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Abstract—When a disaster happens, affected individuals may
use social media platforms, such as Twitter or Facebook, to ask
for help or post information about the disaster. From a disaster
response point of view, it is important to filter posts, in particular,
text and images that provide situational awareness information,
in a timely manner. For image classification, capsule networks
have shown superiority over convolutional neural networks
(CNN). Given their success in other application domains, in this
study, we used capsule networks to classify disaster images as
Informative or Non-informative. Using publicly available images
collected from several disasters, we compared capsule network
models with ResNet-18 models, for both in-domain and cross-
domain settings. The results showed that the capsule network
models had better performance for all the disaster datasets
considered in the in-domain experiments, and also for most of
the cross-domain pairs of disasters used in the study.

Index Terms—Disaster images, image classification, convolu-
tional neural networks, ResNet-18, capsule networks (CapsNets).

I. INTRODUCTION

Social media has a great impact on our daily lives, and
has become an important source of information in the recent
years. When a disaster (such as a tsunami, earthquake, flood,
hurricane) strikes a place, many people use social media as a
medium of communication, given that traditional emergency
phone services may become unavailable due to a large volume
of calls [1]. Therefore, social media is of great importance in
disaster response and management, and has been ranked the
fourth among popular sources for acquiring emergency infor-
mation [2]. Affected people in disaster zones can use social
media (e.g., Twitter) to ask for help or to share emergency
information [2]. This information should be filtered in a timely
manner, so that disaster planners and responders can use it to
improve their response operations and allocation of resources.

There have been many studies on the use of deep learning
approaches for filtering useful situational information from
tweets. Some studies have focused on getting information from
either texts [3, 4, 5] or images [6, 7, 8], while others have
considered both text and images together [9, 10]. For training
a supervised deep learning model, a large number of data
points is needed. However, in the case of a disaster, manually
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labeling data can be expensive and time consuming, and thus
the number of data points is limited (especially in the early
hours of a disaster). This problem can be somewhat alleviated
by using data augmentation techniques and pre-trained models
[11], or sometimes using labeled data from previous disasters,
together with domain adaptation techniques, to train classifiers
for a disaster of interest [5, 7]. It has been shown that this
approach is much more useful if the previous disaster is of
different nature to the current one [7].

To complement previous approaches that address the limi-
tations posed by the scarcity of the labeled data, we propose
to use capsule networks for classifying disaster images posted
during disasters as Informative or Non-informative. One of
the main properties of capsule networks is the property of
equivariance, which captures the spatial relationship between
features [12]. Jiménez-Sánchez et. al. [13] used capsule
networks to analyze medical images and showed that the
equivariance property of capsule networks translates to models
that can be effectively trained with a smaller number of labeled
data points as compared to the standard convolutional neural
networks. As an added benefit, they also showed that capsule
networks have the ability to handle imbalanced datasets. As
disaster image datasets are both small and imbalanced, capsule
networks represent an attractive approach for disaster image
classification. Therefore, this work presents a case study of
capsule networks to disaster image classification.

Given this context, our key contributions are as follows:
• We used CapsNet models to classify disaster images. To

the best of our knowledge, our study is the first to use
CapsNets for disaster image classification.

• We conducted in-domain experiments and compared Cap-
sNet models with CNN models to investigate how the
CapNets handle smaller amounts of labeled data, as com-
pared to the standard CNN models. Specifically, we used
CapsNets with ResNet-18 as a backbone, and compared
them with ResNet-18 baselines. The experiments were
run on seven different crisis datasets.

• We also conducted cross-domain experiments using both
CapsNet and ResNet-18. The purpose of these experi-
ments was to study the ability of the CapsNet models
to transfer knowledge from a prior source domain to the
target domain, as compared to the ResNet-18 baselines.



We ran experiments on a variety of source-target disaster
pairs (formed using the seven crisis datasets from the in-
domain setting).

The rest of the paper is organized as follows: We describe
related work in Section II, and provide background and
approaches, including a brief description of ResNet-18 archi-
tecture and Capsule Networks, in Section III. We introduce
the experimental setup in Section IV, while presenting and
discussing the results in Section V. Finally, we conclude the
paper and provide ideas for future work in Section VI.

II. RELATED WORK

Works related to this paper fall into two categories, specif-
ically works on disaster image classification and works on
capsule networks, as discussed below.

A. Disaster image classification

Many studies have used social media data to identify
useful information for disaster response [1]. Early studies have
focused on text analysis. However, more recent studies have
also addressed the analysis of social media images, as images
have been shown to contain useful situational awareness infor-
mation that complements or adds to the information available
in text [14]. Specifically, social media images provide detailed
on-site information from the perspective of the eyewitnesses
of the disaster [15], and can serve as an ancillary, yet rich
source of visual information in disaster response.

Several image and multi-modal image/text datasets have
been published [6, 16, 17], and contributed to advances in
the area of image classification for disaster response. Nguyen
et. al. [6] used CNNs to perform damage assessment, while Li
et. al. [7] used domain adversarial neural networks (DANN)
to identify damage images. Agarwal et. al. [18] proposed a
multi-modal framework, called Crisis-DIAS, which uses both
textual and visual information from tweets. Madichetty and
Sridevi [19] also used both image and text features to classify
crisis-related tweets. In the method proposed in this paper,
a combination of a CNN and a standard Artificial Neural
Network (ANN) was used for the text-based classification
component of the model, while the fine-tuned VGG-16 archi-
tecture was used for the image-based classification component
of the model. Afterwards, the late fusion technique was used
to combine the output of these two models to determine if
the tweet label is Informative or Non-informative. In [20],
both the semantic text and image features are combined to
classify a multi-modal tweet post. Abavisani et. al. [10] also
used a multi-modal fusion approach, in order to detect crisis
events for three different tasks based on the combination of
information in both images and text.

As can be seen, all these works and others that are focused
on image analysis in the disaster domain have used different
variants of CNN models to process images. As opposed to that,
in our study, we propose to use capsule networks, which have
been designed to address fundamental limitations of CNNs. In
particular, we focus on the ability of the CapsNets to handle

smaller labeled datasets and study them in both in-domain and
cross-domain settings.

B. Capsule Networks

CapsNets [21, 22] use viewpoint invariant representations
to address a fundamental limitation of CNNs, specifically, the
fact that CNNs do not capture spatial relationships between
features. Given their superior performance as compared to
CNNs, CapsNets have been recently used in many application
domains. For example, CapsNets have been used in natural
language processing applications, such as text classification
[23], and multi-label text classification and question answering
[24]. They have also been used successfully in computer
vision. For instance, [25] used CapsNets for biomedical
image segmentation. Jiménez-Sánchez et. al. [13] showed
that CapsNet can overcome the challenges in the medical
image classification domain, where datasets are usually small
and imbalanced. Afshar et. al. [26] proposed a CapsNet-
based framework, called COVID-CAPS, to diagnose COVID-
19 cases based on X-ray images. Similarly, [27] proposed
a CapsNet model, called Detail-Oriented Capsule Networks
(DECAPS), to automatically classify COVID-19 patients from
Computed Tomography (CT) scans, while [28] used CapsNets
to detect pneumonia from Chest X-ray images. Singh et.

al. [29] used a CapsNet-based approach to create a high
resolution image out of a very low resolution (VLR) image,
and demonstrated the feasibility of the approach for VLR digit
and face recognition.

Given the good performance of CapsNets in other ap-
plication domains, especially for image classification tasks,
our goal is to study the usefulness of CapsNets for disaster
image classification, a task for which the available datasets are
relatively small and imbalanced. To the best of our knowledge,
this is the first time CapsNets are used in the disaster domain.

III. BACKGROUND AND APPROACH

CapsNets have a CNN backbone. We use ResNet-18 as the
backbone of the CapsNet models in this study, and also as a
baseline when evaluating the CapsNet models. Thus, in this
section, we first review the ResNet-18 architecture, and then
describe the CapsNet model that we used.

A. ResNet-18 Architecture

The architecture of CNN has three different types of layers
including convolution layers (together with non-linear ReLU
activations), sub-sampling layers (a.k.a., pooling layers), and
classification layers, with the first two types of layers present
in the lower levels of the network, and classification layers at
the top of the network. Specifically, the architecture of a CNN
consists of a sequence of convolutional layers, interspersed
with max-pooling layers, followed by fully connected (FC)
layers, and finally a softmax classification layer. The outputs
of the convolution and max-pooling layers can be seen as
feature maps. Lower level layers correspond to more general
feature maps, while the upper level layers correspond to more
specific feature maps. The feature maps associated with the



last convolution/max-pooling layers are provided as inputs to
the classification layers, and a prediction is made based on the
scores produced by the final softmax layer. In the last fully
connected layer, the class with the highest score obtained from
a softmax layer will be chosen as the predicted class [30].

CNN architectures have gained a lot of popularity in
computer vision, due to the considerable improvements that
they have produced in this field. In particular, ResNet [31]
is a popular CNN architecture, which won the ImageNet
image classification competition in 2015. The advantage of
the ResNet architecture over other CNN architectures is that it
incorporates identity shortcuts, which help prevent the problem
of performance saturation and/or degradation, generally faced
when training deeper networks. By skipping some layers,
this identity shortcut connection considers the layer residual
mapping instead of only the original mapping [32]. We used
ResNet-18 (which has 18 layers) as the backbone of the
CapsNet models in this paper. Given that the data used in
our experiments has only two classes, the FC layer of the
pre-trained ResNet-18 was changed from 1000 to 2 classes.

B. Capsule Networks

CapsNets were first proposed by Hinton et. al. [21, 22].
The main motivation for CapsNets development was given by
a fundamental problem faced by standard CNNs, specifically,
the fact that they are invariant to translation (due to the pooling
operation), but cannot learn the spatial relationships between
features. Thus, a CNN model can wrongly identify an image
containing two eyes and a nose as a face, even when these
features are not in the right location. Furthermore, the pooling
operation results in loss of information. To compensate for this
loss, CNNs need a large training dataset [12]. For example, in
the case of face detection, the CNN model needs to be trained
on images of faces taken from a variety of viewpoints. On the
other hand, CapsNets are equivariant. For an image that shows
a rotated face, a CapsNet will output the probability of the
image to be classified as a face, along with the rotation degree.
Therefore, CapsNets can be trained with smaller datasets and
can generalize better to new unseen images with viewpoints
different from those in the training set. A brief description of
CapsNets is given in the following paragraph.

A CapsNet consists of several layers, with many capsules
in each layer. A capsule encapsulates a group of neurons
in itself. The output of each capsule can encode features
of an entity (e.g., its pose, its probability of existence, its
deformation, etc.) in the image. The active capsules at a
lower level (the children of the higher-level capsules) vote
for the capsules of the higher level (the possible parents).
This is done based on transformation matrices, representing
viewpoint-invariant relationship between the child capsule and
the parent capsule. These transformation matrices are trained,
and they change with a change in the viewpoint, making the
viewpoint between the child capsule (part) and the parent
capsule (whole or object) invariant. Votes are accumulated,
and if several children capsules agree on a parent capsule,
that capsule becomes active. This process, called routing-by-

agreement, is repeated several times. The routing is done in
such a way that ensures that one child capsule is routed to only
one parent capsule. The result of the routing is a parsing tree
with a hierarchical structure [21, 22, 33]. Dynamic routing
[21] and EM-routing [22] are two routing algorithms (with
some differences) that implement this mechanism.

Tsai et. al. [33] proposed a new routing algorithm, called
“Inverted Dot-Product Attention Routing”, which is similar to
the inverted attention mechanism. In this algorithm, the parent
capsules try to get attention from the children capsules. The
agreement between the previous iteration vote of the parent
capsule and the current iteration vote of the children capsules
is determined by the routing likelihood. There are two other
changes in this routing algorithm: 1) the authors used a Layer
Normalization; and 2) they used concurrent iterative routing
instead of sequential iterative routing; therefore, the states of
the capsules and the routing likelihoods are simultaneously
inferred (not in a layer-wise fashion). These changes help to
scale up the model [33].

The CapsNet architecture used in this work was adapted
from [33] and is presented in Figure 1. In the original
architecture [33], either several ResNet computational blocks
or a single convolutional layer were used as the backbone.
As opposed to that, we used ResNet-18 as our CapsNet’s
backbone to benefit from the pre-training of the ResNet-18 on
the ImageNet dataset. For an image of size 224 × 224 pixels,
the size of the image output by ResNet-18 is 7 × 7. Therefore,
after the image is fed to the backbone ResNet-18, the output
will be upsampled by the factor of 2 before being sent to the
convolutional layer, which is followed by LayerNorm, primary
capsules, two convolutional capsule layers, and finally two
fully-connected capsule layers. Given that we have only two
classes, the number of class capsules were changed to 2 in
our model. The class probability is obtained by applying the
softmax function to the resulting logits. The class with higher
probability is chosen as the predicted class. As can be seen in
the architecture, the routing algorithm is used from the primary
capsules all the way to the class capsules [33].

IV. EXPERIMENTAL SETUP

In this section, the dataset used in the experiments, along
with setup, evaluation metrics, and baseline are presented. The
aim of the designed experiments is to answer to the following
research questions:

• Does adding the capsule layers to the backbone ResNet-
18 improve the performance for disaster image classifi-
cation in in-domain and cross-domain settings?

• How does the performance of CapsNets on smaller
datasets compare to the performance on larger datasets?

• In the cross-domain setting, how does the ability of
the CapsNet to transfer information between source and
target disasters compare for disasters of the same type
versus disasters of different types?

To answer these questions, we selected a diverse dataset that
allows us to simulate a variety of scenarios. The details about



Fig. 1: Overview of the capsule network (CapsNet) architecture, adapted from [33]

TABLE I: Data distribution of the CrisisMMD dataset for the
task of identifying Informative versus Non-informative images.

Dataset Event Not-inf. Inf. Total Year
D0 California Fire 604 984 1588 2017
D1 Hurricane Harvey 1982 2461 4443 2017
D2 Hurricane Irma 2303 2222 4525 2017
D3 Hurricane Maria 2330 2232 4562 2017
D4 Iraq Iran Earthquake 200 400 600 2017
D5 Mexico Earthquake 541 841 1382 2017
D6 Sri Lanka Floods 773 252 1025 2017

the dataset, the experimental setup, evaluation metrics and
baseline models are provided in the next subsections.

A. Datasets

The dataset used in this study is called CrisisMMD [16].
This dataset was assembled by collecting tweets during seven
natural disasters including, Hurricane Irma, Hurricane Harvey,
Hurricane Maria, California Wildfires, Mexico Earthquake,
Iraq-Iran Earthquake, and Sri Lanka Floods. The dataset
includes both images and texts related to the corresponding
disasters; however, we only used the images of the dataset
in this study. Furthermore, while the dataset was originally
designed to address several image classification tasks, we only
focus on the task of classifying images in two classes: Informa-
tive and Non-informative. The detailed data distributions of the
disasters in the dataset (the number of Informative and Non-
informative images in each disaster) are presented in Table I.

B. Setup

For the in-domain experiments, the dataset was randomly
split into three parts: 70% as training set, 10% as the de-
velopment set and 20% as the test set. Each experiment
was run three times on each dataset and the average over
runs were reported for each metric. For the cross-domain
experiments, all the data for the source domain was used
for the training, while the development set and testing set of
target domain were used for hyper-parameter selection and
evaluation, respectively. In order to perform a fair comparison
with the in-domain results, the development and test sets are
the same as those used in the in-domain experiments. Also,
for the cross-domain experiments, we formed pairs of disasters
based on the chronological order in which the disasters in the
CrisisMMD dataset occurred. This order from the first disaster
to the last one is: D6, D1, D2, D3, D5, D0, D4. Given the
varying sizes of the specific disaster datasets, for some disaster
pairs, the source dataset has more samples than the target
dataset, while for others, the source has fewer samples, or a

comparable number of samples. Furthermore, the CrisisMMD
dataset consists of disasters of both similar and different types,
which enables us to experiment with source and target disasters
of the same type (for example, in one experiments the source
data is Hurricane Harvey and the target data is Hurricane
Irma), as well as disasters of different types (for example,
in one experiment the source data is Sri Lanka Floods and
the target data is California Fires). Thus, the diversity of pairs
formed with disasters from CrisisMMD allows us to study
CapsNets under a variety of scenarios.

Each experiment, both in the in-domain and cross-domain
settings, was first run on the ResNet-18 baseline (pre-trained
on ImageNet). All the layers, except for Conv-5 group and
FC layer, were frozen. Parameters of Conv-5 were initialized
with the pre-trained values and fine-tuned for each experiment,
while parameters of the FC layer were randomly initialized
and trained from scratch. To identify a good set of hyper-
parameters, we performed extensive tuning on the Hurricane
Maria dataset, as this dataset is large compared to other
datasets in CrisisMMD and it is also relatively balanced.
The final hyper-parameters used in the experiments are: a
learning rate of 5e-07, a weight decay (corresponding to
L2 regularization) of 0.1, a batch size of 32 images, and a
max number of epochs of 70. The exact number of epochs
for an experiment (leading to the best model) was identified
separately based on the development set in that experiment.
The final performance for an experiment was evaluated using
the best model on the test set corresponding to that experiment.
The input images were resized to 224 × 224 (as the ResNet-18
model was pre-trained on images of this size).

For each experiment with the CapsNet model, the ResNet-
18 model (which was tuned on the disaster dataset for the
corresponding experiment in the previous part) was used as the
backbone. This backbone was frozen, while the other layers
of the CapsNet model were trained. The hyper-parameters
selected for this part (using fine-tuning on Hurricane Maria as
before) are: a learning rate of 1e-05, a weight decay of 0 (i.e.,
no L2 regularization), dropout with a rate of 0.3, a batch size of
32 images, and a max epoch number of 70. Similar to ResNet-
18, each experiment is run for 70 epochs, but the number of
epochs that result in the best accuracy on the development set
is selected and used to evaluate performance on the test set.
The input images for CapsNet were also resized to 224 × 224.
The matrix format was used for the pose of each capsule, and
the number of routings was 2.

The same data augmentation approach is used for the



TABLE II: Classification results for in-domain experiments:
Precision (Pr.), Recall (Re.) and F1-measure (F1). For each
metric, the best values in a row are bold-faced.

Resnet-18 CapsNet
Data Pr. Re. F1 Pr. Re. F1
D0 79.343 78.616 78.599 83.642 83.543 83.515
D1 77.296 77.290 77.150 79.014 78.979 78.843
D2 74.473 74.401 74.393 75.256 75.212 75.188
D3 75.731 75.731 75.724 77.503 77.449 77.419
D4 79.044 71.389 71.046 82.599 82.778 82.210
D5 76.217 75.362 75.400 78.122 78.261 78.146
D6 79.042 75.447 74.636 83.850 84.390 83.735

training set of all the experiments. Firstly, the image is resized
to 225 × 225, then it is center-cropped to the size of 224 ×
224. Then, padding of four is used and the image is randomly
cropped to the size of 224 × 224. Afterwards, images are
flipped randomly in the horizontal direction.

C. Evaluation Metrics and Baseline Models

The metrics used are weighted precision, recall and F1-
measure. We chose to focus on these metrics as some of
the datasets are class imbalanced (i.e., the ratio between the
number of instances in the two classes is high).

As mentioned before, the baseline used in our study is
ResNet-18. Thus, the results of the CapsNet models are
compared with the results of the ResNet-18 models. The
disaster-tuned ResNet-18 is also used as the backbone in the
CapsNet architecture, which enables us to assess the ability
of the capsule layers (added after ResNet-18) to improve the
performance of the baseline models.

V. EXPERIMENTAL RESULTS

The results of the in-domain experiments and cross-domain
experiments are shown in Tables II and IV, respectively. The
reported results are averaged over the three replicas of each
experiment. We discuss the results with respect to our research
questions, and present a brief error analysis in what follows.

A. Discussion of the Results

Our first research question was focused on the ability of
the capsule layers, added to the backbone ResNet-18 layers,
to improve the performance on disaster image classification.
As Table II shows, for all the in-domain experiments, the
results of the CapsNet model are better than those of the
baseline for all evaluation metrics considered. Furthermore,
Table IV shows that the results of the CapsNet model are also
better than those of the baseline models for most cross-domain
experiments. Specifically, the results obtained with CapsNet
for three metrics considered (precision, recall and F1 score)
are better than the ones of the ResNet-18 in 18 out of 21
cases (corresponding to different source-target combinations
formed based on the chronological order). This suggests that
CapsNets are capable of improving the performance on the
task of classifying disaster images, as compared ResNet-18.

TABLE III: Difference between the CapsNet and ResNet-
18 mean F1-score values for in-domain experiments, and
percentage change (%F1 Change). The disasters with the
smallest datasets and highest observed differences are bold-
faced. The Order column shows the rank of the dataset in
terms of size, while the Ratio column shows the class ratio.

Data Order Size Ratio F1 % F1 Change
D4 1 600 2.000 11.164 15.713%
D6 2 1025 0.326 9.099 12.191%
D5 3 1382 1.555 2.746 3.641%
D0 4 1588 1.629 4.916 6.254%
D1 5 4443 1.242 1.693 2.194%
D2 6 4525 0.965 0.795 1.068%
D3 7 4562 0.958 1.695 2.238%

Our second research question was focused on the bene-
fits of the CapsNet model as compared with the ResNet-
18 baseline, when smaller or larger datasets are used for
training. To facilitate the analysis of the results with respect
to the dataset size, Table III shows the differences between
the CapsNet and ResNet-18 mean values for the F1 metric
for the in-domain experiments (with the differences for the
smaller datasets shown in bold font). More specifically, each
difference is calculated as the mean F1 value of CapsNet
minus the corresponding F1 mean value for of ResNet-18,
i.e., F1(CapsNet)�F1(ResNet), according to Table III. In
addition to the difference, we also show the percentage change
as [F1(CapsNet)�F1(ResNet)]÷F1(ResNet)]⇥100. The
order of the datasets based on their size from the smallest to
the largest is: D4, D6, D5, D0, D1, D2, and D3, as shown in
Table III. The table also shows the size of each dataset, and the
ratio of Informative to Non-informative samples, as the class
imbalance can influence the results as well. As can be seen in
Table III, the largest difference (with 15,713% increase in F1-
score) is for D4, which is the smallest dataset (600 samples).
The second largest improvement in the F1-score is observed
for D6 (with 12.191% increase in F1-score), which is the next
smallest dataset (1025 samples). Besides being the smallest,
the two datasets also exhibit the largest class imbalance,
with Informative to Non-informative ratio being 2:1 in D4,
and approximately 1:3 in D6. The third and fourth largest
differences are observed for D0 and D5, respectively, which
are the next datasets according to size (with D5 containing
1382 samples, and D0 containing 1588 samples). While D5
is smaller than D0, D0 has a slightly higher class imbalance,
and overall the improvement seen from the CapsNet is larger
for D0 as compared to D5. For the larger datasets, D1, D2,
D3, which have larger size (approximately, 4500 samples
each) and relatively balanced class ratio, the percent increases
are in the range 1-2%. Together, these results suggest that
both the dataset size and the class imbalance ratio contribute
to the improved performance of CapsNet. These results are
consistent with the findings in prior work [13], in which it
was shown that the CapsNets has a better generalization ability
(compared to CNN) in the case of small size datasets and class-
imbalance. This behavior can be attributed to the equivariant



TABLE IV: Classification results for the cross-domain exper-
iments: precision (Pr.), recall (Re.) and F1-measure (F1). For
each metric, the best results in a row are bold-faced.

ResNet-18 CapsNet
S T Pr. Re. F1 Pr. Re. F1
D1 D0 72.452 71.908 72.038 73.894 73.166 73.324
D2 D0 69.102 66.981 67.317 72.450 69.392 69.818
D3 D0 66.048 61.006 60.708 69.981 67.400 67.850
D5 D0 62.958 59.434 57.730 66.049 66.352 64.541
D6 D0 63.477 50.105 42.170 65.344 50.734 47.36
D6 D1 69.142 62.087 59.344 74.001 68.919 68.291
D1 D2 72.390 71.786 71.656 73.789 73.738 73.736
D6 D2 63.324 58.858 54.394 66.038 62.431 59.836
D1 D3 74.016 73.794 73.768 75.241 75.183 75.176
D2 D3 74.769 74.708 74.704 76.368 76.279 76.276
D6 D3 67.019 63.596 61.284 69.405 66.228 64.499
D0 D4 75.541 70.833 70.963 78.995 76.389 76.923
D1 D4 78.809 77.778 77.860 78.120 76.667 77.079
D2 D4 74.543 73.333 73.422 79.142 75.000 75.652
D3 D4 77.451 75.556 75.739 78.460 75.833 76.412
D5 D4 83.714 80.833 81.120 83.392 82.778 82.954
D6 D4 76.337 61.944 60.480 77.717 63.333 63.527
D1 D5 75.151 74.638 74.800 75.405 75.362 75.349
D2 D5 75.059 74.155 74.383 75.623 73.671 73.950
D3 D5 74.489 73.430 73.660 76.268 73.913 74.150
D6 D5 76.026 67.874 67.014 76.623 68.357 68.124

property of CapsNets that can complement for limited data,
and generalize better to unseen images as compared to CNN
baselines. However, a more controlled study, where only one
of these characteristics is varied at a time, is needed to better
understand the effect of each characteristic.

Our last question was related to the ability of the CapsNet
model to transfer information from the source to the target, in
the cross-domain setting, when the source and target disasters
are of similar types or of different types, respectively. To
answer this question, for each pair of disasters considered in
our cross-domain experiments, Table V shows the differences
between the CapsNet F1-score and the corresponding ResNet-
18 F1-score (and also the percent change in F1-score). Six
pairs with the largest differences and percentage change are
bold-faced (the percentage change for these pairs varies from
8.399% to 15.005%). All these six cases correspond to exper-
iments where the source and target disasters are of different
types, although we want to emphasize that not all pairs with
different types of disasters show a big difference. To better
interpret the results, we consider cases with the same target
and different sources. For the experiments with D0 (California
Fires) as the target, all the sources are of types different than
D0. Three of these experiments are among the ones with the
highest F1 difference and percentage change. In particular,
when the source is D3 (Hurricane Maria), D5 (Mexico Earth-
quake), or D6 (Sri Lanka Floods), there is an increase of
11.765%, 11.798%, and 12.307% in F1, respectively. When
D2 (Hurricane Irma) is the target, the improvement in F1 is
higher when D6 (Sri Lanka Floods) is the source (10.005%
increase in F1) than when D1 (Hurricane Harvey) is the source
(2.903% increase in F1). We observe similar results when D3
(Hurricane Maria) is the target. For the experiments with D4
(Iraq-Iran Earthquake) as the target, the two largest increases

TABLE V: Difference between the CapsNet and ResNet-
18 mean F1-score values for cross-domain experiments, and
percentage change (%F1 Change). The highest observed dif-
ferences are bold-faced.

Source Target F1 %F1 Change
D1 (Hurricane) D0 (Fires) 1.286 1.785%
D2 (Hurricane) D0 (Fires) 2.501 3.715%
D3 (Hurricane) D0 (Fires) 7.142 11.765%
D5 (Earthquake) D0 (Fires) 6.811 11.798%
D6 (Floods) D0 (Fires) 5.190 12.307%
D6 (Floods) D1 (Hurricane) 8.947 15.077%
D1 (Hurricane) D2 (Hurricane) 2.080 2.903%
D6 (Floods) D2 (Hurricane) 5.442 10.005%
D1 (Hurricane) D3 (Hurricane) 1.408 1.909%
D2 (Hurricane) D3 (Hurricane) 1.572 2.104%
D6 (Floods) D3 (Hurricane) 3.215 5.246%
D0 (Fires) D4 (Earthquake) 5.960 8.399%
D1 (Hurricane) D4 (Earthquake) -0.781 -1.003%
D2 (Hurricane) D4 (Earthquake) 2.230 3.037%
D3 (Hurricane) D4 (Earthquake) 0.673 0.889%
D5 (Earthquake) D4 (Earthquake) 1.834 2.261%
D6 (Floods) D4 (Earthquake) 3.047 5.038%
D1 (Hurricane) D5 (Earthquake) 0.549 0.734%
D2 (Hurricane) D5 (Earthquake) -0.433 -0.582%
D3 (Hurricane) D5 (Earthquake) 0.490 0.665%
D6 (Floods) D5 (Earthquake) 1.110 1.656%

in F1 are for the cases with D0 (California Fires) and D6 (Sri
Lanka Floods) as the sources. However, two other experiments
with sources D3 (Hurricane Maria) and D1 (Hurricane Harvey)
of types different than D4 do not have larger increase in F1 as
compared to the experiment where the source is D5 (Mexico
Earthquake). Given that the size of the training dataset was
observed to affect the improvements obtained with CapsNets,
the results here suggest that the size of the source may also
be a factor that determines the improvement, in addition to
the nature of the disasters. In particular, using D5 (Mexico
Earthquake) and D6 (Sri Lanka Floods) as sources generally
leads to the largest increases within a group (corresponding
to a target). These are the two smallest datasets in our set,
supporting the hypothesis that source size is important in
addition to source type. More experiments are needed to tease
out the individual factors involved here.

B. Error Analysis

Figure 2 (in-domain setting) and Figure 3 (cross-domain
setting) show examples of images that are correctly classified
by one of the models (i.e., CapsNet or ResNet-18), while they
are mis-classified by the other model. The in-domain models
used to classify the images in Figure 2 are trained and tested on
California Fires (D0). Specifically, Figure 2 shows examples
of Informative and Non-informative images correctly classified
by CapsNet and mis-classified by ResNet-18 in the top row
(a) and (b), and examples of Informative and Non-informative
images correctly classified by ResNet and mis-classified by
CapsNet in the bottom row (b) and (c). Given that the capsule
network has the property of being equivariant to viewpoint,
it correctly identifies image (a) as Informative with respect to
California Fires, and image (b) as Non-informative. However,
it seems to mistakenly classify image (d) as Informative,



(a) (b)

(c) (d)

Fig. 2: Error Analysis for the in-domain experiment focused on
the D0 (California Fire) dataset. (a) Example of an Informative
image that is correctly classified by CapsNet, while miss-
classified by ResNet-18; (b) Example of a Non-informative
image that is correctly classified by CapsNet, and miss-
classified by ResNet-18; (c) Example of an Informative image
that is correctly classified by ResNet-18, and miss-classified by
CapsNet; (d) Example of a Non-informative image correctly
classified by ResNet-18, and miss-classified by CapsNet.

possibly because it identifies an orange region that resembles
fire. On the other hand, it mis-classifies image (c) as Non-
informative as the fire shown in that image is flattened into
the image heading, while the main view of the image does
not show anything related to fire. All together, the two models
agree on 271 test instances (168 Informative and 103 Non-
informative), and disagree on 47 instances (29 Informative and
18 Non-informative). The CapsNet model predicts correctly
33 of the images where the models disagree, while ResNet
predicts correctly only 14 of those instances.

The cross-domain models used to classify the images in
Figure 3 are trained using Srilanka Floods (D6) as source,
and tested on Hurricane Harvey (D1) as target. CapsNet
correctly classifies images (a) and (b) as Informative and
Non-informative, respectively, with respect to Hurricane Har-
vey. However, it mistakenly classifies image (c) as Non-
informative, possibly because the flooded road could look as
a regular road in some viewpoint, and it mis-classifies image
(d) as Informative, possibly because it learns to associates big
machines with recovery from a hurricane. In this experiment,
the two models agree on 682 instances (334 Informative and
348 Non-Informative), and they disagree on 206 instances (158
Informative and 48 Non-informative). When in disagreement,
the CapsNet model is correct in 159 cases, while the ResNet-
18 model is correct in only 47 cases.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, CapsNets were used with the purpose of
classifying disaster images as Informative or Non-informative.
Extensive in-domain and cross-domain experiments were car-

(a) (b)

(c) (d)

Fig. 3: Error Analysis for the cross-domain experiment where
D6 (Sri Lanka Floods) dataset is used as source and D1 (Hur-
ricane Harvey) as target. (a) Example of an Informative image
that is correctly classified by CapsNet, while miss-classified
by ResNet-18; (b) Example of a Non-informative image that is
correctly classified by CapsNet, and miss-classified by ResNet-
18; (c) Example of an Informative image correctly classified
by ResNet-18, and miss-classified by CapsNet; (d) Example
of a Non-informative image correctly classified by ResNet-18
and miss-classified by CapsNet.

ried out to investigate the ability of the CapsNets for this
task. The results suggest that the CapsNet model has a better
performance compared to the baseline ResNet-18 for all the
disaster datasets for in-domain experiments. It also showed
an improvement in the evaluation metrics for most of the
considered cross-domain pairs of disasters. Most importantly,
the results showed that the CapsNet models could improve the
performance of the ResNet-18 baseline when the size of the
training datasets is small, or the datasets are imbalanced.

For future work, firstly, in order to better understand the
effect of sample size and imbalance, we plan to conduct con-
trolled experiments, where only one of these factors is varied
at a time. Secondly, we intend to use CapsNet models for other
classification tasks with several classes (e.g. Disaster Types).
Moreover, we plan to investigate if benefits of the CapsNets
hold when a deeper ResNet architecture is used as the baseline
model and the backbone. Finally, we plan to make use of the
texts in the tweets to design multi-modal CapsNet models for
classifying disaster posts as sometimes the information in an
image and the corresponding text is complementary and using
both may result in better performance.
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