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Effective relaxation methods are necessary for good multigrid convergence. For many equations, standard
Jacobi and Gauf3—Seidel are inadequate, and more sophisticated space decompositions are required; exam-
ples include problems with semidefinite terms or saddle point structure. In this article, we present a unifying
software abstraction, PCPATCH, for the topological construction of space decompositions for multigrid relax-
ation methods. Space decompositions are specified by collecting topological entities in a mesh (such as all
vertices or faces) and applying a construction rule (such as taking all degrees of freedom in the cells around
each entity). The software is implemented in PETSc and facilitates the elegant expression of a wide range of
schemes merely by varying solver options at runtime. In turn, this allows for the very rapid development of
fast solvers for difficult problems.
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1 INTRODUCTION

It is well known that geometric multigrid with Jacobi relaxation is an effective solver for many
problems. For example, when applied to discretisations of: given a Lipschitz domain Q c R3,
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Fig. 1. Patch of cells resulting in robust relaxation for the problem of Equation (1.2).

f e L?(Q;R3) and a > 0, find u € H'(Q; R3) such that
(u,v) + a(Vu, Vo) = (f,v) for all v € H' (Q; R?), (1.1)

geometric multigrid with Jacobi relaxation gives mesh-independent and a-robust convergence.
However, for many other problems, this is not the case. For example, when applied to discretisa-
tions of: find u € H(curl, Q) such that

(u,v) + a(Vxu,Vxo) =(f,v)forall v e H(curl, Q), (1.2)

geometric multigrid with Jacobi relaxation gives neither mesh-independent nor a-robust conver-
gence. A simple modification restores both properties: use a relaxation method that solves simul-
taneously for all degrees of freedom in the patch of cells around each vertex, excluding those on
the boundary of the patch [Arnold et al. 2000]. The patch for the lowest-order Nédélec element of
the first kind is shown in Figure 1.

This same relaxation, which we refer to as a vertex-stariteration, arises in other contexts. It yields
mesh-independent and parameter-robust convergence for the H(div, Q) and H(curl, Q) Riesz maps
[Arnold et al. 1997, 2000], for nearly incompressible linear elasticity and Reissner-Mindlin plates
[Schoberl 1999a, 1999b], and for the Navier—Stokes equations [Benzi and Olshanskii 2006; Farrell
et al. 2019]. When combined with a low-order solver, it yields p-independent convergence for
high-order discretisations of symmetric second-order elliptic problems [Pavarino 1993].

Variants of the cellwise analogue, solving simultaneously for all degrees of freedom in a cell,
have also been proposed many times in the literature [Bastian et al. 2012, 2019; Fischer 1997].
It was employed by Vanka as the relaxation in a nonlinear monolithic multigrid method for a
marker-and-cell discretisation of the Navier—Stokes equations with piecewise constant pressures
[Vanka 1986]. This idea can be generalised to other discretisations of saddle point problems by
constructing patches that gather all degrees of freedom connected to a single degree of freedom for
the Lagrange multiplier [MacLachlan and Oosterlee 2011]. For example, Vanka relaxation applied
to a Taylor-Hood discretisation of the Navier—Stokes equations (with continuous piecewise linear
pressures) builds patches around each vertex as shown in Figure 2, including the velocity (but not
pressure) degrees of freedom on the boundary of the cells around the vertex. This is a larger patch
than the vertex-star.

In general, these relaxation methods can be viewed as additive or multiplicative Schwarz meth-
ods induced by a space decomposition [Xu 1992]

V= Z Vi, (1.3)
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Fig. 2. Patch of cells for Vanka relaxation applied to a Taylor-Hood discretisation. The velocity degrees of
freedom on the boundary of the patch are included, but the pressure degrees of freedom on the boundary
are excluded.

Fig. 3. The star of a vertex (left) and its closure (right).

where V is the trial space of the discretisation and each V; is constructed by gathering the de-
grees of freedom associated with a given subset of topological entities in the mesh.! The abstract
formulation (1.3) also includes classical domain decomposition methods (when augmented with
appropriate transmission conditions) [Chan and Mathew 1994; Dolean et al. 2015; Smith et al.
1996; Toselli and Widlund 2005]. Classical domain decomposition uses a relatively small number
of large subspaces, whereas we are interested in making the subspaces as small as possible, while
remaining effective for eliminating the relevant component of the error in a multigrid cycle.

There exists a large amount of software for classical domain decomposition [Hecht 2012; Jolivet
et al. 2013; Zampini 2016], but due to this difference in patch size, the available software is not
always well-suited for use as a relaxation method in a multigrid context. As a consequence, despite
optimal multigrid relaxation methods being known for many hard problems, there are few (if any)
general software implementations that allow easy access to them. For example, a Reynolds-robust
multigrid scheme for the Navier—Stokes equations was developed in Benzi and Olshanskii [2006],
but no general implementation of the full scheme was available until the work of Farrell et al.
[2019] (based on PCPATCH).

PCPATCH constructs the subspaces as follows. Sets of topological entities are gathered according
to a user-specified rule. For example, the vertex-star iteration loops over all vertices of the mesh
and applies the star operation to gather a set of entities for each vertex. The star operation is a
standard concept in algebraic topology: given a simplicial complex K, the star of a simplex p is
the union of the interiors of all simplices that contain p [Munkres 1984, Section 2]. Concretely,
the star of a vertex is the interiors of all edges, faces, and cells incidental to the vertex, along with
the vertex itself, as shown on the left of Figure 3. To define each subspace V; from these sets of

1By topological entity, we mean a vertex, edge, face, or cell of the mesh.
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entities we gather all degrees of freedom supported on the entities, and set V; to be the span of the
associated basis functions.

On each V; a small linear or non-linear problem must be solved. To do this, PCPATCH determines
the cells involved in the assembly of this problem by an adjacency relation appropriate to the
discretisation. For example, standard finite element assembly involving only cell integrals requires
the closure of the entities in V;. The closure of a set of simplices is the smallest simplicial subcomplex
that contains each simplex in the set. Concretely, in the vertex-star example, this means adding
all edges, vertices, and faces of cells in the set, i.e., including the boundary, as shown on the right
of Figure 3. We refer to this final set of entities as a patch. PCPATCH then invokes a user-provided
callback function to assemble the matrix (and residual if nonlinear) of the problem on each cell of
the patch. The local problem is then assembled using an appropriate local numbering and solved
(often with a direct factorisation, but not necessarily). The solution to the local problem results in
a local update to the global solution that PCPATCH applies either additively or multiplicatively, as
selected by the user.

The advantage of organising the software in this way is its great flexibility. For example, to im-
plement Vanka relaxation for the marker-and-cell discretisation, the only change required is to
specify that patches are created by iterating over cells using the closure operation to gather the
entities in each patch; everything else follows automatically. To implement Vanka relaxation for
Taylor-Hood, the only change required is to specify that patches are created by iterating over
vertices using the closure of the star to gather entities in each patch. The callback structure sep-
arates the specification of a space decomposition from the implementation of the discretisation.
Consequently, PCPATCH requires no new code to be written when attacking a problem in a new
way.

The remainder of the manuscript is organised as follows. The mathematical theory of space
decompositions and subspace corrections is reviewed in Section 2, with a particular emphasis on
achieving parameter-robust convergence. The resulting computational abstractions developed in
PCPATCH are described in Section 3. The software is applied to several challenging problems in
Section 4, demonstrating its flexibility and utility. We conclude in Section 5.

2 MATHEMATICAL BACKGROUND

For ease of exposition, we restrict ourselves in this section to linear variational problems, although
PCPATCH also applies to nonlinear problems. Consider the problem: find u € V such that

a(u,v) = (f,v) forallv eV, (2.1)

where V is a finite-dimensional Hilbert space, a : V X V' — R is a bilinear form, and f is right-hand
side data in an appropriate function space. Many algorithms for solving Equation (2.1) are induced
by a space decomposition of V into subspaces V; with

V= zjl Vi. (2.2)

This means that for any v € V there exists {v; }{:1 witho = 2{=1 v; and v; € V;. This decomposition
is usually not unique.

There are two main solver algorithms associated with this space decomposition. The additive
variant, referred to as parallel subspace correction in Xu [1992], solves for updates to the solution
in each subspace independently, and is shown in Algorithm 1. Given an initial guess u* € V, the
associated error equation is: find e € V such that

a(e,v) = (f,v) - a(uk,v) forallv e V. (2.3)
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If we could compute e, then u* + e would be the exact solution. The idea of parallel subspace
correction is to compute an approximation du; to e in each subspace V; independently by solving
the Galerkin projection of Equation (2.3) onto V;.? These updates Su; are then combined, possibly
after application of a weighting operator (often a partition of unity) w; on each subspace.

ALGORITHM 1: Parallel subspace correction

input: Initial guess ukev
input: Weighting operators w; : V; — V;
output: Updated guess uk*! e vV
fori=1to Jdo

Find 6u; € V; such that

a(duj,vi) = (f,vi) — a(uk,vi) for all v; € V;.

end
W ek wiou)

The multiplicative algorithm, referred to by Xu [1992] as sequential subspace correction, solves
for updates to the solution in each subspace sequentially, and is shown in Algorithm 2. The differ-
ence to parallel subspace correction is that the updates from each subspace solve are immediately
applied to the current guess, which modifies the right-hand side of the error equation for the next
solve. The multiplicative variant typically exhibits better convergence, but the subsolves cannot
be parallelised and the residual must be updated at each step.

ALGORITHM 2: Sequential subspace correction

input: Initial guess uk ev
output: Updated guess uk*! € v

fori=1to Jdo
Find du; € V; such that

a(Sui, vi) = (f.vi) — a@ D ;) for all v; € V.
Wk R+ GDIT o sy
end

Given basis functions {¢1,...,dn} for V, the classical Jacobi and Gaufi—Seidel iterations are
induced by the space decomposition

N
V= Z; span{g;} (2.4)

and by the additive and multiplicative algorithms, respectively.
A domain decomposition method is induced by the space decomposition

J
V=Vo+ Y Vi (2.5)
i=1

2The analysis of Xu [1992] does not require that these solves are exact. However, in this article, we only consider exact
subspace solves, both to simplify the exposition and because this is typically what is done in the context of multigrid
relaxation.
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where V} is a coarse space and V; consists of functions supported in some subdomain Q; of the
domain Q ¢ R?. Typically, the updates are combined with the additive algorithm.’
A multigrid V-cycle is induced by the multiplicative algorithm applied to the space

decomposition
2 L
V:ZVI+VI+ZVI, (2.6)
I=L 1=2

whereV; Cc V, C --- € Vi = V. Typically, each V; is constructed on the refinement of the mesh used
for V;_;. The updates are performed with approximate solvers for [ > 1. In fact, the approximate
solver on each level [ > 1 is often itself a subspace correction method.

Of course, the effectiveness of these solvers depends on the space decomposition chosen. We
briefly recall some of the standard theory for subspace correction methods that describes what
makes for an effective space decomposition. We define the operator A : V — V* associated with
the bilinear form via

(Au,v) = a(u,v) forallu,veV, (2.7)

where V* is the dual space of V. For each subspace, we denote the inclusion [; : V; — V and its
adjoint I} : V* — V", and we define the restriction of A to V; by

(Ajui, v;) = (Alju;, Liv;)  forallu;,v; €V, (2.8)

ie., A; = I7 Al;. We assume that the patch solves are performed exactly. The parallel subspace cor-
rection preconditioner associated with the decomposition {V;} can then be expressed as

D7 = ) LA (2.9)
i

Denote T = D'A = }; T;, where T; = [;A;'I;A. Assuming that a is symmetric, bounded, and co-
ercive and that D~! will be used as a preconditioner in the conjugate gradient algorithm, then the
goal is to estimate the condition number x(T) bounding the convergence of the Krylov method.

THEOREM 2.1. Assume that there exist constants ¢y and ¢, such that

(Tu, Tu)a < co(Tu,u)a (2.10)
and
inf luill%, < ellull} (2.11)
u; €V; -
Yiui=u
forallu € V. Then
Amin(T) > ¢t and  Apax(T) < co. (2.12)

A proof can be found in Xu [1992, Theorem 4.1]. We briefly comment on the two conditions.
The first condition measures the interaction of the subspaces V;. A useful tool is the interaction
matrix © with entries ©;; defined by the smallest constants satisfying

1/2 1/2
[(Tiu, Tjv)al < @,-j[(Tiu, u)A] [(ij, v)A] Yu,v e V. (2.13)

One can show that
co < p(©), (2.14)

3In the domain decomposition context, the problem solved on each subspace is often modified, for example by imposing
boundary conditions other than homogeneous Dirichlet. See Gander [2006] for details.
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where p(0©) is the spectral radius of © (Xu [1992, Lemma 4.6]). It follows that

p(©) < 0]l = max " ;] < No, (2.15)
75

where Np is the maximal number of overlapping subspaces of any one subspace. In particular, this
shows that the interaction can be estimated by purely topological arguments: in the case of the
vertex-star on a regular mesh as shown in Figure 1, the interaction can be bounded by ¢y < Np = 7.
In general, N is bounded on shape regular meshes.

The constant ¢; estimates the stability of the space decomposition and the eigenvalue bound
follows from the classic statement

2 . 2
ull, = inf uills 2.16
lullpy = jnf )l (216)
Xiui=u
found in Xu [2001, Equation (4.11)]. We illustrate the calculation of ¢; in the next section.

2.1 Parameter-robust Subspace Correction

The problem (2.1) to be solved often depends on a parameter a € R. For example, the linearised
Navier-Stokes operator depends on the Reynolds number, while the equations of linear elastic-
ity depend on the Poisson ratio. It is desirable to build multigrid methods with parameter-robust
convergence, i.e., the number of iterations required for convergence does not vary substantially
as « is varied. A requirement for achieving this is that the relaxation method is also parameter-
robust. In some important cases, the construction of parameter-robust relaxation methods can be
achieved by an appropriate choice of space decomposition. In particular, for nearly singular sym-
metric problems and when « > 0, the appropriate choice is guided by results of Schoberl [1999a,
1999b] (for the additive case) and Lee et al. [2007] (for the multiplicative case).

Before we state the results, we consider a simple example. Let V be an H)-conforming finite
element space, and let

a(u,v) = (Vu, Vo) + a(V -4,V - v), (2.17)

for a > 0. In the simple case of Jacobi smoothing, then the decomposition u = }; u; is unique and
using a standard inverse estimate we obtain

1+«
2 2 2 2
llullp = E lluilly < (1+a) E llu:lly < e E [l Il
i i i

< (L+a)h ?|lully < (1 + a)h2|lull},

(2.18)

and hence ¢; ~ (1 + a)h™2.

We make two observations. First, the bound grows as the mesh is refined. This is well known
and is the reason why Jacobi relaxation by itself is not effective but must be used in a multigrid
hierarchy. Second, the bound increases with a: Jacobi relaxation is not parameter-robust. To avoid
this blow-up, the space decomposition needs to decompose the nullspace of the singular operator
that is scaled with a.

This argument was made rigorous by Schéberl [Schéberl 1999b, Theorem 4.1] for the case of
the parallel subspace correction method, and a similar result also holds for the sequential subspace
correction method [Lee et al. 2007, Theorem 4.2].

THEOREM 2.2 (PARAMETER-ROBUST PARALLEL SUBSPACE CORRECTION). Consider a problem of the
form: fora > 0, findu € V such that

a(u,v) = (f,v) forallveV, (2.19)
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where
a(u,v) = ap(u, v) + ab(Au, Av) (2.20)

and A : V. — Q for some space Q. Assume that the mapping A is a continuous linear map and that
b is symmetric, bounded, and coercive on Q and that ay is symmetric, bounded, and coercive on V.
Denote the kernel by

N ={ueV:b(Au,q) =0¥q € Q}. (2.21)
A space decomposition

V= Z v; (2.22)

defines a subspace correction method that is robust with respect to a if in addition to Equations (2.10)
and (2.11) the decomposition satisfies the following properties:

(1) the pairV x Q is inf-sup stable for the mixed problem induced by

B((u, p), (v,q)) = ao(u,v) — b(Au, q) — b(Av, p), (2.23)
(2) the splitting is stable for the V-norm:

inf uillZ < cqllull? orallueVv 2.24
Jnf. 2 il < eollully e (2.24)
2 ui=u !

for some ¢y,
(3) the splitting is stable in the operator norm on the kernel N :
inf willd < clluly forallue VAN 2.25
Lt D il < callully - f (225)
Siwi=u
for some a-independent c,.

We highlight that in particular the condition (2.25) requires that
N = Z(V,- nN). (2.26)

In other words, a crucial property for such nearly singular systems is that any kernel function can
be written as a sum of kernel functions in the subspaces.

We give an example of the construction of subspaces {V;} so Equation (2.26) is satisfied for the
H(curl) Riesz map in three dimensions (1.2). We consider the de Rham complex and the Whitney
subcomplex

H' -2 Hcurl) —Ly F(div) —9vy 72

Il L b

d .
3 gras N curl s W div N Q (2.27)

Here, ¥ is the familiar space of continuous Lagrange finite elements of order k, V is the Nédélec
finite element of the first kind of order k, W is the Raviart-Thomas element of order k, and Q is the
space of discontinuous Lagrange finite elements of order k — 1. This sequence is exact on simply
connected domains, and hence for every u € H(curl) with V x u = 0, we can find a ® € H! such
that V® = u. This property carries over to the discrete complex: for u € V with V X u = 0 there
exists a ® € ¥ with V& = u. Given a basis {®;} for %, we can write ® = }’; @;®; and defining

uj = (ZiV(Dj, (228)
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we observe that

Z uj=u and Vxu; =0forallj. (2.29)
J
We now need to find subspaces {V;} such that for every u; there exists a V; with u; € V;. To do
this, we examine the support of the basis functions. Since the standard finite element basis for %
has basis functions supported in the stars of vertices, the same holds for each u;, as it is simply the
gradient of such a function. Consequently, defining V; to be the functions supported in the star of
vertex i gives the desired kernel capturing property (2.26).

Obtaining the bound in Equation (2.25) is harder and requires bounds on the potential ® in terms
of u. We note that such bounds are usually known for the infinite-dimensional sequence and also
hold for the discrete sequence when commuting projections exist. For more detail on multigrid
relaxation methods derived from exterior calculus, we refer to Arnold et al. [2006].

2.2 Nonlinear Relaxation

The idea of subspace correction also applies to the nonlinear case. Consider the problem: find
u € V such that

F(u;v) =0forallv eV, (2.30)

where F : V x V — R is the residual. Given an initial guess u¥, the associated error equation is to
find e € V such that F(u* + e;v) = 0 forallv € V. The associated additive algorithm that computes
approximations to e in each subspace is given in Algorithm 3.

ALGORITHM 3: Parallel subspace correction for the nonlinear problem (2.30)

input: Initial guess uk ev
input: Weighting operators w; : V; — V;
output: Updated guess uk*1 e v
fori=1to Jdo

Find 6u; € V; such that

F(uk + duj;v;) = 0forall v; € Vj.

end
uktl o yk 4 Z{:l w; (Su;)

Initial theoretical results on this algorithm were established by Dryja and Hackbusch [1997]. This
algorithm is often used as a nonlinear preconditioner for an outer Newton method [Brune et al.
2015; Cai and Keyes 2002].

We note that in the context of finite elements the residual F usually has a local nature and when
testing with functions in a patch spanning the space V;, only the part of u* that overlaps with
V; is relevant. To formalise this property, we assume that there exist subspaces V; > V;, injection
operators ¢; : V — V;, and local residuals F; : V; — V" such that

Fu® + Sus;vi) = Fi(1(u®) + Sus;v;)  forall v; € Vi, Su; € V. (2.31)

This means that the local Newton solvers do not need to know the full state, but only the relevant
part of the state given by 1;(u); this is important for parallelisation. As a consequence, in the
implementation, we solve for du; € V; such that

Fi(1;w®) + 8us;v;) = 0 for all v; € V. (2.32)
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3 COMPUTATIONAL ABSTRACTIONS

Even though mathematical formulations of parameter-robust multigrid relaxation schemes have
been known for several decades, implementations of these schemes have been missing from gen-
eral purpose linear algebra and discretisation packages, such as PETSc [Balay et al. 2019], Trilinos
[Heroux et al. 2005], deal.II [Bangerth et al. 2007], DUNE [Blatt et al. 2016], Firedrake [Rathgeber
et al. 2016], and FEniCS [Logg and Wells 2010; Logg et al. 2012], due to the difficulty of defin-
ing the space decomposition and resulting local problems in a general and composable way. A
popular algebraic approach for implementing subspace correction methods, such as provided by
PETSc in PCASM, is to obtain index sets that define the space decomposition and construct the lo-
cal operators algebraically by extracting submatrices from the global assembled matrix. NGSolve
[Schoberl 2014] also supports this algebraic approach, augmented with the ability to obtain the
index sets through topological queries [NGSolve 2017]. Although successful, using such an in-
terface to construct multigrid relaxation schemes has several disadvantages. It does not allow for
matrix-free implementations (which can offer significant efficiency advantages at high order) or
efficient nonlinear relaxation (since each local nonlinear update would require the assembly of the
global Jacobian). In light of these issues, we take a different approach: separating the topological
decomposition and subproblem assembly into different stages and using a callback interface that
we now describe.

PCPATCH separates the assembly of subproblems on patches into three stages. First, we decom-
pose the mesh into patches of entities whose degrees of freedom will be updated simultaneously
in each subproblem. For this, we use PETSc’s DMPLEX mesh abstraction [Knepley and Karpeev
2005, 2009; Lange et al. 2015], which gives us a simple dimension-independent topological query
language. For example, it offers the star and closure operations that often arise when describing
patches. Second, we gather the degrees of freedom in the function space associated to the entities
in each patch and build local numberings for restrictions of the function space to the patch. Third,
these numberings are supplied to callbacks to a discretisation engine* to conduct the assembly of
the subproblem (Jacobian and possibly residual) on the patch. The callbacks receive the current
local state, a list of entities in the global mesh to assemble over, and the degree of freedom map-
pings for the local function space. The C signatures of these callbacks are shown in Listing 1. By
separating the assembly of patches in this way, the abstraction is robust to the type of mesh and
element employed, the PDE being solved, and the global numbering of degrees of freedom.

int ComputeJacobian (PC pc, PetscInt point, Vec state, Mat J, IS cells,
PetscInt ndof, PetscInt xdofNumbering, PetscInt *dofNumberingWithBoundary);

int ComputeResidual (PC pc, PetscInt point, Vec state, Vec F, IS cells,
PetscInt ndof, PetscInt *dofNumbering, PetscInt *dofNumberingWithBoundary);

Listing. 1. Function signatures of the Jacobian and residual callbacks for assembly of subproblems on each
patch.

The data structures representing the local function spaces are deliberately kept lightweight. In
particular, no mesh object representing the subdomain is built. For example, information about
which facets are on the boundary of the patch is not stored. This is in contrast to the domain
decomposition approach used in the high-level FreeFem++ library [Hecht 2012], which does build
fully fledged meshes on each subdomain. Building submeshes facilitates code re-use (no callback
interface is required) and is efficient when O(1) subdomains per MPI process are employed, but

4Currently Firedrake and PETSc’s PetscDS are supported; interfacing to other discretisation engines is possible.
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Fig. 4. Vertex-star patch (left), its completion when the problem requires only cell integrals (centre), and
completion when facet integrals are also present (right).

is computationally expensive in time and memory in the multigrid context where many small
subdomains are expected. The strategy we use is to mark the patch entities within the larger
mesh. The discretisation engine can use this information to query the global mesh if necessary.
This allows rapid assembly without the overhead of object creation while still allowing us access
to topological queries so we can, for example, construct the patch boundary on the fly.

Once each patch of entities defining the degrees of freedom to be updated in a patch solve is
constructed, we additionally gather all entities in the stencil of the operator to be assembled on
the patch. We term this step patch completion. For example, if the operator involves integration
over cells of the mesh, then we extend the patch to include all entities that lie in the closure of
the cells we integrate over. If the operator contains facet terms, then the patch completion is more
involved, gathering all entities in the closure of the support of facets in the patch. This process is
illustrated in Figure 4.

For the solution of the subproblems on each patch, we use a PETSc KSP (for linear problems)
and SNES (for nonlinear problems). This enables full flexibility in configuring the patch solves,
for example the use of inexact inverses using iterative methods. For the common case where the
patch is small and an exact inverse is desired, we implement a small amount of special-case code to
explicitly form the inverse on each patch in setup and then solve the subproblems by matrix-vector
multiplication. This offers substantial speedups for many problems.

The numberings required on each patch depend on the solution algorithm employed. In all
cases, we build a numbering for the degrees of freedom that are updated with each patch solve.
This excludes all degrees of freedom on the boundary of the completed patch. In the multiplicative
case, an additional numbering is necessary to describe the degrees of freedom in the global residual
that are updated with each patch solve. This includes degrees of freedom on the boundary of
the completed patch that are not fixed by global Dirichlet conditions. Finally, in the nonlinear
case, we also require a numbering for the state vector on the patch. This includes all degrees of
freedom in the completed patch, including those subject to global Dirichlet conditions. The degrees
of freedom involved in each case are illustrated in Figure 5. Only those numberings necessary for
the solution algorithm employed are constructed. In the PETSc DS implementation, a Section
numbering object is created for each patch in the same way that a Section is used for the global
function [Balay et al. 2019, Section 10.2].

PETSc as a whole, and DMPLEX in particular, are well-suited to parallel computations. The topo-
logical mesh is domain-decomposed across participating parallel processes. With a good decom-
position of the mesh, parallel load balance is obtained and the data structures have been used
with excellent scalability at O(10,000—100,000) processes [Hapla et al. 2020; Parsani et al. 2021].
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Fig. 5. Illustration of which degrees of freedom appear in each numbering for the vertex-star patch of
Figure 1, with global Dirichlet conditions applied on the top and left of the domain. A numbering for the
degrees of freedom to be updated (left) is always required; if multiplicative updates are selected, degrees of
freedom on the patch boundary that are not on the global boundary (center) must also be numbered; finally,
for nonlinear problems, a numbering for all degrees of freedom supported on the patch is built (right).

With this domain-decomposition to hand, assembly of residuals and Jacobians is naturally parallel
across processes.

Globally multiplicative updates require frequent synchronisation between the parallel subdo-
mains to communicate updated residuals. As a consequence, in parallel PCPATCH offers either
additive or multiplicative relaxation within a subdomain, but only additive updates between
subdomains. If multiplicative updates within a subdomain are chosen, then as the number of
processes is increased the convergence will approach that of the additive mode. This has the
consequence that additive local updates should be performed if convergence rates independent
of the parallel decomposition are desired.

We require that the mesh is decomposed with enough overlap such that any patch problem
can be constructed entirely locally. This choice avoids excessive communication when assembling
patches. DMPLEX conveniently allows for the specification of the appropriate overlap when dis-
tributing the mesh [Lange et al. 2015]. However, this strategy implies a performance tradeoft:
larger patches may give better convergence, but they cause an increase in the sizes of messages
sent over the network due to increased parallel overlap. Currently, the user must arrange that
the mesh decomposition has enough overlap for the patch specification before the application of
PCPATCH. A future enhancement will use the patch specification to define the required overlap
and automatically expand the mesh overlap as necessary using the existing overlap distribution
algorithm provided by DMPLEX.

PCPATCH offers two mechanisms for the user to configure the space decomposition. In the ba-
sic case, the user specifies the dimension (or codimension) of entities to iterate over and a patch
construction type. In the more advanced case, the user provides a callback that explicitly enumer-
ates the entities that each patch contains. For example, the vertex-star space decomposition of
Figure 1 is obtained by specifying a star construction type around dimension-0 entities (vertices).
PCPATCH presently provides three pre-configured construction types: star, which gathers entities
the topological star of the given iteration entity; vanka, which gathers entities in the closure of
the star of the given iteration entity; and pardecomp, which creates a single patch per parallel
subdomain containing all locally visible entities. The callback mechanism can implement more
complex patches, such as line- and plane-smoothers for advection-dominated problems, or space
decompositions induced by a particular mesh structure such as Alfeld (barycentric) or Powell-
Sabin refinement. This callback has access to the full DMPLEX object and can therefore construct
arbitrary space decompositions, subject to the constraint that each patch must be local to a single
parallel process.
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4 APPLICATIONS
4.1 H(div, Q) and H(curl, Q) Riesz Maps

Consider the following problem: for a bounded Lipschitz domain Q C R3, a >0 and f €
(H(div, Q))*, find u € H(div, Q) such that

u—aVV-u=f inQ, (4.1a)
V-u=0 ondQ. (4.1b)

For a = 1, this is the application of the H(div, Q) Riesz map. Similarly, the application of the
H(curl, Q) Riesz map entails solving the problem: For f € (H(curl,Q))* and a =1, find u €
H(curl, Q) such that

u+aVxVxu=f inQ, (4.2a)
VXxu=0 onodQ. (4.2b)

solver_parameters = {

"ksp_type": "cg",

"pc_type": "mg",

"mg_levels_ksp_type": "richardson",
"mg_levels_pc_type": "python",
"mg_levels_pc_python_type": "firedrake.PatchPC",
"mg_levels_patch_pc_patch_local_type": "additive",
"mg_levels_ksp_richardson_scale": 1/3,
"mg_levels_patch_pc_patch_construct_type": "star",
"mg_levels_patch_pc_patch_construct_dim": @,

3

Listing 2. Solver options for PCPATCH to implement a damped additive vertex-star iteration.

These equations often arise as subproblems in the construction of fast preconditioners for
more complex systems involving solution variables in H(div, Q) and H(curl, Q) [Mardal and
Winther 2011]. However, the operators I — aVV- and [ + aV X VX are not elliptic due to the
infinite-dimensional kernels of the divergence and curl operators, and hence standard relaxation
schemes such as Jacobi and Gauf3-Seidel iteration do not yield effective multigrid schemes.
This can be overcome by employing relaxation schemes where the space decomposition does
capture the kernel, as in Equation (2.26). Arnold, Falk, and Winther proved that the star iteration
constructed around vertices does satisfy Equation (2.26) and hence yields a mesh-independent
and a-robust multigrid scheme for both problems [Arnold et al. 2000]. The key solver options for
expressing the vertex-star relaxation scheme are given in Listing 2. A complete Firedrake code for
solving this problem can be found in Appendix A. All calculations for the examples in this section
were performed on 28 cores of a 28-core Intel Xeon Gold 5120 CPU @2.20 GHz workstation with
192 GB of RAM running Ubuntu 18.04.3.

We present results for the vertex-star relaxation applied to the lowest-order H(div, Q)-
conforming Raviart-Thomas discretisation of Equation (4.1) with varying mesh refinement and
a in Table 1. The domain and data were given by Q = (0,2)% and f = (2yz(1 — x?), 2xz(1 —
y?), 2xy(1 — z%)). The solver employed the conjugate gradient method preconditioned by a full
multigrid cycle, with the relaxation applied additively with a damping of 1/3. The coarse grid had
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Table 1. Number of Conjugate Gradient Iterations to Solve the Raviart-Thomas
Discretisation of Equation (4.1) Using Multigrid and the Vertex-star Relaxation

[04
# refinements # degrees of freedom 10° 10! 102 103 104
1 1.26 x 10* 14 14 14 14 14
2 9.84 x 10* 15 15 15 15 15
3 7.78 X 10° 15 16 16 16 16
4 6.18 x 10° 16 16 16 16 16

Table 2. Number of Conjugate Gradient Iterations to Solve the Nédélec Discretisation
of Equation (4.2) Using Multigrid and the Vertex-star Relaxation

a

# refinements # degrees of freedom 109 10! 102 103 104
1 7.93 x 10° 18 19 19 19 19
2 5.97 x 10* 19 19 19 19 19
3 4.63 % 10° 20 20 20 20 20
4 3.64 x 10° 20 20 20 20 20

5% 5 X 5 elements and the solver was deemed to have converged when the preconditioned resid-
ual norm had decreased by 10 orders of magnitude. As expected from the theory of Arnold et al.,
the solver enjoys both mesh-independence and a-robustness.

For the H(div, Q) problem (4.1), Arnold et al. also prove robustness of the edge-star relaxation.
This can be expressed using the option "mg_levels_patch_pc_patch_construct_dim": 1.Sim-
ilarly robust results were observed for this space decomposition, applied additively with a damping
of 1/4 (not shown). However, the absolute convergence was poorer, with typically 40-47 Krylov
iterations required for convergence instead of 14-16.

The results for the analogous experiment with vertex-star relaxation applied to the lowest-order
H(curl, @)-conforming discretisation of Equation (4.2) with Nédélec elements of the first kind are
presented in Table 2. The same domain, data, and solver were employed, except that the additive
vertex-star relaxation was applied with a damping of 1/2. The solver is again mesh-independent
and a-robust. For this problem the edge-star relaxation is not effective (in fact, it coincides with
standard Jacobi or Gauf3—Seidel).

The vertex-star relaxation also yields mesh-independent and a-robust results for higher-order

discretisations, as well as for Brezzi-Douglas—Marini elements and Nédélec elements of the second
kind.

4.2 Nearly Incompressible Linear Elasticity

The equations of linear elasticity in the isotropic homogeneous case can be written as: given Q C
R? and f € (HL(Q;RY))", find u € H}(Q; RY) such that

—puV-E(u)—yVV.-u=f inQ, (4.3a)

where E(u) = %(Vu +VuT). Here, ;1 and y are positive real parameters describing the material in
question. The difficult case is when the material is nearly incompressible, with y — co. As guided
by the abstract theory, the central task is to choose a space decomposition Vj, = }; V; that captures
the kernel of the divergence operator. For H'(Q; R¢)-conforming Lagrange elements this is a subtle
question that depends on the dimension d and polynomial degree k; for brevity, we only consider
the case d = 2 here.
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Table 3. Number of Conjugate Gradient Iterations to Solve the
Continuous Lagrange Discretisation of Equation (4.3) Using Full
Multigrid Cycles and Additive Vertex-star Relaxation

k  # degrees of freedom Y

10 10! 102 10° 10*
1 2.06 X 10° 32 68 189 541 >1,000
2 8.22 X 10° 15 28 74 256 >1,000
3 1.85 x 10° 12 18 37 102 310
4 3.28 x 10° 10 13 16 16 16
5 5.13 X 10° 9 11 14 14 13
6 7.38 x 10° 9 11 12 12 11

For k > 4 the vertex-star iteration captures the kernel of the divergence op-
erator, while for k < 4 it does not.

An important insight is gained by studying the de Rham complex in two dimensions

R — H2(Q) 4 H'(Q:RY) L5 12(Q) — 0. (4.4)

If Q is simply connected, then this de Rham complex is exact, i.e., every divergence-free function
in H'(Q;R9) is the rotated gradient of a function in H?(Q). The existence of a suitable space
decomposition for degree k vector fields thus hinges on the existence of a local basis for C1(Q)-
conforming degree k + 1 scalar fields. An important result of Morgan and Scott [1975] guarantees
the existence of a local basis that is captured by a vertex-star iteration for k > 4. This vertex-star
iteration can be easily implemented with PCPATCH via the options given in Listing 2.

We consider the continuous Lagrange discretisation of Equation (4.3) with Q = (0,1)?, f =
(1,1), g =1 and y varying from 10° to 10*. The degree of the polynomials employed on each
cell k was varied from k = 1,. .., 6. The problem was solved with the conjugate gradient method
preconditioned by a full multigrid cycle and vertex-star relaxation with damping of 1/3. The base
mesh was a 10 X 10 grid and five levels of mesh refinement were used for all problems.

The results are presented in Table 3. The results are strikingly different for k < 4 and k > 4. For
k < 4, the solver exhibits strong y-dependence, with the iteration counts blowing up as y increases.
However, for k > 4, the iteration counts are y-robust. This is exactly as one would expect from the
results of Morgan and Scott, which guarantee that the star iteration captures the kernel in the
sense of Equation (2.26) for k > 4. This is a striking illustration of the sharpness of the abstract
theory.

4.3 Stokes Equations

We consider the incompressible Newtonian Stokes equations: given p > 0, a bounded Lipschitz
domain Q c R?, f € (HI(Q;]Rd))* and g € H/?(0Qp; R?), find the velocity and pressure (u, p) €
V x Q= HY(Q;R?) x L*(Q) such that

-V 2uEu)+Vp=f inQ, (4.5a)
V-u=0 1inQ, (4.5b)

u=g ondQp, (4.5¢)

(=pI + pE(u)) -n=0 on dQy, (4.5d)

where n is the outward unit normal to 0Q = dQp U 0Qy, and I is the d X d identity matrix. If
|0Qn| = 0, then the pressure is only defined up to a constant and the pressure trial space Q = L3(Q)
is used instead. The pressure acts as a Lagrange multiplier for enforcing the divergence constraint.
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This equation is a fundamental problem in fluid mechanics and a great many discretisations and
solvers have been proposed for it [Brandt and Livne 2011; Elman et al. 2014; Turek 1999]. In this
section we discuss the implementation of a monolithic multigrid method with Vanka relaxation
[Vanka 1986].

Monolithic multigrid methods apply the multigrid philosophy to the entire block-structured
problem (i.e., solving for velocity and pressure together). It is therefore necessary to develop ap-
propriate relaxation methods that dampen the error of the coupled problem. Note that Jacobi or
Gauf3-Seidel would not work for an inf-sup stable discretisation of Equation (4.5), as the sad-
dle point structure means that there are zero entries on the main diagonal. One popular strategy
for implementing appropriate relaxation methods for saddle point problems is Vanka relaxation,
where patches are defined by gathering all degrees of freedom connected to a single degree of
freedom of the Lagrange multiplier [MacLachlan and Oosterlee 2011].

solver_parameters = {

"ksp_type": "gmres",

"pc_type": "mg",

"mg_levels_ksp_type": "chebyshev",
"mg_levels_ksp_max_it": 2,

"mg_levels_pc_type": "python",
"mg_levels_pc_python_type": "firedrake.PatchPC",
"mg_levels_patch_pc_patch_local_type": "additive",
"mg_levels_patch_pc_patch_partition_of_unity": False,

"mg_levels_patch_pc_patch_construct_type": "vanka",
"mg_levels_patch_pc_patch_construct_dim": 0,
"mg_levels_patch_pc_patch_exclude_subspaces": "1",

b

Listing 3. Solver options for PCPATCH to implement Vanka relaxation for a Taylor-Hood discretisation.

We consider the classical regularised lid-driven cavity benchmark [Elman et al. 2014,
Section 3.1.3], discretised using the inf-sup stable CG2-CG1 Taylor-Hood discretisation. As shown
in Figure 2, the associated Vanka relaxation is defined by the closure of the star around each ver-
tex (as the pressure degrees of freedom are located at vertices). The key solver options are given
in Listing 3. The solver employed GMRES as the outer Krylov solver preconditioned by multi-
grid V-cycles, using two iterations of Chebyshev-accelerated Vanka relaxation on each multi-
grid level. The pressure nullspace was dealt with by explicitly passing a basis for the nullspace
to the Krylov method (in this case, the vector of constant pressures). We highlight the option
"mg_levels_patch_pc_patch_exclude_subspaces": "1"; this excludes from the patch pres-
sure degrees of freedom (in the subspace indexed by 1) other than that at the vertex around which
the patch is built, ensuring that each patch contains exactly one pressure degree of freedom. With-
out this, the patch would include the pressures at other vertices connected by an edge to the base
vertex. The base grid was a uniform 20x20 grid of quadrilaterals. The solver was deemed to have
converged when the Euclidean norm of the residual had decreased by ten orders of magnitude. The
results are shown in Table 4. The solver enjoys mesh-independence and v-robustness. However,
these properties do not hold for Vanka relaxation applied to the Navier—Stokes equations [Turek
1999] and a more complex algorithm must be used to achieve v-robustness in this case [Benzi and
Olshanskii 2006; Farrell et al. 2019].
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Table 4. Number of GMRES lterations to Solve the Taylor-Hood
Discretisation of Equation (4.5) Using Multigrid and Vanka Relaxation

# refinements  # degrees of freedom v
10 10" 10> 10° 10*
1 1.48 x 10* 14 14 14 14 14
2 5.84 x 10* 14 14 14 14 14
3 2.32 X 10° 14 14 14 14 14
4 9.25 X 10° 14 14 14 14 14

4.4 Semilinear Allen-Cahn Equation

As a final example, we consider the semilinear Allen-Cahn equation: Given Q ¢ R and f € H™!,
findu € Hg(Q) such that

~Viu+u—u=f. (4.6)
We consider full approximation scheme (FAS) nonlinear multigrid methods for high-order dis-
cretisations of this problem [Brandt and Livne 2011]. While PETSc has had an implementation of
FAS since 2011, no general nonlinear relaxation methods were available; users had to implement
by hand a custom nonlinear Gauf3—Seidel algorithm on a case-by-case basis. This deficiency is
remedied by SNESPATCH, the nonlinear analogue of PCPATCH.

As with any multigrid scheme, the choice of appropriate relaxation is key. When nonlinear prob-
lems are solved with Newton’s method on each patch, the residual and Jacobian on the patch must
be calculated at each iteration. If many patches are present, then this assembly cost can be quite
expensive [Brabazon et al. 2014]. We therefore compare two different relaxation methods: a non-
linear star iteration® and an overlapping Schwarz iteration induced by the parallel decomposition
[Dryja and Hackbusch 1997]. Specifically, in the latter scheme a nonlinear problem is solved inde-
pendently on each core, and the updates averaged on the overlap, using Newton’s method and LU
factorisation as the inner solver. The overlap is of closure-star type, i.e., the degrees of freedom on
the closure of the star of all entities that the process owns are solved for.

We consider a continuous Lagrange discretisation of varying degree p of Equation (4.6). We
employ quadrilateral elements to take advantage of sum factorisation [Homolya et al. 2017] and
tensor-product Gaufi-Legendre-Lobatto quadrature rules [Karniadakis and Sherwin 2005] for ef-
ficiency at high-order.

In both solvers, we employ cascadic multigrid cycles [Bornemann and Deuflhard 1996], using
Newton’s method with direct factorisations for both the coarse grid problem and all patch solves.
No global matrix is assembled or solved, only small local or coarse problems. All relaxation updates
are performed with partition of unity weighting. In both cases, we use FAS as a nonlinear right
preconditioner for a nonlinear GMRES iteration, analogous to preconditioning linear GMRES using
a standard multigrid scheme [Brune et al. 2015; Oosterlee and Washio 2000]. For illustration, a
diagram of the solver with star relaxation is given in Figure 6.

For reference, we also compare to a standard Newton-Krylov scheme where the linearised Ja-
cobians are solved with FGMRES, preconditioned by matrix-free cascadic multigrid cycles with
two Chebyshev-accelerated Jacobi sweeps as relaxation. This latter scheme does not use PCPATCH;
the diagonal of the matrix is assembled directly. The solves were performed with four multigrid
refinements of a uniform 20 X 20 base grid. The results are shown in Table 5.

5Since a star iteration and pointwise Jacobi must assemble over the same cells for each nonlinear iteration, it makes sense
to update all degrees of freedom in the star at the same time.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 25. Publication date: June 2021.



25:18 P. E. Farrell et al.

Nonlinear GMRES
Full Approximation Scheme |

Coarse grid solver
Newton’s method
LU factorisation

Fig. 6. An outline of the NGMRES/FAS/star algorithm for solving Equation (4.6).

Table 5. Time in Seconds/Number of Outer Nonlinear Iterations for Three Different Solver Strategies
Applied to Discretisations of Varying Degree p of Equation (4.6) Using Multigrid and Vanka Relaxation

p # degrees of freedom Solver type
NGMRES/FAS/star NGMRES/FAS/pardecomp Newton/FGMRES/MG/Jacobi

3 9.24 x 10° 6.5/5 4.0/3 1.5/2
4 1.64 x 10° 8.6/4 6.2/2 2.2/2
5 2.56 x 10° 11.6/4 8.7/1 4.0/2
6 3.69 x 10° 13.9/3 17.1/1 6.3/2
7 5.02 X 10° 19.5/3 27.5/1 9.6/2
8 6.56 x 10° 21.9/2 45.0/1 12.6/2
9 8.30 x 10° 32.2/2 71.3/1 18.3/2
10 1.02 x 107 42.5/2 115.7/1 24.5/2

For p < 5, FAS with large patches is more efficient than FAS with small patches; for larger p,
FAS with star relaxation is substantially more efficient. However, in all cases the schemes based
on FAS are not competitive with Newton—Krylov for this problem. We expect that the code would
be even faster if nonlinear star iteration were used as a nonlinear preconditioner for Newton’s
method [Cai and Keyes 2002].

5 CONCLUSION

We have presented PCPATCH, a multigrid relaxation framework whose software abstractions are
motivated by the abstract subspace corrections framework of Xu [1992]. By using a callback,
rather than algebraic, interface PCPATCH supports nonlinear and matrix-free relaxation in the same
generic way. By maintaining topological information in multigrid hierarchies, and utilising a sim-
ple topological query language, it offers a flexible and extensible interface to a broad range of
optimal relaxation methods. We have demonstrated its application for the easy development of
efficient multigrid solvers for both linear and non-linear problems.

CODE AVAILABILITY

For reproducibility, we cite archives of the exact software versions used to produce the results in
this article. All major Firedrake components as well as the code used to obtain the shown itera-
tion counts and runtimes have been archived on Zenodo [Firedrake-Zenodo 2019]. An installation
of Firedrake with components matching those used to produce the results in this article can by
obtained following the instructions at https://www.firedrakeproject.org/download.html.
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APPENDIX
A COMPLETE CODE LISTING FOR THE H(div, Q) RIESZ MAP

from firedrake import *

# Create the base mesh and multigrid hierarchy
N=25
nref = 2
distribution_parameters = {
"partition": True, "overlap_type": (DistributedMeshOverlapType.VERTEX, 1)
3
# Discretise Q =(0,2)*
base = BoxMesh(N, N, N, 2, 2, 2, distribution_parameters=distribution_parameters)
mh = MeshHierarchy(base, nref)
mesh = mh[-1]

# Declare Raviart-Thomas function space
V = FunctionSpace(mesh, "Raviart-Thomas", degree=1)

# Set up the PDE

u = Function(V)

v = TestFunction(V)

(x, y, z) = SpatialCoordinate(mesh)

f = as_vector([2xy*zx(1-x**2), 2xx*zx(1-y**2), 2xx*y*(1-x**2)])
alpha = Constant(1000)

F = inner(u, v)*dx + alpha*inner(div(u), div(v))*dx - inner(f, v)=*dx

# Specify solver options
solver_parameters = {
"mat_type": "matfree",
"snes_type": "ksponly",
"ksp_type": "cg",
"ksp_max_it": 100,
"ksp_rtol": 1.0e-10,
"ksp_atol": 0.0,
"ksp_monitor_true_residual": None,

"bc_type": "mg",
"pc_mg_type": "full",
"mg_levels_ksp_type": "richardson",

"mg_levels_ksp_richardson_scale": 1/3,
"mg_levels_ksp_max_it": 1,
"mg_levels_ksp_convergence_test": "skip",
"mg_levels_pc_type": "python",
"mg_levels_pc_python_type": "firedrake.PatchPC",
"mg_levels_patch_pc_patch_save_operators": True,
"mg_levels_patch_pc_patch_construct_type": "star",
"mg_levels_patch_pc_patch_construct_dim": 0,
"mg_levels_patch_pc_patch_sub_mat_type": "seqdense",
"mg_levels_patch_sub_ksp_type": "preonly",
"mg_levels_patch_sub_pc_type": "lu",
"mg_coarse_pc_type": "python",
"mg_coarse_pc_python_type": "firedrake.AssembledPC",
"mg_coarse_assembled_pc_type": "lu",
"mg_coarse_assembled_pc_factor_mat_solver_type": "mumps",

}

# Solve the problem
solve(F == 0, u, solver_parameters=solver_parameters)

25:19
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