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In this paper, we develop a continuum model for the movement of agents on a lattice,
taking into account location desirability, local and far-range migration, and localized
entry and exit rates. Specifically, our motivation is to qualitatively describe the homeless
population in Los Angeles. The model takes the form of a fully nonlinear, nonlocal, non-
degenerate parabolic partial differential equation. We derive the model and prove use-
ful properties of smooth solutions, including uniqueness and L2-stability under certain
hypotheses. We also illustrate numerical solutions to the model and find that a simple
model can be qualitatively similar in behavior to observed homeless encampments.
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1. Introduction

Homelessness is a growing problem for society, with large cities like Los Angeles
having homeless populations of nearly 40,000 people®? at present. To date, correla-
tions have been established between homeless populations in different cities; factors
such as the cost of rent, number of affordable housing units, and poverty rates!®!?
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are relevant. But outside of a few anecdotal examples in the social science litera-
ture,?” little is known about the daily lives of homeless people, how they became
homeless, and how long they may remain homeless. There is also the question of
how the homeless population changes over time and space, which is essential for
planning social support services to counteract this problem. A few studies address
the dynamics of the homeless population,'? but there are still many unanswered
questions. Within Los Angeles, the homeless population is a big concern. Com-
plaints from Los Angeles residents regarding homeless encampments (see Fig. 1)
are among the most common reason residents call the city.*?> The encampments can
form quickly and require some careful consideration in terms of clean up.*' But
the encampments may also serve as places where homeless people themselves live
preferentially, feeling safer.??

Human interactions with their environment can be studied both from a social
science perspective and through mathematical and statistical methodologies. Mod-
els of human social interaction have studied in many contexts, for example voting,2”

20,50 including

lobbying;'® leader-follower dynamics;! and evolutions of opinions,
through agent-based models of continuous-valued opinions within a finite group of
peers.36 Models relating humans and the environment have also been put forth,
such as those pertaining to climate change.** Pedestrian travel has been studied
experimentally and modeled with mathematics,?® even taking into account personal
objectives of minimal travel time and avoiding high density areas;?* and statis-
tics can be employed to describe large crowds at special events, including the fatal
pressures that can build up in the center, asphyxiating standing people.?> Mathe-
matical models for riots have also been developed.? On a larger scale, agent-based
models have been used to study residential burglary, taking into account history-
dependent target attractiveness,*>*° truncated travel distances,® and agents

Fig. 1. Part of a homeless encampment in a part of Los Angeles called “Skid Row’.” Homeless
individuals have set up tents and makeshift shelters on the sidewalk.
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burglarizing according to independent Poisson clocks.*® Mathematical models of
traffic flow have also been developed.!® More broadly, urban crime has received
a lot of attention in models that incorporate police into the models;!3:21,25:40,47,51
models that predict locations of offenders;3” rigorous proofs of solution proper-
ties of such equations;>3° and the study of emergent patterns and behavior.*14:26
Species aggregation has also been thoroughly studied,” with many authors model-
ing such phenomena by nonlocal differential equations.?1%4¢ On even larger scales,
we can see the natural emergence of pack formation in predator-prey systems, for
sufficiently strong intraspecies competition;® descriptions of human territorial con-
quest;'” and ecology models for a species in an environment with patchy resources.?*
But to our knowledge, little has been done directly to model homelessness, which
is a growing societal concern.

In our study, we address the dynamics of the homeless population on small geo-
graphic scales. We develop an agent-based model for the homeless population living
on the streets, which, in the continuum limit, yields a partial differential equation
for the population density. Our data sources for the homeless population are a col-
lection of annual point-in-time estimates broken down by census tract from the Los
Angeles Homeless Services Authority.?® 3! We remark that accurate counting of the
homeless population is challenging at best, with some authors suggesting the counts
could be significant underestimates.® Our work focuses upon building a qualitative
model so absolute precision is not necessary.

This paper makes three main contributions to the scientific community: first,
the derivation of a new continuum partial differential equation to describe homeless
populations; second, rigorous analysis of basic properties of solutions; and finally,
in using the model to yield qualitatively consistent behaviors observed in the true
homeless population. The paper structure is as follows: in Sec. 2, we derive the
model; in Sec. 3, we prove useful properties of solutions; in Sec. 4, we demonstrate
how the model can qualitatively describe encampment formation; and finally, in
Sec. 5, we summarize our work and discuss future research.

2. Model Formulation

In describing the homeless population, we consider several processes taking place
at each location (see Fig. 2):

e Entry into population — due to local features of the area such as cost of living,
etc. individuals may become homeless;

e Exit from population — through localized social services, family support, death,
or other processes, individuals may cease to be homeless;

o Diffusive movement — a homeless individual who does not like their current
area due to lack of resources or other factors may venture to a surrounding
neighborhood; and

e Nonlocal movement — they may intentionally travel to another part of the city,
such as through public transit.
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Fig. 2. (Color online) In this model, homeless individuals may stay where they are, walk to an
adjacent neighborhood (turquoise), take a bus to a distant neighborhood (blue-purple), become
homeless due to external factors (red), or cease to become homeless (green). The features of the
city change by location.?

The features of the cityscape vary by location so some areas are more residential,
some are more industrial, etc.

2.1. Derivation

We use an Eulerian frame of reference discretized by a regular lattice of points 7
in RY, with spacing of éx in each coordinate direction and volume dz¢. We also
discretize time into time steps of §t with ¢, = kdt,k = 0,1,2,.... For modeling
homeless populations, our main focus is d = 2, but d = 1 could describe populations
of people (or even other species) in a long/narrow geometry and d = 3 could describe
populations that can freely move in three dimensions such as birds or fish.

We concern ourselves with the evolution of N, the number of individuals occu-
pying site ¢ € 7 at time tj. Intrinsic to each site ¢ at time t;, we denote an
“attractiveness” AF € (0,1). This could be influenced by the resources available
at the location. In general, we denote subscripts for the spatial location index and
superscripts for the time index. Over each very small time interval dt, we assume
the following:

e people enter the population at a Poisson rate EF;
e people leave the entire domain at a Poisson rate L¥;

2Image credits are as follows: Backpacking by Gan Khoon Lay, homeless by Ed Harrison, Bus by
Andre Buand, Cafe by Creative Mania, House by Vectors Point, and Apartment by priyanka —
all from the Noun Project.
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e individuals who do not leave the population will remain at their current location
with probability A¥;

e individuals who do not leave the population and choose to leave their current
lattice point will make deliberate travel, such as with public transit in the case
of homelessness, at a Poisson rate Ff ; and

e if an individual remains in the population, does not stay at their location, and
does not travel deliberately from their site to another, they will travel to each
neighboring site with equal probability.

We incorporate all terms, allowing them to potentially be “in balance” so that
transportation and movement may be comparable to arrivals/exits. In reality some
of these effects may be negligible in describing the actual homeless population but
we opt for generality.

At each site i, up to O(6t) the following probabilities describe an individual:

Pr(leave Z) = L¥ot, (2.1)

Pr(stay in Z) = 1 — LF6t, (2.2)

Pr(stay at i|stay in Z) = A¥, (2.3)

Pr(stay at i and stay in 7) = A¥(1 — L¥6t), (2.4)

Pr(deliberate travel |stay in Z) = (1 — AF)I'Fét, (2.5)
Pr(deliberate travel and stay in Z) = (1 — A¥)T¥ot, (2.6)
Pr(leave i but not travel far |stay in Z) = (1 — A¥)(1 — T'¥6t), (2.7)
Pr(leave i but not travel far and stay in Z) = (1 — A¥)(1 — (IF + L¥)6t), (2.8)

so that on average at site ¢ starting at time ¢y, over each dt:

° Efdt people enter the population;

LENEGSt people leave the population;

AF(1 — L¥S§t)NF people remain at their current location;

(1 — A¥)(1 — L¥8t)NF people move to a neighboring lattice point;
(1 — AWTENESt people travel deliberately to another point; and
o (1—A¥)(1 — (T¥ + LF¥)6t)NF people move to a neighboring lattice point.

We make one further assumption that there exists a transition matrix 7% =
(Tﬁ)(j,i)ez2 describing the probability an agent deliberately travels from site j to
site .. We denote j ~ i to signify that ¢ £ j are neighbors and j — ¢ to signify that
i # 7 and there is deliberate (potentially far-range) movement from j to i. We also
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assume that each lattice point has n = 2d neighbors. Then

entry at sito from neighbors

NF+1_ Nk = E’“ét +Z (1-AF(1 - (0% + LE)st)NE

J"‘l

deliberate moves in

k k antkmk
+ ) (1= ATENFTS 5t

Jj—

remain at location deliberate moves out

+ AF(1 - LFt)NF — (1 — A¥)TENFSt —NF

_ > (1= ANNJ —n(1— AF)N}
n

gri

k k k antTkmk
ot | BF 4+ (1 — ANDENFTE

J—

5t %1 SO0 L) (1 — AB)NE — n(TE + LF)(1 — AF)NF
jri

— (1= ADTYNF = LiN}

The terms of the form ). i J — ne¥ are the discrete second-order centered
difference Laplacian at position ¢ and time ¢; multiplied by 622. Denote the discrete
Laplacian by A. Dividing the equation by ¢, we have
NikH_Nik dz” ky Tk k k\Tk ATk ok kark
et = S A((L - ADNE) + Ef + > (1 — ANDENFTS — LEN]

Jj—
2
(- ARTENE — YA 4 Lh(1 - ARNE
n

Under a diffusive scaling, such that ffét = D = O(1), in taking the limit, we

furnish the partial differential equation for a spatial domain 2
pi= DA =a)p) +n—wo+ [ 7l O((=ahpldy— (1 =app.  (29)

where p is a spatial density of agents; 7 is an entry rate per unit area; w is an exit
rate; T governs transitions from y to x at time ¢; -y is a travel rate term; and a is
a continuous attractiveness field. We can express (2.9) more nicely by defining the
unattractiveness

u=1-a (2.10)
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so that over a domain 2
pi(x,t) = DA(p(z, t)u(z,t)) + n(z,t) — w(x, t)p(x,t)

+ (/Q 7(y, 2, )y (y, t)p(y, t)u(y, t)dy — v(af,t)p(x,t)u(xvt)> (2.11)

subject to the normalization of 7 > 0 with

/ T(y, x,t)dx = 1. (2.12)
Q

We remark that a hyperbolic scaling with dz/6t = O(1) would not allow for
diffusion in the system and we would lose out on the local travel term altogether,
only having deliberate travel terms. This is equivalent to setting D = 0 in (2.11).
We do remark, though, that sometimes hyperbolic scalings are necessary when the
reality of finite propagation speeds cannot be well approximated through a diffusive
limit.'" For this preliminary work, we focus on a diffusive approximation.

2.2. Nondimensionalization

We begin with the PDE

pt = DA(pu) +n—wp+ (/Q T(y, x, )y (y, )p(y, tu(z, t)dy — %OU),
(x,t) e x RZO'

We write x = Za*, t = t*, p(x,t) = pp*(z*,t*), u(x,t) = u*(x*,¢*), 7(y,z,t) =
77—7—*(y*7x*7t*)v ﬂ(xﬂf) = 7777*(55*7t*)7 w(x7t) = of)w*(x*7t*)7 7(x7t) = ;)’P)’*(x*J*)v
where the bars are scales and the asterisk variables are dimensionless. We also define
O* = E%Q

Noting that if y = Zy* then dy = z%dy*, we have

* D{ k(oK ok 77t * - * sk
i = )+ () - @i

+(t7’ﬁfcd)/ Ty )Y (Yt )yt ) uly” 1) dy " — (Y)Y e
We can adopt scalings relevant homeless count data: given the homeless counts are
done annually, we choose ¢ to be 1 year so an O(1) timescale roughly represents
an interval between counts. We also choose Z as a characteristic length within our
region of interest (later we use the geometric mean of the length/width of the
spatial domain), allowing the entire domain to have approximately unit length.
There is also a natural scaling for p as the initial average population density over
the region. If the dimensionless density is &~ 1 then it is roughly average. These
choices suggest the derived scales (to make more dimensionless ratios equal to 1)
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7= p/t, o =7~ =1/t and 7 = 1/2%. Then for a constant § = Dt/z?, and after
removing the asterisks, we have

diffusive movement entry loss

—~ AN~
Pt = dA(pu) +'n —wp
nonlocal entry loss from nonlocal movement
N
+  Ihypu] - Ypu : (2.13)
Iq)(") Z/QT(y7-7t)q(y7t)dy7 vt, (2.14)
/T(-7x7-)dx =1, 72>0. (2.15)
Q

In general, the unattractiveness © may depend upon p and other localized features.
In Sec. 2.3.2, we choose a particular form for u (Eq. (2.16)). Because of this potential
density-dependence, the system of equations is nonlinear. We can interpret (2.13)-
(2.15) as consisting of a nonlinear diffusion operator where pu is diffusing; a local
source term 7); a localized exit rate w; a nonlocal operator I[ypu](-) describing
intentional travel, and a local loss due to intentional travel ypu. Note that the
nonlocal operator is not a convolution.

2.3. Mathematical formulation
2.3.1. Notation

To denote solution spaces, we may explicitly label a function’s argument and specify
the continuity /differentiability assumed with a subscript with that label. We denote
f(z,t) € C2NCHOQ x R>p — R>g) to be a function f that is twice continuously
differentiable in 2 and once in t. We use similar notation for continuity in higher
derivatives. The notation C represents continuity in all arguments, possibly with
superscripts to denote the number of derivatives, e.g. C*°.

2.3.2. Assumptions

We denote our spatial domain to be  and assume it is bounded and sim-
ply connected. For simplicity in the analysis, we will choose 2 to be the torus
T¢ = R?/Z¢ = [0,1)? for d € N. Periodic boundary conditions actually exist in
cities e.g. with perimeter roads, however here the choice is more for convenience of
the mathematics. Also cities like Los Angeles can have repeating patches of resi-
dential (both affluent and disadvantaged) neighborhoods and commercial regions,
which can give the impression of a repeating pattern. For numerical studies, we
sometimes use no-flux boundaries in R?, identifying a flux of —0V (pu).
We denote the following:

o p(z,t) : 2 x R>g — R>q, the population density (people per unit area);
o (x,t) : 2 x R>g — RP, a features vector of size p, which can vary over space;

x
T
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Fig. 3. Plots of unattractiveness versus density with p = 1. The unattractiveness increases with
density for all fixed x. It is always at least u™ — u~ and never exceeds ut. As x increases, the
unattractiveness decreases.

o x(0(x,t)) : RP — [0, 1], the (dimensionless) relative capacity, to be used below;

u(r(0(z,1)), p(z, 1)) : [0,1] X R0 — (0,1),
Ru
14/
the (dimensionless) unattractiveness for 0 < u~ < u™ < 1,0 < p (see Fig. 3 for
qualitative depiction);
o T(y,z,t) : 2 x QX R>g — Rxg, the travel term (per unit area probability), such
that

(k,p) > ut (2.16)

VyeQ,Vit>0, /T(y,x,t)dle;
Q

o 1(0(x,t),t) : R” x R>o — R0, the entry rate (people per unit area per unit
time);

o w(f(z,t),t) : RP x R>g — R>¢ the exit rate (per unit time); and

o Y(0(z,t),t) : RP x R>g — R>¢, the intentional travel rate (per unit time).

For simplicity later on, we will often write k or k(z,t) instead of x(6(x,t)), etc.

The fact that unattractiveness is density-dependent is a hypothesis based on
the observation that no region can supply unlimited resources. The potential for
including more general 7 to include preferential travel to locations with a higher
population density is briefly discussed in Sec. 3.3 as this could be a possible mech-
anism.?? For simpler analysis, however, we do not consider such 7.

We operate under the hypotheses that

Hypothesis 1. The functions p,8,k,7,n,w,y€C> for all their respective
arguments.
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Hypothesis 2. There is a = > 0 so that |V&|, |A&]|, |w], 7], ]|7],|7] < ZE for all
x € Q,t > 0. Here, | -| is the standard Euclidean norm.

We then consider the evolution of p given by Egs. (2.13)-(2.16).

2.4. Model exploration

To build a basic understanding of the model features, we study the solutions numer-
ically and vary the parameters. We do this in one dimension on the torus with
length 1. The numerical method employed is explained in Appendix A.

We wish to qualitatively understand the effects of the different model features.
As part of this work, we locally perturb some features sometimes making use of the
bump function

0, x| > 1,
T(z) = e—1/(1—a*) (2.17)
fll e—l/(l—mQO)de7 |x| <k

The function 7 € C*(R — Rxg) is compactly supported on the interval [—1,1]
with a wide range of z-values where it is nearly constant (owing to the large power
of 20). We remark that YT has a support of length 2, which is larger than the unit
torus, but by shifting and rescaling its argument, we ensure our use of T does not
violate the properties of the torus.

We perform a series of numerical experiments upon the model, as seen in Fig. 4
with explicit parameter listings in Table 1. In particular, we study the following:

e baseline: We study how the population density evolves from an initial distribu-
tion when all the parameter functions are constants, observing a steady approach
of the population density to a spatially constant solution at steady-state.

e enhanced local entry: From the baseline, we increase the entry rate n in a
region and at steady-state find the population is largest where there is more entry.

e enhanced local exit: From the baseline, we increase the exit rate w in a region
and at steady-state find the population is reduced where there is a greater exit
rate.

e enhanced local to far migration: From the baseline, we increase the travel
rate v in a region and at steady-state find the population has diminished due to
a higher rate of moving away from the area.

e biased transfer: From the baseline, we choose 7 to be biased to relocate indi-
viduals to one particular region; at steady-state, the population density is higher
at this destination.

e exponential decay transfer: From the baseline, we choose 7 such that from y,
the probability density in moving to = decays exponentially with |« — y|. Com-
pared to the baseline, the change is quite small, but we observe the population
decreases slightly slower in more concentrated regions since the people are not
travelling as far.
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baseine enhanced local ent enhanced local exit
2 2
Q N, Sy Q
1 1
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
X X X
e3nhanced local to far migration biased transfer n exponential decay transfer
Vi AN 2 ’ 4 2 )
U QU S8
1 1 [oememmssesssssmostonnss ] \‘ "
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
X X X
4 textured relative capacit enhanced diffusion 3 more densitx sensitivitx
2 2
Q ko S
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
X X X
narrow unattractiveness range region becomes uninhabitable =1=0
4
Py o *t=0.5
< — ———— P _
U / U F 4 4 t—1
W 2 ] 3
1 J > 4 st=0
B
0 0 '
0 0.5 1 0 0.5 1
X X

Fig. 4. Initial conditions are that p(x,0) = 0.44+4Y(8(z— i)) The scenarios depicted correspond
to those of Table 1. Row 1 left: baseline; row 1 center: enhanced entry near x = 3/4; row 1
right: enhanced exit rate near x = 1/4; row 2 left: enhanced deliberate travel rate near z =
3/4; row 2 center: transfer kernel moves people to near x = 3/4; row 2 right: transfer kernel
decays exponentially with distance; row 3 left: textured relative capacity; row 3 middle: enhanced
diffusion; row 3 right: unattractiveness becomes more sensitive to density; row 4 left: same textured
relative capacity as in row 3 left but with smaller variance in unattractiveness; row 4 center: region
near = 1/4 becomes uninhabitable; row 4 right: time legend.

e textured relative capacity: From the baseline, we vary the relative capacity
K in an oscillatory fashion; we find that at steady-state, the population density
fluctuates with this varying relative capacity.

e enhanced diffusion: From the baseline, we raise the diffusion coefficient and
find the behavior can quickly be dominated by diffusion, resulting in flat density
profiles.

e more density sensitivity: From the baseline, we make the unattractiveness
more sensitive to density variations by decreasing p in (2.16). We observe the
population disperses more rapidly in regions where the population density was
initially highest.

e narrow unattractiveness range: From the baseline, we modify «~ and u™ in
(2.16) so that the unattractiveness is almost constant, regardless of p or k. We
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Table 1. Numerical experiments that are run on the model in one dimension with T
defined as in (2.17). Plots of these experiments are given in Fig. 4.

Description Parameters Observations
Baseline n=2,w=1v= %, Tends to flat solution
T=1,k=4,6=0.02
ut =0.99, u~ =0.98, 5 =20

Enhanced local entry

=3
near r = j

Enhanced local exit
1

near r — 1

Enhanced local to far

i i =3
migration at x = 3

Biased transfer

Exponential decay
transfer

Textured relative
capacity

Enhanced diffusion

More density
sensitivity

Narrow unattractiveness
range

Region becomes uninhabitable

1
near r = 7

w1457 (4(x — i))

v = % +4Y (4(x — %))

7 4T (4(x — %))

T(y, z,t) > e distyz)
(f’]l" efdist(O,z’)dm/)

A =0.05

Kk > sin? (47 x)
o1
p 15

K+ sin? (4rx), ut — 0.51,
u~ +— 0.01

= Y(4(x - $))/7(0)
T(y, z,t) — 4T (4(z — %))
n = 8Y(4(x - %))

v L4207z — 1))

Population largest

-3
atx—4

Population minimal
1

atx:z

Population moves away

-3
fromm—4

Buildup of population
at bias destination
Population slower
to decrease near
concentration region
Spatial frequencies
observed in density
Population levels
out faster
Population spreads
out faster
Relative capacity has
smaller effect
Population drastically

-1
drops near z = ;

also perturb k as in the “textured relative capacity” experiment. Here we find

the steady state population is much less influenced by the relative capacity.

e region becomes uninhabitable: From the baseline, a region @ becomes unin-
habitable. This is modeled by reducing the relative capacity to zero inside @) and
modifying 7 so that transfer into the region is zero and out of the region is size-
able. In addition, the travel rate is increased inside of ) and the entry rate is zero
within (). We find the population chooses to relocate to more habitable areas.

3. Properties of Smooth Periodic Solutions

We study the solutions to

pt = 0A(pu) +n —wp + Iypu] — ypu, (3.1)

= / 7(y, - t)q(y, t)dy,
Q

(3.2)
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/ 7'(',1‘, )dx = 17 T > 07 (33)
Q

+ RU
L+p/p

u=u(k,p) =u (3.4)

for0<u” <ut<1,0<p,0<é.
Here, we work in a spatial domain Q = T?, the d-dimensional torus. For T > 0,
we denote

Ur = {p(z,t)| p(z,t) € C2NCHT? x [0,T] = Rxo)}

with t-derivatives understood to be right-, respectively, left-derivatives at t = 0
and t = T. In general, we will be assuming the existence of solutions to (3.1)—(3.4)
within the space Up. If we write U, we refer to a solution that exists globally for
all time. At all times, we assume that hypotheses 1 and 2 are satisfied.

As Egs. (3.1)—(3.4) are parabolic and nondegenerate (u is never zero), we antic-
ipate global existence of smooth solutions, without the formation of shocks or phe-
nomena such as finite-time blowup. However, such proofs are beyond this paper. A
reader interested in the question of existence of solutions could refer to proofs of

9,12,23

local existence to similar or related models such as for chemotaxis or residen-

tial burglary.*?

Remark 3.1. The solutions we consider are continuous on the torus T¢, which is
compact, so we can use sup and max, respectively, inf and min, interchangeably.

3.1. Useful properties of pu

The term pu appears many times in our analysis and we make a list of some useful
properties. Note that pu = u*p — kM (p) where we define

M(p) = ﬁ- (3.5)
Observe

M'(p) = (HUW, (3.6)
M) = o (3.7

Thus, for p > 0,
0< (ut —u)p < pu, (3.8)
0< M(p) <up, (3.9)
0 < M(p) < pu~ = constant, (3.10)
0< M(p)<u, (3.11)
M"(p) <0 (3.12)
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We also have that

V(pu) = (u™ —kM'(p))Vp — M(p) Vs, (3.13)
Alpu) = (ut = kM'(p))Ap — kM" (p)|Vp|* = 2M"(p)Vr - Vp — M(p) Ar.
(3.14)

In one spatial dimension, we also have

(pw)zzz = (T — KM () pawa — 3M'(p)Kapaz — 3M'(p)kawpe — M(P) Koz

—36M" () pupra — 3M" (p)kaps — kM" (p)p5. (3.15)
Owing to (3.11), hypothesis 2, and 0 < k < 1, we have
p s utp — KM(p) € Lip, - (Rz0 — Rs0), (3.16)
p — VM (p) € Lipgj,- (R0 — R?), (3.17)
p > KM'(p) € Libyz, - /(R0 — Rso), (3.18)

where the subscripts in the Lipschitz spaces denote the bounding constants.

3.2. Results

We have a series of results of solution properties below. All proofs are provided in
the paper, but the following lemma and subsequent three propositions are proved
in Appendix A.2.

Lemma 3.1. Let 0 <ty < T < 0o and define A = T x (to,T].
Let q(x,t) € C2NC(T? x [0,T] — R>p) solve

gt — aAF(q,t) + A\g+ ®(Vq,z,t) = O,

where a € C(T4 x [0,T] — Rxo),
® € C(R? x T? x R>¢ — R) with ®(0,-,-) =0,
Az, t) € C(T4 x [0,T] — Rxp), respectively, A € C(T% x [0,T] — R<o),
F(gq,t) € C(R>p x [0,T] = Rx>q) with F monotonically nondecreasing with respect
to q, and ©l[q|(z,t) is an operator depending on q, x € T, and t € R>q such that
if ¢ achieves a global mazimum over T at x then ©[q|(z,t) < 0, respectively, if q
achieves a global minimum over T¢ at x then ©[q|(z,t) > 0.

The preceding conditions force sup, q = maxg«pq, respectively, infyq =
ming- ¢ where 0*A = T x {to}.

Remark 3.2. The zero operator can be used in Lemma 3.1 and the result clearly
holds.

Proposition 3.1. (Positivity) Let T > 0 and suppose that p € Uy is a solution to
(3.1)~(3.4) with Q = T and p(x,0) > 0 for all x € T¢. Then ¥t € [0,T],p > 0.
In particular if minga p(-,0) = pm then p(z,t) > ppme” CETI=IE 5 0 for all x €
T4, t € [0, 7).
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Proposition 3.2. (Explicit Bound on Total Population) Let T' > 0 and suppose
p € Ur is a solution to (3.1)~(3.4) with Q@ = T and p(x,0) > 0 for all z € T,
Then |lp(-; )| Lr(ray < llp(-0)l 1(ray + Et < 0o for all t € [0,T].

Proposition 3.3. (Explicit Bound on Population Density) Let T' > 0 and suppose
that p € Uz is a solution to (3.1)~(3.4) with Q = T4, p(x,0) > 0 for all z € TY,
and Hp('70)||L°°('ﬂ‘d) = pm < 00. Then Vt € [0,T7, Hp('7t)||L°°(Td) < pm + %3t2 +
E2)p(-, 0)l| L1 (rey + E + Edpu )t < co.

Theorem 3.1. (Uniqueness of Smooth Solutions) Let T > 0 and suppose p1, p2 €
Ur are two solutions to (3.1)~(3.4) with Q = Te. If p1 and ps have identical and
strictly positive initial conditions at t =0, then p1 = ps on 0 <t < T.

Proof. From subtracting the respective PDEs, we have that

(p1 = p2)e = 6uT A(p1 — p2) — SA(K(M (p1) — M(p2))) — w(p1 — p2)
+I[y(u™ (p1 — p2) — K(M(p1) — M(p2))]
—(u(p1 = p2) — (M (p1) — M(p2))-

By multiplying the equation by (p; — p2), integrating over T?, and integrating by
parts once, we have

d1 9
E§Ad(pl — p2)°dz

V(p1—=p2)-V(£(M(p1)—M(p2)))

=0 —ut|V(p1 — p2)|* + (Mo /_ Mp) Ve -/V(pl ~ o) dz
T + (M (p1)Vp1 — M'(p2)Vp2) - V(p1 — p2)

- /Td (W(pr — p2)* + (p1 — p2)v(ut (p1 — p2) — k(M (p1) — M(p2)))dz
4 / (o1 - p2) / (.2, )yt (o1 — pa) — K(M (1) — M(p2))]dyde
< / WtV (01— p)? + (M(pr) — M(p2)) Vs - V(o1 — po)

+ k(M (p1)Vp1 — M'(p2)Vp2) - V(p1 — p2))dz

/ lp1 — pzl/ T(y, x, )y (u™ (p1 — p2) — k(M (p1) — M (p2))|dydz,

where we used the fact that (p; — p2) and vy(p1u(k, p1) — p2u(k, p2)) will have the
same sign (because pu is positive and monotonically increasing in p). Now, by (3.16),
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—_2

o1 =p2llprcrey < |Td|1/2||p1_p2”L2(Td) = [lpr—p2llL2(ra), and y(y, )7(y, 2, 1) <=
we have that

<ut|p1—pa|

/ lp1 — pzl/ T(y, z, t)y [(ut (p1 — p2) — k(M (p1) — M (p2))| dydz
'ﬂ‘d 'ﬂ‘d

<utZ2(|pr — pal 72 (pay- (3.19)

Working with the derivative terms, we have
/Td(—iﬁlv(m = p2)]* + (M(p1) — M(p2)) V- V(p1 = p2)
+r(M'(p1)Vp1 = M'(p2)Vp2) - V(p1 — p2))dz
= /W(—le(m = p2)|* + (M(p1) = M(p2))Vk - V(p1 — p2)
+r(M'(p1)V(p1 — p2) + (M'(p1) — M'(p2))Vp2) - V(p1 — p2))dz
= / [ — M )|V (1 — )
((M(p1) = M'(p2))Vp2 + V(M (p1) — M(p2))) - V(p1 — p2)]dw

[ — M (1))

x R (p1) = M (p2))Vp + V(M (py >—M<p2>>)r

(V (p1 — p2) 2t — kM (1)

)
+ K(M'(p1) — M'(p2))Vpa + VE(M(p1) — M(p2 ))|2}
4(ut — kM (p1))

< Klp1 = p2l22(ray, (3.20)

for some K that depends on max,c(o 7] [Vp2(-,t)[| Lo (re). It is finite as solutions
are twice continuously differentiable in T? so the gradient cannot blow up. The last
inequality stems from the final (and positive) term in the integrand being Lipschitz:
since Vpy is bounded on T¢ (pq is C? in x) and using (3.17)—(3.18), the term being
squared in the numerator is Lipschitz. Also, the denominator is bounded below by
4(u* — u™). Whence, by combining inequalities (3.19) and (3.20)

d =
Ele - P2H%2(Td) <2uE + K)|p - PZH%%W)

and by a standard application of Grénwall’s inequality, the result is proven. O

Corollary 3.1. (Continuous Dependence on Initial Conditions Given the Solutions
Exist) Let T > 0 and p € Ur be a solution to (3.1)~(3.4) with Q = T? and p(-,0) =
po(-) > 0. Then Ye > 0, AC(T) > 0 s.t. if o € Ur is a solution to (3.1)~(3.4) also
with Q@ =T, o(-,0) = 0o(-) > 0 and ||oo — pol|r2(ray < C(T) then V0 <t < T, we
have |o(-,t) — p('7t)HL2('ﬂ“d) <e€.
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Proof. The proof is trivial by using the arguments that prove 3.1: replace p; with
o and p2 by p. O

Theorem 3.2. (Spatially Homogeneous Forcing Induces Convergence to Homoge-
neous Spatial Density in Measure) Let p € Uso be a solution to (3.1)—~(3.4) with Q =
T, p(x,0) > 0 for all x € T¢, 0 = O(t) (making k constant in space), n = n(t) >0,
w=w(t) >w" >0 withw™ a constant, v = ~v(t) > 0, and 7 = 1. Then for all
p(+,0) € C%, p(-,t) — p(t) in measure where p(t) = e~ Jg w(s)ds fg n(r)els «()dsqp,

Remark 3.3. We are assuming global existence here in order for the limit to make
sense.

Proof of theorem 3.2. Our argument will come from two parts: first, we will
establish a uniform upper bound for the solution over T that converges to p as
t T co. We will then show that the solution cannot remain smaller than p except on
sets whose measure vanishes. With s constant in space, pu = F(p,t) is monotoni-
cally increasing with p for each fixed ¢. Then (3.1)—(3.4) become

pr =0AF +n—wp+~(F —F), (3.21)

where F' = [, Fdz is the average value of F(p) on T?. We wish to change variables
to remove as many terms from (3.21) as possible so as to apply the maximum
principle supplied by Lemma 3.1. For smooth &; and &, write p = €61 g(z, t)+&5 (1)
so that

§1q+qr + Eae™ % = SAF 41— wg — whee ™ +(F — Fle™*.
The dot signifies a time derivative. We choose
& =-w, &(0)=0, (3.22)
§ = —wl +neft, £(0)=0 (3.23)
so that in simpler terms
gt — OAF = v(F — F)e %,

Note that ye=¢1(F — F) is an operator that satisfies the conditions of © in
Lemma 3.1. By Lemma 3.1, the global maximum for ¢ in Uy is achieved at t = 0.
By choice of initial conditions (3.22)2 and (3.23)2, p(-,0) = ¢(+,0) and thus

p=ctq+ & < e maxq(,0) + & = e maxp(-,0) + &.

By recalling 1, w are constant in space and solving the ODEs (3.22)—(3.23), we can
precisely state that

t n
p(a:,t) <eo Jg w(s)ds m%xp(-, 0) +e Iy w(s)ds/ n(r)efﬂl w(s)dsd,r,
T 0

— Jo w(s)ds H%%Xp(', 0) + p(t). (3.24)
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This proves directly that the set of points upon which p exceeds p + ¢ must have
vanishing measure as t T oo for all € > 0. Having established an upper bound, we
now work on the second part of the proof. Integrating (3.21) over T¢ we have (as
in proof of Proposition 3.2 in Appendix A.2) that

d
EHPHLI(W) =1n- WHPHLl(Td)

SO

t
ol o () = o= Jo s (|p||p<w><o> + [ afryel “<S>d8dr). (3.25)
0

Let € > 0 and define S.(t) = {z € T¢p(z,t) < p(t) — €}. We show that in
measure, p — p(t).
Observe that by Egs. (3.25) and (3.24)

ol vy (1) = e~ Jo % ]| L1y (0) + (1)

:/ pdx—i—/ pdx
T\ S, s

< [T (054 a0 4 p(0) ) + 5.1 () — 0
= T0a(e) + T\ Scle 50 mae (-, 0) — e[ (0)].

Rearranging the first line and the last line, using |T¢| = 1, and recalling there
is an inequality produces

0 < &< (myxp( OTSe| = Dollacon )

Since we assume here that w is strictly bounded below by 0 so that fooo w(s)ds
diverges, the right-hand side decays to zero and thus

€lSe()] 10

as t — oo for all € > 0. O

In one dimension, we can prove a stronger result.

Theorem 3.3. (Spatially Homogeneous Forcing Induces Uniform Decay of Gra-
dient in One Dimension) Let p(z,t) € C3 N CHT x [0,00) — Rxq), having put
and pz continuous, be a solution to (3.1)—(3.4) with Q = T, p(-,0) = po > 0,
po € C3, 0 = 0(t) (making k constant in space), n = n(t) > 0, w = w(t) > 0,
v =) >0, and 7 = 1. We also assume that one of w or v is bounded below
by a positive constant, m. Then for all p(-,0) € C3, p(-,t) — p(t) uniformly where
pt) = e~ Jo w95 [T (ryels (s,

Remark 3.4. Note that we require three continuous derivatives in space. Also, we
potentially allow w = 0 here.
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Proof of theorem 3.3. We will prove that the gradient p, tends to zero uniformly.
We can rewrite (2.13) in one spatial dimension and with the imposed hypotheses as

pt =0(pu)z + 1 —wp+ v/Tpudy —ypu.

We begin by taking an x—partial-derivative using (3.15) with x, w, and v constant
in space to obtain

Pta = (5((u+ - “Ml(p))pmw - 3’$Mll(p)/’mpm - ,%M'"(p)pi)

—wps — (" = &M (p))pa

since the nonlocal operator results in a constant in space. By interchanging z- and
t-derivatives since the mixed partial derivatives are assumed continuous (and hence
equal), we rewrite the equation with ¢ = p,.

=3 (0 = MG s = S ()0, — 0102

—wip = (ut = kM (p) )¢
Now, we multiply by % so that
1

300 =3 (0 = KM = SR — " )0

= (w+(u® = wM'(p)))?.

Let g = %wQ. If we can prove ¢ — 0 uniformly over T we are done. Note that, we
have

¢t = 0((u™ = KM'(p))(doa — ¥3) — 65M" (p)0oq — KM" (p)U1)7)
—2(w+ (" = kM (p)))g-
Note that ¢ > 0 and if q(x,t) = r(x,t)es? then
re — 0(ut — kM (p))res + 0(u™ — KM (p))p2re ™5 + 66 M" (p)ihypr
— kM" (p)he™ 7 = —(€ + 2(w + y(u” — M'(p))))r-

If the supremum of r is zero, there is nothing more to prove. Otherwise, at any
nonzero local maximum for r, 11, = 0 and since 1) # 0 in such a case, we have
= 0. If € is chosen so that € +2(w +u™ — kM'(p)) > 0 then by Lemma 3.1, the
global maximum for r is achieved at ¢t = 0. Many £ can be chosen but to establish
decay, we choose £ = —2m if w > m > 0 with 7 reaching zero and otherwise we pick
¢ = —2m(u* —u™). This establishes $1? < e~™* maxr 2¢(-,0)? so the gradient of
p tends to zero uniformly. Combining this fact with Theorem 3.2 proves the result.

O

We examine the consequences of Theorem 3.3 in Fig. 5 by plotting the decay of
the sup-norm of the gradient of a solution subject to time-dependent but spatially
constant forcing.
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80
. ||$(8zp)z||oc

sob |5 (9.)° [0 10 €XP(—2mt)
E p
5 a0} !
z |

20 |.:. [

0 L = =
0 2 4 6
t

Fig. 5. Maximum of solution gradient with initial condition p(z,0) = 2sin?(2rz) with n = 2+,
3, w=01+0.09sin’t, v =4e 3, r =1, vt =0.98, u~ = 0.96, 5 = 20, § = 0.02. Here,
m = 0.1 since w > 0.1. The diffusion also helps to level out the solution, even more than m
accounts for.

K =

We now turn to the problem of parameters and solutions that are time-
independent and their perturbations.

Proposition 3.4. (With constant 7 and symmetric, time-independent 7, steady
state solutions are stable to L2-perturbations) We consider Egs. (3.1)—~(3.4) with
Q =T% v = y(z); 7 time-independent and symmetric with 7(x,y) = 7(y,z); let
n(z,t) = n(z) > 0, w(x,t) = w(xz) > 0 constants in time. We let v > 0 be a
constant. Suppose that po € C*(T?), pg > 0 obeys the steady-state equation

0=ba(pu) 40 -wpt ([ Tl anpmutian ) 320
T
alongside (2.14) and (2.15). Then, for sufficiently small (in || - || oo (1ay), periodic

po € L3(T), the solution to (2.13) with p(-,0) = po + po upholds p — po in L*(T)
ast — 0.

Proof. We define R(z) = ut — kM'(po) and ug = u(k, po) so that for small p, up
to first order, (po + p)u|po+p = Poto + R(po)p. We remark that R(z) > 0 for all
x € T¢. Now, we linearize (3.1)—(3.4) by p = pp + p to furnish

o= A~ g ( [ 7o) ol ~ ).

Now, we multiply the equation by Rp and integrate over T%

/ Rppidz = | RpA(Rp)dx — / wRp?dx
Td Td Td

+7/ Rpl. (/ 7(y, x)Rplydy — Rplz) dz
Td T
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1
:>i —/ Rp*dz | = — |V(Rf))|2dx—/ Rwp?dx
dt \ 2 Jra Td Td
o [ ra ([ rtomalas - ral. ) as
Td Td
d /1 2 2
:>a<§/pr dx)—l—/Wpr dz
< »y( [ #ols [ rtwo)Roldyas - | Rde).
Td Td Td

We denote R = mings R > 0, and w = infps w > 0. With the above, we apply
Cauchy—Schwarz

Rd
B dth||L2(’H‘d) + Ruw||pl| 72 (0

<o ([, [ 1@t R0 olands - [ R

<y ( [ mwstuo ([ i)
(

1/2
R(x)zp(%t)?T(y,x)dx) dy — Rgpgdx>
Td

1/2
plx, t)7(y ,x)da:) dy—/ R2p2da:>
Td

Td

=7 ( 8] (
Td
/2 1/2
< ( [ 2dy) ( [, [ raraen T(ym)dxdy) o [ B
T4 T4 J7e Td
1/2
=7 (/ R? 2dy) (/ R(x)*p(x,t) T(x,y)dydx) — 7/ R?p%dx
Td Td J7d Td
1/2
=7 ( R? 2dy) ( x,t) dx) —~ | R%*p*dz=0.
Td Td

t
1AC, O Z2¢ray + 2@/0 17 )12z payds < 150 0) I (pay-

We claim this proves ||p(-, )| 2(ra) { 0 as ¢t T co. We have that ||p(-,t)|| L2 (ra)
is monotonically non-increasing. Were it to not tend to zero then there must exist
€ > 0 so0 that limy e[| (-, )| L2(re) > €. But this would force the integral to diverge
to 400 and we would have a contradiction to the boundedness of ||a(-, t)H%z(Td) +

22](; ||[)('73)||L2(']1‘d)d3. _
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3.3. Generalizations

Some of the proofs provided here could readily be generalized to include other
features. For example, the proof of positivity, and the bounds on the L' and L
norms of solutions depended upon the positivity, normalization, and boundedness
of 7. But more complicated 7 choices could also be used, such as those of the form
T(y, z,t, p/||pllL1(0)) to furnish the same results, allowing effects of aggregation due
to localized peaks in the population density. Other proofs may require more control
over 7 and further properties of solutions p.

4. Qualitative Features of Real Data

After nondimensionalization and smoothing, the homeless population densities for
four consecutive years are plotted in Fig. 6. Within the real data, we remark that
while some areas have high homeless population densities consistently from year
to year, encampments can form over the course of a year and a new bump in the
density appears.

The PDE model has many parameters, most of which can vary over space and
time. As such, there is a danger of overfitting. In order to illustrate qualitatively

2015 density 2016 density

2017 density 2018 density

Fig. 6. Plots of the homeless population densities for a subset of Los Angeles. The population
has been nondimensionalized by a scale of 68 mi~2 and the length scale is 12 mi. The data have
been smoothed: population densities were interpolated onto a regular mesh from LAHSA data
and then locally averaged over a radius of 1 mi. Here, x and y denote spatial position and p is
population density.
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initial density final density

20

10

-0

¢ 0.5

- O

0.5
y X

Fig. 7. Top row: initial homeless population density at ¢ = 0 (left) and final homeless population
density at ¢ = 1 (right). Bottom row: initial relative capacity k at ¢ = 0 and final relative capacity
at t = 1. Between t = 0 and t = 1, the relative capacity was a linear interpolation between the
initial and final & plots. Parameters are § = 10~%4, vt = 0.999, v~ = 0.998, 5 = 1/20, n = 1/10,
w =1/100, v = 5, with 7 given by (4.1).

consistent behavior in our model with the real data of encampment formation, we
restrict ourselves to describing the formation of a new encampment (a new local
maximum). To achieve this, we consider a scenario where all of 7, w, and ~ are
constant in space and time, the travel term 7 is given by

T(y,x,1) = Tr (;?dx (4.1)
Q

where k steadily increases in a region over a dimensionless time interval of 1. Over
the domain we assume no-flux boundary conditions. This results in the numerical
solutions being consistent with real encampment formation (see Fig. 7).

5. Conclusions and Future Work

We formulated a continuum PDE model to describe the evolution of the homeless
population density. We have proven that smooth periodic solutions to the model
equations enjoy a maximum principle, a positive population density, uniqueness, a
flattening phenomena with spatially uniform forcing, and L2-stability for constant
transfer rates and symmetric travel kernels. The model is well behaved and, for
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suitable choices of parameters, it can produce population changes that are qualita-
tively consistent with real homeless population data.

From this preliminary model, many new avenues of research open up. It would
be worth understanding how to empirically model the various parameters/functions
in (3.1)-(3.4) so that the model can be used in a quantitative capacity and in
identifying what can be done to combat homelessness. From the viewpoint of math-
ematical analysis, a rigorous proof of existence of solutions is worth pursuing. It
would also be interesting to study this model or its natural variants as applied to
other contexts.
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Appendix A
A.1 Numerical methods

In one spatial dimension on the torus, we use semi-implicit stepping. To solve (3.1)—
(3.4), assume we have a numerical solution on a regular spatial grid at time ¢, p*.
We write u(p) to indicate the u-function evaluated at a given place with argument p.

A method-of-lines implementation with time step At is to find p**! that solves
phHL b
N _ 5A(pk+1u(pk)) + ,r]k—H _ wk+1pk+1 + I[’yk+1pk+1u(pk)]
—’yk+1pk+lu(pk).

This requires inverting a dense matrix, which is not overly costly in one dimen-
sion. And standard second-order quadrature (trapezoid rule) is sufficient. In two
dimensions with Neumann boundary conditions, we implement a split-step finite
difference scheme using semi-implicit stepping for the Laplacian, explicit stepping
for the travel terms, and implicit stepping for the sink terms. We adopt the same
notation as above but also allow for fractional superscripts so that nf*1/3
evaluated at t + %. Our method is to

means 7

(1) solve 9(:t7§k = 0A(oMuF) for oM, also with semi-implicit boundary condi-

tions;
(2) solve % = /3 TyR1/3 00 gy (o(1)] — AEHL/3 5y (o) for o2) with
the quadrature described below;
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(3) solve % = 6A (0P u(0?)) for o), also with semi-implicit boundary con-

ditions;

(4) solve 9(4)&@(3) _ —wk+2/39(4);

(5) solve % = SA(pF u(o™)) for pF*+1) also with semi-implicit boundary
conditions.

The Laplacian term solves the equation with the appropriate boundary condi-
tions so, we split it into three. This ensures the nonlocal step and stepping forward
with the sink will be done with the correct boundary conditions and so that the
output also has the proper boundary conditions. The nonlocal operator is done
explicitly to avoid inverting a large, dense matrix in the case of an implicit scheme.
It is combined with the positive source term 7. Positivity can be preserved when
done explicitly for those terms. The sink term —wp is dealt with implicitly to pre-
serve positivity.

The quadrature for the nonlocal movement is delicate. In second-order quadra-
ture, values of ypu in the integral are weighted by either 1/2 or 1/4 at the boundary.
Proper mass balance is achieved by weighting the corresponding sinks of —ypu by
either 1/2 or 1/4.

A.2 Further proofs

Proof of lemma 3.1. We prove the sup-case as the inf-case can be done mutatis
mutandis. Let € > 0 and write ¢ = g + et. Then, we have

Get + €+ O(Vge,x,t) + A\¢g — aAF(q,t) = ©.

At a local maximum for ¢, within A, AF(q,t) <0, ®(Vge,z,t) =0, gt > 0. And
at the global maximum we know © < 0 because the addition of the constant et will
preserve g, + et having a global maximum at the same point in T¢. So

>0 <0

a contradiction. Thus,
sup ¢ = sup(q. + €t)
A A

<supqe + €T =maxq. + €I <maxq+ el <supq+ €T.
A oA 9" A A

Taking the limit as € | 0 furnishes that sup, ¢ = maxg-a ¢ and the global maximum
for ¢ cannot be attained within A and must occur in T¢ x {to}. |

Proof of Proposition 3.1. Let p(z,t) = efq(z,t) for a & € R to be chosen
judiciously. Then from (3.1)—(3.4) expressing things in terms of ¢ where appropriate
g+ &g = 0(u™ — kM (p))Aq — 6k M" (p)e*! [Vq|* — 26M (p) Vi - Vg — M (p) Ak

+ e —wq + Iyqu] — yqu.
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Upon rearranging

i + (6M" (p)es! |Vq|?> +26M'(p) Vi - Vq) + [(€ + yu + w)g — SAKM (p)]

>0
—
—8(ut — kM’ (p))Ag = ne™*" + I[yqu]

Note by (3.9) and hypothesis 2, we have that [AxM (p)| < §Zu~ p and so we choose
& so that

€+yu+w+dZu"e <0,

which can be done by choosing £ = —2= — §Zu~. The solution ¢ must attain its
global minimum at + = 0 by Lemma 3.1. Thus p = e’q > e minga q(-,0) =
pme~ BETO=UE 5 0 since p(-,0) = q(-,0). 0

Proof of proposition 3.2. We integrate (2.13) over T¢

[tz = [ @)+ 1= wp -+ Typu) = ypu) s
Td Td

=/ (n—wp)der/ / T(y7x7t)’ypUIydydx—/ ypuda

Td Td JTd Td

=/ (n—wp)der/ (/ T(y7x7t)dx> ’Ypu|ydi‘/—/ ypudz
Td Td Td Td

g

where in getting from line 1 to 2 the boundary term —V(pu) from integration by
parts vanishes (9T¢ = ()), in getting from line 2 to 3, we interchanged the order of
integration, and in getting from line 3 to 4, we used that fw 7(-,x,-)dz =1 so that
there is a cancellation of the integrals with . We find therefore that, since p > 0,

d
Gl = [ nda— [ wptr< [ da
and thus

t
ol < Mot Ollacen + [ ([ mae) dt < ot 0 +2¢ - (1)
0
since |T9| = 1. O

Proof of proposition 3.3. This is similar to the proof of positivity. Let p(z,t) =
&(t) + gz, t) for a smooth £ : R — R to be chosen judiciously. Then in terms of ¢
where appropriate

@i+ (ORM" () |Vl +26M'(p) Vs - V) + (yu +w)g
—d(ut — KM (p))Aq = n + I[yqu] + 5M (p) Ak — &'(t).
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Here, we choose £ so that n+ I+ M (p)Ax —&'(t) < 0. Note that I[ypu] < I[yp] <
Z2|lp(-,t)ll 11 (re). Therefore, we let £(t) be defined by

t
€(t) = / (E201p( 8)l| s g0y + E + Spu~E)ds
0

—3
< (E Mo, 0)llpapey + B+ dpu”E)t + T2 < 00

owing to the bound of L'(T%) from Proposition 3.2. This forces the maximum of ¢
to occur at t = 0 and since ||p(-,0)|| Lo (re) = [|q(+, 0)|| oo (74), We have

=3
o0, )l oo (ray < 11p( 0 oo pay + (E2[1(, 0) || L2 (ray + E 4 dpu~E)E + 7152- O
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