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In this paper, we develop a continuum model for the movement of agents on a lattice,
taking into account location desirability, local and far-range migration, and localized
entry and exit rates. Specifically, our motivation is to qualitatively describe the homeless
population in Los Angeles. The model takes the form of a fully nonlinear, nonlocal, non-
degenerate parabolic partial differential equation. We derive the model and prove use-
ful properties of smooth solutions, including uniqueness and L2-stability under certain
hypotheses. We also illustrate numerical solutions to the model and find that a simple
model can be qualitatively similar in behavior to observed homeless encampments.
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homelessness.
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1. Introduction

Homelessness is a growing problem for society, with large cities like Los Angeles

having homeless populations of nearly 40,000 people32 at present. To date, correla-

tions have been established between homeless populations in different cities; factors

such as the cost of rent, number of affordable housing units, and poverty rates15,19
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1864 M. R. Lindstrom & A. L. Bertozzi

are relevant. But outside of a few anecdotal examples in the social science litera-

ture,49 little is known about the daily lives of homeless people, how they became

homeless, and how long they may remain homeless. There is also the question of

how the homeless population changes over time and space, which is essential for

planning social support services to counteract this problem. A few studies address

the dynamics of the homeless population,19 but there are still many unanswered

questions. Within Los Angeles, the homeless population is a big concern. Com-

plaints from Los Angeles residents regarding homeless encampments (see Fig. 1)

are among the most common reason residents call the city.42 The encampments can

form quickly and require some careful consideration in terms of clean up.41 But

the encampments may also serve as places where homeless people themselves live

preferentially, feeling safer.22

Human interactions with their environment can be studied both from a social

science perspective and through mathematical and statistical methodologies. Mod-

els of human social interaction have studied in many contexts, for example voting,27

lobbying;18 leader-follower dynamics;1 and evolutions of opinions,20,50 including

through agent-based models of continuous-valued opinions within a finite group of

peers.36 Models relating humans and the environment have also been put forth,

such as those pertaining to climate change.44 Pedestrian travel has been studied

experimentally and modeled with mathematics,38 even taking into account personal

objectives of minimal travel time and avoiding high density areas;24 and statis-

tics can be employed to describe large crowds at special events, including the fatal

pressures that can build up in the center, asphyxiating standing people.33 Mathe-

matical models for riots have also been developed.3 On a larger scale, agent-based

models have been used to study residential burglary, taking into account history-

dependent target attractiveness,43,45 truncated travel distances,39 and agents

Fig. 1. Part of a homeless encampment in a part of Los Angeles called “Skid Row’.’ Homeless
individuals have set up tents and makeshift shelters on the sidewalk.
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1865

burglarizing according to independent Poisson clocks.48 Mathematical models of

traffic flow have also been developed.16 More broadly, urban crime has received

a lot of attention in models that incorporate police into the models;13,21,25,40,47,51

models that predict locations of offenders;37 rigorous proofs of solution proper-

ties of such equations;5,35 and the study of emergent patterns and behavior.4,14,26

Species aggregation has also been thoroughly studied,7 with many authors model-

ing such phenomena by nonlocal differential equations.2,10,46 On even larger scales,

we can see the natural emergence of pack formation in predator-prey systems, for

sufficiently strong intraspecies competition;6 descriptions of human territorial con-

quest;17 and ecology models for a species in an environment with patchy resources.34

But to our knowledge, little has been done directly to model homelessness, which

is a growing societal concern.

In our study, we address the dynamics of the homeless population on small geo-

graphic scales. We develop an agent-based model for the homeless population living

on the streets, which, in the continuum limit, yields a partial differential equation

for the population density. Our data sources for the homeless population are a col-

lection of annual point-in-time estimates broken down by census tract from the Los

Angeles Homeless Services Authority.28–31 We remark that accurate counting of the

homeless population is challenging at best, with some authors suggesting the counts

could be significant underestimates.8 Our work focuses upon building a qualitative

model so absolute precision is not necessary.

This paper makes three main contributions to the scientific community: first,

the derivation of a new continuum partial differential equation to describe homeless

populations; second, rigorous analysis of basic properties of solutions; and finally,

in using the model to yield qualitatively consistent behaviors observed in the true

homeless population. The paper structure is as follows: in Sec. 2, we derive the

model; in Sec. 3, we prove useful properties of solutions; in Sec. 4, we demonstrate

how the model can qualitatively describe encampment formation; and finally, in

Sec. 5, we summarize our work and discuss future research.

2. Model Formulation

In describing the homeless population, we consider several processes taking place

at each location (see Fig. 2):

• Entry into population — due to local features of the area such as cost of living,

etc. individuals may become homeless;

• Exit from population — through localized social services, family support, death,

or other processes, individuals may cease to be homeless;

• Diffusive movement — a homeless individual who does not like their current

area due to lack of resources or other factors may venture to a surrounding

neighborhood; and

• Nonlocal movement — they may intentionally travel to another part of the city,

such as through public transit.
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1866 M. R. Lindstrom & A. L. Bertozzi

Fig. 2. (Color online) In this model, homeless individuals may stay where they are, walk to an
adjacent neighborhood (turquoise), take a bus to a distant neighborhood (blue-purple), become
homeless due to external factors (red), or cease to become homeless (green). The features of the
city change by location.a

The features of the cityscape vary by location so some areas are more residential,

some are more industrial, etc.

2.1. Derivation

We use an Eulerian frame of reference discretized by a regular lattice of points I

in R
d, with spacing of δx in each coordinate direction and volume δxd. We also

discretize time into time steps of δt with tk = kδt, k = 0, 1, 2, . . . . For modeling

homeless populations, our main focus is d = 2, but d = 1 could describe populations

of people (or even other species) in a long/narrow geometry and d = 3 could describe

populations that can freely move in three dimensions such as birds or fish.

We concern ourselves with the evolution of Nk
i , the number of individuals occu-

pying site i ∈ I at time tk. Intrinsic to each site i at time tk, we denote an

“attractiveness” Ak
i ∈ (0, 1). This could be influenced by the resources available

at the location. In general, we denote subscripts for the spatial location index and

superscripts for the time index. Over each very small time interval δt, we assume

the following:

• people enter the population at a Poisson rate Ek
i ;

• people leave the entire domain at a Poisson rate Lk
i ;

aImage credits are as follows: Backpacking by Gan Khoon Lay, homeless by Ed Harrison, Bus by
Andre Buand, Cafe by Creative Mania, House by Vectors Point, and Apartment by priyanka —
all from the Noun Project.
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1867

• individuals who do not leave the population will remain at their current location

with probability Ak
i ;

• individuals who do not leave the population and choose to leave their current

lattice point will make deliberate travel, such as with public transit in the case

of homelessness, at a Poisson rate Γk
i ; and

• if an individual remains in the population, does not stay at their location, and

does not travel deliberately from their site to another, they will travel to each

neighboring site with equal probability.

We incorporate all terms, allowing them to potentially be “in balance” so that

transportation and movement may be comparable to arrivals/exits. In reality some

of these effects may be negligible in describing the actual homeless population but

we opt for generality.

At each site i, up to O(δt) the following probabilities describe an individual:

Pr(leave I) = Lk
i δt, (2.1)

Pr(stay in I) = 1− Lk
i δt, (2.2)

Pr(stay at i | stay in I) = Ak
i , (2.3)

Pr(stay at i and stay in I) = Ak
i (1− Lk

i δt), (2.4)

Pr(deliberate travel | stay in I) = (1−Ak
i )Γ

k
i δt, (2.5)

Pr(deliberate travel and stay in I) = (1−Ak
i )Γ

k
i δt, (2.6)

Pr(leave i but not travel far | stay in I) = (1−Ak
i )(1 − Γk

i δt), (2.7)

Pr(leave i but not travel far and stay in I) = (1−Ak
i )(1 − (Γk

i + Lk
i )δt), (2.8)

so that on average at site i starting at time tk, over each δt:

• Ek
i δt people enter the population;

• Lk
iN

k
i δt people leave the population;

• Ak
i (1− Lk

i δt)N
k
i people remain at their current location;

• (1−Ak
i )(1 − Lk

i δt)N
k
i people move to a neighboring lattice point;

• (1−Ak
i )Γ

k
iN

k
i δt people travel deliberately to another point; and

• (1−Ak
i )(1 − (Γk

i + Lk
i )δt)N

k
i people move to a neighboring lattice point.

We make one further assumption that there exists a transition matrix T k =

(T k
ji)(j,i)∈I2 describing the probability an agent deliberately travels from site j to

site i. We denote j ∼ i to signify that i �= j are neighbors and j → i to signify that

i �= j and there is deliberate (potentially far-range) movement from j to i. We also
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1868 M. R. Lindstrom & A. L. Bertozzi

assume that each lattice point has n = 2d neighbors. Then

Nk+1
i −Nk

i =

entry at site
︷ ︸︸ ︷

Ek
i δt +

from neighbors
︷ ︸︸ ︷
∑

j∼i

1

n
(1−Ak

j )(1 − (Γk
j + Lk

j )δt)N
k
j

+

deliberate moves in
︷ ︸︸ ︷
∑

j→i

(1−Ak
j )Γ

k
jN

k
j T

k
jiδt

+

remain at location
︷ ︸︸ ︷

Ak
i (1− Lk

i δt)N
k
i −

deliberate moves out
︷ ︸︸ ︷

(1−Ak
i )Γ

k
iN

k
i δt−Nk

i

=
1

n

⎛

⎝
∑

j∼i

(1−Ak
j )N

k
j − n(1−Ak

i )N
k
i

⎞

⎠

+ δt

⎛

⎝Ek
i +

∑

j→i

(1−Ak
j )Γ

k
jN

k
j T

k
ji

⎞

⎠

+ δt

⎡

⎣
−1

n

⎛

⎝
∑

j∼i

(Γk
j + Lk

j )(1−Ak
j )N

k
j − n(Γk

i + Lk
i )(1 −Ak

i )N
k
i

⎞

⎠

− (1−Ak
i )Γ

k
iN

k
i − Lk

iN
k
i

⎤

⎦.

The terms of the form
∑

j∼i •
k
j − n•ki are the discrete second-order centered

difference Laplacian at position i and time tk multiplied by δx2. Denote the discrete

Laplacian by ∆. Dividing the equation by δt, we have

Nk+1
i −Nk

i

δt
=

δx2

nδt
∆((1 −Ak

i )N
k
i ) + Ek

i +
∑

j→i

(1−Ak
j )Γ

k
jN

k
j T

k
ji − Lk

iN
k
i

− (1−Ak
i )Γ

k
iN

k
i −

δx2

n
∆(Γk

i + Lk
i )(1 −Ak

i )N
k
i .

Under a diffusive scaling, such that δx2

nδt = D = O(1), in taking the limit, we

furnish the partial differential equation for a spatial domain Ω

ρt = D∆((1 − a)ρ) + η − ωρ+

∫

Ω

τ(y, ·, t)((1 − a)γρ)|ydy − (1− a)γρ, (2.9)

where ρ is a spatial density of agents; η is an entry rate per unit area; ω is an exit

rate; τ governs transitions from y to x at time t; γ is a travel rate term; and a is

a continuous attractiveness field. We can express (2.9) more nicely by defining the

unattractiveness

u = 1− a (2.10)
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1869

so that over a domain Ω

ρt(x, t) = D∆(ρ(x, t)u(x, t)) + η(x, t) − ω(x, t)ρ(x, t)

+

(∫

Ω

τ(y, x, t)γ(y, t)ρ(y, t)u(y, t)dy − γ(x, t)ρ(x, t)u(x, t)

)

(2.11)

subject to the normalization of τ ≥ 0 with

∫

Ω

τ(y, x, t)dx = 1. (2.12)

We remark that a hyperbolic scaling with δx/δt = O(1) would not allow for

diffusion in the system and we would lose out on the local travel term altogether,

only having deliberate travel terms. This is equivalent to setting D = 0 in (2.11).

We do remark, though, that sometimes hyperbolic scalings are necessary when the

reality of finite propagation speeds cannot be well approximated through a diffusive

limit.11 For this preliminary work, we focus on a diffusive approximation.

2.2. Nondimensionalization

We begin with the PDE

ρt = D∆(ρu) + η − ωρ+

(∫

Ω

τ(y, x, t)γ(y, t)ρ(y, t)u(x, t)dy − γρu

)

,

(x, t) ∈ Ω× R≥0.

We write x = x̄x∗, t = t̄t∗, ρ(x, t) = ρ̄ρ∗(x∗, t∗), u(x, t) = u∗(x∗, t∗), τ(y, x, t) =

τ̄ τ∗(y∗, x∗, t∗), η(x, t) = η̄η∗(x∗, t∗), ω(x, t) = ω̄ω∗(x∗, t∗), γ(x, t) = γ̄γ∗(x∗, t∗),

where the bars are scales and the asterisk variables are dimensionless. We also define

Ω∗ = 1
x̄dΩ.

Noting that if y = x̄y∗ then dy = x̄ddy∗, we have

ρ∗t∗ =
Dt̄

x̄2
∆∗(u∗ρ∗) +

(
η̄t̄

ρ̄

)

η∗ − (ω̄t̄)ω∗ρ∗

+(t̄γ̄τ̄ x̄d)

∫

Ω∗

τ∗(y∗, x∗, t∗)γ∗(y∗, t∗)ρ(y∗, t∗)u(y∗, t∗)dy∗ − (γ̄t̄)γ∗ρ∗u∗.

We can adopt scalings relevant homeless count data: given the homeless counts are

done annually, we choose t̄ to be 1 year so an O(1) timescale roughly represents

an interval between counts. We also choose x̄ as a characteristic length within our

region of interest (later we use the geometric mean of the length/width of the

spatial domain), allowing the entire domain to have approximately unit length.

There is also a natural scaling for ρ̄ as the initial average population density over

the region. If the dimensionless density is ≈ 1 then it is roughly average. These

choices suggest the derived scales (to make more dimensionless ratios equal to 1)
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1870 M. R. Lindstrom & A. L. Bertozzi

η̄ = ρ̄/t̄, ω̄ = γ̄ = 1/t̄, and τ̄ = 1/x̄d. Then for a constant δ = Dt̄/x̄2, and after

removing the asterisks, we have

ρt =

diffusive movement
︷ ︸︸ ︷

δ∆(ρu) +

entry
︷︸︸︷
η −

loss
︷︸︸︷
ωρ

+

nonlocal entry
︷ ︸︸ ︷

I[γρu] −

loss from nonlocal movement
︷︸︸︷
γρu , (2.13)

I[q](·) :=

∫

Ω

τ(y, ·, t)q(y, t)dy, ∀ t, (2.14)

∫

Ω

τ(·, x, ·)dx = 1, τ ≥ 0. (2.15)

In general, the unattractiveness u may depend upon ρ and other localized features.

In Sec. 2.3.2, we choose a particular form for u (Eq. (2.16)). Because of this potential

density-dependence, the system of equations is nonlinear. We can interpret (2.13)–

(2.15) as consisting of a nonlinear diffusion operator where ρu is diffusing; a local

source term η; a localized exit rate ω; a nonlocal operator I[γρu](·) describing

intentional travel, and a local loss due to intentional travel γρu. Note that the

nonlocal operator is not a convolution.

2.3. Mathematical formulation

2.3.1. Notation

To denote solution spaces, we may explicitly label a function’s argument and specify

the continuity/differentiability assumed with a subscript with that label. We denote

f(x, t) ∈ C2
x ∩ C1

t (Ω × R≥0 → R≥0) to be a function f that is twice continuously

differentiable in x and once in t. We use similar notation for continuity in higher

derivatives. The notation C represents continuity in all arguments, possibly with

superscripts to denote the number of derivatives, e.g. C∞.

2.3.2. Assumptions

We denote our spatial domain to be Ω and assume it is bounded and sim-

ply connected. For simplicity in the analysis, we will choose Ω to be the torus

T
d = R

d/Zd ∼= [0, 1)d for d ∈ N. Periodic boundary conditions actually exist in

cities e.g. with perimeter roads, however here the choice is more for convenience of

the mathematics. Also cities like Los Angeles can have repeating patches of resi-

dential (both affluent and disadvantaged) neighborhoods and commercial regions,

which can give the impression of a repeating pattern. For numerical studies, we

sometimes use no-flux boundaries in R
2, identifying a flux of −δ∇(ρu).

We denote the following:

• ρ(x, t) : Ω× R≥0 → R≥0, the population density (people per unit area);

• θ(x, t) : Ω× R≥0 → R
p, a features vector of size p, which can vary over space;
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1871

Fig. 3. Plots of unattractiveness versus density with ρ̃ = 1. The unattractiveness increases with
density for all fixed κ. It is always at least u+ − u− and never exceeds u+. As κ increases, the
unattractiveness decreases.

• κ(θ(x, t)) : Rp → [0, 1], the (dimensionless) relative capacity, to be used below;

•

u(κ(θ(x, t)), ρ(x, t)) : [0, 1]× R≥0 → (0, 1),

(κ, ρ) �→ u+ −
κu−

1 + ρ/ρ̃
, (2.16)

the (dimensionless) unattractiveness for 0 < u− < u+ < 1, 0 < ρ̃ (see Fig. 3 for

qualitative depiction);

• τ(y, x, t) : Ω×Ω×R≥0 → R≥0, the travel term (per unit area probability), such

that

∀ y ∈ Ω, ∀ t ≥ 0,

∫

Ω

τ(y, x, t)dx = 1;

• η(θ(x, t), t) : Rp × R≥0 → R≥0, the entry rate (people per unit area per unit

time);

• ω(θ(x, t), t) : Rp × R≥0 → R≥0 the exit rate (per unit time); and

• γ(θ(x, t), t) : Rp × R≥0 → R≥0, the intentional travel rate (per unit time).

For simplicity later on, we will often write κ or κ(x, t) instead of κ(θ(x, t)), etc.

The fact that unattractiveness is density-dependent is a hypothesis based on

the observation that no region can supply unlimited resources. The potential for

including more general τ to include preferential travel to locations with a higher

population density is briefly discussed in Sec. 3.3 as this could be a possible mech-

anism.22 For simpler analysis, however, we do not consider such τ .

We operate under the hypotheses that

Hypothesis 1. The functions ρ, θ, κ, τ, η, ω, γ ∈C∞ for all their respective

arguments.
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1872 M. R. Lindstrom & A. L. Bertozzi

Hypothesis 2. There is a Ξ > 0 so that |∇κ|, |∆κ|, |ω|, |η|, |γ|, |τ | ≤ Ξ for all

x ∈ Ω, t ≥ 0. Here, | · | is the standard Euclidean norm.

We then consider the evolution of ρ given by Eqs. (2.13)–(2.16).

2.4. Model exploration

To build a basic understanding of the model features, we study the solutions numer-

ically and vary the parameters. We do this in one dimension on the torus with

length 1. The numerical method employed is explained in Appendix A.

We wish to qualitatively understand the effects of the different model features.

As part of this work, we locally perturb some features sometimes making use of the

bump function

Υ (x) =

⎧

⎪⎪⎨

⎪⎪⎩

0, |x| ≥ 1,

e−1/(1−x20)

∫ 1

−1 e
−1/(1−x20)dx

, |x| < 1.
(2.17)

The function Υ ∈ C∞(R → R≥0) is compactly supported on the interval [−1, 1]

with a wide range of x -values where it is nearly constant (owing to the large power

of 20). We remark that Υ has a support of length 2, which is larger than the unit

torus, but by shifting and rescaling its argument, we ensure our use of Υ does not

violate the properties of the torus.

We perform a series of numerical experiments upon the model, as seen in Fig. 4

with explicit parameter listings in Table 1. In particular, we study the following:

• baseline: We study how the population density evolves from an initial distribu-

tion when all the parameter functions are constants, observing a steady approach

of the population density to a spatially constant solution at steady-state.

• enhanced local entry: From the baseline, we increase the entry rate η in a

region and at steady-state find the population is largest where there is more entry.

• enhanced local exit: From the baseline, we increase the exit rate ω in a region

and at steady-state find the population is reduced where there is a greater exit

rate.

• enhanced local to far migration: From the baseline, we increase the travel

rate γ in a region and at steady-state find the population has diminished due to

a higher rate of moving away from the area.

• biased transfer: From the baseline, we choose τ to be biased to relocate indi-

viduals to one particular region; at steady-state, the population density is higher

at this destination.

• exponential decay transfer: From the baseline, we choose τ such that from y,

the probability density in moving to x decays exponentially with |x − y|. Com-

pared to the baseline, the change is quite small, but we observe the population

decreases slightly slower in more concentrated regions since the people are not

travelling as far.
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1873

Fig. 4. Initial conditions are that ρ(x, 0) = 0.4+4Υ(8(x− 1
4
)). The scenarios depicted correspond

to those of Table 1. Row 1 left: baseline; row 1 center: enhanced entry near x = 3/4; row 1
right: enhanced exit rate near x = 1/4; row 2 left: enhanced deliberate travel rate near x =
3/4; row 2 center: transfer kernel moves people to near x = 3/4; row 2 right: transfer kernel
decays exponentially with distance; row 3 left: textured relative capacity; row 3 middle: enhanced
diffusion; row 3 right: unattractiveness becomes more sensitive to density; row 4 left: same textured
relative capacity as in row 3 left but with smaller variance in unattractiveness; row 4 center: region
near x = 1/4 becomes uninhabitable; row 4 right: time legend.

• textured relative capacity: From the baseline, we vary the relative capacity

κ in an oscillatory fashion; we find that at steady-state, the population density

fluctuates with this varying relative capacity.

• enhanced diffusion: From the baseline, we raise the diffusion coefficient and

find the behavior can quickly be dominated by diffusion, resulting in flat density

profiles.

• more density sensitivity: From the baseline, we make the unattractiveness

more sensitive to density variations by decreasing ρ̃ in (2.16). We observe the

population disperses more rapidly in regions where the population density was

initially highest.

• narrow unattractiveness range: From the baseline, we modify u− and u+ in

(2.16) so that the unattractiveness is almost constant, regardless of ρ or κ. We
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1874 M. R. Lindstrom & A. L. Bertozzi

Table 1. Numerical experiments that are run on the model in one dimension with Υ
defined as in (2.17). Plots of these experiments are given in Fig. 4.

Description Parameters Observations

Baseline η = 2, ω = 1, γ = 1
2
, Tends to flat solution

τ = 1, κ = 1
2
, δ = 0.02,

u+ = 0.99, u− = 0.98, ρ̃ = 20

Enhanced local entry η �→ 2 + 5Υ(4(x − 3
4
)) Population largest

near x = 3
4

at x = 3
4

Enhanced local exit ω �→ 1 + 5Υ(4(x− 1
4
)) Population minimal

near x = 1
4

at x = 1
4

Enhanced local to far γ �→ 1
2
+ 4Υ(4(x− 3

4
)) Population moves away

migration at x = 3
4

from x = 3
4

Biased transfer τ �→ 4Υ(4(x− 3
4
)) Buildup of population

at bias destination

Exponential decay τ(y, x, t) �→ e−dist(y,x)/ Population slower

transfer (
∫
T
e−dist(0,x′)dx′) to decrease near

λ = 0.05 concentration region

Textured relative κ �→ sin2(4πx) Spatial frequencies
capacity observed in density

Enhanced diffusion δ �→ 1 Population levels
out faster

More density ρ̃ �→ 1
10

Population spreads

sensitivity out faster

Narrow unattractiveness κ �→ sin2(4πx), u+ �→ 0.51, Relative capacity has
range u− �→ 0.01 smaller effect

Region becomes uninhabitable κ �→ Υ(4(x − 3
4
))/Υ(0) Population drastically

near x = 1
4

τ(y, x, t) �→ 4Υ(4(x − 3
4
)) drops near x = 1

4
η �→ 8Υ(4(x− 3

4
))

γ �→ 1
2
+ 20Υ(4(x − 1

4
))

also perturb κ as in the “textured relative capacity” experiment. Here we find

the steady state population is much less influenced by the relative capacity.

• region becomes uninhabitable: From the baseline, a region Q becomes unin-

habitable. This is modeled by reducing the relative capacity to zero inside Q and

modifying τ so that transfer into the region is zero and out of the region is size-

able. In addition, the travel rate is increased inside of Q and the entry rate is zero

within Q. We find the population chooses to relocate to more habitable areas.

3. Properties of Smooth Periodic Solutions

We study the solutions to

ρt = δ∆(ρu) + η − ωρ+ I[γρu]− γρu, (3.1)

I[q](·) :=

∫

Ω

τ(y, ·, t)q(y, t)dy, (3.2)
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1875

∫

Ω

τ(·, x, ·)dx = 1, τ ≥ 0, (3.3)

u = u(κ, ρ) = u+ −
κu−

1 + ρ/ρ̃
(3.4)

for 0 < u− < u+ < 1, 0 < ρ̃, 0 < δ.

Here, we work in a spatial domain Ω = T
d, the d-dimensional torus. For T > 0,

we denote

UT ≡ {ρ(x, t) | ρ(x, t) ∈ C2
x ∩ C1

t (T
d × [0, T ] → R≥0)}

with t-derivatives understood to be right-, respectively, left-derivatives at t = 0

and t = T . In general, we will be assuming the existence of solutions to (3.1)–(3.4)

within the space UT . If we write U∞ we refer to a solution that exists globally for

all time. At all times, we assume that hypotheses 1 and 2 are satisfied.

As Eqs. (3.1)–(3.4) are parabolic and nondegenerate (u is never zero), we antic-

ipate global existence of smooth solutions, without the formation of shocks or phe-

nomena such as finite-time blowup. However, such proofs are beyond this paper. A

reader interested in the question of existence of solutions could refer to proofs of

local existence to similar or related models such as for chemotaxis9,12,23 or residen-

tial burglary.43

Remark 3.1. The solutions we consider are continuous on the torus Td, which is

compact, so we can use sup and max, respectively, inf and min, interchangeably.

3.1. Useful properties of ρu

The term ρu appears many times in our analysis and we make a list of some useful

properties. Note that ρu = u+ρ− κM(ρ) where we define

M(ρ) =
u−ρ

(1 + ρ/ρ̃)
. (3.5)

Observe

M ′(ρ) =
u−

(1 + ρ/ρ̃)2
, (3.6)

M ′′(ρ) =
−2u−/ρ̃

(1 + ρ/ρ̃)3
. (3.7)

Thus, for ρ ≥ 0,

0 ≤ (u+ − u−)ρ ≤ ρu, (3.8)

0 ≤ M(ρ) ≤ u−ρ, (3.9)

0 ≤ M(ρ) ≤ ρ̃u− = constant, (3.10)

0 ≤ M ′(ρ) ≤ u−, (3.11)

M ′′(ρ) ≤ 0. (3.12)
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1876 M. R. Lindstrom & A. L. Bertozzi

We also have that

∇(ρu) = (u+ − κM ′(ρ))∇ρ−M(ρ)∇κ, (3.13)

∆(ρu) = (u+ − κM ′(ρ))∆ρ− κM ′′(ρ)|∇ρ|2 − 2M ′(ρ)∇κ · ∇ρ−M(ρ)∆κ.

(3.14)

In one spatial dimension, we also have

(ρu)xxx = (u+ − κM ′(ρ))ρxxx − 3M ′(ρ)κxρxx − 3M ′(ρ)κxxρx −M(ρ)κxxx

− 3κM ′′(ρ)ρxρxx − 3M ′′(ρ)κxρ
2
x − κM ′′′(ρ)ρ3x. (3.15)

Owing to (3.11), hypothesis 2, and 0 ≤ κ ≤ 1, we have

ρ �→ u+ρ− κM(ρ) ∈ Lipu+(R≥0 → R≥0), (3.16)

ρ �→ ∇κM(ρ) ∈ LipΞρ̃u−(R≥0 → R
3), (3.17)

ρ �→ κM ′(ρ) ∈ Lip2Ξu−/ρ̃(R≥0 → R≥0), (3.18)

where the subscripts in the Lipschitz spaces denote the bounding constants.

3.2. Results

We have a series of results of solution properties below. All proofs are provided in

the paper, but the following lemma and subsequent three propositions are proved

in Appendix A.2.

Lemma 3.1. Let 0 ≤ t0 < T ≤ ∞ and define Λ = T
d × (t0, T ].

Let q(x, t) ∈ C2
x ∩ Ct(Td × [0, T ] → R≥0) solve

qt − α∆F (q, t) + λq +Φ(∇q, x, t) = Θ,

where α ∈ C(Td × [0, T ] → R≥0),

Φ ∈ C(Rd × T
d × R≥0 → R) with Φ(0, ·, ·) = 0,

λ(x, t) ∈ C(Td × [0, T ] → R≥0), respectively, λ ∈ C(Td × [0, T ] → R≤0),

F (q, t) ∈ C(R≥0 × [0, T ] → R≥0) with F monotonically nondecreasing with respect

to q, and Θ[q](x, t) is an operator depending on q, x ∈ T
d, and t ∈ R≥0 such that

if q achieves a global maximum over T
d at x then Θ[q](x, t) ≤ 0, respectively, if q

achieves a global minimum over T
d at x then Θ[q](x, t) ≥ 0.

The preceding conditions force supΛ q = max∂∗Λ q, respectively, infΛ q =

min∂∗Λ q where ∂∗Λ ≡ T
d × {t0}.

Remark 3.2. The zero operator can be used in Lemma 3.1 and the result clearly

holds.

Proposition 3.1. (Positivity) Let T > 0 and suppose that ρ ∈ UT is a solution to

(3.1)–(3.4) with Ω = T
d and ρ(x, 0) > 0 for all x ∈ T

d. Then ∀ t ∈ [0, T ], ρ > 0.

In particular if minTd ρ(·, 0) = ρm then ρ(x, t) ≥ ρme−(2Ξ+δΞu−)t > 0 for all x ∈

T
d, t ∈ [0, T ].
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1877

Proposition 3.2. (Explicit Bound on Total Population) Let T > 0 and suppose

ρ ∈ UT is a solution to (3.1)–(3.4) with Ω = T
d and ρ(x, 0) > 0 for all x ∈ T

d.

Then ‖ρ(·, t)‖L1(Td) ≤ ‖ρ(·, 0)‖L1(Td) + Ξt < ∞ for all t ∈ [0, T ].

Proposition 3.3. (Explicit Bound on Population Density) Let T > 0 and suppose

that ρ ∈ UT is a solution to (3.1)–(3.4) with Ω = T
d, ρ(x, 0) > 0 for all x ∈ T

d,

and ‖ρ(·, 0)‖L∞(Td) = ρM < ∞. Then ∀ t ∈ [0, T ], ‖ρ(·, t)‖L∞(Td) ≤ ρM + Ξ3

2 t2 +

(Ξ2‖ρ(·, 0)‖L1(Td) + Ξ+ Ξδρ̃u−)t < ∞.

Theorem 3.1. (Uniqueness of Smooth Solutions) Let T > 0 and suppose ρ1, ρ2 ∈

UT are two solutions to (3.1)–(3.4) with Ω = T
d. If ρ1 and ρ2 have identical and

strictly positive initial conditions at t = 0, then ρ1 = ρ2 on 0 ≤ t ≤ T .

Proof. From subtracting the respective PDEs, we have that

(ρ1 − ρ2)t = δu+∆(ρ1 − ρ2)− δ∆(κ(M(ρ1)−M(ρ2))) − ω(ρ1 − ρ2)

+ I[γ(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2))]

− γ(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2)).

By multiplying the equation by (ρ1 − ρ2), integrating over Td, and integrating by

parts once, we have

d

dt

1

2

∫

Td

(ρ1 − ρ2)
2dx

= δ

∫

Td

⎛

⎜
⎜
⎜
⎜
⎝

−u+|∇(ρ1 − ρ2)|
2 +

∇(ρ1−ρ2)·∇(κ(M(ρ1)−M(ρ2)))
︷ ︸︸ ︷

(M(ρ1)−M(ρ2))∇κ · ∇(ρ1 − ρ2)

+ κ(M ′(ρ1)∇ρ1 −M ′(ρ2)∇ρ2) · ∇(ρ1 − ρ2)

⎞

⎟
⎟
⎟
⎟
⎠

dx

−

∫

Td

(ω(ρ1 − ρ2)
2 + (ρ1 − ρ2)γ(u

+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2)))dx

+

∫

Td

(ρ1 − ρ2)

∫

Ω

τ(y, x, t)γ(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2))|ydydx

≤ δ

∫

Td

(−u+|∇(ρ1 − ρ2)|
2 + (M(ρ1)−M(ρ2))∇κ · ∇(ρ1 − ρ2)

+ κ(M ′(ρ1)∇ρ1 −M ′(ρ2)∇ρ2) · ∇(ρ1 − ρ2))dx

+

∫

Td

|ρ1 − ρ2|

∫

Td

τ(y, x, t)γ|(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2))|dydx,

where we used the fact that (ρ1 − ρ2) and γ(ρ1u(κ, ρ1) − ρ2u(κ, ρ2)) will have the

same sign (because ρu is positive and monotonically increasing in ρ). Now, by (3.16),
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1878 M. R. Lindstrom & A. L. Bertozzi

‖ρ1−ρ2‖L1(Td) ≤ |Td|1/2‖ρ1−ρ2‖L2(Td) = ‖ρ1−ρ2‖L2(Td), and γ(y, t)τ(y, x, t) ≤ Ξ2,

we have that

∫

Td

|ρ1 − ρ2|

∫

Td

τ(y, x, t)γ

≤u+|ρ1−ρ2|
︷ ︸︸ ︷

|(u+(ρ1 − ρ2)− κ(M(ρ1)−M(ρ2))| dydx

≤ u+Ξ2‖ρ1 − ρ2‖
2
L2(Td). (3.19)

Working with the derivative terms, we have
∫

Td

(−u+|∇(ρ1 − ρ2)|
2 + (M(ρ1)−M(ρ2))∇κ · ∇(ρ1 − ρ2)

+κ(M ′(ρ1)∇ρ1 −M ′(ρ2)∇ρ2) · ∇(ρ1 − ρ2))dx

=

∫

Td

(−u+|∇(ρ1 − ρ2)|
2 + (M(ρ1)−M(ρ2))∇κ · ∇(ρ1 − ρ2)

+κ(M ′(ρ1)∇(ρ1 − ρ2) + (M ′(ρ1)−M ′(ρ2))∇ρ2) · ∇(ρ1 − ρ2))dx

=

∫

Td

[−(u+ − κM ′(ρ1))|∇(ρ1 − ρ2)|
2

+(κ(M ′(ρ1)−M ′(ρ2))∇ρ2 +∇κ(M(ρ1)−M(ρ2))) · ∇(ρ1 − ρ2)]dx

=

∫

Td

[

−(u+ − κM ′(ρ1))

×

∣
∣
∣
∣

(

∇(ρ1 − ρ2)−
κ(M ′(ρ1)−M ′(ρ2))∇ρ2 +∇κ(M(ρ1)−M(ρ2))

2(u+ − κM ′(ρ1))

)∣
∣
∣
∣

2

+
|κ(M ′(ρ1)−M ′(ρ2))∇ρ2 +∇κ(M(ρ1)−M(ρ2))|2

4(u+ − κM ′(ρ1))

]

dx

≤ K‖ρ1 − ρ2‖
2
L2(Td), (3.20)

for some K that depends on maxt∈[0,T ] ‖∇ρ2(·, t)‖L∞(Td). It is finite as solutions

are twice continuously differentiable in T
d so the gradient cannot blow up. The last

inequality stems from the final (and positive) term in the integrand being Lipschitz:

since ∇ρ2 is bounded on T
d (ρ2 is C2 in x) and using (3.17)–(3.18), the term being

squared in the numerator is Lipschitz. Also, the denominator is bounded below by

4(u+ − u−). Whence, by combining inequalities (3.19) and (3.20)

d

dt
‖ρ1 − ρ2‖

2
L2(Td) ≤ 2(u+Ξ2 +K)‖ρ1 − ρ2‖

2
L2(Td)

and by a standard application of Grönwall’s inequality, the result is proven.

Corollary 3.1. (Continuous Dependence on Initial Conditions Given the Solutions

Exist) Let T > 0 and ρ ∈ UT be a solution to (3.1)–(3.4) with Ω = T
d and ρ(·, 0) =

ρ0(·) > 0. Then ∀ ε > 0, ∃ ζ(T ) > 0 s.t. if � ∈ UT is a solution to (3.1)–(3.4) also

with Ω = T
d, �(·, 0) = �0(·) > 0 and ‖�0 − ρ0‖L2(Td) < ζ(T ) then ∀ 0 ≤ t ≤ T, we

have ‖�(·, t)− ρ(·, t)‖L2(Td) < ε.
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1879

Proof. The proof is trivial by using the arguments that prove 3.1: replace ρ1 with

� and ρ2 by ρ.

Theorem 3.2. (Spatially Homogeneous Forcing Induces Convergence to Homoge-

neous Spatial Density in Measure) Let ρ ∈ U∞ be a solution to (3.1)–(3.4) with Ω =

T
d, ρ(x, 0) > 0 for all x ∈ T

d, θ = θ(t) (making κ constant in space), η = η(t) ≥ 0,

ω = ω(t) > ω− > 0 with ω− a constant, γ = γ(t) ≥ 0, and τ = 1. Then for all

ρ(·, 0) ∈ C2, ρ(·, t) → ρ̄(t) in measure where ρ̄(t) = e−
∫

t

0
ω(s)ds

∫ t

0
η(r)e

∫
r

0
ω(s)dsdr.

Remark 3.3. We are assuming global existence here in order for the limit to make

sense.

Proof of theorem 3.2. Our argument will come from two parts: first, we will

establish a uniform upper bound for the solution over T
d that converges to ρ̄ as

t ↑ ∞. We will then show that the solution cannot remain smaller than ρ̄ except on

sets whose measure vanishes. With κ constant in space, ρu = F (ρ, t) is monotoni-

cally increasing with ρ for each fixed t. Then (3.1)–(3.4) become

ρt = δ∆F + η − ωρ+ γ(F̄ − F ), (3.21)

where F̄ =
∫

Td Fdx is the average value of F (ρ) on T
d. We wish to change variables

to remove as many terms from (3.21) as possible so as to apply the maximum

principle supplied by Lemma 3.1. For smooth ξ1 and ξ2, write ρ = eξ1(t)q(x, t)+ξ2(t)

so that

ξ̇1q + qt + ξ̇2e
−ξ1 = δ∆F + η − ωq − ωξ2e

−ξ1 + γ(F̄ − F )e−ξ1 .

The dot signifies a time derivative. We choose

ξ̇1 = −ω, ξ1(0) = 0, (3.22)

ξ̇2 = −ωξ2 + ηeξ1 , ξ2(0) = 0 (3.23)

so that in simpler terms

qt − δ∆F = γ(F̄ − F )e−ξ1 .

Note that γe−ξ1(F̄ − F ) is an operator that satisfies the conditions of Θ in

Lemma 3.1. By Lemma 3.1, the global maximum for q in UT is achieved at t = 0.

By choice of initial conditions (3.22)2 and (3.23)2, ρ(·, 0) = q(·, 0) and thus

ρ = eξ1q + ξ2 ≤ eξ1 max
Td

q(·, 0) + ξ2 = eξ1 max
Td

ρ(·, 0) + ξ2.

By recalling η, ω are constant in space and solving the ODEs (3.22)–(3.23), we can

precisely state that

ρ(x, t) ≤ e−
∫

t

0
ω(s)ds max

Td

ρ(·, 0) + e−
∫

t

0
ω(s)ds

∫ t

0

η(r)e
∫

r

0
ω(s)dsdr

= e−
∫

t

0
ω(s)ds max

Td

ρ(·, 0) + ρ̄(t). (3.24)
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1880 M. R. Lindstrom & A. L. Bertozzi

This proves directly that the set of points upon which ρ exceeds ρ̄ + ε must have

vanishing measure as t ↑ ∞ for all ε > 0. Having established an upper bound, we

now work on the second part of the proof. Integrating (3.21) over Td we have (as

in proof of Proposition 3.2 in Appendix A.2) that

d

dt
‖ρ‖L1(Td) = η − ω‖ρ‖L1(Td)

so

‖ρ‖L1(Td)(t) = e−
∫

t

0
ω(s)ds

(

‖ρ‖L1(Td)(0) +

∫ t

0

η(r)e
∫

r

0
ω(s)dsdr

)

. (3.25)

Let ε > 0 and define Sε(t) = {x ∈ T
d|ρ(x, t) ≤ ρ̄(t) − ε}. We show that in

measure, ρ → ρ̄(t).

Observe that by Eqs. (3.25) and (3.24)

‖ρ‖L1(Td)(t) = e−
∫

t

0
ω(s)ds‖ρ‖L1(Td)(0) + ρ̄(t)

=

∫

Td\Sε

ρdx+

∫

Sε

ρdx

≤ |Td\Sε|

(

e−
∫

t

0
ω(s)ds max

Td

ρ(·, 0) + ρ̄(t)

)

+ |Sε| (ρ̄(t)− ε)

= |Td|ρ̄(t) + |Td\Sε|e
−

∫
t

0
ω(s)ds max

Td

ρ(·, 0)− ε|Sε(t)|.

Rearranging the first line and the last line, using |Td| = 1, and recalling there

is an inequality produces

ε|Sε(t)| ≤ e−
∫

t

0
ω(s)ds

(

max
Td

ρ(·, 0)|Td\Sε| − ‖ρ‖L1(Td)(0)

)

.

Since we assume here that ω is strictly bounded below by 0 so that
∫∞

0
ω(s)ds

diverges, the right-hand side decays to zero and thus

ε|Sε(t)| ↓ 0

as t → ∞ for all ε > 0.

In one dimension, we can prove a stronger result.

Theorem 3.3. (Spatially Homogeneous Forcing Induces Uniform Decay of Gra-

dient in One Dimension) Let ρ(x, t) ∈ C3
x ∩ C1

t (T × [0,∞) → R≥0), having ρxt
and ρtx continuous, be a solution to (3.1)–(3.4) with Ω = T, ρ(·, 0) = ρ0 > 0,

ρ0 ∈ C3, θ = θ(t) (making κ constant in space), η = η(t) ≥ 0, ω = ω(t) ≥ 0,

γ = γ(t) ≥ 0, and τ = 1. We also assume that one of ω or γ is bounded below

by a positive constant, m. Then for all ρ(·, 0) ∈ C3, ρ(·, t) → ρ̄(t) uniformly where

ρ̄(t) = e−
∫

t

0
ω(s)ds

∫ t

0
η(r)e

∫
r

0
ω(s)dsdr.

Remark 3.4. Note that we require three continuous derivatives in space. Also, we

potentially allow ω = 0 here.
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1881

Proof of theorem 3.3. We will prove that the gradient ρx tends to zero uniformly.

We can rewrite (2.13) in one spatial dimension and with the imposed hypotheses as

ρt = δ(ρu)x + η − ωρ+ γ

∫

T

ρudy − γρu.

We begin by taking an x−partial-derivative using (3.15) with κ, ω, and γ constant

in space to obtain

ρtx = δ((u+ − κM ′(ρ))ρxxx − 3κM ′′(ρ)ρxρxx − κM ′′′(ρ)ρ3x)

−ωρx − γ(u+ − κM ′(ρ))ρx

since the nonlocal operator results in a constant in space. By interchanging x- and

t-derivatives since the mixed partial derivatives are assumed continuous (and hence

equal), we rewrite the equation with ψ = ρx

ψt = δ

(

(u+ − κM ′(ρ))ψxx −
3

2
κM ′′(ρ)(ψ2)x − κM ′′′(ρ)ψ2

x

)

−ωψ − γ(u+ − κM ′(ρ))ψ.

Now, we multiply by ψ so that

1

2
(ψ2)t = δ

(

(u+ − κM ′(ρ))ψψxx −
3

2
κM ′′(ρ)ψ(ψ2)x − κM ′′′(ρ)ψψ2

x

)

− (ω + γ(u+ − κM ′(ρ)))ψ2.

Let q = 1
2ψ

2. If we can prove q → 0 uniformly over T we are done. Note that, we

have

qt = δ((u+ − κM ′(ρ))(qxx − ψ2
x)− 6κM ′′(ρ)ψxq − κM ′′′(ρ)ψψ2

x)

− 2(ω + γ(u+ − κM ′(ρ)))q.

Note that q ≥ 0 and if q(x, t) = r(x, t)eξt then

rt − δ(u+ − κM ′(ρ))rxx + δ(u+ − κM ′(ρ))ψ2
xre

−ξt + 6κM ′′(ρ)ψxr

− κM ′′′(ρ)ψe−ξtψ2
x = −(ξ + 2(ω + γ(u+ − κM ′(ρ))))r.

If the supremum of r is zero, there is nothing more to prove. Otherwise, at any

nonzero local maximum for r, ψψx = 0 and since ψ �= 0 in such a case, we have

ψx = 0. If ξ is chosen so that ξ + 2(ω + u+ − κM ′(ρ)) ≥ 0 then by Lemma 3.1, the

global maximum for r is achieved at t = 0. Many ξ can be chosen but to establish

decay, we choose ξ = −2m if ω ≥ m > 0 with γ reaching zero and otherwise we pick

ξ = −2m(u+ − u−). This establishes 1
2ψ

2 ≤ e−mt maxT
1
2ψ(·, 0)

2 so the gradient of

ρ tends to zero uniformly. Combining this fact with Theorem 3.2 proves the result.

We examine the consequences of Theorem 3.3 in Fig. 5 by plotting the decay of

the sup-norm of the gradient of a solution subject to time-dependent but spatially

constant forcing.
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1882 M. R. Lindstrom & A. L. Bertozzi

Fig. 5. Maximum of solution gradient with initial condition ρ(x, 0) = 2 sin2(2πx) with η = 2+ t,
κ = 1

2
, ω = 0.1 + 0.09 sin2 t, γ = 4e−3t, τ = 1, u+ = 0.98, u− = 0.96, ρ̃ = 20, δ = 0.02. Here,

m = 0.1 since ω ≥ 0.1. The diffusion also helps to level out the solution, even more than m
accounts for.

We now turn to the problem of parameters and solutions that are time-

independent and their perturbations.

Proposition 3.4. (With constant γ and symmetric, time-independent τ , steady

state solutions are stable to L2-perturbations) We consider Eqs. (3.1)–(3.4) with

Ω = T
d; γ = γ(x); τ time-independent and symmetric with τ(x, y) = τ(y, x); let

η(x, t) = η(x) ≥ 0, ω(x, t) = ω(x) > 0 constants in time. We let γ ≥ 0 be a

constant. Suppose that ρ0 ∈ C2(Td), ρ0 > 0 obeys the steady-state equation

0 = δ∆(ρu) + η − ωρ+

(∫

Td

τ(y, x)γ(y)ρ(y)u(y)dy − γρu

)

(3.26)

alongside (2.14) and (2.15). Then, for sufficiently small (in ‖ · ‖L∞(Td)), periodic

ρ̄0 ∈ L2(Td), the solution to (2.13) with ρ(·, 0) = ρ0 + ρ̄0 upholds ρ → ρ0 in L2(Td)

as t → ∞.

Proof. We define R(x) = u+ − κM ′(ρ0) and u0 = u(κ, ρ0) so that for small ρ̄, up

to first order, (ρ0 + ρ̄)u|ρ0+ρ̄ = ρ0u0 + R(ρ0)ρ̄. We remark that R(x) > 0 for all

x ∈ T
d. Now, we linearize (3.1)–(3.4) by ρ = ρ0 + ρ̄ to furnish

ρ̄t = ∆(Rρ̄)− ωρ̄+ γ

(∫

Td

τ(y, x)Rρ̄|ydy −Rρ̄

)

.

Now, we multiply the equation by Rρ̄ and integrate over Td

∫

Td

Rρ̄ρ̄tdx =

∫

Td

Rρ̄∆(Rρ̄)dx −

∫

Td

ωRρ̄2dx

+ γ

∫

Td

Rρ̄|x

(∫

Td

τ(y, x)Rρ̄|ydy −Rρ̄|x

)

dx
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1883

⇒
d

dt

(
1

2

∫

Td

Rρ̄2dx

)

= −

∫

Td

|∇(Rρ̄)|2dx−

∫

Td

Rωρ̄2dx

+ γ

∫

Td

Rρ̄|x

(∫

Td

τ(y, x)Rρ̄|ydy −Rρ̄|x

)

dx

⇒
d

dt

(
1

2

∫

Td

Rρ̄2dx

)

+

∫

Td

Rωρ̄2dx

≤ γ

(∫

Td

Rρ̄|x

∫

Td

τ(y, x)Rρ̄|ydydx−

∫

Td

R2ρ̄2dx

)

.

We denote R = minTd R > 0, and ω = infTd ω > 0. With the above, we apply

Cauchy–Schwarz

R

2

d

dt
‖ρ̄‖2L2(Td) +Rω‖ρ̄‖2L2(Td)

≤ γ

(∫

Td

∫

Td

|R(x)ρ̄(x, t)R(y)ρ̄(y, t)τ(y, x)|dydx −

∫

Td

R2ρ̄2dx

)

≤ γ

(
∫

Td

|R(y)ρ̄(y, t)|

(∫

Td

τ(y, x)dx

)1/2

×

(∫

Td

R(x)2ρ̄(x, t)2τ(y, x)dx

)1/2

dy −

∫

Td

R2ρ̄2dx

)

= γ

(
∫

Td

|R(y)ρ̄(y, t)|

(∫

Td

R(x)2ρ̄(x, t)2τ(y, x)dx

)1/2

dy −

∫

Td

R2ρ̄2dx

)

≤ γ

(∫

Td

R2ρ̄2dy

)1/2 (∫

Td

∫

Td

R(x)2ρ̄(x, t)2τ(y, x)dxdy

)1/2

− γ

∫

Td

R2ρ̄2dx

= γ

(∫

Td

R2ρ̄2dy

)1/2 (∫

Td

∫

Td

R(x)2ρ̄(x, t)2τ(x, y)dydx

)1/2

− γ

∫

Td

R2ρ̄2dx

= γ

(∫

Td

R2ρ̄2dy

)1/2 (∫

Td

R(x)2ρ̄(x, t)2dx

)1/2

− γ

∫

Td

R2ρ̄2dx = 0.

Thus,

‖ρ̄(·, t)‖2L2(Td) + 2ω

∫ t

0

‖ρ̄(·, s)‖2L2(Td)ds ≤ ‖ρ̄(·, 0)‖2L2(Td).

We claim this proves ‖ρ̄(·, t)‖L2(Td) ↓ 0 as t ↑ ∞. We have that ‖ρ̄(·, t)‖L2(Td)

is monotonically non-increasing. Were it to not tend to zero then there must exist

ε > 0 so that limt→∞‖ρ̄(·, t)‖L2(Td) ≥ ε. But this would force the integral to diverge

to +∞ and we would have a contradiction to the boundedness of ‖ρ̄(·, t)‖2L2(Td) +

2ω
∫ t

0
‖ρ̄(·, s)‖L2(Td)ds.
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3.3. Generalizations

Some of the proofs provided here could readily be generalized to include other

features. For example, the proof of positivity, and the bounds on the L1 and L∞

norms of solutions depended upon the positivity, normalization, and boundedness

of τ . But more complicated τ choices could also be used, such as those of the form

τ(y, x, t, ρ/‖ρ‖L1(Ω)) to furnish the same results, allowing effects of aggregation due

to localized peaks in the population density. Other proofs may require more control

over τ and further properties of solutions ρ.

4. Qualitative Features of Real Data

After nondimensionalization and smoothing, the homeless population densities for

four consecutive years are plotted in Fig. 6. Within the real data, we remark that

while some areas have high homeless population densities consistently from year

to year, encampments can form over the course of a year and a new bump in the

density appears.

The PDE model has many parameters, most of which can vary over space and

time. As such, there is a danger of overfitting. In order to illustrate qualitatively

Fig. 6. Plots of the homeless population densities for a subset of Los Angeles. The population
has been nondimensionalized by a scale of 68 mi−2 and the length scale is 12 mi. The data have
been smoothed: population densities were interpolated onto a regular mesh from LAHSA data
and then locally averaged over a radius of 1 mi. Here, x and y denote spatial position and ρ is
population density.
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Qualitative features of a nonlinear, nonlocal, agent-based PDE model 1885

Fig. 7. Top row: initial homeless population density at t = 0 (left) and final homeless population
density at t = 1 (right). Bottom row: initial relative capacity κ at t = 0 and final relative capacity
at t = 1. Between t = 0 and t = 1, the relative capacity was a linear interpolation between the
initial and final κ plots. Parameters are δ = 10−4, u+ = 0.999, u− = 0.998, ρ̃ = 1/20, η = 1/10,
ω = 1/100, γ = 5, with τ given by (4.1).

consistent behavior in our model with the real data of encampment formation, we

restrict ourselves to describing the formation of a new encampment (a new local

maximum). To achieve this, we consider a scenario where all of η, ω, and γ are

constant in space and time, the travel term τ is given by

τ(y, x, t) =
κ(x, t)

∫

Ω
κ(x′, t)dx′

(4.1)

where κ steadily increases in a region over a dimensionless time interval of 1. Over

the domain we assume no-flux boundary conditions. This results in the numerical

solutions being consistent with real encampment formation (see Fig. 7).

5. Conclusions and Future Work

We formulated a continuum PDE model to describe the evolution of the homeless

population density. We have proven that smooth periodic solutions to the model

equations enjoy a maximum principle, a positive population density, uniqueness, a

flattening phenomena with spatially uniform forcing, and L2-stability for constant

transfer rates and symmetric travel kernels. The model is well behaved and, for
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suitable choices of parameters, it can produce population changes that are qualita-

tively consistent with real homeless population data.

From this preliminary model, many new avenues of research open up. It would

be worth understanding how to empirically model the various parameters/functions

in (3.1)–(3.4) so that the model can be used in a quantitative capacity and in

identifying what can be done to combat homelessness. From the viewpoint of math-

ematical analysis, a rigorous proof of existence of solutions is worth pursuing. It

would also be interesting to study this model or its natural variants as applied to

other contexts.
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Appendix A

A.1 Numerical methods

In one spatial dimension on the torus, we use semi-implicit stepping. To solve (3.1)–

(3.4), assume we have a numerical solution on a regular spatial grid at time tk, ρ
k.

We write u(ρ) to indicate the u-function evaluated at a given place with argument ρ.

A method-of-lines implementation with time step ∆t is to find ρk+1 that solves

ρk+1 − ρk

∆t
= δ∆(ρk+1u(ρk)) + ηk+1 − ωk+1ρk+1 + I[γk+1ρk+1u(ρk)]

− γk+1ρk+1u(ρk).

This requires inverting a dense matrix, which is not overly costly in one dimen-

sion. And standard second-order quadrature (trapezoid rule) is sufficient. In two

dimensions with Neumann boundary conditions, we implement a split-step finite

difference scheme using semi-implicit stepping for the Laplacian, explicit stepping

for the travel terms, and implicit stepping for the sink terms. We adopt the same

notation as above but also allow for fractional superscripts so that ηk+1/3 means η

evaluated at tk +
∆t
3 . Our method is to

(1) solve 	(1)−ρk

∆t/3 = δ∆(�(1)uk) for �(1), also with semi-implicit boundary condi-

tions;

(2) solve 	(2)−	(1)

∆t = ηk+1/3 + I[γk+1/3�(1)u(�(1))]− γk+1/3�(1)u(�(1)) for �(2) with

the quadrature described below;
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(3) solve 	(3)−	(2)

∆t/3 = δ∆(�(3)u(�(2))) for �(3), also with semi-implicit boundary con-

ditions;

(4) solve 	(4)−	(3)

∆t = −ωk+2/3�(4);

(5) solve ρk+1−	(4)

∆t/3 = δ∆(ρk+1u(�(4))) for ρk+1, also with semi-implicit boundary

conditions.

The Laplacian term solves the equation with the appropriate boundary condi-

tions so, we split it into three. This ensures the nonlocal step and stepping forward

with the sink will be done with the correct boundary conditions and so that the

output also has the proper boundary conditions. The nonlocal operator is done

explicitly to avoid inverting a large, dense matrix in the case of an implicit scheme.

It is combined with the positive source term η. Positivity can be preserved when

done explicitly for those terms. The sink term −ωρ is dealt with implicitly to pre-

serve positivity.

The quadrature for the nonlocal movement is delicate. In second-order quadra-

ture, values of γρu in the integral are weighted by either 1/2 or 1/4 at the boundary.

Proper mass balance is achieved by weighting the corresponding sinks of −γρu by

either 1/2 or 1/4.

A.2 Further proofs

Proof of lemma 3.1. We prove the sup-case as the inf-case can be done mutatis

mutandis. Let ε > 0 and write q = qε + εt. Then, we have

qε,t + ε+Φ(∇qε, x, t) + λq − α∆F (q, t) = Θ.

At a local maximum for qε within Λ, ∆F (q, t) ≤ 0, Φ(∇qε, x, t) = 0, qε,t ≥ 0. And

at the global maximum we know Θ ≤ 0 because the addition of the constant εt will

preserve qε + εt having a global maximum at the same point in T
d. So

>0
︷ ︸︸ ︷

ε+ λq − α∆F (q) =

≤0
︷︸︸︷

Θ ,

a contradiction. Thus,

sup
Λ

q = sup
Λ

(qε + εt)

≤ sup
Λ

qε + εT = max
∂∗Λ

qε + εT ≤ max
∂∗Λ

q + εT ≤ sup
Λ

q + εT.

Taking the limit as ε ↓ 0 furnishes that supΛ q = max∂∗Λ q and the global maximum

for q cannot be attained within Λ and must occur in T
d × {t0}.

Proof of Proposition 3.1. Let ρ(x, t) = eξtq(x, t) for a ξ ∈ R to be chosen

judiciously. Then from (3.1)–(3.4) expressing things in terms of q where appropriate

qt + ξq = δ(u+ − κM ′(ρ))∆q − δκM ′′(ρ)eξt|∇q|2 − 2δM ′(ρ)∇κ · ∇q − δM(ρ)∆κ

+ ηe−ξt − ωq + I[γqu]− γqu.
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Upon rearranging

qt + (δκM ′′(ρ)eξt|∇q|2 + 2δM ′(ρ)∇κ · ∇q) + [(ξ + γu+ ω)q − δ∆κM(ρ)]

− δ(u+ − κM ′(ρ))∆q =

≥0
︷ ︸︸ ︷

ηe−ξt + I[γqu]

Note by (3.9) and hypothesis 2, we have that |δ∆κM(ρ)| ≤ δΞu−ρ and so we choose

ξ so that

ξ + γu+ ω + δΞu−eξt ≤ 0,

which can be done by choosing ξ = −2Ξ − δΞu−. The solution q must attain its

global minimum at t = 0 by Lemma 3.1. Thus ρ = eξtq ≥ eξt minTd q(·, 0) =

ρme−(2Ξ+δΞu−)t > 0 since ρ(·, 0) = q(·, 0).

Proof of proposition 3.2. We integrate (2.13) over Td

∫

Td

ρtdx =

∫

Td

(δ∆(ρu) + η − ωρ+ I[γρu]− γρu) dx

=

∫

Td

(η − ωρ)dx+

∫

Td

∫

Td

τ(y, x, t)γρu|ydydx−

∫

Td

γρudx

=

∫

Td

(η − ωρ)dx+

∫

Td

(∫

Td

τ(y, x, t)dx

)

γρu|ydy −

∫

Td

γρudx

=

∫

Td

(η − ωρ)dx,

where in getting from line 1 to 2 the boundary term −∇(ρu) from integration by

parts vanishes (∂Td = ∅), in getting from line 2 to 3, we interchanged the order of

integration, and in getting from line 3 to 4, we used that
∫

Td τ(·, x, ·)dx = 1 so that

there is a cancellation of the integrals with γ. We find therefore that, since ρ > 0,

d

dt
‖ρ‖L1(Td) =

∫

Td

ηdx −

∫

Td

ωρdx ≤

∫

Td

ηdx

and thus

‖ρ‖L1(Td) ≤ ‖ρ(x, 0)‖L1(Td) +

∫ t

0

(∫

Td

ηdx

)

dt ≤ ‖ρ(x, 0)‖L1(Td) + Ξt (A.1)

since |Td| = 1.

Proof of proposition 3.3. This is similar to the proof of positivity. Let ρ(x, t) =

ξ(t) + q(x, t) for a smooth ξ : R → R to be chosen judiciously. Then in terms of q

where appropriate

qt + (δκM ′′(ρ)|∇q|2 + 2δM ′(ρ)∇κ · ∇q) + (γu+ ω)q

− δ(u+ − κM ′(ρ))∆q = η + I[γqu] + δM(ρ)∆κ− ξ′(t).
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Here, we choose ξ so that η+ I+ δM(ρ)∆κ− ξ′(t) ≤ 0. Note that I[γρu] ≤ I[γρ] ≤

Ξ2‖ρ(·, t)‖L1(Td). Therefore, we let ξ(t) be defined by

ξ(t) =

∫ t

0

(Ξ2‖ρ(·, s)‖L1(Td) + Ξ+ δρ̃u−Ξ)ds

≤ (Ξ2‖ρ(·, 0)‖L1(Td) + Ξ+ δρ̃u−Ξ)t+
Ξ3

2
t2 < ∞

owing to the bound of L1(Td) from Proposition 3.2. This forces the maximum of q

to occur at t = 0 and since ‖ρ(·, 0)‖L∞(Td) = ‖q(·, 0)‖L∞(Td), we have

‖ρ(·, t)‖L∞(Td) ≤ ‖ρ(·, 0)‖L∞(Td) + (Ξ2‖ρ(·, 0)‖L1(Td) + Ξ+ δρ̃u−Ξ)t+
Ξ3

2
t2.
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