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Abstract

Quantitative atomic force microscopy (AFM) on soft polymers remains challenging due to the lack of
easy-to-use computational models that accurately capture the physics of the interaction between the
tip and sticky, viscoelastic samples. In this work, we enhance Attard’s continuum mechanics-based
model, arguably the most rigorous contact model for adhesive viscoelastic samples, via three key
enabling strategies. First, the original model’s formalism is rearranged to enable a fast and explicit
solution of the model’s ordinary differential equations (ODEs). Second, the deformed surface is
reconstructed using a complete set of optimized orthogonal basis functions as opposed to Attard’s
original, computationally expensive radial discretization. Third, the model’s governing ODEs are
solved using a multi-step numerical method to further stabilize the solution when using for soft and
sticky samples. Implementing these enhancements, enhanced Attard’s model (EAM) is more stable,
3+ orders of magnitude faster, and equally accurate when compared to the original model. These
facilitate EAM’s inclusion into simulations of various AFM operating modes. We demonstrate EAM
based simulations of quasi-static force spectroscopy and amplitude modulation AFM approach curves
on soft sticky polymer surfaces. On a typical desktop computer, simulation of an amplitude
modulation approach curve with EAM takes less than a minute as compared to ~15 h by the original
Attard’s model. We expect EAM to be of interest to the AFM community because it facilitates the
inclusion of rigorous models of tip-sample contact in simulations on polymer samples. EAM is
available as part of the VEDA set of simulation tools deployed on nanoHUB.org cyber-infrastructure.

1. Introduction

Successful quantitative estimation of local sample properties from AFM data, whether in the form of force-
distance curves or maps of dynamic AFM observables, hinges on how well the utilized tip-sample contact model
reflects the actual physics of the interaction. Soft, adhesive, and viscoelastic materials represent an exciting area
of growth of new materials whether for biomedical, critical node photolithography, flexible electronics, or in a
wide range of consumer products [ 1-4]. Quantitative AFM on such materials requires accurate, versatile, and
fast contact mechanics models to link experimentally observed hysteresis, frequency dependence, and creep to
the material’s viscoelastic and adhesive properties [5—11].

However, the currently utilized models to calculate the tip-surface interactions on soft viscoelastic and
adhesive materials are limited in various ways. Either they do not utilize first-principles methods, make ad hoc
self-inconsistent assumptions, neglect relevant physical parameters of the contact phenomenon, employ
computationally inefficient and slow procedures, and/or lack a simple and direct path to integrate with AFM
operational modes [5-7, 1 1-15]. Furthermore, almost all viscoelastic contact mechanics models used by the
AFM community calculate the tip-surface interaction forces assuming that the force is only a function of
position and velocity of the tip: F; = f (d (1), d(t)) and do not account for the interacting surface dynamics [16].
These models do not capture the surface instabilities that occur when the rigid tip approaches or retracts off the
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surface particularly on soft adhesive materials [17]. The long-range attractive forces between interacting surfaces
cause these experimentally observed surface instabilities to occur prior to and after the actual tip-surface contact
and lead to energy dissipation in the form of heat [18, 19]. In many viscoelastic contact models commonly used
by AFM community, the creep compliance function is simply inserted into Hertz [20] or Johnson—Kendall-
Roberts (JKR) [21] theories formalism. However, the static free energy minimization procedure implemented in
Hertz or JKR theories does not hold in the case of these ad hoc viscoelastic models [22]. Interested readers are
referred to [11] for further details on the deficiencies associated with the ad hoc viscoelastic models and their
non-reliable predictions. On the other side, the continuum mechanics-based viscoelasticity models which are
soundly based on the established elasticity and viscoelasticity equations, do not usually result in analytical
closed-form solutions, and consequently lead to higher computational expenses. Ting [23] proposed one of the
oldest viscoelastic models in this category which despite its high reliability, does not account for the surface
forces. Therefore, a fast first-principles contact mechanics model which enables rigorous prediction and
interpretation of AFM images on soft, adhesive, and viscoelastic polymers is required to address these
shortcomings. Attard eral[12, 13, 24] introduced a novel approach that provides versatility in modeling tip-
sample interactions by including different linear viscoelastic constitutive models as well as arbitrary surface
forces within a continuum mechanics framework. The model can predict the surface deformation as the tip
interacts with adhesive, viscoelastic samples by applying the correspondence principle on the Boussinesq
solution for a semi-infinite half-space [25] and calculates the interaction force by implementing radial and
temporal discretization. Attard’s original implementation, which is akin to a boundary element method,
computes the distributed pressure and the associated surface deformation over the contact region at each radial
node and each timestep. However, Attard’s implementation does not lead to a closed-form solution to calculate
the tip-surface interaction forces. The implementation is computationally expensive due to the intrinsic
temporal and radial discretization in addition to the iterative loops needed to solve the model’s governing
differential equations. Moreover, Attard’s original implementation leads to computational instabilities when the
surface undergoes abrupt bifurcations/instabilities under the action of the tip, especially on soft and sticky
surfaces.

In this work, we use three enabling strategies to significantly enhance the computational part of Attard’s
model and render it into a faster and more robust method. First, we rearranged the model formalism so that its
governing differential equations become explicitly solvable. Next, we approximated the deformed surface profile
using a complete set of optimized orthogonal basis functions to replace the radial discretization in the original
model. Finally, instead of the forward Euler method employed by Attard, we used the two-step Adams-
Bashforth method to solve the model’s ordinary differential equations. Implementation of these strategies
accelerates the model’s computations by at least three orders of magnitude. Furthermore, the enhancements
improve the computational robustness of the model when predicting tip-surface interaction on highly soft,
viscoelastic, adhesive surfaces. We refer to the combination of Attard’s model and the three identified
improvements as the enhanced Attard’s model (EAM). Leveraging EAM’s capabilities within an AFM
framework leads to a better understanding of the complex phenomena that occur during tip-surface interaction,
especially on soft sticky samples.

To demonstrate the utility of EAM in the AFM context, we performed simulations of a quasi-static AFM
force curve and a dynamic approach/retract curve on a polymeric surface. The resulting simulation tools based
on EAM are now included as part of the VEDA suite of tools [26] on the cloud computing cyber-infrastructure of
nanoHUB.org and are thus easily accessible to the AFM community worldwide. We expect that the utilization of
EAM simulations on the nanoHUB to provide a fast and accessible path to gain further insight into the complex
tip-surface interaction phenomena on soft viscoelastic sticky polymers samples.

2. Methods

2.1. Attard’s original model and implementation
Attard’s model and computational implementation provide a framework to compute tip-sample force and
surface deformation history induced by a prescribed time-dependent motion of a rigid, axisymmetric AFM tip
on an adhesive, viscoelastic surface [12, 13]. in this section, we briefly summarize key elements of Attard’s
original model and its implementation [12, 13, 22].

The elastic equation for a semi-infinite half-space predicts the surface deformation due to a distributed
applied force as follows [27]:

1 —v? pist)

u(r,t) = —
TE |[r — s|

ds, (D
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Figure 1. The tip-sample interaction schematic illustrating the parameters used in Attard’s model. Dashed lines on the surface
represent the surface rest level before the deformation.

where r is the position vector to the point of interest on the undeformed flat surface, and ‘r’ is the radial
coordinate of the position vector such that r = 0 corresponds to the position of a point on the undeformed
sample surface that lies directly beneath the axisymmetric AFM tip apex. u(r, t)is the instantaneous out-of-
plane surface deformation atr, and p(r, t) defines the distributed pressure applied on the surface with elastic
modulus E and Poisson ratio ¥. When an axisymmetric rigid tip contacts a surface, p(r, ) arises from the local
instantaneous tip-surface interaction forces which their magnitude depends on h(r, t), the tip-deformed
surface distance at time t. These parameters for an interacting tip-surface ensemble are shown in figure 1. With a
parabolic approximation of the rigid tip profile, the geometry parameters can be related as:

u(r, t) = ho(t) +r2/2 R — h(r, t), )

where, hj is the distance between the tip apex and the undeformed surface at time t (figure 1). h () defines the
prescribed tip trajectory as a function of time.

To extend equation (1) to tip-surface contact on linear viscoelastic materials, the surface deformation history
is accounted for by implementing the correspondence principle on the linear elastic solution as follows:

ds dt’ 3)

t _ 2 o h , ,
u(r, ) — u(r, tO):j; _W;(t_vtl) pl(r(i;))

where, p(h(r, t)) = dp(h(r, t)) /dt and t, is the initial time instant of the computations. Tip position at # is
assumed to be far enough from the sample so that the tip-surface interaction is negligible and the surface is flat
and stationary (u(r, to) ~ 0). Asseen in equation (3), the deformation of viscoelastic surfaces in a continuum
mechanics perspective requires a time integral over its preceding deformation history.

To model the surface viscoelasticity behavior, Attard employs the standard linear solid (SLS) constitutive
relationship whose creep compliance function is defined as:

1 + Meft/r, (4)
E(t) Ex EEy

where, Eq and E,, are the short- and long-term modulus of the surface, E(¢) is the effective instantaneous
viscoelastic modulus, and 7 is the characteristic creep(retardation) time. When 7is very short or long comparing
with the tip-sample interaction time, the SLS model reduces to the Kelvin-Voigt or Maxwell models,
respectively. However, when 7is chosen to be comparable with the tip-sample interaction time, the SLS model
can capture more complex material behavior that cannot be predicted by the Kelvin-Voigt or Maxwell models.
The tip-surface pressure between any point on the surface with the tip is computed using a Lennard-Jones (L))

pressure model:
6
L - 1), 5

6mh(r, t)? ( h(r, t)°

p(h(?‘, t)) -

where H is the Hamaker constant and z is the equilibrium distance. These two physical parameters, H and
z define the work of adhesion which is the reversible thermodynamic work to separate two interfaces from
equilibrium state to distance of infinity:
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Wo=m+m—1m= (6)

where, v, and +, are surface energies of the two bodies and +,, is the interfacial energy. Attard’s model
calculates the interaction between each of the introduced radial elements on the surface with their associated
counterparts on the tip using the same method invoked in the derivation of the well-known Derjaguin
approximation [28, 29]. The model can accommodate alternative and/or extra surface force models or more
sophisticated linear viscoelasticity constitutive models such as the generalized Maxwell model (also known as
Prony series) or power-law rheology to capture more complex sample behavior.

Substitution of the SLS model’s creep compliance function, equation (4), into equation (3) and its
subsequent differentiation with respect to time cast the equations in the form of differential equations and
remove the time-convolution integral, as follows:

i, 1) = 2, ) — et 1) — —— [PEED) g %
T wEosY  |r — s|
wry ) =~ [PEED) ®)
TExsY |1 — 5|
where, E ; and E, ; are reduced short- and long-term modulus of the sample, respectively:
11—
Eos Eo
1 1 —v?
= ©)
EO,oo Eoo

Due to the axisymmetry of the problem, Attard further simplifies the equation by expressing the kernel of the
integrals in equations (7) and (8) in terms of the complete elliptic integral of the first kind with r and s
representing the radial coordinates of a pointlocated at r and s respectively:

i(r, 1) = —%(u(r, 1) — un(ry 1)) — ELj;d b(h(s, K, )5 ds, (10)
0,s
1 [
oo (ry 1) = —Emj; p(h(r, D)k(r, 5)s ds, (11)

where r; is the computational domain beyond which the tip-sample interaction is considered negligible. k (7, s)
is defined as:

iI<(52/r2) s<r

k(T’, 5) = 727‘ > (12)
—K(r*/s?) r<s
s

where, Kis the complete elliptical integral of the first kind. Since k(r, s) = k(s, r) thek square matrix is
symmetric.

To solve equation (10), Attard discretizes the computational domain (0 < r < ;) into 14 equal-in-size
segments and assumes that all points in each segment have the same (7, ), u(r, t),and h(r, t). The parameters
associated with each of these discretized segments are calculated based on its central point, hereinafter is called a
node. Then, Attard rewrites equation (10) for each of these 14 nodes and solves the resultant set of dependent
ODE:s for the deformation rate of each of the nodes [12, 13, 17]. Due to implicit #(r, t)in p(h(s, t)) term on the
right side of equation (10), this set of ODEs cannot be treated and solved explicitly. Therefore, Attard solves them
through iteratively adjusting a guessed 1 (r, ¢) until equality between both sides of equation (10) is established.
Attard suggests using the forward Euler’s method to predict u(r, t) for each timestep based on the calculated
1 (r, t) from the preceding timestep. Attard numerically calculates the integrals in equations (10) using
introduced radial nodes as integration partitions. Simultaneously these nodes are used to reconstruct the
deformed surface profile at each timestep and act like degrees of freedom (DOF) of the surface. This
bifunctionality of the radial nodes is not computationally efficient since the number of radial discretization for
sufficiently accurate integral calculations might not be necessarily the same as the required DOF to render the
deformed surface. We will refer to the above-described computational method proposed by Attard as the
‘iterative’ approach.

2.2. Enhanced Attard’s Model (EAM)
To improve the computational implementation of Attard’s model, we first remove the slow and
computationally intensive iterative solution of the model’s differential equations. To do so, we expand the rate of

4
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pressure change in equation (10) as follows:

. dp(h(r,
piner, oy = LD
_dp(h(r, 1)) o dh(r, t)
T dh(r, b) dt
= p'(h(r, ) [ho(t) — u(r, 1)] (13)

where p’(h) = dp/dh. Then, we substitute equation (13) into equation (10) and rearrange it so that all terms
involving u(r, t) are on the left side of the equation, as below:

f P/ (h(s, D)ii(s, Dk(r, )s ds — a(r, 1)
EOS

ho(t)
EO,s

=(u(r t) — ux(r, t)) + ford p'(h(s, ) k(r, s)s ds. (14)

The resultis a set of nonlinear coupled ordinary differential equations with explicit time-dependent forcing
through the prescribed tip motion term, ho(t), on the right-hand side of equation (14). Hereafter, this method is
referred to as the ‘explicit’ approach in this article. Equation (14) can be solved by introducing radial and
temporal discretization like the iterative approach. Using the explicit approach solution significantly reduces the
computational time in comparison with the iterative approach.

Furthermore, we propose a method to optimize the computations speed by separating the dual functionality
of the radial nodes in the original contact model. To do so, we apply separation of temporal and radial variables
on u(r, t) asfollows:

p

u(r, 1) = Y ai(Of,(r), 15)

i=0

where a;(t) represent the time-dependent coefficients of the radial basis functions and f;(r) are a complete set of
functions that approximate the surface deformation profile at each timestep. Substitution of equation (15) into
equation (14) results into a set of differential equations as follows:

a (1)

,()EOS

= ;(Z a;(Of,(r) — us(r, t)) + %fom p'(h(s, 1)k(r, s)s ds. (16)
=0 0,s

f (s, ).k, )s ds — Za(t)f(r)

Thus, instead of solving a set of ODEs in equation (14) each associated with a radial element, we solve
equation (16) for the time-dependent coefficients, a;(t), that are each associated with a selected radial basis
function. The resultant advantage is that the number of basis functions can now be adjusted and optimized
independently of the number of radial integral partitions.

While almost any complete set of functions can be chosen for f;(r), an accurate reconstruction of the
deformed surface is achieved with smaller #,, if the shape of selected functions resembles the expected deformed
surface profiles during an interaction cycle. To further simplify equation (16), we choose f;(r) to be a complete
orthogonal set of functions, for which we have:

[ sonmdr= [ ferde, (7

where, 6,-j is the Kronecker delta which =1 ifi =j, and otherwise =0. Since the problem is axisymmetric, we only
consider the even terms of selected basis functions. Then, we multiply both sides of equation (16) with f] (r)and
integrate over (0, 7,7) to utilize the terms orthogonality and simplify the resultant equation:

a](l‘)

f“{[pw@ovw%@ﬁ a0¢ = 2¢
Tmﬁ[pwmm%@¢+hmﬁfpmmm%@¢, (18)
p© = [ 50 ke 9 (19
G=[" fwan (20)

where, iand j are integer numbers between 0 to 7. p; (s)and ¢ jare time-independent variables and hence, are
not required to be calculated for each timestep. We rearrange equation (18) into a matrix representation and

5
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Figure 2. AFM force spectroscopy schematics and used parameters. In this mode, the input signal to Z-piezo prescribes the defined Z
motion. The microcantilever moves toward the surface with a constant velocity, indents, and then retracts as it reaches the defined
force setpoint.

introduce temporal discretization as follows:

ai(ty) = J; 'bj, (21)

hzéijMxmmm%mm—%xg (22)
@:“f%f+ﬂ%ﬁﬁ”ﬂMaomao¢

-F@iﬁﬁ”ﬁmsJ»%@m& (23)

Amongst numerical quadrature methods to calculate the integrals in equations (22) and (23), we use the
trapezoidal rule for the simulations in this article. Solving the set of nonlinear ODEs for timestep ¢, yields the set
of associated a;(t,) coefficient rates. Then, equation (15) reconstructs the deformed surface profile at each
timestep. This allows for the explicit computation of u (r, t) and thus h(r, t) and consequently p(h(r, t)). The
tip-surface interaction force, F(t), for each timestep is calculated as follows:

Fu(t) = 27 f " o (h(r, Dr dr. (24)
0

To evaluate and optimize the performance of the proposed computational approach, we studied an
alternative way of implementing the approximating basis functions. In this scenario, we express the tip-surface
distance h(r, t)instead of u(r,t) in terms of a complete set of orthogonal radial basis functions, as follows:

) =S ait) £, (25)
i=0

The implementation process for equation (25) is similar to the previously explained procedure.

The third important improvement made in EAM relates to computational stability. In cases where the
selected model to calculate p(h(r, t)) switches between attractive and repulsive forces depending on the gap
between interacting bodies, Attard’s model computations may become unstable. The computational instability
occurs when the surface undergoes rapid non-equilibrium movements during the interaction cycle, specifically
during snap-in or -off surface processes for which the model predicts large 1 (r, t,). Attard suggests using
forward Euler’s method to project u(r, t,41) at each timestep based on the calculated i (r, t,) for previous
timestep [12]:

u(r, tgp1) = u(r, tg) + u(r, ty)dt, (26)

where ‘dt’ is the infinitesimal time interval between timesteps. Using forward Euler’s method, the projected

u(r, ty11)isdirectly proportional to i (r, t,) of the proceeding timestep. Therefore, when 1 (r, t,) is verylarge, it
may lead to discontinuities in the reconstructed deformed surface profile and resultant computational
instabilities. This may happen due to surface deformation instabilities during interaction time such as snap-in
and/or snap-off instances when the tip approaches or retracts off the surface, respectively, especially on highly
soft and sticky surfaces. To alleviate this issue, we employed the general form of multistep Adams-Bashforth
method to establish a more smoothly controlled link between u(r, t) at each timestep and #(r, t) of the
proceeding timesteps:
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Figure 3. The interaction between a rigid axisymmetric paraboloid tip oscillating through a prescribed triangular wave and a
viscoelastic surface is simulated using EAM. The triangular excitation velocities are (a) &5 pm s~ (b) &2 um s~ and (c)
+1 pm s~'. The employed material and interaction parameters are identical with the ones used by Attard [12] to facilitate
comparison.

u(r, tq+l) = u(r’ tq) + dtz biﬁ(ﬁ tq—i)) (27)
i=0

where, as per definition the rate coefficients must satisfy this condition: Z?i 0 b; = 1[30]. Moreover, we
successfully investigated the use of other methods such as Runge—Kutta methods to further improve the
computational efficiency. However, for simplicity, we use the above-described method in the simulations of this
study. We name the described method as formulated by equations (17)—(19) combined with equation (27)

as ‘EAM’.

2.3.Embedding EAM into quasi-static and dynamic AFM force spectroscopy

EAM and Attard’s original implementation both assume that the AFM tip motion relative to the undeformed
sample surface is a known, prescribed function of time. In most AFM modes, however, while the AFM
microcantilever’s excitation or Z oscillation range may be prescribed, the tip’s trajectory depends on the ensuing
tip-sample interactions as well as on the microcantilever’s mechanics and dynamics. Here we demonstrate how
EAM can be embedded within a simple microcantilever mechanics model and within the Amplitude
Modulation AFM (AM AFM) amplitude reduction and phase lag formulas to predict the force spectroscopy
response on soft, adhesive, viscoelastic surfaces.

First, we embed EAM computations into quasi-static AFM force spectroscopy simulations. The quasi-static
AFM, in which a constant velocity Z-piezo expansion-retraction above a sample is prescribed, is commonly used
to study the surface mechanical properties [31-33]. During a single cycle of this mode, the microcantilever
approaches the surface, snaps into the surface, indents into the sample until it reaches the defined setpoint, and
then withdraws back to its initial state. The Z-piezo periodic motion, Z (), has a frequency that is much smaller
than the fundamental resonance frequency of the microcantilever hence this method is called ‘quasi-static’ force
spectroscopy. A schematic of an AFM force spectroscopy experiment is shown in figure 2.

The tip trajectory with respect to the unperturbed surface level, ho(t) = Z(¢) + q(t), is notknown a priori
in quasi-static AFM force spectroscopy even if Z(t) is a known prescribed motion. This is because the tip
deflection, g(t), does not follow the triangular trajectory of Z(t), but rather depends on the tip-sample
interactions. Therefore, we need an algorithm that calculates g () for each timestep during the cycle based on the
associated tip-sample interaction calculated by EAM. Since the Z frequency is far below the fundamental
frequency of the microcantilever, the g(¢) output of the designed algorithm for each time step needs to satisfy the
relevant quasi-static solution:

q(t) = Fs(0) /k (28)

where k is the quasi-static bending stiffness of the microcantilever. The algorithm determines q () by iteratively
adjusting an initial guess until the difference between two sides of equation (28) falls below the defined tolerance.
Note that the quasi-static assumption in the algorithm implies that transient ringing of the microcantilever upon
detachment from the surface cannot be captured by this approach.

Next, we summarize how the EAM can be embedded inside AM-AFM’s amplitude and phase equations to
predict amplitude and phase response and force curves during a Tapping mode approach curve on an adhesive
viscoelastic surface. The algorithm to do so with Attard’s model has been discussed in detail elsewhere [11], so
here we mention that the approach involves using an energy balance based algorithm employing the amplitude

7
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Figure 4. Computational stability improvements by employing the Adams-Bashforth method (equation (27)) with (a): n; = lin
comparison with (b): forward Euler’s method. The rigid tip oscillates through a sinusoidal wave and interacts with the LDPE surface as
characterized in table 1. The free oscillation amplitude, A, and amplitude setpoint for these simulations are 62 nm and 0.5,
respectively. All the employed simulation parameters for (a) and (b) are identical to enable robustness comparisons. The surface
adhesion level is regulated by employing various z, values which are labeled in the figure. Typical calibration values of Olympus
AC160-R3 microcantilevers are used in these simulations: f =278 kHz, k =28.1 Nm ', and Q = 430, where f, k, and Q are the
excitation frequency, equivalent stiffness, and quality factor of the microcantilever.

Table 1. The employed values for L] pressure and surface viscoelasticity properties
for LDPE in the conducted simulations. H, z, v, Eq, E.., and 7are Hamaker
constant, equilibrium distance, Poisson’s ratio, short-term modulus, Long-term
modulus, and creep time, respectively. The tip radius in these simulations is set to be

10 nm.
H() zo (nm) v Eq (GPa) E., (GPa) T(sec)
1 x107Y 0.25 0.49 2 0.1 1 x 1077

reduction formula:

Amtio — I/Q
(—zvts)z (L, B Y
kA? Q  wkA?

1 | ExA, 2)

J— + - -~ 7

Q kA2
-2V (A, Z)

kAz

(29)

tan ¢ = (30)

where, A" and A are the amplitude setpoint and tip oscillation amplitude, respectively. Furthermore, the virial
(Vjs) and energy dissipation (Ej;) in a single oscillating cycle of AM-AFM are defined as:

1 T
wz;ﬁzuwm@ 31)

T
&:—ﬁ F(®)d(t)dt, (32)

where §(t) is the tip velocity and T is the period of a single oscillation cycle. Therefore, we need an algorithm to
find the specific Z distance for which the computed V; and E;; using equations (31) and (32) satisfies
equation (29) within a prescribed tolerance [11].

3. EAM verification

To verify EAM and assure the reliability of the developed code, we compare EAM predicted F-d curves for a
prescribed triangular tip motion with the ones presented in Attard’s original work [12]. In this set of simulations,
the paraboloid tip has a radius of 10 ;zm which oscillates through a triangular wave between hy = 10 nm and

hy = —10 nm. The employed material properties and interaction parameters are: Ey = 10 GPa, E, = 1 GPa,
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Figure 5. Comparison of the convergence performance of different computational setups of EAM implementation as listed in table 2.
The graphs are color-coded according to legends of graph ‘a’ and the labels defined in table 2. The horizontal black dashed lines in the
second-row graphs shows the 1% error criteria with respect to exact solutions.

Table 2. EAM computational setups evaluated.

Solution type of nonlinear diff.

#  Radial disc. eq. set Basis function ~ Approximated parameter ~ Orthogonality implementation
A Yes Iterative NA NA NA
B Yes Explicit NA NA NA
C No Explicit Fourier u(r, t) No
D No Explicit Fourier h(r, t) No
E No Explicit Fourier u(r, t) Yes
F No Explicit Fourier h(r, t) Yes
G No Explicit Besselfirstkind ~ u(r, t) Yes

H = 107" J, zy=0.5nm, and 7 = 1 ms. The sample and tip movement parameters are identical to the ones
used in the original work to enable comparing the results. The results are checked to be independent of the
number of employed temporal and radial discretization. The employed surface and interaction parameters
except tip velocities are identical in all figure 3 simulations. The variation of predicted F-d curves indicates the
velocity dependency of the model when interacting with a viscoelastic surface. Figure 3 illustrates an excellent
agreement between the original Attard’s model and EAM predictions.

4.EAM performance

We simulate tip-surface interaction in amplitude-modulation AFM (AM-AFM) on a low-density polyethylene
(LDPE) sample using various computational setups of EAM to evaluate, compare, and optimize their output
computational accuracy. We assume tip oscillation is steady-state and sinusoidal in AM-AFM which is
legitimate when the operation is done in air/vacuum [34]: g(¢) = A sin (wt — ¢), where wand ¢ are the
excitation frequency and phase lag relative to excitation force, respectively.

To demonstrate the achieved computational stability enhancement, we used the Adams-Bashforth method
with np = 0 (forward Euler’s method) and ny = 1to predict a single force-distance (F—d) history when a rigid
tip oscillating through a sinusoidal wave interacts with an LDPE sample as characterized in table 1. We regulated
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Figure 6. Demonstration of F-d history convergence to the exact solution by increasing the number of employed basis functions ().
The surface and L] interaction parameters are listed in table 1. The employed operational conditions and microcantilever properties
are identical to the ones used for figure 4 simulations.
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Figure 7. Elapsed time to compute a tip-surface interaction cycle using different EAM computational setups as listed in table 2. The
labels in the legend are defined in the first column of table 2. The surface and interaction parameters are listed in table 1. The free
amplitude, Ay, is 62 nm and the amplitude setpoint is 0.8 for these simulations. It shows the computational rate of EAM is about 3
orders of magnitude faster than the original iterative approach proposed by Attard [12, 13]. All simulations are carried out on a typical
desktop computer.

the adhesion of the surface by decreasing z, in the L] pressure equation (equation (5)) to envisage when
computational instabilities arise. As illustrated in figure 4, the Adams-Bashforth method implementation
stabilizes the computations in comparison with the forward Euler’s method.

To quantify the convergence of EAM solutions, we use virial (V;;) and energy dissipation (Ej;) values of a
single oscillation cycle of the microcantilever on an LDPE sample. V;; and E;; are commonly used parameters to
quantify AM-AFM and represent the conservative and non-conservative part of the interaction energy during
tip-surface contact [11]. Since the output computational error of ‘iterative’ and ‘explicit’ approaches can be
minimized, we consider them as ‘exact’ solutions. EAM simulations converge to exact predictions if a sufficient
number of basis functions (11, in equation (15)) are employed.

The LDPE and EAM parameters used for this analysis are listed in table 1 and table 2. The free amplitude, Ay,
is 62 nm and the amplitude setpoint is 0.8 for these simulations. EAM computational setups ‘C’ and ‘E’/’G’ are
computed using equation (16) and equation (18), respectively, and computational setups ‘D’ and ‘F’ refer to
employing Fourier expansion basis functions to approximate h(r, t) instead of u(r, t) as described in
equation (25). All solutions are checked to be independent of the selected domain and temporal discretization
values. Since the problem is assumed to be axisymmetric, only the even terms of the employed basis functions
are considered. The number of the employed basis functions is in the range of 0 to 56. The convergence of the
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Figure 8. Study of the surface-microcantilever ensemble dynamics in AFM force spectroscopy. (a) shows the predicted microcantilever
deflection during one oscillation cycle. (b) and (c) illustrate the predicted F-Z and F-d curves, respectively. The blue and red solid lines

represent the approach and retraction branches of the force curve computed using EAM with n;, = 25, respectively. The dashed black

line is computed using the explicit approach. The approach and retraction phases of the force curve are shown in blue and red,

respectively.
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Figure 9. Computed (a): Phase lag (¢), (b): Energy dissipation (Ej;), and (c): virial (V;;) on AM-AFM dynamic approach/retract curves
on an LDPE sample. In these simulations u(r, t) is approximated according to equation (15) with n, = 25. The employed Ay, f, Q,
and kare 15nm, 278 kHz,429.5,and 28.1 N m ™}, respectively. The results are in excellent agreement with exact solutions.

EAM computational setups is evaluated by comparing to the exact solutions (‘A’ and ‘B’) [11-13] and the
associated energy errors are expressed as a percentage. We considered the 1% error on both Vj; and Ej
parameters as the convergence threshold and we determined the convergence when this criterion is met
constantly beyond a specific 1. The number of the timesteps is identical for all simulations (10*) and the
number of radial discretization terms used for the ‘exact’ computational solution is 70.

The results illustrated in figures 5(a)—(b) show that V;; and E,; computed using EAM computational setups
A-Gin table 2 gradually converge to the associated exact values by increasing #;,. Figures 5(c)—(d) depicts the
percentage error of each of these computational setups and horizontal black dashed lines show the 1% error
criteria with respect to exact solutions. Figure 5(c) shows that the Fourier basis function’s implementation leads
to amore optimized Vj; convergence when used to approximate u(r, t) (computational setups ‘C’ and ‘F’) rather
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Figure 10. The tip-surface interaction in a single cycle of AM-AFM on the LDPE surface in the time domain as predicted by EAM (blue
area) and exact (dashed black line) approaches. The surface characteristic parameters are listed in table 1. The instant associated with
each of the images is noted at the bottom-left of each picture. a-fand g-1image series illustrate the approach and retraction parts of the
cycle, respectively. The arrows are to assist in realizing the tip velocity direction. The frame dimensions are in nm.

Table 3. The values employed for L] pressure and surface viscoelasticity properties for
polystyrene (PS) in the conducted simulations. The tip radius in these simulations is
set to be 50 nm.

H(O) zo (nm) v E, (GPa) E.. (GPa) T (sec)

2 x 10720 0.15 0.35 425 1.89 1 x 1077

than h(r, t) (computational setups ‘D’ and ‘F’). Moreover, figure 5(d) shows that in terms of E; convergence,
the ones with orthogonality implementation (computational setups ‘E’ and ‘F’) converge in slightly smaller #,,
numbers than others. Figures 5(a) and (b) illustrate a faster convergence for V;, than E;. We also demonstrate
this convergence on predicted F—d histories in figure 6 from EAM computations performed in computational
setup ‘E’. When n;, = 0, the surface deformation is characterized by a sole function of time:

u(r, t) = u(t) = ag(t). The force history predictions gradually converge to the exact solution and do not
visually seem to vary significantly beyond n;, = 20. The repulsive phase of the force history converges faster than
the attractive phase.

The time elapsed to compute a single tip-sample interaction cycle when using the computational setups
listed in table 2 is compared in figure 7. The significant difference between iterative (‘A’) and other
computational approaches depicts the considerable enhancement achieved through the applied strategies.
Furthermore, figure 7 shows that the basis functions orthogonality implementation (computational setups ‘E’,
‘F’,and ‘G’) leads to an optimized computational time due to the more simplified formalism. The Bessel set of
basis functions (‘G’) despite the acceptable convergence rate, is slower than Fourier ones due to the intrinsic
computational complexity of the Bessel functions and their orthogonality implementation. Figure 7 illustrates
that in terms of the computational time, EAM can outperform the ‘explicit’ approach if the number of employed
basis functions in EAM is less than the number of the implemented radial discretization in the ‘explicit’
approach.

Considering both results in figures 5 and 7, amongst the evaluated EAM computational setups, the tip-
sample interaction phenomenon is most efficiently computed by EAM as formulated in equations (21)—(23),
when we use:

+ Equation (15) to approximate the surface deformation, and,

+ The cosine terms of Fourier expansion as the basis functions (setup ‘E’):
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f,(r) = cos(iw—r) i=0,1, 2,..,1p (33)

a

Hereafter, we only employ this computational setup to carry out EAM simulations in this article. Observing 1%
virial and dissipation energy values error as the convergence criterion, the number of required basis functions
(np) to approximate u(r, t) is ~24 for this set of input parameters.

5. AFM Simulations using EAM

We applied the algorithm for the quasi-static solution of force spectroscopy (Eqn. (28)) to simulate an AFM
force spectroscopy on an LDPE sample with viscoelasticity and L] pressure parameters as specified in table 1
except 7 = 0.01 ms. In this simulation, the microcantilever equivalent stiffness is 28.1 N m ™" and the
microcantilever base travels through a triangular wave with 1 Hz frequency and 50 nm amplitude.

The results shown in figure 8 illustrate the model’s ability to capture the surface instabilities both when
approaching and retracting the surface. During retraction, the adhered surface to the tip gradually peels away
until the adhesive forces again dominate and the microcantilever deflects downward (negative force). This will
lead to a hysteretic loop in which the long-range surface forces may significantly contribute to the resultant
energy dissipation. The whole cycle computation took less than a minute to complete using a typical desktop
computer as compared to 2212 h of the original Attard’s model.

Next, an AM-AFM approach/retract curve on a polystyrene (PS) surface with viscoelasticity and adhesive
properties as specified in table 3 is simulated using the algorithm described in section 2 for AM-AFM approach
curves. We calculated Ey, V;, and ¢ as a function of A" as shown in figure 9. Computing this AM-AFM
approach curve in figure 9 using EAM with n, = 25, which meets the 1% V]; and E error threshold, takes about
aminute on a typical desktop computer as compared to /15 h taken by the original Attard’s model. The results
are checked to be independent of the computational domain selection and temporal discretization.

The hysteretic approach-retraction branches in figure 9 demonstrate the co-existence of both repulsive and
attractive regimes in a range of A™%’s. The tip-sample energy dissipation predicted in the repulsive regime
follows the same trend previously predicted [35]. However, the method is uniquely capable of calculating the
viscoelastic and adhesive dissipation in the attractive regime of AM-AFM operation. This is particularly helpful
for sticky and/or highly delicate samples for which imaging in the repulsive regime is challenging and/or sample
is susceptible to damage with forces in the repulsive regime.

Finally, we use an algorithm to visualize the tip-surface interaction in a single cycle of AM-AFM on an LDPE
sample as characterized in table 1. A series of figures illustrating the tip position and surface geometry at different
timesteps are shown in figure 10. The finite-range attractive tip-surface forces cause the surface to deform
slightly toward the approaching tip (figure 10(c)). When retracting, the soft, relaxed surface forms a meniscus
around the tip profile and progressively detaches until it completely peels off and continues to gradually return
to its initial state (figures 10(g) to (i)). Surface attractive forces cause the contact radius during retraction to
become larger than the one during the approach. The surface deformation profiles shown in figure 10 and
described above match qualitatively well with in situ confocal microscopy observations of soft polymer surfaces
being indented with colloidal probes [36].

6. Conclusions

This work features an approach to enhance the computational part of Attard’s continuum mechanics
viscoelasticity contact model. Three enhancements are implemented: (1) the model’s formalism is optimized to
enable the explicit solution of the governing differential equations, (2) instead of using radial discretization, the
deformed surface is reconstructed using a complete set of basis functions, and (3) instead of the forward Euler’s
method, higher-order numerical procedures are employed to solve the model’s ordinary differential equations.
By implementing the enhancements, EAM is more than three orders of magnitude faster than Attard’s originally
proposed computational model. Furthermore, the enhancements improve the computational stability of EAM
to better tolerate unstable and abrupt movements of the surface. EAM is a fast first-principles viscoelasticity
model that is versatile in terms of the inclusion of various tip-surface interaction forces and surface linear
viscoelasticity models. EAM was implemented within the AFM framework to predict force spectroscopy
observables and dynamic approach/retract curves by AM-AFM. Moreover, we used EAM to calculate the time-
resolved surface dynamics during a single tip-surface interaction cycle of AM-AFM. The excellent agreement
between EAM simulation results and the ones by exact approaches verifies EAM’s accuracy. The accuracy, speed,
and robustness of EAM facilitate simulations for AFM operations on soft, adhesive, and viscoelastic surfaces.
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