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Abstract: We study the effect of the cubic torus topology of the Universe on scalar cosmological
perturbations which define the gravitational potential. We obtain three alternative forms of the
solution for both the gravitational potential produced by point-like masses, and the corresponding
force. The first solution includes the expansion of delta-functions into Fourier series, exploiting
periodic boundary conditions. The second one is composed of summed solutions of the Helmholtz
equation for the original mass and its images. Each of these summed solutions is the Yukawa
potential. In the third formula, we express the Yukawa potentials via Ewald sums. We show that
for the present Universe, both the bare summation of Yukawa potentials and the Yukawa-Ewald
sums require smaller numbers of terms to yield the numerical values of the potential and the force
up to desired accuracy. Nevertheless, the Yukawa formula is yet preferable owing to its much
simpler structure.

Keywords: spatial topology; gravitational potential; Yukawa interaction

PACS: 04.25.Nx—post-Newtonian approximation; perturbation theory; related approximations;
98.80.Jk—mathematical and relativistic aspects of cosmology

1. Introduction

Spatial topology of the Universe is the fundamental problem of modern cosmology. Is
the Universe spatially flat, open, or closed? Moreover, is it simply or multiply connected?
This issue was and is the subject of debate in many scientific articles. Theory, e.g., General
Relativity, does not provide direct answers to these questions, hence it is observation
instead that plays the decisive role here. For instance, detection of multiple images of the
same object would directly indicate that the space is multiply connected. Furthermore,
such an extended object as the last scattering surface can self-intersect along pairs of
circles, the so-called circles-in-the-sky [1–4]. These pairs of matched circles have the same
temperature fluctuation distribution. While nearly antipodal circles-in-the-sky have not yet
been revealed in the CMB radiation maps, the analysis of CMB anisotropies for repeated
patterns is very promising, and even detection of a single pair of matched circles could
confirm the flatness of the Universe together with its multi-connectedness [5,6].

At large angular scales, there are observable CMB anomalies in the form of quadrupole
moment suppression and the quadrupole and octopole alignment. From the topological
point of view, it is natural to explain the suppression by the absence of long wavelengths
in sufficiently compact spaces. Such spaces should also have all dimensions of the same
order of magnitude, thus being well-proportioned [7,8]. A cubic torus T3 represents a
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glaring example of well-proportioned compact space, and a more general rectangular type
T × T × T (with unequal periods of tori) can bring forth a symmetry plane or a symmetry
axis in the CMB pattern [9].

A multiply connected flat space with toroidal topology T3 is compact in all directions
and has a finite volume. There are observational limits on the size of such Universe,
including the ones coming from the analysis of 7-year and 9-year WMAP temperature
maps [8,10]. For example, according to the 7-year WMAP data, the lower bound on the
size of the fundamental topological domain is 27.9 Gpc [11]. In the case of T3 topology,
more recent Planck mission data give Ri > 0.92χrec and Ri > 0.97χrec for Planck 2013
and 2015 results, respectively, where Ri is the radius of the largest sphere which can be
inscribed in the topological domain, and χrec ∼ 14 Gpc is the distance to the recombination
surface [12,13]. Based on these results, the Planck Collaboration has reported that currently,
there is no detection of compact topology with a characteristic scale being less than the
last scattering surface diameter. Meanwhile, as pointed out in [14], it is quite possible that
the Universe does have compact topology, detectable through the values of observable
parameters which lie outside the ranges covered by the WMAP and Planck missions (at
least with respect to the circles-in-the-sky search).

Symmetries associated with the cubic torus T3 are inherent in cosmological simulations
of the large scale structure formation. Indeed, the cosmological N-body problem is almost
always numerically solved in a cubic box with periodic boundary conditions [15–25]. In
view of computational limitations, the edge of the simulation box is smaller than the
lower experimental bound on the torus period and ranges from hundreds to thousands of
Mpc. To perform such simulations, we need to know the form of metric perturbations, in
particular, the expression for the gravitational potential generated by discrete masses. Such
an investigation was performed, e.g., in [26,27] where the Authors considered a toroidal
lattice with period L and equal masses M placed at the center of each cell. They found a
solution of the Einstein equations, expanded into series in powers of the small parameter
(M/L)1/2. It turns out that in this case, the discrete mass distribution is characterized by
non-convergent series. The inherent ultraviolet (UV) divergence is related to the point-like
nature of the investigated matter sources. In order to avoid this problem, the Authors
provided the masses with a small finite extension, thus introducing a UV cutoff scale. If the
Schwarzschild radius of the masses is chosen as this cutoff scale, then one needs the first 109

summands in the series. Meanwhile, if a typical galaxy dimension is chosen instead, then
only first 200 summands are needed for an accurate description of the exterior solution.
This cosmological model is characterized by a number of apparent limitations. First of all,
clustering in the real Universe is much more complicated and irregular. In the second place,
it is not difficult to show that the obtained solution with point-like gravitating masses
has no definite values on the straight lines joining identical masses in neighboring cells,
i.e., at points where masses are absent. The only way to avoid this problem and get a
regular solution at any point of the cell is to perform the smearing of these masses over
some region, i.e., to employ again a UV cutoff. Exactly the same situation takes place for
the gravitational potential as a solution of the Poisson equation with periodic boundary
conditions [28].

The situation is drastically changed if the gravitational potential satisfies the Helmholtz-
type equation, as it takes place within the cosmic screening approach [29–33]. Careful
analysis of the perturbed Einstein equations reveals that first-order cosmological perturba-
tions (e.g., the gravitational potential) satisfy the Helmholtz equation. This relativistic effect
arises due to the interaction between the gravitational field and the nonzero cosmological
background. In the present paper, we analyze this equation in the case of periodic bound-
ary conditions usually assumed for cosmological N-body simulations. In other words,
we investigate the impact of the cubic torus topology on the shape of the gravitational
potential. We present three alternative expressions for the potential. The main purpose
of this paper is to determine among these solutions the one that is most advantageous
with respect to numerical applications. Namely, to find which of the solutions requires
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less terms in series to attain the necessary precision. Our investigation shows that the
solution based on Yukawa-type potentials is preferable, provided that the screening length
is smaller than the period of the torus. This condition is in agreement with observational
bounds.

The paper is structured as follows. In Section 2, we introduce the general setup of the
model and present three alternative solutions for the gravitational potential for cubic torus
topology. Sections 3 and 4 are devoted to the detailed study of these potentials and the
corresponding forces, respectively, in view of their usefulness for numerical computations.
In Section 5, we summarize the obtained results.

2. The Model and Alternative Solutions

We consider the ΛCDM model where matter (cold dark and baryonic) is taken in the
form of point-like gravitating masses mn. These inhomogeneities perturb the background
Friedmann-Lemaître-Robertson-Walker metric. In the conformal Newtonian gauge, the
perturbed metric reads [34,35]

ds2 = a2
[
(1 + 2Φ)dη2 − (1− 2Φ)δαβdxαdxβ

]
. (1)

The first-order scalar perturbation Φ, |Φ| � 1, defines the total gravitational potential
of the system and satisfies the equation [33]

∆Φ− a2

λ2
eff

Φ =
κc2

2a
(ρ− ρ̄) , (2)

where κ ≡ 8πGN/c4 (GN is the Newtonian gravitational constant and c represents the
speed of light), a(η) is the scale factor, and ∆ denotes the Laplace operator in comoving
coordinates. In addition,

ρ = ∑
n

mnδ(r− rn) (3)

is the comoving mass density and ρ̄ = const is its average value. The Helmholtz Equation (2)
was derived in [33] within the cosmic screening approach [29–32] and effectively takes into
account peculiar velocities of inhomogeneities. The effective screening length

λeff =

√
c2a2H

3

∫ da
a3H3 , (4)

where H =
(
c/a2)da/dη is the Hubble parameter. It can be easily seen that λeff admits the

time dependence. If we substitute the cosmological parameters according to the Planck
2018 data [36], i.e., H0 = 67.4 km s−1Mpc−1, ΩM = 0.315, ΩΛ = 0.685, at the present time
we get (λeff)0 = 2.57 Gpc [33].

It is convenient to introduce a shifted gravitational potential

Φ̂ ≡ Φ− λ2
eff

κc2

2a3 ρ̄ , (5)

which satisfies

∆Φ̂− a2

λ2
eff

Φ̂ =
κc2

2a
ρ . (6)

The superposition principle allows us to solve this equation for a selected particle and
then, to simply re-express the solution for a system of randomly distributed particles.

Herein we intend to solve this equation in the case of the three-torus topology T ×
T× T with periods l1, l2 and l3. Obviously, ρ̄ = ∑n mn/(l1l2l3). It is worth noting that the
form of the equation is determined by General Relativity with the appropriate choice of
the metric and energy-momentum tensor of matter. Therefore, we have the same equation
for both flat simply-connected and multiply-connected topologies. Evidently, the solution
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of this equation depends on the boundary conditions. First, we find the solution for the
selected particle m, chosen to be, without loss of generality, at the center of Cartesian
coordinates. For the given source, Equation (6) becomes

∆Φ̂− a2

λ2
eff

Φ̂ =
κc2

2a
mδ(x)δ(y)δ(z) . (7)

Toroidal topology also implies periodic boundary conditions. Therefore, the expansion
of the delta-function into Fourier series reads

δ(x) =
1
l1

+∞

∑
k1=−∞

cos
(

2πk1

l1
x
)

(8)

and similar expressions apply for δ(y) and δ(z). Employing this delta-function presentation,
it can be easily verified that the solution of Equation (7) is

Φ̂ = −κc2

2a
m

l1l2l3

+∞

∑
k1=−∞

+∞

∑
k2=−∞

+∞

∑
k3=−∞

[
4π2

(
k2

1
l2
1
+

k2
2

l2
2
+

k2
3

l2
3

)
+

a2

λ2
eff

]−1

× cos
(

2πk1

l1
x
)

cos
(

2πk2

l2
y
)

cos
(

2πk3

l3
z
)

. (9)

Thus, for a system of arbitrarily located massive particles in a cell, the total gravita-
tional potential is

Φ̂ = −κc2

2a
1

l1l2l3
∑
n

mn

 +∞

∑
k1=−∞

+∞

∑
k2=−∞

+∞

∑
k3=−∞

[
4π2

(
k2

1
l2
1
+

k2
2

l2
2
+

k2
3

l2
3

)
+

a2

λ2
eff

]−1

× cos
[

2πk1

l1
(x− xn)

]
cos
[

2πk2

l2
(y− yn)

]
cos
[

2πk3

l3
(z− zn)

]}
. (10)

The obtained solutions satisfy two important natural conditions. First, Equation (9)
yields the correct Newtonian limit in the close vicinity of the source particle. Second, using
the relation (5), it can be demonstrated that the average value of Φ is equal to zero, as is
required of fluctuations at the first-order level. It is worth noting that the sum of Newtonian
potentials does not satisfy this condition (see also the reasoning in [37]).

The solution of Equation (7) can also be found in the alternative way. Owing to
periodic boundary conditions, each mass in the fundamental cell has its counterparts
shifted by multiples of tori periods l1, l2 and l3. Therefore, we may solve Equation (7) by
merely counting the distinct contributions of these images. Since this is a Helmholtz-type
equation, the solution is the sum of the corresponding Yukawa potentials:

Φ̂ = −κc2m
8πa

+∞

∑
k1=−∞

+∞

∑
k2=−∞

+∞

∑
k3=−∞

1√
(x− k1l1)2 + (y− k2l2)2 + (z− k3l3)2

× exp

(
− a
√
(x− k1l1)2 + (y− k2l2)2 + (z− k3l3)2

λeff

)
. (11)

We rewrite the alternative solutions (9) and (11) as

Φ̃cos ≡
(
−GNm

c2al

)−1
Φ̂cos =

+∞

∑
k1=−∞

+∞

∑
k2=−∞

+∞

∑
k3=−∞

[
π
(

k2
1 + k2

2 + k2
3

)
+

1
4πλ̃2

eff

]−1

× cos(2πk1 x̃) cos(2πk2ỹ) cos(2πk3z̃)
(12)
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and

Φ̃exp ≡
(
−GNm

c2al

)−1
Φ̂exp =

+∞

∑
k1=−∞

+∞

∑
k2=−∞

+∞

∑
k3=−∞

1√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2

× exp

(
−
√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2

λ̃eff

)
, (13)

where, for simplicity, we consider an equal-sided cubic torus with l1 = l2 = l3 ≡ l and
introduce the notation

x = x̃l, y = ỹl, z = z̃l, λeff = λ̃effal . (14)

Yukawa potentials with periodic boundaries can also be expressed in the form of
Ewald sums, i.e., as two distinct rapidly converging series, each of which exists in one
of the real and Fourier spaces. This type of presentation is usually used in depicting
electrostatic interactions in plasma, colloids etc., and for this purpose, the Yukawa poten-
tial for systems with three-dimensional periodicity was obtained earlier in [38]. In the
cosmological framework, the Yukawa-Ewald potential for gravitational interactions takes
the form

Φ̃mix ≡
(
−GNm

c2al

)−1
Φ̂mix

=
+∞

∑
k1=−∞

+∞

∑
k2=−∞

+∞

∑
k3=−∞

D
(√

(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2; α; λ̃eff

)
2
√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2

+ 4π cos[2π(k1 x̃ + k2ỹ + k3z̃)]
exp

[
−
(

4π2k2 + λ̃−2
eff

)
/
(
4α2)]

4π2k2 + λ̃−2
eff

 , (15)

where k2 ≡ k2
1 + k2

2 + k2
3,

D
(√

(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2; α; λ̃eff

)
≡ exp

(√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2

λ̃eff

)

× erfc
(

α
√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2 +

1
2αλ̃eff

)
+ exp

(
−
√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2

λ̃eff

)

× erfc
(

α
√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2 − 1

2αλ̃eff

)
. (16)

In these expressions, erfc represents the complementary error function and α, the
free parameter, is to be assigned the optimal value to save computational effort while
operating with adequate accuracy. Below we will test a number of values of α. Our research
demonstrates that for the chosen range of λ̃eff, the optimal one is around 2.

We note that alternative expressions for the gravitational potential were also found in
the cases of slab and chimney topologies [39,40]. Direct comparison of the obtained formu-
las for different topologies shows that only the Formula (13) above (Yukawa potentials)
may be interpreted as a simple extension of the “slab” and “chimney” counterparts (2.28)
in [39] and (18) in [40], respectively. However, obviously, both Formulas (12) and (15) are
quite different from their counterparts, and this is a nontrivial task to derive them from
the previous papers. Moreover, the Yukawa-Ewald potential is not presented in the case of
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slab topology. Thus, formulas found in the present paper are new and otherwise absent
in the literature. As regards the gravitational forces derived below, again, the similarity is
present only in the case of the Yukawa formula, but both alternatives are new and cannot
be easily derived from the previous results on different topologies.

The obtained solutions (12), (13) and (15) depend on time. It is important to note
that they all satisfy the same Helmholtz equation and are three representations of the
solution. In our papers [29–31,33] it was investigated in detail that such a solution satisfies
the complete system of perturbed Einstein equations.

3. Gravitational Potentials

In the previous section, we have obtained three alternative formulas for the gravita-
tional potential created by a point-like particle placed at the center of Cartesian coordinates
(x, y, z) = (0, 0, 0) and by its infinitely many images placed at points (x, y, z) = (k1l, k2l, k3l)
where k1,2,3 = 0,±1,±2, . . . Due to periodic boundary conditions, these formulas include
infinite series. We aim to find out which of these expressions requires fewer terms in the se-
ries sum to yield the value of the potential to given accuracy. The less the number n of these
terms, the more advantageous the corresponding formula for numerical calculations. This
number n is defined via the condition that the ratio |exact Φ̃− approximate Φ̃|/|exact Φ̃|
is either equal to or less than 0.001. This is our demanded level of precision in determining
the approximate value of Φ̃. Each of the alternative expressions (12), (13) and (15) has its
own number n designated as ncos, nexp and nmix, correspondingly. Evidently, the formula
with the smallest number is, all other things being equal, the most convenient for numerical
computations. All three formulas to be compared contain triple series. Consequently, the
sought values n correspond to the minimum number of triplets (k1, k2, k3) included in
series for which the required precision is achieved. To find this number, we generate a

sequence in increasing order of
√

k2
1 + k2

2 + k2
3 in Mathematica [41] and count the number

n of terms involved in it.
We calculate the potentials (12), (13) and (15) in Mathematica [41] up to the adopted

accuracy at a selection of points in the cell and display the results in Tables 1 and 2. The
number nexp is defined employing Equation (13): for any n > nexp, the approximate Φ̃exp
will be determined with better accuracy than a tenth of a percent. The values ncos and
nmix follow from the Formulas (12) and (15) under the condition that the gravitational
potential is calculated with the same accuracy at the point of interest. We have found
that the Yukawa-Ewald formula (15) works well (i.e., requires the smallest number of
terms) both for small and large selected values of the screening length λ̃eff. Therefore, we
evaluate the exact Φ̃ by the Formula (15) for n � nmix. Additionally, we have observed
that the use of Equation (12) to get ncos yields faulty outputs due to problematic aspects
of the computational process. The “trigonometric” Formula (12) contains an alternating
series. The summation of such a series is accompanied by significant round-off errors
and to reach the required accuracy, when possible, it is necessary to take into account a
very large number of terms (more than 105 in our case). Therefore, the use of this formula
looks absolutely unreasonable in comparison with the rapidly converging expressions
(13) and (15). Hence, this trigonometric formula is not suitable for numerical calculations,
and the related values are excluded from the tables.

As follows from the Formulas (12), (13) and (15), the resulting values of the potential
are sensitive to the choice of λ̃eff. For our calculations, we choose four different values, that
are λ̃eff = 0.01, 0.1, 1 and 5. The rescaled screening length λ̃eff is the ratio of the physical
effective screening length λeff to the physical size of the period al. As we have mentioned
previously, today λeff ∼ 2.6 Gpc for the ΛCDM model [33], and the size of the fundamental
domain for the cubic torus topology is restricted by Planck 2015 results to no less than al ∼
27 Gpc [13], i.e., the observational data require that λ̃eff � 1. Nevertheless, taking into
account that many N-body simulations are indeed performed in boxes with sizes less than
1 Gpc, we also consider λ̃eff ≥ 1.
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The Yukawa-Ewald potential (15) is sensitive to the free parameter α as well. Therefore,
choosing different values of this quantity, we also seek those at which nmix will be minimum.
Our calculations demonstrate that for the chosen range of 0.01 ≤ λ̃eff ≤ 5, the optimal
value of α is around 2.

Table 1. Rescaled potential Φ̃ and the corresponding numbers nexp of terms in the series sum at nine points in the cell for
λ̃eff = 0.01 (left chart) and λ̃eff = 0.1 (right chart).

λ̃eff = 0.01 λ̃eff = 0.1

x̃ ỹ z̃ Φ̃ nexp x̃ ỹ z̃ Φ̃ nexp

A1 0.5 0 0.5 1.105× 10−30 9 A1 0.5 0 0.5 4.837× 10−3 20
A2 0.5 0 0.1 2.810× 10−22 2 A2 0.5 0 0.1 2.406× 10−2 9
A3 0.5 0 0 7.715× 10−22 2 A3 0.5 0 0 2.705× 10−2 9
B1 0.1 0 0.1 5.101× 10−6 1 B1 0.1 0 0.1 1.719 1
B2 0.1 0 0 4.540× 10−4 1 B2 0.1 0 0 3.679 1
C1 0.5 0.5 0.5 2.262× 10−37 20 C1 0.5 0.5 0.5 1.602× 10−3 20
C2 0.5 0.5 0.1 5.413× 10−31 8 C2 0.5 0.5 0.1 4.478× 10−3 20
C3 0.1 0.5 0.1 1.044× 10−22 3 C3 0.1 0.5 0.1 2.146× 10−2 12
C4 0.1 0.1 0.1 1.735× 10−7 1 C4 0.1 0.1 0.1 1.022 1

Table 2. Rescaled potential Φ̃ and the corresponding numbers nexp and nmix of terms in the series
sum at nine points for λ̃eff = 1 (top chart) and λ̃eff = 5 (bottom chart).

x̃ ỹ z̃ Φ̃ nexp nα=1
mix nα=2

mix nα=3
mix

A1 0.5 0 0.5 12.00 3449 64 9 25
A2 0.5 0 0.1 12.42 3352 48 7 22
A3 0.5 0 0 12.47 3345 47 7 22
B1 0.1 0 0.1 16.77 2965 37 7 23
B2 0.1 0 0 19.66 2794 33 7 24
C1 0.5 0.5 0.5 11.79 3510 64 20 24
C2 0.5 0.5 0.1 11.98 3451 62 8 24
C3 0.1 0.5 0.1 12.37 3370 54 7 21
C4 0.1 0.1 0.1 15.50 3058 39 7 22

x̃ ỹ z̃ Φ̃ nα=1
mix nα=2

mix nα=2.5
mix nα=5

mix

A1 0.5 0 0.5 313.6 14 1 1 17
A2 0.5 0 0.1 314.0 11 2 1 16
A3 0.5 0 0 314.1 11 2 1 17
B1 0.1 0 0.1 318.4 12 1 3 23
B2 0.1 0 0 321.3 12 1 4 29
C1 0.5 0.5 0.5 313.4 20 1 1 12
C2 0.5 0.5 0.1 313.6 13 1 1 6
C3 0.1 0.5 0.1 314.0 13 2 1 11
C4 0.1 0.1 0.1 317.2 12 1 3 17

In Table 1, we give the minimum numbers nexp of terms in the series (13) that return
the value of the gravitational potential up to the adopted accuracy. The left and right charts
correspond to λ̃eff = 0.01 and λ̃eff = 0.1, respectively. As for the values nmix, these numbers
are the same as nexp for both left and right charts as long as α lies between 10−3 and 2.
However, outside this interval, the Yukawa-Ewald formula may require more summands.
For example, if λ̃eff = 0.1 and α = 2.5, then nmix = 29, 23, 23, 4, 1, 48, 28, 23, 6 for the points
A1, A2, . . . , C4, respectively. All in all, when λ̃eff � 1 (in accordance with observational
bounds), both the Yukawa (13) and Yukawa-Ewald (15) formulas demonstrate good results
since they need less terms in the series sum. The potential expression in (13) is much
simpler, though. Thus, from that aspect, the Yukawa formula is a more practical tool for
computational purposes in the case of small λ̃eff.
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In Table 2, we present the results of similar calculations for λ̃eff = 1 and λ̃eff = 5. In
the case λ̃eff = 1 (top chart), nexp � nmix for all selected points, and the optimal choice
for the parameter α in the Yukawa-Ewald formula (15) is 2. For λ̃eff = 5 (bottom chart), as
regards the Yukawa formula (13), the nexp values are ill-suited (they are extremely large).
Therefore, we do not show them here. The value α = 2 is again the optimal choice for the
Yukawa-Ewald potential. Hence, when λ̃eff ≥ 1, the Yukawa-Ewald formula (15) delivers
the best performance in numerical calculations.

We demonstrate in Figures 1 and 2 (plotted in Mathematica [41]) the z̃ = 0 sections of
the rescaled potential Φ̃ for different values of the rescaled effective screening length λ̃eff
considered in Tables 1 and 2. To plot both figures, we use the Yukawa-Ewald formula (15)
for α = 2 and n� nmix.

Figure 1. z̃ = 0 sections of the rescaled potential Φ̃ =
[
−GNm/(c2al)

]−1Φ̂ for λ̃eff = 0.01 (left panel) and λ̃eff = 0.1 (right
panel), respectively.

Figure 2. z̃ = 0 sections of the rescaled potential Φ̃ =
[
−GNm/(c2al)

]−1Φ̂ for λ̃eff = 1 (left panel) and λ̃eff = 5 (right
panel), respectively.
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4. Gravitational Forces

In this section we provide the gravitational force formulas associated with the alterna-
tive expressions (12), (13) and (15) for the gravitational potential. Clearly, it is sufficient to
consider the force projection onto one of the axes in Cartesian coordinates. Let it be the
x-axis. Then, the projections read

∂

∂x̃
(
Φ̃cos

)
= −2π

+∞

∑
k1=−∞

+∞

∑
k2=−∞

+∞

∑
k3=−∞

[
π
(

k2
1 + k2

2 + k2
3

)
+

1
4πλ̃2

eff

]−1

× k1 sin(2πk1 x̃) cos(2πk2ỹ) cos(2πk3z̃) , (17)

∂

∂x̃
(
Φ̃exp

)
= −

+∞

∑
k1=−∞

+∞

∑
k2=−∞

+∞

∑
k3=−∞

exp

(
−
√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2

λ̃eff

)

×
{

x̃− k1

[(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2]
3/2 +

x̃− k1

λ̃eff[(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2]

}
, (18)

∂

∂x̃
(
Φ̃mix

)
=

−1
2

+∞

∑
k1=−∞

+∞

∑
k2=−∞

+∞

∑
k3=−∞

 (x̃− k1)D
(√

(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2; α; λ̃eff

)
[(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2]3/2

+ C−
(x̃− k1) exp

(
−
√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2/λ̃eff

)
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2

+ C+

(x̃− k1) exp
(√

(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2/λ̃eff

)
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2

+ 16π2k1 sin[2π(k1 x̃ + k2ỹ + k3z̃)]
exp

[
−
(

4π2k2 + λ̃−2
eff

)
/
(
4α2)]

4π2k2 + λ̃−2
eff

 , (19)

where

C∓ = C∓

(√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2; α; λ̃eff

)
≡ 2α√

π
exp

[
−
(

α
√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2 ∓ 1

2αλ̃eff

)2
]

± 1
λ̃eff

erfc
(

α
√
(x̃− k1)2 + (ỹ− k2)2 + (z̃− k3)2 ∓ 1

2αλ̃eff

)
. (20)

The x-components of the force are zero at the points A1, A2, A3, C1 and C2, so we
calculate these components up to the adopted accuracy only at the points B1, B2, C3 and C4.

The results we arrive at are as follows: first, as also is the case for potentials, the
trigonometric Formula (17) does not provide acceptable values because of the complications
that arise during the computational stage. Next, if λ̃eff = 0.01, then nexp = 1, 1, 3, 1 for the
points B1, B2, C3, C4, respectively, and the numbers nmix are exactly the same (assuming
here and in what follows that α = 2). In the case λ̃eff = 0.1, we get nexp = 1, 1, 12, 1 for
these points, and the corresponding numbers nmix are, again, identical. However, for
λ̃eff = 1, we have nexp = 258, 82, 987, 486 while nmix = 7, 7, 21, 9. Finally, if λ̃eff = 5, then
still nmix = 7, 7, 21, 9, but nexp acquires unreasonably large values.

Our calculations demonstrate that the numbers nexp start to grow once λ̃eff exceeds
0.1 and they acquire large values as λ̃eff approaches 1, while nmix remain small throughout
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(provided that the value of the parameter α is optimal, e.g., for α = 2 in the above cases).
The Yukawa formula is, after all, an attractive option in view of its simpler structure. The
Yukawa-Ewald formula is much more complicated and consequently, it takes longer to
numerically calculate the potentials and forces for comparable values of nexp and nmix.
There exists a moment, though, when the execution time for the Yukawa formula, with
increased number of terms in the sum, is approximately equal to the one for the more
complex Yukawa-Ewald formula. We have seen that with respect to gravitational forces,
this takes place when nexp is about 6 times larger than nmix.

In Figures 3 and 4 (plotted in Mathematica [41]), we depict the z̃ = 0 sections of the
x-components of gravitational forces for λ̃eff = 0.01, 0.1 and 1. We employ the Yukawa-
Ewald formula (19) for n � nmix and α = 2. For λ̃eff = 5, the picture is similar to one in
the case λ̃eff = 1.

Figure 3. x-component of the force, Φ̃x ≡ ∂Φ̃/∂x̃, for λ̃eff = 0.01 (left panel) and λ̃eff = 0.1 (right panel).

Figure 4. x-component of the force, Φ̃x ≡ ∂Φ̃/∂x̃, for λ̃eff = 1.
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5. Conclusions

In this paper we have analyzed the influence of topology on the gravitational interac-
tion in the Universe. We have considered a model in which the fundamental domain is a
three-torus T× T× T. In such a space, gravitating masses are subject to periodic boundary
conditions along three coordinate axes, that is, every mass in the fundamental domain has
its counterparts in infinitely many cells shifted along each axis by multiples of tori periods.
For this lattice Universe, we have obtained three alternative forms of the expression for
the gravitational potential produced by a point-like mass. The first one (see Equation (12))
exploits the periodic structure of space: it involves the expansion of delta-functions into
Fourier series. This solution is a trigonometric series, thus we named it trigonometric. The
second one (see Equation (13)), the Yukawa solution, was obtained by directly summing
the fields produced by the original mass and its images. Since the summed potentials
satisfy the Helmholtz equation, they are the Yukawa potentials. In the third formula (see
Equation (15)), we have expressed them via Ewald sums (the Yukawa-Ewald formula)
and shown that in some cases, such a trick facilitates (despite the complex form of the
resulting expression) numerical calculations. We have also presented the corresponding
formulas for the x-component of the gravitational force (see Equations (17)–(19)). All these
formulas, both for the potentials and forces, can be easily generalized for a system of
arbitrarily located massive particles (see, e.g., (10)). It is well known that the gravitational
potential of a system of masses distributed in the Universe defines the scalar perturbations
of the metric.

A reasonable question to ask is, then, which of these formulas is indeed preferable for
numerical applications for the given accuracy. Since all three expressions are sensitive to
the rescaled effective screening length λ̃eff = λeff/(al), we analyzed both small values and
values equal to or greater than 1: 0.01 ≤ λ̃eff ≤ 5. The Yukawa-Ewald formula additionally
admits a free parameter α, and we have revealed that for the given range of λ̃eff, the optimal
value of α is 2. Our calculations show that the trigonometric formula does not provide
reasonable results for the potentials or forces as complications arise in the computational
process. In the case of small λ̃eff (as also demanded by the observational bounds) both the
Yukawa and Yukawa-Ewald formulas deliver good results since they require rather small
numbers of terms nexp and nmix to yield the values for the potentials and forces up to the
given accuracy. Nevertheless, employing the Yukawa formula is a more convenient choice
owing to its notably simpler structure. The situation is altered when λ̃eff > 0.1: nexp begins
to increase quickly while nmix still takes on rather small values. Therefore, for such λ̃eff,
the Yukawa-Ewald formula is preferable instead.

Finally, we emphasize two important points. First, our results directly confirm that
the undesirable impact of periodicity on simulation outputs can be weakened if the edge
of the box (cubic torus period al) is set to be larger than the predicted Yukawa interaction
range λeff (see Table 1). The Yukawa formula reflects the contribution of images to the
value of the potential via the number nexp (needed to reach the required accuracy). We can
easily see that nexp gets smaller (i.e., goes to 1) with decreasing λ̃eff. Second, operating with
summed Yukawa potentials, we provide a reliable description of the inhomogeneous gravi-
tational field generated by a toroidal lattice of point-like masses, avoiding non-convergent
series. The obtained series converge at all points only except those where discrete masses
themselves are located.
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