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Abstract
Quantitative atomic forcemicroscopy (AFM) on soft polymers remains challenging due to the lack of
easy-to-use computationalmodels that accurately capture the physics of the interaction between the
tip and sticky, viscoelastic samples. In this work, we enhance Attard’s continuummechanics-based
model, arguably themost rigorous contactmodel for adhesive viscoelastic samples, via three key
enabling strategies. First, the originalmodel’s formalism is rearranged to enable a fast and explicit
solution of themodel’s ordinary differential equations (ODEs). Second, the deformed surface is
reconstructed using a complete set of optimized orthogonal basis functions as opposed toAttard’s
original, computationally expensive radial discretization. Third, themodel’s governingODEs are
solved using amulti-step numericalmethod to further stabilize the solutionwhen using for soft and
sticky samples. Implementing these enhancements, enhancedAttard’smodel (EAM) ismore stable,
3+orders ofmagnitude faster, and equally accurate when compared to the originalmodel. These
facilitate EAM’s inclusion into simulations of various AFMoperatingmodes.We demonstrate EAM
based simulations of quasi-static force spectroscopy and amplitudemodulationAFMapproach curves
on soft sticky polymer surfaces. On a typical desktop computer, simulation of an amplitude
modulation approach curvewith EAM takes less than aminute as compared to≈15 h by the original
Attard’smodel.We expect EAM to be of interest to theAFMcommunity because it facilitates the
inclusion of rigorousmodels of tip-sample contact in simulations on polymer samples. EAM is
available as part of theVEDA set of simulation tools deployed on nanoHUB.org cyber-infrastructure.

1. Introduction

Successful quantitative estimation of local sample properties fromAFMdata, whether in the formof force-
distance curves ormaps of dynamic AFMobservables, hinges on howwell the utilized tip-sample contactmodel
reflects the actual physics of the interaction. Soft, adhesive, and viscoelasticmaterials represent an exciting area
of growth of newmaterials whether for biomedical, critical node photolithography, flexible electronics, or in a
wide range of consumer products [1–4]. Quantitative AFMon suchmaterials requires accurate, versatile, and
fast contactmechanicsmodels to link experimentally observed hysteresis, frequency dependence, and creep to
thematerial’s viscoelastic and adhesive properties [5–11].

However, the currently utilizedmodels to calculate the tip-surface interactions on soft viscoelastic and
adhesivematerials are limited in variousways. Either they do not utilizefirst-principlesmethods,make ad hoc
self-inconsistent assumptions, neglect relevant physical parameters of the contact phenomenon, employ
computationally inefficient and slow procedures, and/or lack a simple and direct path to integrate withAFM
operationalmodes [5–7, 11–15]. Furthermore, almost all viscoelastic contactmechanicsmodels used by the
AFMcommunity calculate the tip-surface interaction forces assuming that the force is only a function of
position and velocity of the tip: =F f d t d t,ts ( ( ) ( )) and do not account for the interacting surface dynamics [16].
Thesemodels do not capture the surface instabilities that occurwhen the rigid tip approaches or retracts off the
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surface particularly on soft adhesivematerials [17]. The long-range attractive forces between interacting surfaces
cause these experimentally observed surface instabilities to occur prior to and after the actual tip-surface contact
and lead to energy dissipation in the formof heat [18, 19]. Inmany viscoelastic contactmodels commonly used
byAFMcommunity, the creep compliance function is simply inserted intoHertz [20] or Johnson–Kendall–
Roberts (JKR) [21] theories formalism.However, the static free energyminimization procedure implemented in
Hertz or JKR theories does not hold in the case of these ad hoc viscoelasticmodels [22]. Interested readers are
referred to [11] for further details on the deficiencies associatedwith the ad hoc viscoelasticmodels and their
non-reliable predictions. On the other side, the continuummechanics-based viscoelasticitymodels which are
soundly based on the established elasticity and viscoelasticity equations, do not usually result in analytical
closed-form solutions, and consequently lead to higher computational expenses. Ting [23] proposed one of the
oldest viscoelasticmodels in this categorywhich despite its high reliability, does not account for the surface
forces. Therefore, a fastfirst-principles contactmechanicsmodel which enables rigorous prediction and
interpretation of AFM images on soft, adhesive, and viscoelastic polymers is required to address these
shortcomings. Attard et al [12, 13, 24] introduced a novel approach that provides versatility inmodeling tip-
sample interactions by including different linear viscoelastic constitutivemodels as well as arbitrary surface
forces within a continuummechanics framework. Themodel can predict the surface deformation as the tip
interacts with adhesive, viscoelastic samples by applying the correspondence principle on the Boussinesq
solution for a semi-infinite half-space [25] and calculates the interaction force by implementing radial and
temporal discretization. Attard’s original implementation, which is akin to a boundary elementmethod,
computes the distributed pressure and the associated surface deformation over the contact region at each radial
node and each timestep.However, Attard’s implementation does not lead to a closed-form solution to calculate
the tip-surface interaction forces. The implementation is computationally expensive due to the intrinsic
temporal and radial discretization in addition to the iterative loops needed to solve themodel’s governing
differential equations.Moreover, Attard’s original implementation leads to computational instabilities when the
surface undergoes abrupt bifurcations/instabilities under the action of the tip, especially on soft and sticky
surfaces.

In this work, we use three enabling strategies to significantly enhance the computational part of Attard’s
model and render it into a faster andmore robustmethod. First, we rearranged themodel formalism so that its
governing differential equations become explicitly solvable. Next, we approximated the deformed surface profile
using a complete set of optimized orthogonal basis functions to replace the radial discretization in the original
model. Finally, instead of the forward Eulermethod employed byAttard, we used the two-stepAdams-
Bashforthmethod to solve themodel’s ordinary differential equations. Implementation of these strategies
accelerates themodel’s computations by at least three orders ofmagnitude. Furthermore, the enhancements
improve the computational robustness of themodel when predicting tip-surface interaction on highly soft,
viscoelastic, adhesive surfaces.We refer to the combination of Attard’smodel and the three identified
improvements as the enhancedAttard’smodel (EAM). Leveraging EAM’s capabilities within anAFM
framework leads to a better understanding of the complex phenomena that occur during tip-surface interaction,
especially on soft sticky samples.

To demonstrate the utility of EAM in theAFMcontext, we performed simulations of a quasi-static AFM
force curve and a dynamic approach/retract curve on a polymeric surface. The resulting simulation tools based
on EAMare now included as part of theVEDA suite of tools [26] on the cloud computing cyber-infrastructure of
nanoHUB.org and are thus easily accessible to the AFMcommunity worldwide.We expect that the utilization of
EAMsimulations on the nanoHUB to provide a fast and accessible path to gain further insight into the complex
tip-surface interaction phenomena on soft viscoelastic sticky polymers samples.

2.Methods

2.1. Attard’s originalmodel and implementation
Attard’smodel and computational implementation provide a framework to compute tip-sample force and
surface deformation history induced by a prescribed time-dependentmotion of a rigid, axisymmetric AFM tip
on an adhesive, viscoelastic surface [12, 13]. in this section, we briefly summarize key elements of Attard’s
originalmodel and its implementation [12, 13, 22].

The elastic equation for a semi-infinite half-space predicts the surface deformation due to a distributed
applied force as follows [27]:
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where r is the position vector to the point of interest on the undeformed flat surface, and ‘r ’ is the radial
coordinate of the position vector such that =r 0 corresponds to the position of a point on the undeformed
sample surface that lies directly beneath the axisymmetric AFM tip apex. u r t,( ) is the instantaneous out-of-
plane surface deformation at r, and p r t,( ) defines the distributed pressure applied on the surfacewith elastic
modulus E and Poisson ratio n.When an axisymmetric rigid tip contacts a surface, p r t,( ) arises from the local
instantaneous tip-surface interaction forceswhich theirmagnitude depends on h r t, ,( ) the tip-deformed
surface distance at time t. These parameters for an interacting tip-surface ensemble are shown infigure 1.With a
parabolic approximation of the rigid tip profile, the geometry parameters can be related as:

= + -u r t h t r R h r t, 2 , , 20
2( ) ( ) ( ) ( )

where, h0 is the distance between the tip apex and the undeformed surface at time t (figure 1). h t0( ) defines the
prescribed tip trajectory as a function of time.

To extend equation (1) to tip-surface contact on linear viscoelasticmaterials, the surface deformation history
is accounted for by implementing the correspondence principle on the linear elastic solution as follows:
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where, =p h r t dp h r t dt, ,( ( )) ( ( )) and t0 is the initial time instant of the computations. Tip position at t0 is
assumed to be far enough from the sample so that the tip-surface interaction is negligible and the surface isflat
and stationary »u r t, 0 .0( ( ) ) As seen in equation (3), the deformation of viscoelastic surfaces in a continuum
mechanics perspective requires a time integral over its preceding deformation history.

Tomodel the surface viscoelasticity behavior, Attard employs the standard linear solid (SLS) constitutive
relationshipwhose creep compliance function is defined as:
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where, E0 and ¥E are the short- and long-termmodulus of the surface, E t( ) is the effective instantaneous
viscoelasticmodulus, and τ is the characteristic creep(retardation) time.When τ is very short or long comparing
with the tip-sample interaction time, the SLSmodel reduces to theKelvin-Voigt orMaxwellmodels,
respectively. However, when τ is chosen to be comparable with the tip-sample interaction time, the SLSmodel
can capturemore complexmaterial behavior that cannot be predicted by theKelvin-Voigt orMaxwellmodels.
The tip-surface pressure between any point on the surfacewith the tip is computed using a Lennard-Jones (LJ)
pressuremodel:
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whereH is theHamaker constant and z0 is the equilibriumdistance. These two physical parameters, H and
z0 define thework of adhesionwhich is the reversible thermodynamic work to separate two interfaces from
equilibrium state to distance of infinity:

Figure 1.The tip-sample interaction schematic illustrating the parameters used in Attard’smodel. Dashed lines on the surface
represent the surface rest level before the deformation.
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where, g1 and g2 are surface energies of the two bodies and g12 is the interfacial energy. Attard’smodel
calculates the interaction between each of the introduced radial elements on the surfacewith their associated
counterparts on the tip using the samemethod invoked in the derivation of thewell-knownDerjaguin
approximation [28, 29]. Themodel can accommodate alternative and/or extra surface forcemodels ormore
sophisticated linear viscoelasticity constitutivemodels such as the generalizedMaxwellmodel (also known as
Prony series) or power-law rheology to capturemore complex sample behavior.

Substitution of the SLSmodel’s creep compliance function, equation (4), into equation (3) and its
subsequent differentiationwith respect to time cast the equations in the formof differential equations and
remove the time-convolution integral, as follows:
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where, E s0, and ¥E s, are reduced short- and long-termmodulus of the sample, respectively:
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Due to the axisymmetry of the problem, Attard further simplifies the equation by expressing the kernel of the
integrals in equations (7) and (8) in terms of the complete elliptic integral of thefirst kindwith r and s
representing the radial coordinates of a point located at r and s respectively:
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where rd is the computational domain beyondwhich the tip-sample interaction is considered negligible. k r s,( )
is defined as:
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where, K is the complete elliptical integral of thefirst kind. Since =k r s k s r, ,( ) ( ) the k squarematrix is
symmetric.

To solve equation (10), Attard discretizes the computational domain < <r r0 d( ) into nA equal-in-size
segments and assumes that all points in each segment have the same u r t, ,( ) u r t, ,( ) and h r t, .( ) The parameters
associatedwith each of these discretized segments are calculated based on its central point, hereinafter is called a
node. Then, Attard rewrites equation (10) for each of these nA nodes and solves the resultant set of dependent
ODEs for the deformation rate of each of the nodes [12, 13, 17]. Due to implicit u r t,( ) in p h s t,( ( )) termon the
right side of equation (10), this set ofODEs cannot be treated and solved explicitly. Therefore, Attard solves them
through iteratively adjusting a guessed u r t,( ) until equality between both sides of equation (10) is established.
Attard suggests using the forward Euler’smethod to predict u r t,( ) for each timestep based on the calculated
u r t,( ) from the preceding timestep. Attard numerically calculates the integrals in equations (10) using
introduced radial nodes as integration partitions. Simultaneously these nodes are used to reconstruct the
deformed surface profile at each timestep and act like degrees of freedom (DOF) of the surface. This
bifunctionality of the radial nodes is not computationally efficient since the number of radial discretization for
sufficiently accurate integral calculationsmight not be necessarily the same as the requiredDOF to render the
deformed surface.Wewill refer to the above-described computationalmethod proposed byAttard as the
‘iterative’ approach.

2.2. EnhancedAttard’sModel (EAM)
To improve the computational implementation of Attard’smodel, wefirst remove the slow and
computationally intensive iterative solution of themodel’s differential equations. To do so, we expand the rate of
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pressure change in equation (10) as follows:
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where ¢ =p h dp dh.( ) Then, we substitute equation (13) into equation (10) and rearrange it so that all terms
involving u r t,( ) are on the left side of the equation, as below:
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The result is a set of nonlinear coupled ordinary differential equationswith explicit time-dependent forcing
through the prescribed tipmotion term, h t ,0( ) on the right-hand side of equation (14). Hereafter, thismethod is
referred to as the ‘explicit’ approach in this article. Equation (14) can be solved by introducing radial and
temporal discretization like the iterative approach. Using the explicit approach solution significantly reduces the
computational time in comparisonwith the iterative approach.

Furthermore, we propose amethod to optimize the computations speed by separating the dual functionality
of the radial nodes in the original contactmodel. To do so, we apply separation of temporal and radial variables
on u r t,( ) as follows:
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where a ti ( ) represent the time-dependent coefficients of the radial basis functions and f ri ( ) are a complete set of
functions that approximate the surface deformation profile at each timestep. Substitution of equation (15) into
equation (14) results into a set of differential equations as follows:
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Thus, instead of solving a set ofODEs in equation (14) each associatedwith a radial element, we solve
equation (16) for the time-dependent coefficients, a t ,i ( ) that are each associatedwith a selected radial basis
function. The resultant advantage is that the number of basis functions can nowbe adjusted and optimized
independently of the number of radial integral partitions.

While almost any complete set of functions can be chosen for f r ,i ( ) an accurate reconstruction of the
deformed surface is achievedwith smaller nb if the shape of selected functions resembles the expected deformed
surface profiles during an interaction cycle. To further simplify equation (16), we choose f ri ( ) to be a complete
orthogonal set of functions, for whichwe have:
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where, dij is theKronecker deltawhich=1 if i= j, and otherwise=0. Since the problem is axisymmetric, we only
consider the even terms of selected basis functions. Then, wemultiply both sides of equation (16)with f rj ( ) and
integrate over (0, rd) to utilize the terms orthogonality and simplify the resultant equation:
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where, i and j are integer numbers between 0 to n .b r sj ( ) and zj are time-independent variables and hence, are
not required to be calculated for each timestep.We rearrange equation (18) into amatrix representation and
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introduce temporal discretization as follows:
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Amongst numerical quadraturemethods to calculate the integrals in equations (22) and (23), we use the
trapezoidal rule for the simulations in this article. Solving the set of nonlinearODEs for timestep tq yields the set
of associated a ti q( ) coefficient rates. Then, equation (15) reconstructs the deformed surface profile at each
timestep. This allows for the explicit computation of u r t,( ) and thus h r t,( ) and consequently p h r t, .( ( )) The
tip-surface interaction force, F t ,ts ( ) for each timestep is calculated as follows:

òp=F t p h r t r dr2 , . 24ts
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d
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To evaluate and optimize the performance of the proposed computational approach, we studied an
alternative way of implementing the approximating basis functions. In this scenario, we express the tip-surface
distance h r t,( ) instead of u(r,t) in terms of a complete set of orthogonal radial basis functions, as follows:
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The implementation process for equation (25) is similar to the previously explained procedure.
The third important improvementmade in EAMrelates to computational stability. In cases where the

selectedmodel to calculate p h r t,( ( )) switches between attractive and repulsive forces depending on the gap
between interacting bodies, Attard’smodel computationsmay becomeunstable. The computational instability
occurs when the surface undergoes rapid non-equilibriummovements during the interaction cycle, specifically
during snap-in or -off surface processes for which themodel predicts large u r t, .q( ) Attard suggests using
forward Euler’smethod to project +u r t, q 1( ) at each timestep based on the calculated u r t, q( ) for previous
timestep [12]:

= ++u r t u r t u r t dt, , , , 26q q q1( ) ( ) ( ) ( )

where ‘dt’ is the infinitesimal time interval between timesteps. Using forward Euler’smethod, the projected

+u r t, q 1( ) is directly proportional to u r t, q( ) of the proceeding timestep. Therefore, when u r t, q( ) is very large, it
may lead to discontinuities in the reconstructed deformed surface profile and resultant computational
instabilities. Thismay happen due to surface deformation instabilities during interaction time such as snap-in
and/or snap-off instances when the tip approaches or retracts off the surface, respectively, especially on highly
soft and sticky surfaces. To alleviate this issue, we employed the general formofmultistep Adams-Bashforth
method to establish amore smoothly controlled link between u r t,( ) at each timestep and u r t,( ) of the
proceeding timesteps:

Figure 2.AFM force spectroscopy schematics and used parameters. In thismode, the input signal to Z-piezo prescribes the defined Z
motion. Themicrocantilevermoves toward the surface with a constant velocity, indents, and then retracts as it reaches the defined
force setpoint.
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where, as per definition the rate coefficientsmust satisfy this condition:å == b 1
i

n
i0

E [30].Moreover, we
successfully investigated the use of othermethods such as Runge–Kuttamethods to further improve the
computational efficiency.However, for simplicity, we use the above-describedmethod in the simulations of this
study.We name the describedmethod as formulated by equations (17)–(19) combinedwith equation (27)
as ‘EAM’.

2.3. Embedding EAM into quasi-static and dynamicAFM force spectroscopy
EAMandAttard’s original implementation both assume that the AFM tipmotion relative to the undeformed
sample surface is a known, prescribed function of time. Inmost AFMmodes, however, while the AFM
microcantilever’s excitation or Z oscillation rangemay be prescribed, the tip’s trajectory depends on the ensuing
tip-sample interactions aswell as on themicrocantilever’smechanics and dynamics. Herewe demonstrate how
EAMcan be embeddedwithin a simplemicrocantilevermechanicsmodel andwithin the Amplitude
ModulationAFM (AMAFM) amplitude reduction and phase lag formulas to predict the force spectroscopy
response on soft, adhesive, viscoelastic surfaces.

First, we embed EAMcomputations into quasi-static AFM force spectroscopy simulations. The quasi-static
AFM, inwhich a constant velocity Z-piezo expansion-retraction above a sample is prescribed, is commonly used
to study the surfacemechanical properties [31–33]. During a single cycle of thismode, themicrocantilever
approaches the surface, snaps into the surface, indents into the sample until it reaches the defined setpoint, and
thenwithdraws back to its initial state. The Z-piezo periodicmotion, Z t ,( ) has a frequency that ismuch smaller
than the fundamental resonance frequency of themicrocantilever hence thismethod is called ‘quasi-static’ force
spectroscopy. A schematic of anAFM force spectroscopy experiment is shown infigure 2.

The tip trajectorywith respect to the unperturbed surface level, = +h t Z t q t ,0( ) ( ) ( ) is not known a priori
in quasi-static AFM force spectroscopy even if Z(t) is a knownprescribedmotion. This is because the tip
deflection, q t ,( ) does not follow the triangular trajectory of Z(t), but rather depends on the tip-sample
interactions. Therefore, we need an algorithm that calculates q t( ) for each timestep during the cycle based on the
associated tip-sample interaction calculated by EAM. Since the Z frequency is far below the fundamental
frequency of themicrocantilever, the q t( ) output of the designed algorithm for each time step needs to satisfy the
relevant quasi-static solution:

=q t F t k 28ts( ) ( ) ( )/

where k is the quasi-static bending stiffness of themicrocantilever. The algorithmdetermines q t( ) by iteratively
adjusting an initial guess until the difference between two sides of equation (28) falls below the defined tolerance.
Note that the quasi-static assumption in the algorithm implies that transient ringing of themicrocantilever upon
detachment from the surface cannot be captured by this approach.

Next, we summarize how the EAMcan be embedded inside AM-AFM’s amplitude and phase equations to
predict amplitude and phase response and force curves during a Tappingmode approach curve on an adhesive
viscoelastic surface. The algorithm to do sowithAttard’smodel has been discussed in detail elsewhere [11], so
herewemention that the approach involves using an energy balance based algorithm employing the amplitude

Figure 3.The interaction between a rigid axisymmetric paraboloid tip oscillating through a prescribed triangular wave and a
viscoelastic surface is simulated using EAM.The triangular excitation velocities are (a) m -m s5 ,1 (b) m -m s2 ,1 and (c)

m -m s1 .1 The employedmaterial and interaction parameters are identical with the ones used byAttard [12] to facilitate
comparison.
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where, Aratio andA are the amplitude setpoint and tip oscillation amplitude, respectively. Furthermore, the virial
Vts( ) and energy dissipation Ets( ) in a single oscillating cycle of AM-AFMare defined as:

ò=V
T

F t q t dt
1

, 31ts

T

ts
0

( ) ( ) ( )

ò= -E F t q t dt, 32ts

T

ts
0

( ) ( ) ( )

where q t( ) is the tip velocity andT is the period of a single oscillation cycle. Therefore, we need an algorithm to
find the specific Z distance forwhich the computedVts and Ets using equations (31) and (32) satisfies
equation (29)within a prescribed tolerance [11].

3. EAMverification

To verify EAMand assure the reliability of the developed code, we compare EAMpredicted F-d curves for a
prescribed triangular tipmotionwith the ones presented inAttard’s original work [12]. In this set of simulations,
the paraboloid tip has a radius of 10μmwhich oscillates through a triangular wave between h0= 10 nmand
h0=−10 nm. The employedmaterial properties and interaction parameters are: E0= 10GPa, =¥E GPa1 ,

Table 1.The employed values for LJ pressure and surface viscoelasticity properties
for LDPE in the conducted simulations. H, z ,0 n, E ,0 ¥E , and τ areHamaker
constant, equilibriumdistance, Poisson’s ratio, short-termmodulus, Long-term
modulus, and creep time, respectively. The tip radius in these simulations is set to be
10 nm.

H (J) z0 (nm) n E0 (GPa) ¥E (GPa) t (sec)

´ -1 10 19 0.25 0.49 2 0.1 ´ -1 10 7

Figure 4.Computational stability improvements by employing theAdams-Bashforthmethod (equation (27))with (a): =n 1E in
comparisonwith (b): forward Euler’smethod. The rigid tip oscillates through a sinusoidal wave and interacts with the LDPE surface as
characterized in table 1. The free oscillation amplitude, A ,0 and amplitude setpoint for these simulations are 62 nmand 0.5,
respectively. All the employed simulation parameters for (a) and (b) are identical to enable robustness comparisons. The surface
adhesion level is regulated by employing various z0 values which are labeled in thefigure. Typical calibration values ofOlympus
AC160-R3microcantilevers are used in these simulations: f= 278 kHz, k= 28.1Nm−1, and =Q 430,where f, k, andQ are the
excitation frequency, equivalent stiffness, and quality factor of themicrocantilever.
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= -H J10 ,19 z0= 0.5 nm, and t = 1ms. The sample and tipmovement parameters are identical to the ones
used in the original work to enable comparing the results. The results are checked to be independent of the
number of employed temporal and radial discretization. The employed surface and interaction parameters
except tip velocities are identical in allfigure 3 simulations. The variation of predicted F-d curves indicates the
velocity dependency of themodel when interactingwith a viscoelastic surface. Figure 3 illustrates an excellent
agreement between the original Attard’smodel and EAMpredictions.

4. EAMperformance

We simulate tip-surface interaction in amplitude-modulation AFM (AM-AFM) on a low-density polyethylene
(LDPE) sample using various computational setups of EAM to evaluate, compare, and optimize their output
computational accuracy.We assume tip oscillation is steady-state and sinusoidal in AM-AFMwhich is
legitimatewhen the operation is done in air/vacuum [34]: w f= -q t A tsin ,( ) ( ) whereω andf are the
excitation frequency and phase lag relative to excitation force, respectively.

To demonstrate the achieved computational stability enhancement, we used the Adams-Bashforthmethod
with =n 0E (forward Euler’smethod) and =n 1E to predict a single force-distance (F–d) historywhen a rigid
tip oscillating through a sinusoidal wave interacts with an LDPE sample as characterized in table 1.We regulated

Table 2.EAMcomputational setups evaluated.

# Radial disc.

Solution type of nonlinear diff.

eq. set Basis function Approximated parameter Orthogonality implementation

A Yes Iterative NA NA NA

B Yes Explicit NA NA NA

C No Explicit Fourier u r t,( ) No

D No Explicit Fourier h r t,( ) No

E No Explicit Fourier u r t,( ) Yes

F No Explicit Fourier h r t,( ) Yes

G No Explicit Bessel first kind u r t,( ) Yes

Figure 5.Comparison of the convergence performance of different computational setups of EAM implementation as listed in table 2.
The graphs are color-coded according to legends of graph ‘a’ and the labels defined in table 2. The horizontal black dashed lines in the
second-row graphs shows the 1%error criteria with respect to exact solutions.
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the adhesion of the surface by decreasing z0 in the LJ pressure equation (equation (5)) to envisagewhen
computational instabilities arise. As illustrated infigure 4, the Adams-Bashforthmethod implementation
stabilizes the computations in comparisonwith the forward Euler’smethod.

To quantify the convergence of EAM solutions, we use virial Vts( ) and energy dissipation Ets( ) values of a
single oscillation cycle of themicrocantilever on an LDPE sample.Vts and Ets are commonly used parameters to
quantify AM-AFMand represent the conservative and non-conservative part of the interaction energy during
tip-surface contact [11]. Since the output computational error of ‘iterative’ and ‘explicit’ approaches can be
minimized, we consider them as ‘exact’ solutions. EAMsimulations converge to exact predictions if a sufficient
number of basis functions (nb in equation (15)) are employed.

The LDPE and EAMparameters used for this analysis are listed in table 1 and table 2. The free amplitude, A ,0
is 62 nmand the amplitude setpoint is 0.8 for these simulations. EAMcomputational setups ‘C’ and ‘E’/’G’ are
computed using equation (16) and equation (18), respectively, and computational setups ‘D’ and ‘F’ refer to
employing Fourier expansion basis functions to approximate h r t,( ) instead of u r t,( ) as described in
equation (25). All solutions are checked to be independent of the selected domain and temporal discretization
values. Since the problem is assumed to be axisymmetric, only the even terms of the employed basis functions
are considered. The number of the employed basis functions is in the range of 0 to 56. The convergence of the

Figure 6.Demonstration of F-d history convergence to the exact solution by increasing the number of employed basis functions (nb).
The surface and LJ interaction parameters are listed in table 1. The employed operational conditions andmicrocantilever properties
are identical to the ones used for figure 4 simulations.

Figure 7.Elapsed time to compute a tip-surface interaction cycle using different EAMcomputational setups as listed in table 2. The
labels in the legend are defined in thefirst column of table 2. The surface and interaction parameters are listed in table 1. The free
amplitude, A ,0 is 62 nmand the amplitude setpoint is 0.8 for these simulations. It shows the computational rate of EAM is about 3
orders ofmagnitude faster than the original iterative approach proposed byAttard [12, 13]. All simulations are carried out on a typical
desktop computer.
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EAMcomputational setups is evaluated by comparing to the exact solutions (‘A’ and ‘B’) [11–13] and the
associated energy errors are expressed as a percentage.We considered the 1% error on bothVts and Ets
parameters as the convergence threshold andwe determined the convergence when this criterion ismet
constantly beyond a specific n .b The number of the timesteps is identical for all simulations 104( ) and the
number of radial discretization terms used for the ‘exact’ computational solution is 70.

The results illustrated infigures 5(a)–(b) show thatVts and Ets computed using EAMcomputational setups
A-G in table 2 gradually converge to the associated exact values by increasing n .b Figures 5(c)–(d) depicts the
percentage error of each of these computational setups and horizontal black dashed lines show the 1% error
criteria with respect to exact solutions. Figure 5(c) shows that the Fourier basis function’s implementation leads
to amore optimizedVts convergence when used to approximate u r t,( ) (computational setups ‘C’ and ‘E’) rather

Figure 8. Study of the surface-microcantilever ensemble dynamics inAFM force spectroscopy. (a) shows the predictedmicrocantilever
deflection during one oscillation cycle. (b) and (c) illustrate the predicted F-Z and F-d curves, respectively. The blue and red solid lines
represent the approach and retraction branches of the force curve computed using EAMwith =n 25,b respectively. The dashed black
line is computed using the explicit approach. The approach and retraction phases of the force curve are shown in blue and red,
respectively.

Figure 9.Computed (a): Phase lag (f), (b): Energy dissipation E ,ts( ) and (c): virial Vts( ) onAM-AFMdynamic approach/retract curves
on an LDPE sample. In these simulations u r t,( ) is approximated according to equation (15)with =n 25.b The employed A ,0 f ,Q,
and k are 15 nm, 278 kHz, 429.5, and 28.1Nm−1, respectively. The results are in excellent agreement with exact solutions.
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than h r t,( ) (computational setups ‘D’ and ‘F’).Moreover, figure 5(d) shows that in terms of Ets convergence,
the oneswith orthogonality implementation (computational setups ‘E’ and ‘F’) converge in slightly smaller nb
numbers than others. Figures 5(a) and (b) illustrate a faster convergence forVts than E .ts Wealso demonstrate
this convergence on predicted F–d histories infigure 6 fromEAMcomputations performed in computational
setup ‘E’.When =n 0,b the surface deformation is characterized by a sole function of time:

= =u r t u t a t, .0( ) ( ) ( ) The force history predictions gradually converge to the exact solution and do not
visually seem to vary significantly beyond =n 20.b The repulsive phase of the force history converges faster than
the attractive phase.

The time elapsed to compute a single tip-sample interaction cycle when using the computational setups
listed in table 2 is compared infigure 7. The significant difference between iterative (‘A’) and other
computational approaches depicts the considerable enhancement achieved through the applied strategies.
Furthermore,figure 7 shows that the basis functions orthogonality implementation (computational setups ‘E’,
‘F’, and ‘G’) leads to an optimized computational time due to themore simplified formalism. TheBessel set of
basis functions (‘G’)despite the acceptable convergence rate, is slower than Fourier ones due to the intrinsic
computational complexity of the Bessel functions and their orthogonality implementation. Figure 7 illustrates
that in terms of the computational time, EAMcan outperform the ‘explicit’ approach if the number of employed
basis functions in EAM is less than the number of the implemented radial discretization in the ‘explicit’
approach.

Considering both results infigures 5 and 7, amongst the evaluated EAMcomputational setups, the tip-
sample interaction phenomenon ismost efficiently computed by EAMas formulated in equations (21)–(23),
whenwe use:

• Equation (15) to approximate the surface deformation, and,

• The cosine terms of Fourier expansion as the basis functions (setup ‘E’):

Figure 10.The tip-surface interaction in a single cycle of AM-AFMon the LDPE surface in the time domain as predicted by EAM (blue
area) and exact (dashed black line) approaches. The surface characteristic parameters are listed in table 1. The instant associatedwith
each of the images is noted at the bottom-left of each picture. a-f and g-l image series illustrate the approach and retraction parts of the
cycle, respectively. The arrows are to assist in realizing the tip velocity direction. The frame dimensions are in nm.

Table 3.The values employed for LJ pressure and surface viscoelasticity properties for
polystyrene (PS) in the conducted simulations. The tip radius in these simulations is
set to be 50 nm.

H (J) z0 (nm) n E0 (GPa) ¥E (GPa) t (sec)

´ -2 10 20 0.15 0.35 4.25 1.89 ´ -1 10 7
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Hereafter, we only employ this computational setup to carry out EAMsimulations in this article. Observing 1%
virial and dissipation energy values error as the convergence criterion, the number of required basis functions
(nb) to approximate u r t,( ) is~24 for this set of input parameters.

5. AFMSimulations using EAM

Weapplied the algorithm for the quasi-static solution of force spectroscopy (Eqn. (28)) to simulate anAFM
force spectroscopy on an LDPE sample with viscoelasticity and LJ pressure parameters as specified in table 1
except t = 0.01ms. In this simulation, themicrocantilever equivalent stiffness is 28.1Nm−1 and the
microcantilever base travels through a triangular wavewith 1Hz frequency and 50 nmamplitude.

The results shown infigure 8 illustrate themodel’s ability to capture the surface instabilities bothwhen
approaching and retracting the surface. During retraction, the adhered surface to the tip gradually peels away
until the adhesive forces again dominate and themicrocantilever deflects downward (negative force). This will
lead to a hysteretic loop inwhich the long-range surface forcesmay significantly contribute to the resultant
energy dissipation. Thewhole cycle computation took less than aminute to complete using a typical desktop
computer as compared to»12 h of the original Attard’smodel.

Next, an AM-AFMapproach/retract curve on a polystyrene (PS) surface with viscoelasticity and adhesive
properties as specified in table 3 is simulated using the algorithmdescribed in section 2 for AM-AFMapproach
curves.We calculated E ,ts V ,ts andf as a function of Aratio as shown infigure 9. Computing this AM-AFM
approach curve infigure 9 using EAMwith =n 25,b whichmeets the 1%Vts and Ets error threshold, takes about
aminute on a typical desktop computer as compared to≈15 h taken by the original Attard’smodel. The results
are checked to be independent of the computational domain selection and temporal discretization.

The hysteretic approach-retraction branches infigure 9 demonstrate the co-existence of both repulsive and
attractive regimes in a range of Aratio’s. The tip-sample energy dissipation predicted in the repulsive regime
follows the same trend previously predicted [35]. However, themethod is uniquely capable of calculating the
viscoelastic and adhesive dissipation in the attractive regime of AM-AFMoperation. This is particularly helpful
for sticky and/or highly delicate samples for which imaging in the repulsive regime is challenging and/or sample
is susceptible to damagewith forces in the repulsive regime.

Finally, we use an algorithm to visualize the tip-surface interaction in a single cycle of AM-AFMon an LDPE
sample as characterized in table 1. A series offigures illustrating the tip position and surface geometry at different
timesteps are shown infigure 10. Thefinite-range attractive tip-surface forces cause the surface to deform
slightly toward the approaching tip (figure 10(c)).When retracting, the soft, relaxed surface forms ameniscus
around the tip profile and progressively detaches until it completely peels off and continues to gradually return
to its initial state (figures 10(g) to (i)). Surface attractive forces cause the contact radius during retraction to
become larger than the one during the approach. The surface deformation profiles shown infigure 10 and
described abovematch qualitatively well with in situ confocalmicroscopy observations of soft polymer surfaces
being indentedwith colloidal probes [36].

6. Conclusions

Thiswork features an approach to enhance the computational part of Attard’s continuummechanics
viscoelasticity contactmodel. Three enhancements are implemented: (1) themodel’s formalism is optimized to
enable the explicit solution of the governing differential equations, (2) instead of using radial discretization, the
deformed surface is reconstructed using a complete set of basis functions, and (3) instead of the forward Euler’s
method, higher-order numerical procedures are employed to solve themodel’s ordinary differential equations.
By implementing the enhancements, EAM ismore than three orders ofmagnitude faster thanAttard’s originally
proposed computationalmodel. Furthermore, the enhancements improve the computational stability of EAM
to better tolerate unstable and abruptmovements of the surface. EAM is a fast first-principles viscoelasticity
model that is versatile in terms of the inclusion of various tip-surface interaction forces and surface linear
viscoelasticitymodels. EAMwas implementedwithin the AFM framework to predict force spectroscopy
observables and dynamic approach/retract curves by AM-AFM.Moreover, we used EAM to calculate the time-
resolved surface dynamics during a single tip-surface interaction cycle of AM-AFM.The excellent agreement
between EAM simulation results and the ones by exact approaches verifies EAM’s accuracy. The accuracy, speed,
and robustness of EAM facilitate simulations for AFMoperations on soft, adhesive, and viscoelastic surfaces.
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