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A daily precipitation generator based on a hidden Markov model with Gaussian copulas (HMM-GC) is constructed using
remote sensing data from GPM-IMERG for the Potomac river basin on the East Coast of the USA. Daily precipitation over
the basin from 2001-2018 for the wet season months of July to September is modeled using a 4-state HMM, and correlated
precipitation amounts are generated from a mixture of Gamma distributions using Gaussian copulas for each state. Synthetic
data from a model using a mixture of two Gamma distributions for the non-zero precipitation is shown to replicate the
historical data better than a model using a single Gamma distribution.
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1 Introduction

The modeling and forecasting of seasonal and inter-annual variations in precipitation is used to determine water allocation and
resource management for regions that are dependent on precipitation as a primary water source. To this end, statistical and
dynamical precipitation generators can be constructed to produce time series of synthetic data representative of the general
rainfall patterns within the region. In particular, stochastic weather generators aim to replicate key statistical properties of the
historical data like dry and wet stretches, spatial correlations, and extreme weather events.

For multi-site daily precipitation generation, we consider a hidden Markov model with Gaussian copulas (HMM-GC) over
the Potomac river basin located on the East Coast of the USA. The basin is the primary source of water for the region and
receives large portions of its water supply from rainfall. We use daily data from the GPM-IMERG dataset [1] for the months
of July to September from 2001-2018. With a 0.1° x 0.1° spatial resolution, this results in 387 grid points across the basin.

2 The Hidden Markov Model with Gaussian Copulas

Let Ri.7 = {Ry,...,Ry,..., Ry} be the M x T matrix of precipitation amounts for a network of M grid points over T

days, where R; = (R},...,RM). Let S.7r = {S1,..., S, ..., 57} be the set of hidden (unobserved) weather states, where
Sy € {1,...,J}. Ateach location,
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with pj,. > 0 and chzopjmc =1forallm=1,...,Mand j = 1,...,J; f(:]o, B) is the density function of a Gamma
distribution with shape parameter o« > 0 and rate parameter 3 > 0. The states arise from a stationary, first-order Markov
process. Spatial dependence is captured implicitly by the Markov chain {.S; }, and precipitation at the M locations for every R;
are independent given S;. Details of the model formulation, estimation and simulation when using Exponential distributions
can be found in [2,3].

We fit a 4-state model with two Gamma distributions for the Potomac river basin. We have previously noted [4] that this
model underestimates the spatial correlations between grid points due to the densely gridded nature of our remote sensing
dataset. This results in unrealistic spatial patterns over the basin which also affects the daily mean and maximum precipitation
estimates. We proposed a copula based generator for the precipitation; instead of generating precipitation independently
conditional on the state, a Gaussian copula was used to generate correlated amounts. The performance of this HMM-GC and
its comparison with the model from Equation 1 can be found in [4]. Further, in [4], we chose a model with two Gamma
distributions instead of a single Gamma distribution even though the latter is more commonly used [5, 6] and had a lower
Bayesian Information Criterion (BIC) score; this is because the BIC relies upon assumptions that do not hold for the order
selection problem [5], and cannot always identify the correct model for a small number of days and a large number of states [7].
Here we discuss the effects of using an HMM-GC with a single Gamma distribution.
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20f2 Section 15: Uncertainty quantification

Table 1: Statistics based on an HMM-GC with one and two Gamma distributions.

RMSE for RMSE for Average absolute
Number of Log-likelihood  Bayesian Information  proportion mean monthly difference in
Gamma distributions ~ for fitted model  Criterion (BIC) score  of dry days precipitation (mm) spatial correlation
1 -9.78e+05 1.991e+06 0.056 29.62 0.166
2 -9.62e+05 1.994e+06 0.053 7.039 0.183

3 Comparison of HMM-GC models for the Potomac River Basin

In Table 1, we see that while the model with the single Gamma distribution (HMM-GC1) has a better (lower) BIC score, using
two Gamma distributions (HMM-GC?2) provides a better (higher) log-likelihood. The root mean square errors (RMSE) for the
proportion of dry days is similar for both models due to a common estimation and generation process. However, the RMSE for
the mean monthly precipitation at grid points is much higher for HMM-GC1 compared to HMM-GC2; this suggests that the
HMM-GC2 provides more accurate monthly estimates. In Figure 1 which plots the distribution of pairwise spatial correlations
between the grid points, we see that though both models underestimate spatial correlations, HMM-GC1 has a higher median
as well as a wider range. However, HMM-GCI also provides negative correlation estimates, whereas the original data has
strictly positive correlations. HMM-GC2 does not suffer from this issue.

Finally, Figure 2 shows that HMM-GC1 overestimates the daily maximum basin precipitation, whereas HMM-GC2 has
a distribution similar to the IMERG data. Along with our conclusions from Figure 1 and the RMSE values, it suggests that
BIC values are not conclusive in selecting the best model in this case. Using a single Gamma distribution tends to produce
unrealistic spatial correlations and tail values, which is mitigated by using a mixture of two Gamma distributions.
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Fig. 1: Distribution of pairwise correlations between grid points Fig. 2: Distribution of the maximum daily basin precipitation based
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