrix W being (m + n) X (m + n), this for-
mulation allows us to utilize the Burer-Monteiro approach which allowed us to effi-
ciently solve the semidefinite case in Algorithm 1. We utilize the same upper bound
r on the rank of X as before and introduce the matrix P € R™+"X" such that

Z = PPT. We decompose P into P,, and P, such that P = P"] so that X = P, PT. As

Pm
before, we minimize the rank of P'P = PTP, + PTP .
min (PTP, +P'P W)+ G(W)+ (P, P’
W’Pm’Pn m n n (21)
subject to AP,PHY=b, 0<W <«l

We note that for the special case of minimizing the nuclear norm, W = I, we have
the well known alternating minimization method when using a quadratic loss func-
tion [18, 22, 23] as follows:

: 2 2 P
min [P, || + [P,z +

s Ty _ 2
e S MA®,P) = BII (22)
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3 Algorithms

In most practical applications, we expect noise in our measurements, and thus an
equality constraint may not be practical. For the algorithms in this section, we
restrict our focus to the problem of rank minimization with a quadratic loss function,
d(X) = gIIA(X) — b||2, and no linear constraints. Utilizing the low-rank factoriza-
tion technique, for the case of non symmetric matrices, we seek to minimize

min (PP, + PP, W) + G(W) + 2| A(P,PT) — b||?

. (23)
subjectto 0 < W <kl

3.1 Alternating methods for rectangular matrices

While the formulation for rectangular matrices could be solved by simply using
Algorithm 1, we propose an ADMM algorithm wherein we alternate over the vari-
ables P,,, P,, and W. By doing so, the subproblems in P,, and P, are strongly convex.
The subproblems are as follows:

W+ Zilace, P - b2

P} = argminp (P1P,, W) + §| | AP, PT) = b||2.

Pk

= argming (PTP

m- m’

(24)

The gradients of which can be calculated as
Vp F(P,,P,,W)=P,W+ pA"(AP,P]) - b)P,
Vp F(P,,P,,W)=P,W+ pA*(APP,P))—b)P,

where F(P,,, P,, W) is the objective function of (23).
The update for W is derived from Proposition 1, and is similar to that of other
iteratively reweighted methods [7, 12, 17].

Wk = V(P! P

Because we are minimizing the rank of the the smaller matrix PTP, this update is
calculated in O(r®) operations.
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Algorithm 1 Alternating Minimization for Rank Minimization with a Gen-
eral Nonconvex Regularizer (GenAltMin)
Input: A,b
Output: Stationary point X of (23)
Initialization :P° = rand(n,r), WO = I.
1: for k=1,.., do

2: Solve 3
Py, = argminp, (P, Pm, W) + 5|\A(PmPnT) —b|l%
3: Solve 5
Py = argminp, (P P, W) + EHA(PmPE) —blI%
4 [k, ZF] = cig(P*T PF)
5 Wk =vVky(ZkyykT
6: Check for Convergence
7: end for
8: return X

3.2 Alternating steepest descent

For alternating minimization without a regularizer, it has been shown computation-
ally effective to, instead of solving subproblems to optimality, take one step in the
gradient direction at each iteration [24]. For the P, and P,, updates, we can calculate
the steepest descent step size. Let d,, and d,, denote the gradient in the P,, and P,
subproblems. Then, the steepest descent step sizes ¢,, and ¢, for each subproblem
respectively are can be calculated as follows

_ BAW@,P), AP, PT) - b) + 2(PTd,, W)

n BlIA,,PD)||? +2(dTd,, W)
B(AP,dD), AP, PT) — by +2(PTd,, W)
= BIIAP,dD)||? +2(dTd,, W)

Note that the step sizes can be calculated with O((m + n)7? + r|Q|) computations.
Because solving W to optimality is computationally inexpensive by comparison,
we update W in the same way as in Algorithm 1. The parameters f§ and y are also
updated in the previously mentioned way.
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Algorithm 2 Alternating Steepest Descent with General Nonconvex Regu-
larizer (GenASD)

Input: A,b
Output: Stationary point X of (23)
Initialization :PQ = rand(n,r), WO = I.

1: for k=1,.., do

dh, = PETW + BA“(A(PETPEIT) — b) P!

t’“ B{A(dm PT), A(Pm PL)— b)+2<PTdm W)
Bl A(dm PT)124+2(dL dm , W)

Pk Pk—l tk' dk

dly = PEZ1W + BA* (A(P PE~1T) — b)T P,

th — BLA(Pmdl), A(Pm PT)—b)+2(PT dp , W)
BIA(PmdE)[|2+2(dL dn,W)

Pk = pk=1 _tkdk

[V, %] = cig(PL P, + PLPy)

9. Wk=vk '(Ek)VKT

10: B+ = min(1.28%, Bmax), v*+1 = max(0.8v%, ymin)

11: Check for Convergence

12: end for

13: return X = PmPf

3.3 Convergence

Each of the algorithms presented in this section is guaranteed to converge by the main
result in [28]. Xu and Yin show convergence of coordinated block descent algorithms
to solve nonconvex optimization problems of the following form:

min FQry, ) = 0 x) + ;si(xi) (25)
Denote
SR = fep, X x
and
X)) = X, X x, Lk,

Xu and Yin analyze three types of updates:

xl.(z i k )+ r.(x.:

e 26)

k=1

xk—argmmfk(x)+ i
X, €

I =P ) @7

@ Springer



Low-rank factorization for rank minimization with nonconvex... 291

LM
X = argmin (VG x6) + ==l = 5712+ ri(x) (28)
x,-EXff
where £~ = X! 4 wk(E=! — x872), and w* > 0 is the extrapolation weight.

The authors assume that F is continuous, bounded, and has a minimizer. Addi-
tionally, they make assumptions on fl." depending on the type of update used. For the
standard update (26), fl.k must be strongly convex, and for the proximal linear update
(28), Vfl.k must be Lf—Lipshitz differentiable. For the proximal update (27), no addi-
tional assumptions are made; fi" need not even be convex.

In both of the algorithms presented in this section, the W update is solved to opti-
mality, and thus G(W) is required to be strongly convex. As shown in Lemma 1, this
is satisfied for any differentiable regularizer satisfying Assumption 1.

In Algorithm 1, we utilize the standard update, and so our objective function
must be strongly convex. Because the quadratic loss function is block convex in both
P, and P,, it typically samples a small portion of the matrix and will not be strongly
convex. However, the terms (P” PT W*) and (P PT, W*) are strongly convex so long
as W¥ is full rank. Assumption 2 is then necessary to ensure convergence, as strong
concavity in p ensures p is strictly increasing and that that 0 € dp(x) for any finite x.

Lastly, because V, F and V, F are linear, Algorithm 2 converges.

While the capped /; norm is non-differentiable, meaning none of the algorithms
in this section are guaranteed to converge when using it as the regularizer, one can
modify the algorithms slightly so that it does converge as in Shen and Mitchell [21].
The authors utilize the proximal linear update for W as follows:

Wit = proj <W" + ﬁ(x"+l +yD) + w(WE - W"‘l)>
0=<w=I

When this update is used in any of the algorithms in this section, convergence is
guaranteed without assuming differentiablity of the regularizer.

4 Numerical results

Algorithms 1 and 2 were implemented in MATLAB R2018b, and the source code
to run the algorithms and reproduce every result in this section is publicly available
at https://github.com/april1729/GenAltMin. The numerical experiments were con-
ducted on a Dell Laptop running Windows 10 with 16 GB of ram and an Intel Core
13-4030U CPU @ 1.90 GHz.

4.1 Synthetic data for rectangular matrices
We now test Algorithms 1 and 2 utilizing synthetically generated low rank matrices

with additive Gaussian noise. Throughout this section, we generate a matrix of size
m by n with rank r and noise parameter d by the following Matlab command:
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M = randn(m,r) * randn(r,n) + d * randn(m,n)

Figures 1a and b show the Relative Frobenius Norm Error (RFNE) of the solu-
tion recovered by the nuclear norm and by the trace inverse regularizer with vary-
ing percentages of known data, along with the relative Frobenius norm of the noise
matrix as a baseline. We plot these results for a 300 by 200 matrix and a 1000 by
500 matrix, each averaged over 10 randomly generated instances. In both figures, the
trace inverse is able to outperform the baseline when only 20% of the data is avail-
able. Note that in each case, the trace inverse regularizer outperforms the nuclear
norm.

To show that the superiority of the nonconvex regularizer is not just for certain
choices of g, we show how each method performs for values of f between 10~ and
10 for the smaller problem and 10~ and 1 for the larger problem in Fig. 2a and b
respectively. When the parameter is differed by an orders of magnitude, the results
for the trace inverse regularizer are hardly affected, while the accuracy of the opti-
mal solution to the nuclear norm problem varies a significant amount. In fact, every
value of g for the trace inverse regularizer outperformed the optimal value of f for
the nuclear norm regularizer.

In order to illustrate the estimator bias of the nuclear norm formulation compared
to nonconvex approaches, we plot the singular values of the reconstructed matrix
utilizing both the trace inverse regularizer and the nuclear norm, along with the sin-
gular values of the original matrix. We show this plot for varying values of f of for
a 300 by 200 matrix with rank 5 in Fig. 3. We plot the first r singular values and the
next r singular values on a different scale, where r is the rank of the matrix being
recovered.

For values of f that are smaller than 0.01, the solution is the zero matrix, and for
values of f larger than 0.1, the solution is not the correct rank. As expected, there is
a very small range in which we obtain a matrix with the correct rank. Additionally,

0.1

Trace Inverse
Nuclear Norm 0.08

0.08 Noisy matrix

= Trace Inverse
&= Nuclear Norm |
Noisy matrix

0.06
w
= 005
[
0C 0.04

0.03

20 40 60 80 100 20 40 60 80 100
Percentage of Data Known Percentage of Data Known

(a) m = 300,n = 200,r =5,d=0.05 (b) m =1000,n = 500, = 10,d = 0.1

Fig. 1 RFNE of the matrix recovered from Algorithm 2 using both the nuclear norm and trace inverse
regularizer for varying amounts of data known, along with the RFNE of the noise
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(@) m = 300,n = 200,7 = 5, (b) m = 1000, n = 500, 7 = 10,

d=0.05,p=0.2 d=0.1,p=0.2

Fig.2 RFNE for varying amounts of data known for Algorithm 2 for both the nuclear norm and trace
inverse regularizer, along with the RFNE of the noise. The two figures show the results for different trade
off parameters

when the nuclear norm algorithm gives a matrix with the correct rank, the singular
values reconstructed using the nuclear norm are noticeably smaller. This is due to
the fact that the nuclear norm puts equal weight on minimizing each singular value,
including the ones that should not be zero. So, by increasing f, the singular values
that are supposed to be zero become larger, and by decreasing f, the singular values
that are not supposed to be zero become too small.

By contrast, the top r singular values for the matrix reconstructed with Algo-
rithm 2 are approximately equal to the singular values of the original matrix. For
values of f less than 0.01 in the first case and 0.001 in the second case, the solution
to the trace inverse formulation is the correct rank. As opposed to the convex relaxa-
tion, the nonconvex method has a sufficiently large range of f that give a matrix of
the correct rank.

While this shows that the nonconvex formulations are significantly more robust
to the choice of f, one may wonder if the added parameter controlling the curva-
ture of the regularizer, y, may contribute to more variability with parameter choices.
Figure 4 shows the RFNE for choices of y distributed between 0.03125 and 256.
Surprisingly, the figure shows that for a large range of choices of y, the results are
identical. It is only at y = 0.125 that the nonconvex formulation loses the stability it
usually has. This behavior is expected due to the fact that the trace inverse regular-
izer converges to the rank function as y approaches 0. For values of y larger than the
smallest non-zero singular value of the original low rank matrix (roughly 200), the
trace inverse formulation behaves more similarly to the nuclear norm, which one
could also expect as the derivative of the nonconvex regularizer is approximately a
constant for large values of y.

Due to the remarkable consistency of the algorithm for varying choices of y,
parameter tuning is not an issue in practice. Ideally, the choice of y would be
approximately half of the largest nonzero singular value of the original low rank
matrix so that the gradient of the regularizer is small for the top r singular values.
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Fig. 3 Singular value distribution for the matrices recovered utilizing Algorithm 2 with the trace inverse
regularizer and nuclear norm regularizer with m = 300,n = 200, = 5,d = 0.05, and p = 0.2

While this quantity cannot be directly measured with incomplete noisy data, it
can be (very roughly) approximated as follows:

1
24/

where r is a rough estimate of the rank of the matrix. Note that, unlike rank con-
strained optimization methods which rely heavily on the rank of the matrix to be

Y = ”PQ(M)HF
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Fig. 4 RFNE of the matrix recovered by Algorithm 2 utilizing the trace norm regularizer with values of
y between 2~ and 28 in the left plot, and between 2! and 2! in the right plot, along with the RENE of the
noisy matrix and the optimal value to the nuclear norm minimization problem

recovered being known exactly, Fig. 4 indicates that our method will perform well
even when the estimate of the rank is off by orders of magnitude.

Before moving on to larger, real data sets, we demonstrate the difference in speed
between Algorithm 1 and Algorithm 2. Figures 5a and b plot the convergence of the
two algorithms on matrices that are 300 by 200 and 1000 by 500 respectively. First,
note that in both figures the two methods converge to the same local optima, sug-
gesting one need not worry about the difference in quality of the output between the
two algorithms.

For the smaller case, while clear that taking only one step converges faster than
solving the subproblems to optimality, they both converge in under 2 seconds. When
solving the subproblems to optimality, however, only 4 iterations are needed to

o 10° - - -
10 — ‘ ——ASD
—+— Alternating Steepest Descent =AM
—=— Alternating Minimization
w1
% 1071 E 10
s c
102 1072
107 102 107! 10° 10! 102 107" 10° 10’ 102
Time (s) Time (s)
(a) m =300,n =200,7r =5 (b) m = 1000,n = 500,r = 15
p=0.4,d=0.05 p=20.2,d=0.01

Fig.5 Convergence of Algorithm 1 and Algorithm 2. The RFNE and cumulative runtime is recorded at
each iteration
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Table 3 Comparison of four different matrix completion algorithms on randomly generated low rank
matrices. The algorithm LMaFit reconstructs a matrix of a given rank k. The table shows the results
when the algorithm is given the exact rank(k = r) and an incorrect rank (k = 2r)

GenASD FaNCL FPC LMaFit
r Noise p Trace inverse SCAD Log Sum Capped L1 norm k=r k=2r
m=300, n=200
5 005 0.1 0.0234 0.0232  0.0994  0.0546 0.2374  0.0273 0.2892
5 005 03 0.0089 0.0089 0.0128 0.0092 0.0171  0.0089 0.1035
5 0.1 0.1  0.0399 0.0402 0.0906 0.0476 0.2573 0.3616 0.3027
5 0.1 03 0018 0.018  0.0203 0.0181 0.0334 0.018  0.1039
10 005 0.1 07321 0.0476 0.2853 0.1742 0.6683 1.1706 0.8913
10 005 03 0.0094 0.0093 0.0156 0.0098 0.0202  0.0093 0.1267
10 0.1 0.1  0.7726 0.091 0.3515 0.1942 0.6349 0.8075 0.8429
10 0.1 0.3  0.0193 0.0193 0.0233 0.0195 0.0428 0.0193 0.1679
m=1000, n=500
5 0.1 0.05 0.031 0.0311 0.0493 0.039 0.1436  0.0314 0.2074
5 0.1 0.1  0.0188 0.0188 0.023 0.0197 0.0484 0.0188 0.1352
5 0.3 0.05 0.1723 0.0947 0.1503 0.1216 0.3023 0.0943 0.2946
5 0.3 0.1  0.0994 0.0582 0.0894 0.057 0.1061 0.0566 0.1333
10 0.1 0.05 0.8952 0.0424 0.4071 0.0795 0.5504 0.0475 0.6989
10 0.1 0.1  0.0207 0.0207 0.0273 0.0222 0.0684 0.0208 0.1612
10 03 0.05 0.8675 0.1231 0.5028 0.1544 0.5626  0.1258 0.7173
10 03 0.1  0.1139 0.0623 0.1013 0.063 0.1563 0.0622  0.2003

converge. In the larger case, the difference is much more apparent. GenASD still
converges in less than half of a second, where as solving the subproblems to opti-
mality takes about 17 seconds.

We compare our algorithm to three other common matrix completion algo-
rithms in Table 3. The algorithm presented by Yao et al. [30], Fast Nonconvex Low-
Rank Matrix Learning (FaNCL), is the only other work we know of that solves (1)
with iterations having computational complexity O(r|€2|). The authors utilize non-
convex regularizers similar to the ones discussed in this paper, and use singular value
thresholding with iteratively reweighted thresholds. The FaNCL algorithm was later
improved upon in [32] by incorporating a momentum term for faster convergence.
We only compare to the earlier work as that was the code we had available.

We also compare to FPC, which solved the nuclear norm minimization problem
[19], and LMaFit, which solves the rank constrained problem [27]. Because LMaFit
requires an estimate of the rank, we show results when the algorithm is given the
correct rank and a rank twice as large as the original matrix to demonstrate the
advantage of a rank minimization approach.

With minor exceptions, the algorithm presented in this paper, FANCL, and LMaFit
when given the correct rank all give approximately the same quality result. GenAltMin
solves the problem faster than FaNCL in every case. Although GenAltMin and FaNCL
take approximately the same amount of time per iteration, singular value thresholding
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methods take significantly more iterations. Our algorithm outperforms FPC for reasons
discussed earlier in this section, and also LMaFit when the rank is not well known.

4.2 Collaborative filtering

Perhaps the most widely known application of rank minimization is the Netflix Prob-
lem, wherein the goal is to predict how a user would rate a movie based on how she
rated other movies, along with how other users with similar taste rated said movie. To
formulate this as a matrix completion problem, we have a sparse matrix whose columns
correspond to different movies and whose rows correspond to different users, with the
entries of the matrix being how a user rated a specific movie. We expect that if every
entry of this matrix was observed, the matrix would be low rank because the number
of factors contributing to how much someone enjoys a movie is far less than the total
number of movies or users in the data set.

We utilize Algorithm 4.2 and LMaFit on the MovieLens100k and MovieLenslm
datasets [1], and the Jester dataset [9]. Both MovieLens datasets consist of ratings on
various movies, rated from 1 to 5, and the Jester dataset consists of ratings on jokes,
rated -10 to 10. The MovieLens100k dataset has 1000 users, 1700 movies, and 100,000
measurements, the MovieLens1m dataset has 6000 users, 4000 movies, and 1 million
measurements, and the Jester dataset has 24,983 users, 101 jokes, and 689,000 meas-
urements. Note that while the movie lens datasets are both very sparse (approximately
5%), the Jester dataset has 27% of all possible ratings.

For each dataset, we separate the data into five partitions, and for each partition we
use the remaining four partitions to find a low rank matrix, and the fifth partition to test
our results. In Table 4, we report the normalized mean absolute error (NMAE), defined
as

NMAE = 1 ly; = ¥l

nratings i Ymax ~ Ymin

Table 4 NMAE utilizing Algorithm 2 with the trace inverse regularizer and with the nuclear norm regu-
larizer, along with LMaFit

MovieLens100k MovieLenslm Jester

Fold TI NN LmaFit TI NN LmaFit TI NN LmaFit

0.1724  0.1812  0.1800  0.1683 0.1695  0.1820 0.1570  0.1607 0.1600
0.1719  0.1799  0.1775  0.1676 0.1699  0.1811 0.1577  0.1610 0.1601
0.1702  0.1785 0.1781  0.1682 0.1695  0.1825 0.1572  0.1604 0.1596
0.1715  0.1789  0.1787  0.1685 0.1703  0.1824 0.1572  0.1603 0.1602
0.1732 0.1822  0.1788 0.1678 0.1691 0.1815 0.1574  0.1612  0.1601
Avg 0.1719  0.1802  0.1786  0.1681 0.1697  0.1819 0.1573  0.1607 0.1600

—_

w s L N

The bold values indicate the best performance across all methods tested and are significant
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where 71,0, 18 the total number of ratings used in the testing set, y is the measure-
ments from the dataset, y are the predictions from the low rank matrix, and y,,, and
Ymin are the maximum and minimum ratings for the dataset (5 and 1 for the Mov-
ieLens dataset, and -10 and 10 for the Jester dataset). In each case, we use 10 as the
upper bound on the rank. We found that the NMAE for LMaFit is minimized when
constrained to a rank 1 matrix, which is what is reported.

In every fold in each of the three datasets, Algorithm 4.2 utilizing the trace
norm regularizer outperforms the nuclear norm regularizer and LMaFit. To gain
insight as to why the trace inverse regularizer outperforms the other methods,
we examine the singular value distribution of the resulting low rank matrix. The
singular values for the matrices recovered from the MovieLens1M dataset with-
holding fold 5 is shown for each method in Fig. 6. Comparing the trace inverse
to the nuclear norm, the first singular value of the matrix recovered with the trace
inverse regularizer is larger, and the rest are smaller, which is expected because
the trace inverse puts more weight on minimizing smaller singular value and
less weight on minimizing larger singular values. Because the ratings matrix is
close to a rank one matrix, penalizing the largest singular value is disadvanta-
geous because we expect it to be large. Additionally, as opposed to the result
from LMaFit, the remaining 9 singular values are nonzero. This demonstrates the
advantage of rank minimization methods over rank constrained methods: while
we may want to put more emphasis on the first singular value, the remaining sin-
gular values are still important. In a rank constrained paradigm, there is no way to
both keep singular values and also minimize them.

16000 T T T
[ Nuclear Norm
14000 I Trace Inverse |
[ ILMaFit
12000 B
@ 10000 7
S
~ 8000 b
IS
>
£ 6000 i
w
4000 b
2000 -
0 _lL_lL_lL_l-__l—__l.t__l_x__l_x__lJ_
1 2 3 4 5 6 7 8 9 10
Index

Fig. 6 Singular value decomposition for the matrix recovered from the MovieLens1M dataset withhold-
ing fold 5
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5 Conclusions

We have shown that the problem of minimizing the rank of a matrix using non-
convex regularizers can be posed as a bi-convex semidefinite optimization prob-
lem. By doing so, we were able to derive efficient algorithms using a low rank
factorization and show convergence.

The methods are shown to be computationally superior to methods based off
of the nuclear norm relaxation, and that the estimator bias is drastically reduced
by using nonconvex regularizers. We show that the quality of the result from our
algorithm hardly changes when either of the parameters are changed by multiple
orders of magnitude. Additionally, we show that our method is faster than other
existing methods based off of nonconvex regularizers.
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