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The simultaneous excitation and measurement of two eigenmodes in bimodal atomic force microscopy
(AFM) during sub-micron scale surface imaging augments the number of observables at each pixel of the
image compared to the normal tapping mode. However, a comprehensive connection between the
bimodal AFM observables and the surface adhesive and viscoelastic properties of polymer samples
remains elusive. To address this gap, we first propose an algorithm that systematically accommodates
surface forces and linearly viscoelastic three-dimensional deformation computed via Attard’s model into
the bimodal AFM framework. The proposed algorithm simultaneously satisfies the amplitude reduction
formulas for both resonant eigenmodes and enables the rigorous prediction and interpretation of
bimodal AFM observables with a first-principles approach. We used the proposed algorithm to predict the
dependence of bimodal AFM observables on local adhesion and standard linear solid (SLS) constitutive
parameters as well as operating conditions. Secondly, we present an inverse method to quantitatively
predict the local adhesion and SLS viscoelastic parameters from bimodal AFM data acquired on a hetero-
geneous sample. We demonstrate the method experimentally using bimodal AFM on polystyrene-low
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density polyethylene (PS-LDPE) polymer blend. This inverse method enables the quantitative discrimi-
nation of adhesion and viscoelastic properties from bimodal AFM maps of such samples and opens the
door for advanced computational interaction models to be used to quantify local nanomechanical pro-

rsc.li/nanoscale perties of adhesive, viscoelastic materials using bimodal AFM.

ondary eigenmode) (Fig. 1)."° The resulting tip motion occurs
at different timescales, a slow timescale corresponding to that

1. Introduction

The continuing need for sub-micron scale compositional
imaging of complex material surfaces has led to the increased
use of multi-frequency AFM methods. Bimodal AFM is a
popular subset of multi-frequency AFM methods® that pro-
vides additional information channels beyond the traditional
Amplitude-Modulated AFM (AM-AFM) or tapping mode.
AM-AFM usually requires a trade-off between greater compo-
sitional contrast and greater imaging forces which may be det-
rimental for the fragile samples.”> Bimodal AFM can enhance
achieved compositional contrast while applying gentle
imaging forces without damaging the surface.>® In bimodal
AFM the microcantilever is excited at its fundamental eigen-
mode frequency along with an additional small amplitude
“perturbation” excitation of a higher flexural eigenmode (sec-
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of the fundamental mode and a fast timescale corresponding
to the higher excited eigenmode. The lock-in amplifiers demo-
dulate and measure the averaged amplitude and phase of tip
motion at the two excitation frequencies.

Bimodal AFM scans of a surface are characterized by three
observables at each pixel in addition to the topography, regard-
less of the feedback control loops used. There are many ways
to configure the feedback control loops to operate bimodal
AFM.”'®" In the most direct and commonly used configur-
ation, the amplitude of the first mode is similarly regulated at
a fixed setpoint amplitude by adjusting the Z distance and the
slow-timescale averaged phase of the fundamental mode and
the amplitude and phase of the secondary mode are allowed to
respond to changes in local surface properties (AM-AM).'* In
the other common feedback loop arrangement, AM-FM, the
first mode’s amplitude is regulated by adjusting the Z distance.
However, the secondary mode’s averaged phase lag is held
fixed by changing the excitation frequency through a Phase
Locked Loop (PLL) and its amplitude is maintained constant

This journal is © The Royal Society of Chemistry 2021
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Fig. 1 (a) Bimodal AFM simultaneously excites the first and a higher eigenmode of the microcantilever. (b) The resulting tip trajectory is assumed to
be the sum of two harmonics whose steady-state amplitudes and phases change due to the tip—sample interaction and the microcantilever pro-
perties. In this figure, w; is the excitation frequency and A; and ¢, are the amplitude and phase lag relative to the excitation force of the i mode,
respectively. Z and d(t) are the distance of the microcantilever base and tip with respect to the undeformed surface level, respectively. g(t) is the

microcantilever tip deflection.

by adjusting the excitation magnitude. Here the secondary
mode’s excitation amplitude provides a measure of the tip-
sample dissipation. During imaging, the slow-timescale aver-
aged phase lag of the fundamental mode and frequency shift
and dissipation of the secondary mode at each pixel are
recorded. Finally, in FM-FM, two PLLs and drive modulation
are used to regulate the slow-timescale averaged amplitudes
and phases of both modes.'® The three observables for these
most common implementations of bimodal AFM: AM-AM,
AM-FM, and FM-FM are listed in Table 1."* The required feed-
back loops for these bimodal AFM configurations are different
and the associated control schemes become more complicated
in the order listed in Table 1.

Quantitative bimodal AFM on polymeric surfaces requires
the pixel-by-pixel inversion of three observables of the mode to
extract quantitative maps of local polymer properties. Garcia
et al. used an energy balance theory method to link the
bimodal AM-FM observables to the material viscoelastic
properties.'>'> The method is based on a simple Hertzian
contact model for tip-sample interaction force with ad hoc
addition of a Kelvin-Voigt viscoelastic element without any
surface forces (adhesion). In another work,” the ad hoc tip-
sample viscoelastic model approach'* was extended to a frac-
tional calculus-based method to calculate the material visco-
elastic properties. Proksch et al'® used the Oliver and Pharr

Table 1 Three observables of the most common modalities of bimodal
AFM

Observable # 1 2 3

Mode # First mode Secondary mode Secondary mode
Config. 1 AM-AM Phase (¢4) Phase (¢5) Amplitude (4,)
Config. 2 AM-FM Phase (¢,) Freq. shift (Af;) Drive (D,)

Config. 3 FM-FM Freq. shift (Af;) Freq. shift (Af;) Drive (D,)

This journal is © The Royal Society of Chemistry 2021

method'” to link the tip-sample interaction stiffness to the
contact radius. They calculated the tip-sample interaction
using a Hertz model’s elastic generalization and neglect the
velocity-dependency of the tip-sample interaction force and
long-range surface forces. All these prior-tip sample interaction
models have the advantage that when combined with energy
balance laws for each mode, they offer simple closed-form
expressions that allow the inversion of bimodal AFM observa-
bles to quantitative estimates of the local elastic/viscoelastic
properties.

However, one of the major shortcomings of these prior
inversion approaches is that they utilize simple or ad hoc tip-
sample models which are limited in their ability to represent
tip contact with soft, adhesive, and viscoelastic surfaces.
Specifically: (a) ad hoc viscoelastic models are unable to accu-
rately predict the tip-detachment from the surface”'®' and
are unable to predict surface relaxation post-detachment (b)
they can lead to artifacts such as the presence of apparently
attractive forces®® even if the model does not contain attractive
forces, and (c) they do not include attractive/adhesive forces.
These shortcomings can lead to artifacts in estimated para-
meters, especially on soft viscoelastic adhesive samples. In one
example, a bimodal AFM map inversion based on an ad hoc
viscoelastic model” led to an effective viscosity prediction for
PS domain in a PS-LDPE blend to be 4 times greater than the
viscosity for the LDPE domain when measured in the same
scan. This ratio of predicted damping characteristics’ for stiff
PS, which is glassy at room temperature, and soft LDPE which
is rubbery at room temperature is not physically acceptable.

Among all the available continuum mechanics-based tip—
sample interaction models for polymer samples, Attard’s
model*"*? is arguably the most accurate model to capture the
physics of the interaction between a rigid axisymmetric tip and
a polymer surface. The model accounts for finite range surface
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forces as well as the sample’s full three-dimensional viscoelas-
ticity with arbitrary constitutive linear viscoelastic relations.
Attard’s computational approach, which is based on the
Boussinesq solution for a semi-infinite half-space®® and intro-
duces temporal and radial discretization, uses a completely
different methodology when compared to the classical contact
models. Attard’s model has significant advantages relative to
models that use an ad hoc approach to add viscoelasticity to
DMT or Hertz based models:

1. Hertz- and DMT-based models with ad hoc Kelvin-Voigt
elements assume a certain dependence of contact area on
indentation depth regardless of history of deformation. The
history dependence of the contact area was studied by Ting>*
but his approach does not include surface forces. Attard’s
model inherently addresses this dependence since it solves a
3-dimensional linear viscoelastic deformation problem
without assumptions on contact area evolution. As a result,
the detachment of the tip from the surface is correctly com-
puted, unlike in the ad hoc viscoelastic models.

2. Hertz and DMT approaches with ad hoc Kelvin Voigt vis-
coelasticity are generally unable to predict viscoelastic dissipa-
tion when the tip oscillates in the attractive regime. Since
Attard’s model includes surface forces it allows for the visco-
elastic surface to deform and relax and dissipate energy even if
the tip oscillates in attractive regime with the surface.

3. Aviscoelastic surface will continue to relax as the oscillat-
ing tip detaches and moves away from the surface. This is an
expected surface behavior that is not predicted by ad hoc
Kelvin Voigt elements added on to classical contact mechanics
models.

4. Finally as shown elsewhere*® ad hoc Kelvin Voigt modifi-
cations of classical contact mechanics models can lead to arti-
facts such as the creation of negative tip-sample interaction
forces even in the absence of surface forces. Attard’s model
systematically includes both general surface force models as
well as linear 3-dimensional viscoelasticity of the sample
surface and avoids these artifacts.

Converting bimodal observables to quantitative properties
based on the Hertz/DMT models with ad hoc Kelvin Voigt vis-
coelasticity may provide less inaccurate results on stiff samples
with low adhesion and low viscoelasticity. However, to estab-
lish a relationship between bimodal AFM observables and
local physical properties of soft, adhesive, and highly visco-
elastic materials it may be desirable to use more accurate
models such as Attard’s model.

However, Attard’s model is computationally expensive due
to the presence of iterative loops and spatial (radial) and tem-
poral discretization. Moreover, Attard’s computational
approach requires a priori knowledge of the tip trajectory rela-
tive to the surface as an input to compute the history of
surface deformation and interaction forces during the contact
time. Thus, its implementation in all dynamic AFM methods
is not directly possible since the resonant probe’s amplitude
and phase at a given distance of the unperturbed cantilever
from the sample are in fact the output of the tip-sample inter-
action and the cantilever dynamics. For both these reasons, it
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has been challenging to use Attard’s model to make predic-
tions for dynamic AFM modes.

In this work, we develop an algorithm including Attard’s
model to link the surface properties of an adhesive and visco-
elastic sample to associated AM-AM bimodal AFM observa-
bles. The algorithm has several advantages: (1) it can easily be
adapted to other implementations of bimodal AFM such as
AM-FM or FM-FM bimodal operation, (2) it simultaneously
satisfies the amplitude reduction formulas for both excited
modes in AM-AM bimodal AFM, and (3) it requires the compu-
tation of tip-surface interaction and surface deformation
history which is implemented here using an accelerated com-
putational approach® for Attard’s model which is more than
two orders of magnitude faster than the original
implementation.>"*?

We use the proposed algorithm to illustrate the depen-
dence of the bimodal AFM observables on the properties of
adhesive, viscoelastic surfaces modeled by Lennard Jones
pressure and SLS viscoelastic constitutive relations. Then, we
present an approach to invert the three bimodal AFM para-
meters using a linear regressive model based on the forward
computations carried out over a vast range of sample para-
meters selected by the Latin hypercube sampling method.?
The computational regressive model, applicable for the
specific cantilever and operating conditions, then relates
physical properties of the local polymer such as adhesion,
long- and short-term elastic moduli, to the three AM-AM
bimodal AFM observables via a computed 3 by 3 matrix. The
three observables measured at each pixel can then be con-
verted to quantitative estimates of these physical properties
via matrix inversion at each pixel and that relates the observa-
bles to physical polymer properties. Thus, this approach can
quantitatively discriminate between adhesion and viscoelastic
properties which is normally considered very challenging for
adhesive viscoelastic samples. The approach is demonstrated
using experimental measurements using AC160 cantilevers
on a PS-LDPE sample. The resulting quantitative maps of
adhesion, long- and short-term elastic moduli are in line with
ones reported in literature.'*?%2”

2. Theory

We model the transverse vibrations of the microcantilever, w(x,
t), with Euler-Bernoulli partial differential equation (PDE) for
a beam with a rectangular cross-section, as follows:

PAM(X,t) + Fryaro (W(x, t),W(x, 1)) + EIw""(x, 1)
= Fts(d7 d)é(x - Lc) + Fdirect(x» t)»

where, x, t, p¢, Ac, Ec, I, and L. are the longitudinal distance
from the base of the microcantilever, time, the linear density,
cross-sectional area, elastic modulus, area moment, and tip
location distance from the base of the microcantilever, respect-
ively. w(x, t) and 1W(x, ¢) are the first and second derivatives of
w(x, t) respect to t, respectively and w""(x, t) is the fourth
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derivative of w(x, t) with respect to x. d and d are the tip-
sample gap and its velocity relative to the undeformed surface
level as shown in Fig. 1. Fuyaro(W(X, t), W(x, t)) = Fhyaro(X, t) is
the uniformly distributed hydrodynamic force per unit length
computable in the frequency domain using Sader’s method,*®
acting on the oscillating microcantilever. The tip-surface inter-
action force, Fi(d, d), which acts locally at the tip location is
described with a Dirac delta function, §. The direct microcanti-
lever excitation,*® i.e. via photothermal, magnetic, or Lorentz
for excitation, exerts a spatio-temporal distributed force per
unit length, Fyjecc(X, t). Dither piezo excitation will be
included through the boundary conditions as described later
in this section. The absolute deflection of the microcantilever
is composed of the Z-piezo motion, Z(t), the dither-piezo
motion, y(¢), and the transverse vibration in the non-inertial
frame attached to the base, u(x, ¢):

w(x,t) = Z(t) + y(t) + u(x, ). (2)

Substituting eqn (2) in the beam PDE, eqn (1), the equation
of motion can be cast into the moving reference frame
attached to the base of the microcantilever:

PAt(x, 1)
+ Fuyaro (J(2) + @i, ¢) + Z(2), §(t) + u(x, t) + Z(t))
+ E L u'"(x,t)
= F(d, d)8(x —

(3)
= peA(i(0) + Z(1)),

and the corresponding boundary conditions, ignoring the tip-
mass effect become:

Lc) + Fdirect (x7 t)

u(0,¢) =0, u'(0,¢) =0,
U'(Leyt) =0, u"(Le,t) =0. @)
For bimodal operation, excitation forces are applied at two
eigenfrequencies of the microcantilever, i = 1, or fundamental
mode frequency, and 7 = 2 or secondary mode frequency. The
secondary mode is often the second eigenmode of the micro-
cantilever, but it can instead be any higher-order eigenmode.
As a result, we can combine the net external excitation on the
microcantilever as the sum of direct excitation and inertial
excitation:

2
ZFdrive,i(xy t) = Fdirect(xa t) 7/)CAC_)')'(t), (5)
-1
where Fgrive,i(X, t) are the net forcing functions at the two
different drive frequencies. Therefore, we discretize eqn (3)
using Galerkin’s method to project the dynamics onto the

microcantilever’s eigenmodes:
2 -
u(x, t) = Z ¢i(x)qi(t)7 (6)
i—1

where @;(x) and ¢,(¢) describe the microcantilever eigenmodes
of free vibration and the associated generalized coordinates,
respectively. The mode shapes are normalized so that &;(L.) =

This journal is © The Royal Society of Chemistry 2021
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1 for each of the eigenmodes® and the generalized coordi-
nates represent the tip motion in each eigenmode:

2

=1

+EICZ(D

2
Fts(d d x Lc +Z drlvez X, t

7)

Next, we use the biorthogonality of &;(x) terms to extract
the discretized equations of motion of excited modes by multi-
plying eqn (7) once with @;(x) and then with &,(x), and then
integrating respect to x. The resultant ODEs are:

(pcAc J b7 (x) dx) 0

2

ZFdrlvez X, t

In order to simplify the Fjyqr, term, we note that in
bimodal AFM operation the cantilever response generally com-
bines harmonic motion at two discrete frequencies. Under
these conditions it is reasonable to approximate the Fourier
transform of Fiyaro - as follows:

= Fy(d,d) + J

00
Fayaro(xlo) = [ Fayaro (x, f)e 9l
Jt=—0c0

2

_ T 272 7
= 4P b, F(a));¢

where, p, b., and I'(w) are the air mass density, nominal width
of the microcantilever, and the dimensionless complex-valued
hydrodynamic function, respectively and j* = —1. I" includes an
imaginary and a real dimensionless component, I; and 77,
respectively.”* The hydrodynamic force per unit length on the
microcantilever can be converted into two frequency-depen-
dent parameters effective modal damping, ¢(w), and added
mass, M(w).>® However, since the excitation forces in bimodal
operation are applied on relatively narrow frequency ranges,
the frequency dependence of ¢(w) and M(w) is weak and we
can safely express them as follows:

. | ©)
x) L;w gi(t)eV'de,

*

m; = M(w;),
= (@) (10)

G = C(wi)v
where w;, (i = 1, 2)are the air mass-loaded natural frequencies
of the two modes defined as:*>

(B S (@ ) dx) / (pee fy @2 (x)dx)
;" = , (11)
1+ (2/4)(pcbe/phe) I (w;)
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where, . is the nominal thickness of the microcantilever.
Since employed Fgyive (X, t) for excited modes are harmonic,
we write it down as a multiplication of a forcing magnitude
and a harmonic term:

Frive,i(X,t) = Farive X X cos(d;t). (12)

Combining eqn (8) and (12) and rearranging to include
experimentally observable parameters, the beam’s PDE
reduces into two coupled ODEs as follows:

1 . 1 .
a)—lqu(t) +mql(t) +q1(?)

= iFts(d, d) + lFu cos(ant) + iF12 cos(a,t),
ky ky ky
(13)
G0+ ——,(0) + 0:(0)
(UZZ qZ (0202 qz q2
1

. 1 1
Fts(d7 d) +—F21 COS(CIA)lt) + —F22 COS(d)Zt)7
ks ks ky
where,

Le
Fyq = JO (ﬁl(x)ﬁ‘drive,,’(x)dx, k,l=1,2, (14)
and k;, w; = 2nf;, and Q; are equivalent stiffness, natural fre-
quencies (rad s™*), and quality factor of the /™ mode (i = 1, 2),
respectively. In this article, we will focus on the case where @; =
w;. Solutions of eqn (13) show that the effect of Fk/ on tip
motion when 7 # j is negligible and can be ignored. Then, we
express the discretized ODEs by re-writing the excitation mag-
nitudes in terms of the oscillation amplitudes in absence of
the tip-sample interaction:

o500+ (O + (0

zQi

1 - A
=_—Fs(d,d) + —QOl cos(wit),
1

ky

1 . 1 .
E‘h(t) + KQZ%(’:) +q2(2)
B 1
Tk

(15)

. A
Fis(d, d) + =2 cos(wst),
Q2

where, d(t) = Z + q4(t) + ¢u(t), and Ay; is the “free” oscillation
amplitude of the /™ mode, which is the forced steady-state
amplitude in the absence of tip-sample interaction. Eqn (15)
represents the tip dynamics in bimodal AFM when the exci-
tation frequencies exactly coincide with the natural frequen-
cies. The method needs to be adapted if there is any inten-
tional detuning between excitation and natural frequencies.

To derive amplitude reduction equations for bimodal AFM,
we assume that the tip motion can be expressed as the sum of
two harmonics at two different excitation frequencies, i.e.:

q(t) = q:1(t) + q2(2)

= A; cos(wit — ¢y) + Ay cos(wat — ) )

where A; and ¢; are the steady-state tip oscillation amplitude
and phase lag of the /™ mode relative to its corresponding
modal excitation force."*?? This assumes that any slow time-
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scale amplitude and phase modulation leading to sidebands
around the excited modes are considered negligible for ampli-
tude reduction. It is also assumed that higher harmonics of
the excited modes play a negligible role in the amplitude
reduction at the two excitation frequencies, a condition gener-
ally met for air or in vacuum applications when higher eigen-
frequencies are not integer multiples of the excited
modes.**3¢

Next, we substitute g;(¢) and g,(¢) from eqn (16) into eqn
(15):

k . :
-t (Al sm(wlt — (/)1) + Aor COS((I)lt)) = Fts(d, d),
Q1
? (17)
- Qi (Az sin(wat — ,) + Aoz cos(wat)) = Fis(d, d).
2

Then, we multiply eqn (17) with ¢;(¢) and integrate with
respect to time over 0 to n.T;. The coefficient n. represents the
number of slow time-scale periods that the mode parameters

are computed and averaged over. This yields:

1 neT; ,
Visi = nTs L Fis(d,d)gi(t)de

1 n.Ty .
= J F(d, d)A; cos(wit — ¢;)dt

- neTy o
kiAoiA;
R
i
AT (18)
Eysi = — ;J Fis (d7 d) q'i(t)dt
cJo
T; neT; .
= — JO Fis (d, d) X Ajw; sm(wit — ¢i)dt
= —nk"g{AO" (sin(q&i) — j—;) .
i i

Here, T}, Vs, and Ey ; are the time period, the average value
of the virial (conservative interactions), and dissipation (non-
conservative interactions) associated with the /™ mode during
each interaction cycle.’” Vis,; and Ey ; are computed and aver-
aged over many time-periods of the fundamental mode (n.73).
This mimics the experimental conditions where lock-in ampli-
fiers average these quantities for the two excited modes over
the slow timescale. If the ratio of excitation frequencies is
equal to the ratio of two integer numbers, the resultant
bimodal tip trajectory is periodic, and it simplifies the para-
meters’ calculation. However, the driving frequencies of the
microcantilevers are generally incommensurate®® and the tip
motion can be quasi-periodic.*’

The amplitude reduction and phase lag formulas for the
first and secondary modes are then attained by eliminating ¢;
in eqn (18):

aptio — Ai _ mhidi’/ Qi . (19)

Aoi 2 A2 2
\/ (—2mVis,) -+ (%2 + By

1 ThiA? [ Qi + Es i
—ZﬂVts,l’

¢; = tan (20)
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where, i = 1, 2 and A% is the amplitude ratio for the i mode
AfAqs
The tip-sample interaction force (Fis) in eqn (18) can, in
principle, be calculated using any appropriate contact model.
Here, the AFM tip-surface interactions on viscoelastic poly-
mers are computed using the accelerated Attard’s model with
a SLS constitutive model for viscoelasticity, except otherwise
specified. The creep compliance function of the SLS constitu-
tive model is:
1 1

= +

E°°7E0 7t/1
=—+—7c¢
E(t) E

n e (1)

that includes a single relaxation time, which governs how fast
the instantaneous modulus of the sample changes from E,
(short-term modulus of the sample) to E, (long-term modulus
once the material is completely relaxed). Attard’s three-dimen-
sional viscoelasticity model correlates the radial time-depen-
dent sample surface deformation, u(r,t), to its rate of change,
u(r, t), through its interaction with an axisymmetric rigid tip:**

i(r, ) = — %(u(n £) — (1, )
N (22)
_ Elojo k(r, 5)p(h(s, £))sds,

where p(h(r, t)) is the interaction force per unit area (pressure)
between the tip and the surface. p(h(r, ¢)) is a function of A(r,
t) which is the radial time-dependent gap between the axisym-
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metric tip and the deformed sample at time ¢ and radius r
from the central axis. In this work, we calculate p(A(r, t)) based
on the Lennard-Jones pressure equation:

p(h(r,t)) = H/6mh(r, t)* (20° /h(r, t)° — 1), (23)

where z, and H are the intermolecular equilibrium distance
and Hamaker constant, respectively. Also, u(r, t) and p(h(r, t))
are time derivatives of u(r, t) and p(A(r, t)), respectively. The
long-time deformation of the surface, u.(r, t), is defined as:

1 00
el ) = = || k(. 5)plhs.0)sds. (24)
o Jo
and the kernel of the integral, k(r, s), can be expressed in
terms of the complete elliptic integral of the first kind,*® K, as
shown below:

4 2 /.2
Kirs) = %K(s /) s<r (25)
EK(rZ/SZ) s>r

Attard’s model parameters and the associated compu-
tational methods are elaborated elsewhere.>°

To embed Attard’s model into the bimodal AFM framework,
we propose an algorithm (Fig. 2) that can predict the Z dis-
tance and associated ¢, 4,, and ¢, for a given A% 4., and
Agp. In this algorithm, we assume the cantilever is simul-
taneously excited exactly at two of its eigenfrequencies (i = 1

Input: AT, Ag, Ag,
v

Initial guess

Zg = Za_arm 19

A,,=0

v

Z,=2,+A, |&
v

No

A=A +AA,, [«
v

Use Eq. 4 for the
secondary mode
to calculate A%’

No

>
A, :Azig,Z:Zg
ratio _A:atio . tOl
Use Eq.19 for the first »
mode to calculate A5,°
Yes

o A
ATy - =29 < tol

Fig. 2 The algorithm proposed in this work for predicting instrument observables in bimodal AFM through simultaneous compliance of the ampli-
tude reduction formulas for both driven modes. Subscripts 1 and 2 for the parameters denote the first and secondary excited modes. The secondary
mode is often the second eigenmode of the microcantilever, but it can instead be any higher-order eigenmode. The subscript “g” denotes a
guessed value for a parameter and the subscripts “a” and “$" represent the number of iterations of each loop of the algorithm.
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Fig. 3 Validation of eqn (19) and (20) against previously published bimodal AFM experimental data™® and simulation results extracted using the
AMAC tool of VEDA* on a silicon sample illustrates excellent agreement. The ARt range used for these simulations is between 0.1 and 0.9. The
employed parameters in these simulations are as follows: Ag; = 10 nm, Agy =1 nm, H = 9.03x1072° J, k; = 0.9 N m™ k, = 35.2 N m™, f, = 48.913

kHz, f, = 306.194 kHz, Q; = 255, and Q, = 1000.**

and 7/ = 2) and the relevant parameters are labeled accordingly.
The algorithm simultaneously satisfies the amplitude
reduction formulas (eqn (19)) for both excited modes and com-
putes the resulting bimodal phases (eqn (20)). Zy = Zam—arm iS
the initially guessed Z value using a previously proposed algor-
ithm for AM-AFM.?® AZ, and A4, are the adjustments made
to Z and A; at each iteration, respectively which are applied to
the guessed values to facilitate the convergence process. These
values (AZ, and A4; ) are updated at each iteration to achieve
accelerated convergence. When both loops are satisfied as
directed by the algorithm, all bimodal AFM parameters such
as Z, indentation, second mode amplitude, energy dissipa-
tions, and virials are recorded for the given set of input para-
meters. A tolerance (“tol” as shown in Fig. 2) of 107> which
facilitates a reasonable accuracy is used to fulfill the condition
of the algorithm.

3. \Verification of the amplitude
reduction algorithm

To verify eqn (19) and (20), the predictions from the proposed
algorithm are compared to experimental data from literature®
extracted on a stiff (silicon) elastic sample and simulation
results from the AMAC (amplitude modulated approach
curves) tool of VEDA (Virtual Environment for Dynamic AFM)
which includes explicit microcantilever dynamics in bimodal
AFM."! The interaction force (F,) is calculated using the DMT
(Derjaguin, Muller, and Toporov) model,”* and the surface and
interaction parameters'® are mentioned in the caption of
Fig. 3. The results from the algorithm show an excellent agree-

17434 | Nanoscale, 2021,13,17428-17441

ment with the experimental and simulation data. In these
simulations, the tip oscillates in the attractive regime (¢; >
90°).

To examine the accuracy of the model predictions when the
tip-surface interaction is in the repulsive regime, we con-
ducted another set of simulations on a softer elastic surface
whose parameters are mentioned in the caption of Fig. 4. The
interaction force (F) is calculated using the DMT model. The
predictions from the proposed algorithm (Fig. 4) again show
excellent consistency with the results of VEDA tools for this
scenario in which the oscillation regime is repulsive (¢; < 90°)

(Fig. 4).

4. Computational results

To predict the dependence of bimodal AFM observables on
adhesive and viscoelastic properties of local polymeric
domains using the proposed Attard’s model, we conduct a set
of simulations using typical viscoelastic polymer properties.*?
The values for operational parameters and the cantilever pro-
perties are chosen in range with what is commonly used for
bimodal AFM experiments on polymers. In this set of simu-
lations, different creep (retardation) times (z) ranging between
3.2x107° s and 3.2 x 107'% s are employed in the simulations
while all other parameters are held fixed. This range for r was
chosen to span timescales ranging from much smaller to
much larger than tip-surface interaction time. Olympus
AC160-R3 microcantilever property values calibrated experi-
mentally are used in these simulations: f; = 280 kHz, k; = 28.1
N m™, Q, = 430, f, = 1593 kHz, and Q, = 600. The calibration

This journal is © The Royal Society of Chemistry 2021
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Fig. 4 Validation against bimodal AFM simulation results extracted using the AMAC tool of VEDA** on an elastic sample illustrates perfect agree-
ment with the proposed algorithm. The used values for material properties, microcantilever, and DMT model parameters are: Ap; = 50 nm, Ag; =
1nm, fo/fy = 6.26, E = 1 GPa, and H = 7.55 x 1072° J. The Ar, range used for these simulations is between 0.1 and 0.9.

methods are explained in the experimental section. Ay, and
Ap, are selected to be 50 nm and 1 nm, respectively. We specifi-
cally chose a small A(,/A,; ratio to avoid crosstalk between
modes as suggested by others.?>*****> The surface properties
used are listed in Table 2.

Simulation results for observables, Vis ;, and E,; (i = 1, 2) of
bimodal AFM are illustrated in Fig. 5 as a function of A%™t°
(solid lines, horizontal axis at the bottom) and 7 (dotted lines,
horizontal axis on the top). As discussed elsewhere,* the cal-
culated values for ¢, (Fig. 5(a)), which depend on the average
dissipated energy during each interaction cycle,*® are a func-
tion of the ratio between the interaction time (the duration on
which the tip experiences surface forces) and the effective
relaxation (or creep) time for viscoelastic samples. When 7 <«
contact time or 7 > contact time, the polymer is either nearly
completely relaxed or relaxes very little during the interaction
time, respectively. In both these cases, minimal hysteresis
occurs during tapping cycles. However, when 7 value gradually
changes between these two extremes, energy dissipation
during each interaction cycle appears, rises to its maximum,
and then gradually vanishes. This phenomenon leads to the
non-monotonic behavior of ¢, and E, vs. 7 for a fixed A;"“i‘) in

Table 2 The surface properties that are used to predict the depen-
dence of bimodal AFM observables on local adhesive and viscoelastic
polymer properties using the proposed algorithm

T E, Ee H 2 v

Varies 2.0 GPa 0.5 GPa 5x10720] 0.28 nm 0.49

This journal is © The Royal Society of Chemistry 2021

Fig. 5(a and e) as observed previously for tapping mode®® on
viscoelastic and adhesive surfaces.

Fig. 5 provides key insights into the sensitivity of bimodal
AFM observables to local changes in r while scanning a
hypothetical sample where other parameters such as E,, and E,
are held constant. While ¢, changes more sensitively with Am°
than ¢,, when the main difference between two adjacent
domains on the surface is their associated effective relaxation
time, ¢, can discriminate much more effectively between
regions where 7z is much smaller or much larger than the
contact time. A clue to the underlying reasons for this behavior
can be found in Fig. 5(f and h) which show that across the five
orders of magnitude changes in 7z studied, the range of com-
puted values for Vis, is much smaller than the range of ones
attained for E,. When combined with the fact that 7k2A5%1Q,
< mkA,%/Q; due to the amplitude difference between modes,
the resulting ¢, (eqn (20)) thus depends proportionally more on
E, and Vi, compared to the dependence of ¢, on Ey; and
Vis,1- For these reasons ¢, appears more sensitive than ¢, to
changes in z. In addition, the amplitude of the second mode
(4,), as depicted in Fig. 5(b), monotonically changes with relax-
ation time. As illustrated, for the same first mode amplitude set-
point, when 7 < contact time and the sample’s elastic modulus
is ~E(softer), A, is larger than when 7 > contact time and the
sample’s elastic modulus is ~E, (stiffer). In both of these cases,
since the energy dissipation due to viscoelasticity is 0, accord-
ing to eqn (18), 4, is correlated to ¢, as follows: A, = Ay, sin(¢,)
and therefore, ¢, and A, are directly related.

When (4q,/indentation depth <« 1), the interaction time in
bimodal AFM is mainly dictated by the first mode frequency

Nanoscale, 2021,13,17428-17441 | 17435
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Fig. 5 Study of the bimodal AFM observables’ sensitivity to the effective creep time of the polymer () and amplitude ratio of the first mode (A{a“").
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10~* us and the selected At° values are between 0.1 to 0.9. The horizontal axis for the dotted and solid lines are located at the top (log scale) and

bottom of the graphs, respectively.

and is not substantially influenced by the secondary mode fre-
quency. Therefore, as long as (Agy/indentation depth <« 1), our
previous studies on the relaxation mode(s) of a polymer
sample that contributes the most to energy dissipation during
a tapping cycle of AM-AFM?° is indeed applicable to bimodal
AFM. Thus, the relaxation behavior of the sample when exam-

17436 | Nanoscale, 2021,13,17428-17441

ined by such configuration of bimodal AFM can be represented
by constitutive models with one single effective relaxation
time, like SLS, Kelvin-Voigt, or Maxwell models. However, the
Kelvin-Voigt model exhibits no stress relaxation when the
surface is under a constant strain and the Maxwell model does
not lead to surface restoration to its original state after the
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applied stress is removed. Hence, hereinafter we select to use
the SLS model with a fixed relaxation time to model the visco-
elastic response of the evaluated polymeric samples in this
article. The assessed samples’ viscoelastic behavior is properly
represented by selecting adjusted E, and E, values.
Particularly about tapping mode AFM, microcantilever’s funda-
mental mode resonances are usually of the order of magnitude
of 100’s of kHz with tip oscillation time periods of the order of
10’s of microseconds. As we have described in prior work,*® in
gentle tapping conditions the tip-sample interaction time
often is of the order of magnitude of 1/10™ of the tip oscil-
lation period, or of the order of microseconds. Our prior
work,?° also shows that the relaxation mode that has the most
effect on AFM observables is in the range of /10™ of the tip-
sample interaction time, or of the order of 0.1 microseconds.
Furthermore, our prior work®® also describes that the AFM
observables change significantly only when the relaxation time
used changes by several orders of magnitude. This justifies the
use of 0.1 microseconds as the correct order of magnitude of
the substrate relaxation time that most affects the AFM obser-
vables and will be used henceforth in this article. A compre-
hensive study of the dependence of bimodal AFM observables
on local adhesive and viscoelasticity parameters for a fixed 7 is
presented in Fig. 6. The microcantilever properties, Ay, and
Ay, of these simulations are identical to the ones used for
Fig. 5 and the A™ is 0.5. The simulation results for various
viscoelasticity model parameters and two different surface
adhesions are presented in Fig. 6. The identical parameters
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used for these simulations are: R = 3 nm, A?ﬁ" =0.5,and 7 =
0.1 ps. The Poisson ratio (v) for the LDPE and PS domains are
chosen as the nominal values provided by the manufacturer,
0.49 and 0.35, respectively. E, and E, values for the simulations
are selected based on the Latin hypercube sampling method.

As seen in Fig. 6, the hysteresis due to surface adhesive
forces is larger when E,, and/or adhesive forces are relatively
smaller and larger, respectively. Furthermore, while ¢, is gener-
ally more sensitive to changes in surface viscoelasticity, the
surface adhesion is better resolved via ¢,. The higher sensitivity
to the magnitude of surface adhesion of ¢, in comparison with
¢, can be explained through the tip velocity-dependency of the
energy dissipation as expressed in eqn (18). Therefore, since the
adhesive forces between tip and surface during the interaction
time occur when the tip experiences the largest first mode vel-
ocities, their contribution toward first-mode dissipation weighs
more than equally-in-size repulsive forces. This relation holds
either during approach or retraction off the surface. However, in
terms of the secondary mode energy dissipation contributions,
there is no such relation between the tip secondary mode vel-
ocity and the adhesive forces.

5. Material viscoelasticity and
adhesive properties estimation

We next explore utilizing the proposed computational
approach to post-process the experimental observables and

Lower surface adhesion
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Fig. 6 Study of the bimodal AFM observables’ dependence on the surface adhesion (quantified as HR/62%) and viscoelasticity level. The first row
(a—c) and second row (d—f) simulations have smaller and larger adhesions associated with H = 1 x 1072° J and H = 7 x 1072° J, respectively. The
selection of Eg and E, in the performed simulations are done based on the “Latin hypercube sampling” method. The used material and interaction
parameters are stated in the text. In these conducted simulations R = 3 nm, A% = 0.5, v = 0.49, and 7 = 0.1 ps.
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estimate the surface adhesive and viscoelastic properties.
Since the accelerated Attard model does not provide a closed-
form solution, finding a correlation between the experimental
data and the surface properties is challenging. Here we present
a data analytics approach to connect the bimodal AFM obser-
vables to the material’s properties through an inverse model.
The data analytics approach requires a comprehensive set
of simulations with an appropriate range for E,, E., surface
static adhesion, and tip radius (R) values for known AFM
microcantilever properties and operating conditions (ky, ka, Q1,
Qz, Ag, AT A1) Assuming the employed cantilever’s fun-
damental frequency is in the order of 100’s of kHz, we select ¢
=10 ps for the SLS model with the same reasoning described
in the previous section. The inclusive bimodal AFM observa-
bles database with known input parameters facilitates a
regression-based analysis to identify and recognize the existing
dataset patterns. We used a method based on the multivariate
linear regressions to estimate E, FE., and surface static
adhesion from the measured ¢,, ¢,, and A, values at each
pixel. To minimize the precision loss due to using linear
regression, the range of E,, used for generating the simulation
results dataset is selected in accordance with the reported
quasi-static material stiffness. The R process utilized can be
represented as a conversion matrix and vector, as follows:

I €1 € C3 E, dy
¢, p=1€1 ¢ Co Ew p+< d, (26)
Ay c; €3 Co| | Adh ds

To better describe the utilized mapping process, the calcu-
lated ¢; and d; constants for PS and LDPE polymer samples are
listed in Table 3. Due to the large stiffness difference between
PS and LDPE, using a single simulation results dataset that
covers this large stiffness range is a time-consuming process.
Furthermore, using linear regression to figure out the constant
terms of the conversion matrix/vector over a large range for
stiffness parameters may not lead to a proper approximation
accuracy. Therefore, we prepared two dedicated sets of simu-
lation result datasets for PS and LDPE in which, the selected
ranges for Evalues are 1-3 GPa and 0.2-0.6 GPa, respectively.
These ranges are chosen based on the reported quasi-static
stiffness of these materials over which conducting stable simu-
lations is achievable. The E, range for each of these datasets is

Table 3 The coefficients of the conversion matrix and vector as
described in egqn (26) determined through linear regression on simu-
lation results. The tip radius estimate is 8.7 nm

[ [ C3 Cy Cs Ce
(GPa) (GPa) (GPanm™) (GPa) (GPa) (GPanm™)
PS 0.89 6.81  —0.21 0.14  -33.72  0.15
LDPE 023 241  —0.07 0.07 -1.24  —0.003
¢;(nN) ¢ (nN)  ¢9(Pa) d,(GPa) d,(GPa) ds(nN)
PS 0.18 -1.62  -0.14  —22.54 8.36 —0.08
LDPE  0.008 0.69  —0.02 -4.06 -0.49 0.99
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selected accordingly. The Poisson ratio (v) for the LDPE and PS
are chosen as the nominal values provided by the manufac-
turer, 0.49 and 0.35, respectively.

6. Experiments

To validate the performance of the described inverse approach,
we acquired a set of experimental bimodal AFM data on a
polymer blend sample and used it to estimate its viscoelastic
and adhesive properties. The bimodal AFM experiments are
performed using a commercial Cypher AFM setup (Asylum
Research, Santa Barbara, CA) on a fresh PS-LDPE polymer
blend which was purchased from Bruker Nano Inc. The experi-
ments are performed on a 4 x 4 pm rectangular region with a
1024 points per line resolution level and a scan rate of 1 Hz.
The sample is selected due to the significant mechanical
difference between polymer domains, as the bulk nominal
Young’s modulus for PS and LDPE are 2 GPa and 0.1 GPa,
respectively, as per the product description. By calibrating
Olympus AC160 microcantilevers, the following parameters are
determined: f; = 281 kHz, f, = 1.593 MHz, k; =28.1 Nm™ ', k, =
509.8 N m_l, Q, =429, Q, = 600, Ay; = 50 nm, and Ay, = 1 nm.
The calibration of the first mode stiffness was performed
based on two well-established calibration techniques: the
Sader method?” and the thermal noise method.*® This
arrangement which does not require mechanical contact with
a hard sample during the calibration is accessible through the
GetReal™ tool in the instrument software. The calibration of
the second mode stiffness was performed using the suggested
power-law relationship between stiffness and frequencies of
the excited modes: k, = k;(f,/f,)*, where &, is the calibration
parameter which is empirically determined for specific
microcantilevers.*>”° The calibration values obtained using
the mentioned method were compared with the ones from the
slope of the dynamic amplitude approach curve for the second
eigenfrequency and the one for the quasi-static force curve for
the first resonance mode on a fresh clean silicon sample and
the agreement of the acquired values was satisfactory. The
blueDrive photothermal excitation system excites the micro-
cantilever at two eigenfrequencies (1 and 2). Modal amplitudes
and phases were tuned when the microcantilever was within
100 nm above the surface. We specifically suggest A% at 0.5
for the experiments to maximize the energy dissipation during
each cycle.”® The experiments were conducted under ambient
temperature and dry nitrogen flushed conditions to minimize
the effect of capillary forces. As shown in Fig. 7, the polymeric
domains are well separated. The round shapes on the images
are LDPE domains which are surrounded by a homogeneous
PS background. We use the bimodal observables of each pixel
of the images, i.e. ¢4, ¢h,, and A,, to estimate the surface nano-
scale properties using the regression model (eqn (24)).

The spatially resolved surface properties estimations using
the described inverse approach are shown in Fig. 8 and the
predicted mean values for polymer domains are listed in
Table 4. Since similar samples were previously explored by

This journal is © The Royal Society of Chemistry 2021
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Fig. 7 Bimodal AFM images of the PS-LDPE sample illustrate phase lag of the first (a) and second mode (b), and amplitude of the 2"* mode (c) from
left to right, respectively. The associated histograms are shown in the second row (d, e, f). The size of the images is 4 X 4 pm.
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Fig. 8 The estimates for adhesion force, Eg and E, values for the scanned polymer domains are predicted using the proposed algorithm. These pre-
dictions are mapped in a, b, and c subfigures and the associated histograms are shown in d, e, and f subfigures, respectively. The static adhesion is
calculated based on HR/6zy2.
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Table 4 Predicted mean viscoelastic properties for the polymer
domains based on the acquired bimodal AFM data. The predictions are
in agreement with the ones in the literature#2¢-5

Domain E, (GPa) E, (GPa) Static adhesion (nN)
PS 5.68 £ 0.31 1.82 +0.31 8.08 + 0.91
LDPE 2.73+0.11 0.11 £ 0.03 6.28 + 0.22

others, here we compare our results with their predictions.
Garcia et al.'* presented a method in which the model para-
meters were first calibrated on the PS domain so that the
model prediction for PS stiffness becomes comparable with
expected values. Then, the calibrated model was applied to
LDPE domain leading to stiffness estimates of 0.11 + 0.02 GPa
which compares well to our E,, value prediction as listed in
Table 4. In their method, the viscoelasticity of the surface was
described by a so-called “3D Kelvin-Voigt model” in which the
surface adhesion is neglected. Meng et al.>' employed DMT
model to estimate the PS-LDPE surface adhesion and stiffness
using magnetic-drive soft probes. The resultant mean reduced
modulus predictions for PS and LDPE phases were 0.1 and 1.8
GPa, respectively which compare well to our results. Since each
group used different microcantilevers to conduct experiments,
we compare the predicted adhesion force values for PS and
LDPE phases through the ratio of the mean predicted adhe-
sions for these domains. Meng et al.°' and Solgaard et al.*®
reported adhesions ratios as 1.26 and 1.2-2.0, respectively,
which is in agreement with 1.29 predicted by our method.
Therefore, the results demonstrate the capability of the inverse
model based on Attard’s approach to make realistic predic-
tions on the sample’s viscoelastic and adhesive properties
based on the acquired bimodal AFM observables (i.e. ¢4, A,
and ¢,).

7. Conclusions

This work features a proposed algorithm that systematically
accommodates surface forces and linear viscoelastic three-
dimensional deformation into the bimodal AFM framework.
To establish the algorithm, we derived the amplitude
reduction formulas for the resonant modes in bimodal AFM
based on the Euler Bernoulli assumption for the microcantile-
ver behavior. The algorithm simultaneously satisfies the
derived amplitude reduction formulas for both resonant eigen-
modes while the tip-surface interaction is computed using the
accelerated Attard’s model. The algorithm enables the rigorous
prediction and interpretation of bimodal AFM observables
with a first-principles approach. Simulations illustrate that
bimodal AFM can provide enhanced contrast between
domains with relaxation time discrepancies in comparison
with the conventional tapping mode AFM. The results show
that ¢, channel is more responsive to the viscoelasticity level
of the sample than ¢,. However, ¢, channel is more sensitive
to the surface adhesion level than ¢,. Furthermore, simu-
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lations showed that the phase lag and amplitude ratio of the
secondary mode illustrates a nonmonotonic and monotonic
variation versus relaxation time, respectively. Then, we pre-
sented an inverse regression-based method that quantitatively
predicts the local adhesion and standard linear solid visco-
elastic parameters from acquired bimodal AFM data. The
application of this method on bimodal AFM data on a
PS-LDPE polymer blend leads to quantitative discrimination of
adhesion and viscoelastic properties of the sample. Taken
together, the results presented here successfully open the way
to advanced interaction models to be used to quantify local
nanomechanical properties of soft, adhesive, and viscoelastic
materials in bimodal AFM. However, there is still room for
improvement on the model’s performance, e.g. the method
requires computationally expensive post-processing due to the
non-existence of a close-form solution for the utilized contact
model, and pre-knowledge about a sample is required to set
the right range of E, and E.
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