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Abstract: Understanding the genomic and environmental basis of cold adaptation is key to un-
derstand how plants survive and adapt to different environmental conditions across their natural
range. Univariate and multivariate genome-wide association (GWAS) and genotype-environment
association (GEA) analyses were used to test associations among genome-wide SNPs obtained from
whole-genome resequencing, measures of growth, phenology, emergence, cold hardiness, and range-
wide environmental variation in coastal Douglas-fir (Pseudotsuga menziesii). Results suggest a complex
genomic architecture of cold adaptation, in which traits are either highly polygenic or controlled by
both large and small effect genes. Newly discovered associations for cold adaptation in Douglas-fir
included 130 genes involved in many important biological functions such as primary and secondary
metabolism, growth and reproductive development, transcription regulation, stress and signaling,
and DNA processes. These genes were related to growth, phenology and cold hardiness and strongly
depend on variation in environmental variables such degree days below 0c, precipitation, elevation
and distance from the coast. This study is a step forward in our understanding of the complex
interconnection between environment and genomics and their role in cold-associated trait variation
in boreal tree species, providing a baseline for the species’ predictions under climate change.

Keywords: cold adaptation; growth; phenology; cold hardiness; GWAS; GEA; Douglas-fir

1. Introduction

Understanding the fitness consequences of naturally occurring genetic variation is of
great biological interest. In natural populations of widely distributed species, the challenge
is to identify genes underlying traits that increase the species’ ability to survive, thrive
and reproduce [1,2]. Species that encounter diverse ecological and environmental natural
conditions may be subject to strong differential selection pressures across heterogeneous en-
vironments that counteract the homogenizing effects of gene flow and drift in the evolution
of local adaptation [3–5]. In natural populations of forest tree species, the highly polygenic
nature of climate and trait adaptation, the presence of phenotypic plasticity, and the com-
plexity and scale of environmental variation across the species’ ranges present significant

Genes 2021, 12, 110. https://doi.org/10.3390/genes12010110 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-6647-723X
https://orcid.org/0000-0002-8859-7432
https://doi.org/10.3390/genes12010110
https://doi.org/10.3390/genes12010110
https://doi.org/10.3390/genes12010110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12010110
https://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/12/1/110?type=check_update&version=2


Genes 2021, 12, 110 2 of 28

challenges for the study of phenotypic variation and local adaptation [6–8]. Therefore, a
comprehensive understanding of the species’ potential for evolutionary change and adap-
tation to changing environments will require the study of genome-wide genetic variation
across the species’ natural range and its association with ecologically important traits.

In the Northern hemisphere, the interactions between growth, phenology and cold
hardiness are main determinants of survival in tree populations. Cold adaptation in forest
trees involves significant physiological, cellular, genetic and morphological changes, and
is highly synchronized with environmental cues such as photoperiod, day length and
temperature [9,10]. Temperate and boreal forest tree species alternate periods of active
growth and dormancy. Annual growth and tree development occur through a trade-
off between maximizing growth under favorable environmental conditions to be able
to compete for light, while avoiding cold injury from late spring frosts and early fall
frosts [9,11]. Both bud burst (growth initiation) and bud set (growth cessation) are highly
adaptive traits and parallel latitudinal or longitudinal environmental clines [11,12].

The identification of genes underlying variation in growth, phenology and cold har-
diness has been particularly difficult due to the highly polygenic nature of the traits.
Univariate genome-wide association studies (GWAS) successfully identify genes of major
effect (in which a new advantageous mutation is rapidly driven to fixation) but have very
low power to detect weakly selected loci, characteristic of polygenic adaptation [5,13,14].
Therefore, a multivariate GWAS will give a more accurate estimate of the number and effect
sizes of genes contributing to phenotypic variation in polygenic traits. Adaptation to cli-
matic or environmental variables also requires the study of many genes and interconnected
environmental variables. In this case, multivariate genotype-environment association
studies (GEA) are also more adequate than univariate methods. A comparison between
univariate and multivariate methods will provide a good understanding of the different
trait architectures in a species.

Douglas-fir (P. menziesii) is an economically and ecologically important species in west-
ern North America. Considered one of the most important sources of lumber worldwide,
it is grown extensively in plantations throughout Europe [15] and is also a major source
of timber in its natural range, particularly in the Pacific Northwest [16]. Douglas-fir’s
wide geographic range spans a large gradient of environmental conditions and exhibits
strong clines in relation to drought and cold tolerance [17–19]. Two varieties, menziesii and
glauca, have been identified in coastal (Northern California—British Columbia) and inter-
mountain regions (central Mexico—British Columbia); although phylogeographic studies
using mitochondrial and chloroplast DNA suggest the presence of three, instead of two,
distinct varieties (Coastal, Intermountain and Mexican) [20]. Common garden experiments
focusing on climate adaptations of coastal Douglas-fir revealed that cold hardiness is highly
correlated with cold-season temperature of the seed source [17], adaptations for coping
with cold and drought overlap significantly [18,19], and that the species’ phenology likely
lacks the ability to track climate change [21,22]. Cold adaptation in coastal Douglas-fir
has also been studied through transcriptomic analysis [23], QTL mapping [24,25], and
candidate gene based GWAS analysis [26]. Genome-wide studies of local adaptation were
limited due to the absence, until recently, of a Douglas-fir reference genome [27]. Sequenc-
ing and annotating conifer genomes have been quite challenging due to their enormous
genome sizes (>10 Gbp) and their high content of repetitive elements. Douglas-fir is a
diploid species with 13 chromosomes and an estimated genome size of 16Gbp [27]. In
this study, we combined genome-wide patterns of genetic variation obtained from whole-
genome re-sequencing, phenotypic measurements of growth, phenology, emergence and
cold hardiness, and environmental variables to understand the genomic basis of cold
adaptation in coastal Douglas-fir. Our questions were: (1) What is the genomic architecture
(number of genes, effect sizes, genomic and geographic location) of cold adaptation in
the species? and (2) Which genes, pathways and biological processes are associated with
variation in environments and traits related to cold adaptation in the species?
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2. Materials and Methods
2.1. Whole-Genome Re-Sequencing

Seeds from ten individuals spanning most of the coastal Douglas-fir’s natural distri-
bution (latitude 42–44 N, longitude 120–124 W degrees) were collected for whole-genome
re-sequencing analysis. After collection, seeds were soaked in water at room temperature
for four days, then haploid megagametophytes were dissected from each seed. DNA was
extracted with a Qiagen DNeasy mini-prep Plant kit, and DNA quality and concentration
were evaluated using nanodrop and picogreen on a Qubit 2.0 Fluorometer, respectively. Se-
quencing libraries were constructed using Illumina’s TruSeq Nano DNA Library Prep Kit [27].
Prior to amplification, DNA was fragmented (200 ng starting material and 550 bp target insert
size), followed by end repair and size selection of fragments, adenylation of 3′ ends, and
adapter ligation. PCR enrichment was performed in eight cycles. Barcoded libraries were
combined into normalized pools and sequenced to >10 X coverage on an Illumina HiSeq 3000
using 150 bp paired-end reads at the University of California-Davis Genome Center.

2.2. SNP Calling

Raw reads from whole-genome re-sequencing data of ten Douglas-fir individuals
were aligned to the 16 Gbp Douglas-fir reference genome version Psme v1.0 [27,28]; using
Bowtie2 v2.2.9 [29]. The alignments were processed using SAMtools v1.3.1 and BEDtools
v2.25.0; and SNPs were called using BCFtools v1.3.1 [30,31] with default parameters. A
total of 458M SNPs were called. Filtering criteria included the removal of SNPs with a
mapping quality < 20, depth of coverage < 8, and indels. All SNPs were given a score
based on the sum of 16mer frequency sums of the 30 bp forward or reverse adjacent to the
SNP. SNPs were discarded when the score was higher than 300. Moreover, SNPs were only
called if present in scaffolds of 1kb or larger.

2.3. Sample Collection Prior to Genotyping

Seeds were obtained from 288 open-pollinated parent trees from throughout the range
of Douglas-fir in western Washington and Oregon. Progeny from the parent trees were
measured in a common garden study for adaptive traits including growth, phenology,
emergence, and cold hardiness [32]. The same set of parents were used in previous
association mapping studies [17,26,33]. Population stratification was based on geographic
areas showing similar adaptive characteristics (defined as “provinces” in [17]), which
roughly correspond with Douglas-fir breeding zones in Oregon and Washington.

2.4. DNA Extraction and SNP Genotyping

Seeds were soaked in a solution of 70% water and 30% of 3% hydrogen peroxide
for 12 h. After that, megagametophyte haploid tissues from ten half-sib individuals for
each family were pooled together to infer the maternal genotype. Megagametophytes
DNA was extracted using the Qiagen DNeasy mini-prep Plant kit and an Eppendorf
automated pipetting workstation. The extraction protocol included one day of tissue lysis
and incubation at 96 ◦C, followed by several steps of precipitation and filtering. DNA
quality and concentration were assessed using nanopore and picogreen on a Qubit 2.0
Fluorometer, respectively. Samples were genotyped using a custom-based multi-species
Illumina Infinium SNP array comprising 80 k SNP markers from which 20 k were designed
for Douglas-fir and 60 k for sugar pine. Ilumina’s Genome Studio Genotyping Module
v2.0.4 was used to call genotypes, filter, and generate genotyping statistics for all samples
and SNPs. Filtering was applied to Douglas-fir and sugar pine SNPs separately and the
pass-filter SNP data were subsequently merged. All SNPs with a call frequency ≤ 0.65
and all individuals with a call rate ≤ 0.8 were not included. Further, markers were filtered
out based on minor allele frequency (>0.01) to remove all monomorphic and low-quality
SNPs. SNP functional annotations were obtained from aligning against the full NCBI non-
redundant protein sequences database (nr) using BLASTP (e-value < 1 × 10−10), and by
using the Douglas-fir’s genome annotations [34]. SNPs originally designed for sugar pine
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but that genotyped well in Douglas-fir were aligned to the Douglas-fir genome assembly
with Minimap2 [35]. BEDtools v2.25.0 was used to assign SNPs to coding and non-coding
regions of the Douglas-fir genome.

2.5. Population Structure

The number of genetic clusters was initially assessed with a principal component
analysis (PCA) implemented in the “adegenet” R package [36,37]. Population clustering
was further analyzed using the software fastSTRUCTURE [38]. Ten runs were completed for
each value of K between one and ten. The chooseK script in fastSTRUCTURE was then used
for each run to calculate which value of K was optimal. Because fastSTRUCTURE includes
stochastic simulation, CLUMPP [39], implemented in the R package “POPhelper” [40] was
used to combine the results of each run to optimize the number of clusters. Individuals
were assigned to individual genetic clusters when q-value > 0.8; or to multiple clusters
when q-value < 0.8. All R analyses were carried out on R version 3.5.3.

2.6. Isolation by Distance

To rule out the possibility that any patterns observed were due to isolation by dis-
tance (IBD), pairwise genetic and physical distances were calculated in the R package
adegenet [36,37]. A mantel test was later performed to determine if there was significant
IBD. Genetic distances were calculated as Nei’s distances [41] and fixation index (Fst) with
the StAMPP package in R [42]. Geographic distances were calculated in base R, with the
median latitude and longitude was used for the geographic location of populations. Mantel
tests were carried out in ade4 R package [43].

2.7. Multivariate and Univariate Genome-Wide Association (GWAS) of Cold-Related Traits

Phenotypic data were measured as part of a large genecology experiment containing
1338 families from 1048 locations planted in a randomized plot design, seedlings were grown
for two years in a common garden in Corvallis, Oregon [32]. A subset of those individuals
was included in the study represented here. The full description of the methods used in the
common garden can be found in [32]. In summary, seeds were collected from open-pollinated
individuals in natural stands throughout the range of Douglas-fir in Oregon and Washington.
Offspring of the maternal trees were grown for two years in a common garden located in
Corvallis, Oregon. Tests were established over three years using different sets of families,
with a common set of all three years to adjust for year effects as in [44]. Breeding values for
all 23 growth, phenology, emergence, and cold hardiness traits (Appendix A, Table A1) were
estimated by measuring the traits of seedlings being grown in the common garden. This
study analyzed a small subset of this phenotypic data from 271 families.

A multivariate GWAS was performed by fitting a Bayesian sparse linear mixed model
(BSLMM) in GEMMA v0.98 [45]. BSLMM uses Markov Chain Monte Carlo (MCMC) to as-
sociate markers and phenotypes by modeling all markers simultaneously while controlling
for population structure and relatedness using the following model:

y = 1 nµ + Xβ + u + e, (1)

where 1n is an n-vector of 1s; µ is a scalar representing the phenotype’s mean; X is a matrix
of genotypes from 271 families and 20,397 SNPs; β is the corresponding p-vector of the
genetic SNP marker effects; u is an n-vector of random effects; and e is an n-vector of errors.
Models were fitted for each of the 23 cold-related traits. In contrast to other multivariate
GWAS methods, BLSMM captures the effect sizes of both small effect SNPs (α) and large
effect SNPs (β). Therefore, PVE, the proportion of phenotypic variance explained by the
combination of all small and large effect SNPs, reflects how well one could predict the
phenotype from the available SNPs if β and u were known; and PGE reflects how well the
phenotype is predicted by only using β [45]. Analysis was done with default options, which
includes a burn-in of 100,000 steps, and 1,000,000 sampling steps. A posterior inclusion



Genes 2021, 12, 110 5 of 28

probability (PIP) > 0.01 (selected SNPs that had an effect in at least 1% of the models) was
used as threshold for selection of associated SNPs [46,47].

In addition, a univariate GWAS using mixed linear model (MLM) was performed in
TASSEL v.5. The first principal components of a PCA were used as co-variates to control for
population structure, and a kinship matrix to account for relatedness [48]. Breeding values
of progeny’s traits were determined as in [32]. The proportion of phenotypic variance
explained by the SNP (R2), and the dominance and additive effects were also calculated
with TASSEL v.5.

2.8. Multivariate and Univariate Genotype-Environment Association Analyses (GEA)

Elevation data were obtained from GIS coverages using a digital elevation model
(DEM). Climate data were obtained using ClimateNA [49]. ClimateNA downscales PRISM
data [50] to scale-free point data, allowing to more accurately predict maternal tree climate
variables. All climate data are based off the averages for the years 1962–1990. Climate
variables include monthly, seasonal and annual averages for minimum and maximum
temperature, precipitation, daily temperature fluctuation and aridity (a ratio of precipita-
tion to temperature); dates of 50 % probability of last spring frost and first autumn frost;
frost-free period; and seasonal ranges in temperature and precipitation. All variables are
detailed in Appendix A, Table A1. Correlations between all environmental (climatic and
geographic) and phenotypic variables were investigated in R (version 3.6.1). Correlation
plots were produced.

A redundancy analysis (RDA) as implemented in the vegan R package [51] was
performed to estimate how much of the genetic variation was explained by environmental
variables. RDA is a type of multiple regression that determines how much of the variation in
one set of variables is explained by the variation in another set of variables. Environmental
variables were investigated for correlation prior to carrying out the analysis. Variables were
removed if their correlation coefficient was >0.8 with any other environmental variable.
Since most variables were highly correlated with each other, the selected variables for the
analysis were: Summer heat moisture index, distance to the sea, and precipitation as snow.
Candidate SNPs were selected if falling outside of the 2.5 standard deviations of the mean
loading score (p-value = 0.012) for each of the first two axes.

In addition to the multivariate GEA analysis, two univariate GEAs were performed
using the programs Bayenv v.2 [52] and TASSEL v.5 [48]. Bayenv is based on a Bayesian
method that control for effects caused by isolation-by-distance, population structure, and
genomic background. The program estimates a covariance matrix of estimated allele
frequencies to use as a null model of neutral genetic structure. This null model is then
compared to a linear model between the allele frequencies and each environmental variable
to test for improved fit over the null model. The software returns Bayes factors (BF) for
each locus and, when using the nonparametric extension, also returns Spearman’s rank
and Pearson’s correlation coefficients. Ten runs (100,000 iterations each) of the covariance
matrix estimation were carried out and averaged together to ensure an accurate matrix
across different runs. Loci were considered robust candidates for environmental selection
if they had a BF ≥ 3 and were in the top 1% of Pearson’s correlation coefficient. TASSEL
univariate analyses were performed using each environmental variable as the vector of
observations, and the SNP markers, population structure and kinship as fixed effects in an
MLM association analysis. The first three principal components of a PCA of environmental
variables were also tested for associations with the SNP markers.

2.9. Genome Scan for Detection of Selection Signatures

Pcadapt R package [53] was used to detect signatures of selection in the 20.3 k SNP
set. Pcadapt estimates principal components (K) using a principal component analysis;
and later calculates the correlation between genetic variation and the first K principal
components using Mahalanobis distance to detect outliers [53]. A q-value threshold of
0.1 was used. Pcadapt was chosen over other genome scans methods because it does not
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require grouping individuals into a-priori defined populations and it is not sensitive to
admixed individuals in the dataset.

3. Results
3.1. SNP Calling and SNP Genotyping

Of the 458M SNPs called in the whole genome re-sequenced individuals, a total of 1.2M
SNPs were retained after filtering following the SNP calling process. All SNPs were scored by
Illumina using in silico design scores to maximize the number of markers for genotyping that
will provide high conversion rates. As a result, 20 k best-scoring SNPs were included in the
Illumina Infinium array for SNP genotyping. From this, genotypes were obtained from 16,146
SNPs. Posterior genotype clustering, and removal of monomorphic and low-quality SNPs
led to 20,397 SNPs, from which 5815 were originally designed for sugar pine. SNPs selected
for posterior analyses were distributed along 5892 scaffolds in the Douglas-fir genome and
matched 6833 coding regions (4301 genes plus 2532 transcripts from unknown genes). The
distribution of SNPs minor allele frequencies can be seen in Appendix A, Figure A1.

3.2. Population Structure

A K value of 2 was shown to be most optimal using the choose K script included in fast
STRUCTURE. Distruct [54] used the CLUMPP output of all 10 runs where K = 2 to make an
ancestry plot of each individual (Figure 1). Results of the fastSTRUCTURE analysis showed
that two distinct genetic clusters exist within the study zone; a dominant type throughout
the sampled range up to the Canadian border (“Coastal Dominant”), and a smaller one
existing in Southern Oregon (“Coastal South”). Individuals with mixed ancestry from both
clusters were found in Southern Oregon. The map resulting from assigning individuals to
the distinct genetic clusters can be seen in Figure 1. The results of the principal component
analysis also showed two fairly distinct groups (Figure 1).
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individuals as determined by fastSTRUCTURE. Each bar along the x-axis represents an individual and the individuals are
ordered by latitude (increasing left to right). Green represents ancestry from the CD genetic group, while yellow represents
the level of ancestry from the CS genetic group.
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3.3. Correlations among Cold-Related Phenotypic Traits and Environmental Variables

All correlations among phenotypic traits and environmental variables are represented
in heatmaps in Appendix A, Figures A2–A4. The three measures of cold damage (percent-
age of damaged tissue in needle, stem, and bud tissue) are positively correlated with each
other as well as with growth rate (both height measurements, height increment, root, shoot,
and total weight, and root length). These measures of cold hardiness had weak negative
correlations with measures of emergence and root to shoot ratio. Most phenotypes were
significantly correlated with each other, with the exception of the propensity to second
flush and length of second flush, which were correlated with each other, but not strongly
correlated to any other variables (Appendix A, Figure A2). Correlations within environ-
mental variables can largely be broken into two groups, one containing all temperature
variables and continentality; with a second group consisting of precipitation variables, PCs
1–3 and geographic variables (Appendix A, Figure A3). Trait 1 was negatively correlated
with elevation, longitude, and continentality (TD) and positively correlated with Mean
Annual Temperature (MAT) and Mean Coldest Month Temperature (MCMT). Trait 2 was
negatively correlated with Climate Moisture Deficit (CMD), Summer heat moisture (SHM),
and positively correlated with latitude (Appendix A, Figure A4).

3.4. Genome Scan for Detection of Selection Signatures

PCAdapt identified 582 outlier loci distributed across 290 scaffolds in the Douglas-fir
genome (Supplementary Material Table S1). From those SNPs, 225 were from coding
regions (156 matched Douglas-fir genes and 69 matched transcripts with unknown genes),
and the remaining SNPs were from non-coding or unidentified genomic regions. From the
582 outlier loci, 271 were significant in GWAS analyses and 269 in GEA results (Figure 2).
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3.5. Isolation by Distance

When individuals were not grouped into populations, mantel tests revealed very
low levels of isolation by distance (r = 0.09, p-value = 0.001). There was no significant
relationship between genetic distance and geographic distance when individuals were
grouped into populations (r = 0.02, p-value = 0.37). See Appendix A, Figure A5 for a
plot of the results. This, combined with the results of fastSTRUCTURE, indicated a weak
population structure in the dataset.

3.6. Univariate and Multivariate Genome-Wide Association Study of Cold-Related Traits

The MLM model implemented in TASSEL identified 799 significant associations after a
false discovery rate (fdr) correction for multiple-testing [55]. A total of 690 associations were
significant for additive effects (Supplementary Material Table S2). Associations were found
among 237 SNPs and 20 traits. Of the 237 SNPs, 170 matched coding regions (126 genes
and 44 transcripts) and the others were non-coding (Supplementary Material Table S2).
Minor allele frequencies of significant SNPs ranged from 0.01 to 0.48 (mean = 0.04, standard
deviation = 0.06). Trait 1 (a linear combination of several growth traits), for which higher
values represent higher vigor (faster growth, later budset, earlier emergence, greater
partitioning to shoot vs. root) was associated with 106 SNPs, and root to shoot ratio (RTSH)
was associated with 115 SNPs based on TASSEL results. The number of SNPs associated to
each trait can be found in Table 1.

Table 1. Genetic architecture of cold-related phenotypic traits in coastal Douglas-fir.

Trait PVE PGE SNPs BSLMM MLM

trait1 0.75 ± 0.17 0.52 ± 0.16 3 ± 2 23 106
trait2 0.88 ± 0.13 0.24 ± 0.2 78 ± 71 1617 0
BB2 0.65 ± 0.19 0.38 ± 0.19 3 ± 2 15 25
BS1 0.6 ± 0.17 0.56 ± 0.18 3 ± 2 11 70
BS2 0.68 ± 0.21 0.13 ± 0.16 34 ± 40 52 0

DIAM 0.8 ± 0.16 0.37 ± 0.14 2 ± 1 11 75
EMEAN 0.86 ± 0.16 0.21 ± 0.1 3 ± 4 18 54
EMSTD 0.47 ± 0.2 0.45 ± 0.21 3 ± 2 8 48
FLUSH 0.39 ± 0.25 0.2 ± 0.24 17 ± 24 18 1

FLUSHLG 0.26 ± 0.19 0.27 ± 0.27 25 ± 38 26 0
HT1 0.64 ± 0.2 0.41 ± 0.18 2 ± 1 6 46
HT2 0.54 ± 0.16 0.64 ± 0.19 2 ± 1 14 77

HTINC 0.52 ± 0.19 0.5 ± 0.22 3 ± 2 15 54
RTLG 0.68 ± 0.23 0.34 ± 0.2 10 ± 18 34 30
RTSH 0.48 ± 0.14 0.71 ± 0.18 2 ± 2 14 115
RTWT 0.76 ± 0.21 0.22 ± 0.16 3 ± 5 23 20
SHWT 0.66 ± 0.22 0.33 ± 0.2 3 ± 6 18 29
TAPER 0.69 ± 0.23 0.23 ± 0.21 38 ± 54 188 10
TOTWT 0.69 ± 0.21 0.31 ± 0.18 2 ± 2 22 30
budcold 0.65 ± 0.19 0.29 ± 0.25 99 ± 84 2453 1
ndlcold 0.93 ± 0.09 0.42 ± 0.24 96 ± 78 2857 2
stmcold 0.88 ± 0.13 0.15 ± 0.13 11 ± 16 34 4
SDWT 0.82 ± 0.19 0.13 ± 0.15 23 ± 35 58 2

Results from the multivariate Bayesian Sparse Linear Mixed Model (BSLMM) in GEMMA and its comparison with univariate Mixed
Linear Model (MLM) in TASSEL. Variables are phenotypic trait (Trait), proportion of variance explained (PVE), proportion of variance
explained by sparse effects (PGE), posterior estimate of number of SNPs with major effect and the standard deviation across runs after
burn-in (SNPs), number of SNPs with significant associations identified by GEMMA, and number of SNPs with significant associations
identified by TASSEL. Traits included: Trait1 (First canonical variable for traits), Trait2 (Second canonical variable for traits), BB2 (Bud
burst in year 2), BS1 (Bud set in year 1), BS2 (Bud set in year 2), DIAM (Diameter after year 2), EMEAN (Rate of emergence), EMSTD
(Standard deviation of emergence rate), FLUSH (Propensity to second flush), FLUSHLG (Length of second flush), HT1 (Height after year 1),
HT2 (Height after year 2), HTINC (Height increment between years 1 and 2), RTLG (Root Length), RTSH (Root: shoot ratio), RTWT (Root
weight), SHWT (Shoot weight), TAPER (Taper), TOTWT (Total weight), budcold (Cold damage of buds), ndlcold (Cold damage of needles),
stmcold (Cold damage of stems) and SDWT (Weight of 100 seeds).
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In contrast, GEMMA identified 7536 significant associations among 6034 SNPs and all
23 traits (Table 1, Supplementary Material Table S3). Significant SNPs were matched to 2173
Douglas-fir genes and 1117 transcripts (from unknown genes). Minor allele frequencies of
significant SNPs ranged from 0.01 to 0.5 (mean = 0.15, standard deviation = 0.13). Traits
with large (>1000) number of associated SNPs were needle cold damage, bud cold damage
and Trait 2. Increasing the threshold of posterior inclusion probability (PIP) from 0.01 to
0.05 and 0.1 significantly reduced the number of SNPs associated with needle cold damage,
bud cold damage and Trait 2, but had little effect on other traits. The number of shared
SNPs found across all GWAS and GEA analyses also remain relatively unchanged when
changing the PIP threshold (Appendix A, Figure A6).

Individual SNP markers explained from 6 to 24% (mean = 9.9, stdev = 3.1) of the
phenotypic variation for all traits, whereas combined SNP markers explained up to 93%
(Table 1, Supplementary Material Table S2). Cold hardiness traits (needle and stem cold
damage) had high PVE but low PGE (proportion of genetic variance explained by sparse
effects), suggesting that these traits are highly polygenic and mainly controlled by large
numbers of genes of small effect. This was further supported by the fact that traits exhibiting
this pattern had very few SNPs identified by univariate models (Table 1), but many SNPs
identified by GEMMA. Both large and small effects genes seem to be important controlling
growth, emergence and phenology traits. None of the studied traits seemed to be only
controlled by large effect genes.

3.7. Univariate and Multivariate Genotype-Environment Association Analyses (GEA)

TASSEL univariate association analyses identified 74 SNPs significantly associated
with 17 environmental variables (Supplementary Material Table S4). Most SNPs were
related to cold temperature variables, with 55, 28, and 16 SNPs associated with Degree days
below 0 in autumn, year-wide, and spring (DD_0_at, DD_0, DD_0_sp), respectively. Results
of the PCA of environmental variables indicated that principal component 1 explains 57.5%
of the variation in the data and is almost entirely represented by mean annual precipitation
(MAP), whereas PC2 explains 32.4% and is represented by growing degree days (DD_5)
and elevation (Appendix A, Figures A7 and A8). Bayenv identified associations among 404
SNPs and 22 environmental variables. These SNPs matched 110 genes and 43 transcripts
from unknown genes (Supplementary Material Table S5). Traits were associated with 1
to 77 SNPs each. Minor allele frequencies of significant SNPs had a mean of 0.04 and a
standard deviation of 0.03. From the 404 SNPs, 260 were also significant in other GEA
analyses (Figure 2).

The multivariate (RDA) GEA method identified a total of 528 significant SNPs for
continentality (255 SNPs), precipitation as snow (219 SNPs), and summer heat moisture
index (54 SNPs) (Supplementary Material Table S6). Of these 528 SNPs, 144 matched
genes and 58 transcripts (from unknown genes). Each of these variables were correlated
to other environmental variables, suggesting the combined effect of groups of individual
variables associated with an aspect of climate (Appendix A, Figure A3). Figure 2 shows the
individuals and SNPs plotted in the ordination space. Individuals of genetic cluster coastal
south (southern Oregon, see Figure 1) grouped together and separate well from the rest of
the individuals mostly on summer heat moisture index. Individuals from this cluster also
tend to be at lower latitudes and longitudes than the rest of the population. Minor allele
frequencies had a mean of 0.07 and a standard deviation of 0.07. Main gene ontologies of
combined results across all GEA methods were metabolic processes (carbohydrate, lipid,
nucleobase, phosphorus, and cellular aromatic), response to stress (oxidative and osmotic),
and developmental processes involved in reproduction (Figure 2). When comparing the
results of all methods, 385 SNPs (130 genes and 54 transcripts from unknown genes) were
significant in at least one GEA and one GWAS analysis (Table 2). From them, 15 SNPs were
significant in all univariate and multivariate GEA and GWAS analyses (Supplementary
Material Table S7, Appendix A, Figure A6).
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Table 2. Functional characterization of genes associated with cold adaptation in coastal Douglas-fir.

Gene NCBI Accession S O Trait Env. Processes/Pathways Functional Annotation

PSME_32494 XP_020083319.1 1 N cold TD Pentose phosphate pathway glucose-6-phosphate 1-dehydrogenase 4
PSME_35569 XP_011080970.1 1 N cold SHM Cell wall pectin biosynthesis xyloglucan-specific galacturonosyltransferase 1
PSME_01956 XP_023919718.1 1 N cold bFFP Starch and sucrose metab. neutral trehalase-like
PSME_04717 XP_023911511.1 2 Y grow cold TD, PC1 CH and aminoacid metab. 4-aminobutyrate aminotransferase
PSME_39868 XP_020187038.1 1 N cold PAS, TD Glycolysis, fatty acid degradation, tyrosine metab. alcohol dehydrogenase-like 4
PSME_34754 XP_011622948.1 1 Y grow TD Glycolisis plastidial pyruvate kinase 4
PSME_37622 XP_023873676.1 1 N cold Lat Glycolysis, phosphorylation of fructose-6-phosphate ATP-dependent 6-phosphofructokinase 5
PSME_46816 MA_72344g0010 1 N cold TD sugar transporter Bidirectional sugar transporter SWEET3-like
PSME_47335 XP_006858646.2 1 N cold TD sugar transporter CMP-sialic acid transporter 5
PSME_39947 XP_014501229.1 1 N grow phe DD_0, TD Fructose and mannose metabolism mannan endo-1,4-β-mannosidase 7-like
PSME_39362 RVW55203.1 4 N grow cold EXT, Eref, TD cellulose metabolism cellulose synthase
PSME_40047 XP_020534550.1 1 N cold TD cellulose metabolism β-glucosidase 18
PSME_20810 MA_121907g0010 1 N cold TD CH and photosynthesis plastocyanin-like
PSME_32128 XP_020532303.1 1 N phe MCMT Glycerophospholipid metab. lysophospholipid acyltransferase LPEAT2
PSME_23694 XP_011100368.1 1 N cold phe TD arginine, proline, β-alanine, pantothenate and CoA polyamine oxidase 2
PSME_30851 XP_006836334.1 1 Y grow cold DD5_at arginine, proline, β-alanine, pantothenate and CoA polyamine oxidase 2

PSME_40791 XP_004289831.1 1 N grow cold DD_0_at Cysteine and methionine metabolism 5’-methylthioadenosine/S-adenosylhomocysteine
nucleosidase

PSME_01345 XP_023540379.1 1 N grow TD RNA metabolism DEAD-box ATP-dependent RNA helicase 57
PSME_39361 XP_021895115.1 3 N grow cold PAS, TD, DD_0 Terpenoid backbone biosynthesis 1-deoxy-D-xylulose 5-phosphate reductoisomerase

PSME_35875 XP_023520455.1 1 N grow cold phe TD Ubiquinone and other terpenoid-quinone
biosynthesis NAD(P)H dehydrogenase (quinone) FQR1

PSME_03065 XP_023925599.1 1 N phe PAS Steroid and diterpenes biosynthesis cytochrome P450
PSME_13751 XP_007209932.1 1 N cold MWMT, TD Steroid biosynthesis geraniol 8-hydroxylase, cytochrome P450
PSME_06220 XP_018684598.1 1 Y cold PAS Glycosylation (terpenes and others biosynthesis) UDP-rhamnose:rhamnosyltransferase 1
PSME_42889 XP_021819748.1 1 N cold phe PC1 Porphyrin and chlorophyll metabolism phytochromobilin:ferredoxin oxidoreductase
PSME_41367 XP_011080788.1 1 N cold PAS vitamin B6 metabolism pyridoxal 5’-phosphate synthase subunit PDX1
PSME_28922 XP_007202107.1 1 N grow DD_0, CMD flavonoid biosynthesis naringenin,2-oxoglutarate 3-dioxygenase
PSME_40932 XP_023531135.1 2 N grow cold phe DD_0, MSP, TD growth and development protein COBRA-like
PSME_04771 XP_006433957.1 1 N grow cold phe DD_0, EXT, TD growth and development EXORDIUM-like 2
PSME_02459 XP_023541193.1 1 N cold phe TD growth and development EXORDIUM-like 3
PSME_32867 XP_020102207.1 1 N grow phe DD_0, TD growth and development NAC domain-containing protein 68-like
PSME_31370 MA_101849g0010 1 N grow TD reproductive development NAC domain-containing 35-like (PF02365)
PSME_17369 XP_016710129.1 1 N grow phe DD_0, TD growth and development PREDICTED: LOB domain-containing protein 19
PSME_47800 XP_023516539.1 1 N grow phe DD_0, TD growth and development probable inactive purple acid phosphatase 27
PSME_40261 PSS23947.1 1 N grow phe DD_0_at, PC1 growth and development Purple acid phosphatase
PSME_30046 BBC78345.1 1 N grow DD_0, Eref reproductive development NEEDLY-like protein
PSME_37515 XP_010242469.1 1 N phe TD reproductive development LETM1 and EF-hand domain-containing protein 1
PSME_47186 XP_011627569.1 1 N grow DD_0_at, PAS growth methionine aminopeptidase 1B
PSME_27219 XP_012838463.1 1 N grow cold phe DD_0, PC1, TD cell cycle control cyclin-dependent kinase C-2-like isoform X2
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Table 2. Cont.

Gene NCBI Accession S O Trait Env. Processes/Pathways Functional Annotation

PSME_38027 XP_031497943.1 1 N grow cold TD cell cycle control GAMETE EXPRESSED 1
PSME_51103 XP_022153266.1 1 N grow phe DD_0, Lat, TD Transcription regulation CASP isoform X2
PSME_30616 XP_001754344.1 1 N grow phe PC1, TD Transcription regulation TATA-box binding
PSME_18347 MA_8626g0010 1 N phe EXT Transcription regulation Tannin-related R2R3 MYB transcription
PSME_01485 MA_4929994g0010 1 N cold PC1 Transcription regulation AP2 domain transcription factor
PSME_34977 MA_2589g0010 1 N cold DD_0_at Transcription regulation Transcription termination factor
PSME_46703 KHN01498.1 1 N grow TD Transcription, splicing factor SF1 KH Domain-containing protein
PSME_37207 MA_9457778g0010 1 N grow cold phe DD_0_at, TD antioxidative defense peroxidase 5 (PF00141)
PSME_46413 XP_021618646.1 1 N grow phe PAS, TD antioxidative defense peroxidase 4
PSME_40921 MA_629244g0010 1 N grow DD_0_at Biotic stress ABC transporter C family member 14-like
PSME_16294 XP_021726759.1 1 N grow TD Biotic stress, plant-pathogen interaction protein SGT1 homolog
PSME_47942 MA_35233g0010 1 N grow phe TD Salt stress cysteine rich repeat secretory 5 (PF01657)
PSME_32719 XP_020268797.1 1 N grow TD abiotic stress 17.8 kDa class I heat shock protein-like

PSME_47504 ADB97926.1 1 N grow phe DD_0, AHM,
TD cold stress thaumatin-like L2

PSME_33611 XP_010920821.1 1 N grow cold TD biotic stress protein PMR5
PSME_02881 OVA07401.1 1 Y grow phe PC1, TD abiotic stress Leucine-rich repeat
PSME_03186 MA_52212g0010 1 N cold phe PAS stress and calcium signaling Probable calcium-binding CML25
PSME_09147 XP_021984819.1 1 N grow cold phe DD_0_at, TD biotic stress, signal transduction serine/threonine-protein kinase AFC1-like
PSME_32617 XP_011077233.1 1 N grow cold phe PC1, TD biotic stress, signal transduction phosphoenolpyruvate carboxylase kinase 2
PSME_42855 XP_021297375.1 1 N cold PAS, TD biotic stress, signal transduction protein kinase and PP2C-like domain-protein
PSME_08981 XP_020099349.1 1 N grow cold EXT stress, vesicular transport ras-related protein Rab7

PSME_47475 XP_021275390.1 1 Y phe TD stress, signal transduction lanthionine synthetase component C (lanC)-like
protein GCL1

PSME_05154 XP_007218270.1 1 Y grow SHM Biotic stress carboxylesterase 15
PSME_01336 XP_010269100.1 1 N grow phe DD_0_at, TD Biotic stress carboxylesterase 2
PSME_34054 MA_15220g0010 1 Y grow TD Biotic stress Metallothiol transferase
PSME_00292 XP_023900051.1 1 N grow phe DD_0, MSP, TD Ubiquitin mediated proteolisis ubiquitin-40S ribosomal protein S27a
PSME_03290 XP_023547970.1 1 N phe PAS Ubiquitin mediated proteolisis U-box domain-containing protein 26
PSME_02609 XP_016487911.1 1 N grow cold phe Long, TD Ubiquitin mediated proteolisis cullin-1-like
PSME_01721 MA_83109g0010 1 Y grow DD_0 Ubiquitin mediated proteolisis cullin-1 like
PSME_04517 XP_023538234.1 1 N cold phe SHM Ubiquitin mediated proteolisis SKP1-like protein 1B
PSME_37900 MA_10432666g0010 1 Y grow cold TD Ubiquitin mediated proteolisis U11 U12 small nuclear ribonucleo 25 kDa
PSME_15528 XP_010250248.1 1 N cold PC3 Ubiquitin mediated proteolisis ubiquitin carboxyl-terminal hydrolase 22
PSME_02072 XP_024392985.1 1 N grow TD Ubiquitin mediated proteolisis E3 ubiquitin protein ligase RING1-like
PSME_30516 AAX92710.1 1 N grow PAS Ubiquitin mediated proteolisis SCF ubiquitin ligase
PSME_48521 XP_022751818.1 1 N cold TD stress, signal transduction histidine kinase 5-like
PSME_27170 XP_021677291.1 1 N grow phe PAS stress, signalling and cellular processes pollen-specific protein SF21-like isoform X2

PSME_30964 MA_279935g0010 1 N grow DD_0_at, TD Methylation and growth Histone-lysine N-methyltransferase family member
SUVH9
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Table 2. Cont.

Gene NCBI Accession S O Trait Env. Processes/Pathways Functional Annotation

PSME_15751 XP_012079811.1 1 N cold TD Methylation and growth putative methyltransferase DDB_G0268948

PSME_40578 KAF5183317.1 1 N cold Elev Merthylation 23S rRNA (uracil(1939)-C(5))-methyltransferase
RlmD

PSME_32636 XP_021691879.1 1 N grow PC2 translation 50S ribosomal protein L35, chloroplastic-like
PSME_02851 XP_013468200.1 1 N phe PAS, TD translation 60S ribosomal L12-like
PSME_36577 XP_020101722.1 1 N phe MAP translation probable GTP-binding protein OBGM, mitochondrial
PSME_46659 RWR94859.1 1 N cold PAS, TD translation eukaryotic translation initiation factor 5B
PSME_31058 XP_020522223.1 1 N grow MSP, TD DNA replication and repair crossover junction endonuclease MUS81
PSME_01087 XP_004229823.1 1 N grow phe PAS, TD DNA replication and repair AT-hook motif nuclear-localized protein 22
PSME_41853 XP_010277286.1 1 N grow PC1, TD post-translational protein modification PREDICTED: protein S-acyltransferase 11

Variables include: Gene ID in the Douglas-fir genome version Psme v1.0; NCBI accession; Number of SNP markers (S); Results of PCAdapt outlier test (O); GWAS associated traits divided in three categories:
growth and emergence (grow), phenology (phe) and cold hardiness (cold); GEA associated environmental variables; Processes or Pathways, and Functional Annotation. SNPs matching transcripts and genes
with unknown function were not included. Key to environmental variables can be found in Appendix A, Table A2. Accession IDs starting with “MA” can be found at congenie.org. CH = carbohydrate.
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4. Discussion

In agreement with previous studies of natural populations of highly-outcrossing,
widely distributed boreal and temperate conifer species [4,6,9,26,33], we found strong
evidence for cold adaptation despite low population structure and (potentially) high
gene flow. Our Bayesian clustering and PCA analyses revealed very little population
structure within the study area, with gene flow mainly occurring asymmetrically from
northern to southern populations, and from high to low elevations. Steep gradients of
selection are likely balancing large rates of migration (via pollen) to shape steep elevational
clines. These clines are most likely produced by large differences in the frequency of
alleles that are either common (and widespread) or rare (but frequent at high elevations).
Previous studies have shown strong evidence of steep phenotypic and environmental
clines within the coastal variety [17–19,32,56]. Significant divergence in allele frequency
was also found in genome-wide studies comparing high and low elevation populations of
Pinus yunnanensis [57]. In contrast, studies in this and other forest tree species suggested
small to moderate shifts in allele frequency of adaptive alleles [6,58,59], and the presence
of intermediate-frequency polymorphisms characteristic of recurrent selective sweeps [60].
Further studies are required to know whether recurrent selective sweeps, demographic
processes and/or introgression from the interior (mountainous) variety explain the pattern
observed.

Our results highlight the role of both coding and non-coding regions in cold adaptation
of the species. We believe these regions are widely distributed across the genome, however,
in the absence of a high-density linkage map or a chromosome-scale reference genome, our
study could only identify genomic locations at the scaffold-level. We identified multiple
SNPs or genes within the same scaffolds. Due to the highly fragmented nature of the
Douglas-fir reference genome, we assume genes located in the same scaffold have a high
chance of being linked. A widespread genomic location of adaptive genes was also found
in recent GWAS and GEA analyses in Pinus taeda [6,61], Pinus lambertiana [62] and Populus
balsamifera [63].

4.1. Polygenic Basis of Cold Adaptation in Coastal Douglas-fir

Both GWAS and GEA analyses suggested a polygenic basis of cold adaptation, with
many genes associated with cold-related traits and climate adaptation. This is coincident
with recent genome-wide analyses in widespread, outcrossing plant species with large
population sizes such as Zea mays [64], Populus trichocarpa [65], Pinus contorta [66], and
Pinus sylvestris [67]. Trait architecture in coastal Douglas-fir seems to be more complex than
previously suggested, with traits (such as growth, emergence and phenology) controlled
by both large and small effect genes, and others (cold hardiness) mainly controlled by large
numbers of small effect genes. None of the traits was only controlled by major effect genes.
The main differences between univariate and multivariate GWAS results were found in
cold hardiness and trait2. While univariate MLM identified less than a handful of SNPs,
multivariate BSLMM identified 1 or 2 thousand SNPs associated with each trait. Most of
these SNPs had very small effect sizes, and even BSLMM failed to capture them when the
posterior inclusion probability (PIP) threshold increased from 0.01 to 0.05. While the first
results (PIP > 0.01) might overestimate the number of associated SNPs by incorporating
false positives, the second results (PIP > 0.05) fail to capture SNPs of very small effect
significantly increasing the number of false negatives. Another important difference
between univariate and multivariate GWAS results is the percentage of phenotypic variance
explained by SNPs. Individual SNP markers explained from 6 to 24% of the phenotypic
variation for all traits, whereas combined SNP markers explained up to 93% (Table 1,
Supplementary Material Table S2).

Aspects of climate are highly correlated with each other, complicating the interpre-
tation of genome-wide environmental associations. Our GEA analyses identified several
hundreds of SNPs associated with a large number of temperature and precipitation related
variables (Supplementary Material Tables S4–S6), suggesting the study of climate adapta-
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tion requires the analysis of groups instead of individual environmental variables. Previous
studies have identified modular aspects of climate adaptation in species such Pinus con-
torta [68] and Pinus taeda [6]. Multivariate methods identified more SNPs but the difference
between univariate and multivariate GEA methods was more subtle than between GWAS
methods, with hundreds of significant SNPs shared across methods (Figure 2). Univariate
Bayenv and multivariate RDA identified the same 237 significant SNPs, but univariate
MLM only found 6 common significant SNPs with multivariate RDA and 29 with Bayenv
(Figure 2). Pcadapt, the outlier method, identified 383 SNPs in common with other GEA
methods (Figure 2). When comparing the results of all GEA and GWAS methods, 385
SNPs (130 genes and 54 transcripts from unknown genes) were significant in at least one
GEA and one GWAS analysis. These genes indicate a complex genomic architecture of
cold adaptation in the species with many genes involved in many important biological
functions related to growth, phenology and cold hardiness and that strongly depend on
variation in environmental variables such Degree days below 0c, amount of precipitation,
elevation and distance from the coast (TD) (Table 2).

4.2. Trade-Offs between Growth and Cold Hardiness

Trees living in cold environments must balance the timing of growth initiation with
the risk of frost [69]. If a tree initiates growth too early, before the last spring frost, it
risks tissue damage or death. On the other hand, if a tree initiates growth too late, it
loses out on potential growing season and might not be able to compete for light with
nearby trees. This trade-off between growth and cold hardiness have been observed in
several temperate and boreal tree species, including Pseudotsuga menziessii [9,26], Picea
sitchensis [70], Populus trichocarpa [71], Pinus sylvestris [67,72,73], Abies sachalinensis [74],
Acer rubrum, Betula alleghaniensis, Quercus rubra and Juglans nigra [75].

Our results showed the complex relationships between genotypes, growth (DIAM,
HT1, HT2, HTINC), emergence (EMEAN, EMSTD), phenology (BS1, BS2, BB2), cold
hardiness, and environmental variables such as degree days below 0c, precipitation as snow,
and continentality (TD) (Figure 3). The importance of these environmental variables for cold
adaptation was suggested in previous common garden studies in the species [18,19,26,32].
As we move further away from the sea towards the mountains (decreasing longitude and
increasing continentality), the weather gets colder with a higher number of degree days
below 0c, and increased snow precipitation, characteristic of longer winter seasons. Longer
winter seasons bring shorter growing seasons, in which Douglas-fir develops new growth
earlier but also stops growing earlier than their coastal counterparts. As a consequence
of this, general growth (height and diameter) is reduced but cold hardiness is increased
at lower longitudes and higher elevations. For example, 106 SNPs showed associations
with Trait 1 (Table 1), a linear combination of several growth traits. Trait 1 inversely
correlates with longitude, elevation, continentality and winter temperatures suggesting
that higher values of Trait 1 are correlated with higher vigor (faster growth, later budset,
earlier emergence, greater partitioning to shoot vs. root), which is coincident with previous
common garden studies suggesting an association between Trait 1 and lower drought and
cold tolerance [18,32]. Most of the genes associated with both traits and environmental
variables also showed evidence of trade-offs between growth and cold hardiness (Table 2).
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Figure 3. SNPs showing significant associations with cold-related traits and environmental variables in all univariate and 
multivariate GWAS and GEA analyses. (a) SNP seq-rs11849-DF (gene PSME_39361, 1-deoxy-D-xylulose 5-phosphate 
reductoisomerase protein, terpene backbone biosynthesis pathway) is associated with the first canonical trait, BS1, DIAM, 
HT1, HT2, HTINC, RTLG, TOTWT and SHWT; and environmental variables such as continentality, Degree days below 
0c and Precipitation as snow; (b) SNP seq-rs6421-DF (gene PSME_0092, ubiquitin-40S ribosomal protein S27a, Ubiquitin 
mediated proteolisis) is associated with the first and second canonical traits, BS1, DIAM, HT2, HTINC, RTSH; and 
environmental variables such as continentality, Degree days below 0c, Precipitation as snow and Mean Summer 
Precipitation; (c) SNP seq-rs14452-DF (gene PSME_51103, protein CASP isoform X2, transcription regulation) is associated 
with BS1, DIAM, HT1, HT2, HTINC, RTLG, RTSH, RTWT, SHWT, TOTWT, trait1; and several environmental variables 
such as continentality, Degree days below 0c and Latitude.; (d) SNP seq-rs2918-DF (gene PSME_27219, cyclin-dependent 
kinase C-2-like, cell cycle control) is associated with all growth and emergence traits, BB2, BS1 and needle cold hardiness; 
and environmental variables such as continentality, and Degree days below 0c and PC1. Keys to traits and environmental 
variables can be found in Appendix A, Tables A1 and A2. 
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Figure 3. SNPs showing significant associations with cold-related traits and environmental variables in all univariate
and multivariate GWAS and GEA analyses. (a) SNP seq-rs11849-DF (gene PSME_39361, 1-deoxy-D-xylulose 5-phosphate
reductoisomerase protein, terpene backbone biosynthesis pathway) is associated with the first canonical trait, BS1, DIAM,
HT1, HT2, HTINC, RTLG, TOTWT and SHWT; and environmental variables such as continentality, Degree days below 0c and
Precipitation as snow; (b) SNP seq-rs6421-DF (gene PSME_0092, ubiquitin-40S ribosomal protein S27a, Ubiquitin mediated
proteolisis) is associated with the first and second canonical traits, BS1, DIAM, HT2, HTINC, RTSH; and environmental
variables such as continentality, Degree days below 0c, Precipitation as snow and Mean Summer Precipitation; (c) SNP
seq-rs14452-DF (gene PSME_51103, protein CASP isoform X2, transcription regulation) is associated with BS1, DIAM, HT1,
HT2, HTINC, RTLG, RTSH, RTWT, SHWT, TOTWT, trait1; and several environmental variables such as continentality,
Degree days below 0c and Latitude.; (d) SNP seq-rs2918-DF (gene PSME_27219, cyclin-dependent kinase C-2-like, cell
cycle control) is associated with all growth and emergence traits, BB2, BS1 and needle cold hardiness; and environmental
variables such as continentality, and Degree days below 0c and PC1. Keys to traits and environmental variables can be
found in Appendix A, Tables A1 and A2.

4.3. Functional Characterization of Genes Associated with Cold Adaptation

Cold adaptation in forest trees involves significant physiological, cellular, genetic
and morphological changes [9,10]. In our study, we found that genes associated with cold
adaptation affect many important biological processes such as primary (carbohydrate, lipid,
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aminoacid and RNA) metabolism, secondary metabolism (terpenes, steroids, vitamins and
chlorophyll), growth and reproductive development, transcription regulation, stress and
signal transduction, and DNA processes (Table 2). Both carbohydrate and lipid metabolism
are deeply modified during cold stress in temperate and boreal trees. Carbohydrate
metabolism changes include the accumulation of non-reducing disaccharides (sucrose and
raffinose) and the increase in polysaccharide (starch) breakdown, which produces more
energy to compensate for reduced photosynthetic activity during freezing stress. In our
study, we found genes involved in cell wall pectin (gene PSME_35569); starch and sucrose
metabolism (gene PSME_01956); fructose and mannose metabolism (gene PSME_39947);
pentose phosphate pathway (PSME_32494); glycolysis (PSME_39868 and PSME_34754);
sugar transport (PSME_46816 and PSME_47335) and nine other genes involved in similar
processes. Most of these genes were associated with cold hardiness traits (ndlcold and
budcold), and environmental variables such as Continentality (TD) and others (Table 2).
Similar to carbohydrates, membrane lipids adjust their composition to protect cell walls
against dehydration-related freezing injury [10,11,76]. In our study, we only found one gene
involved in the metabolism of glycerophospholipids (PSME_32128), which was correlated
with mean coldest month temperature (MCMT) and trait2 (Table 2). Genes involved in
arginine, proline, β-alanine, cysteine and methionine metabolism were also found in this
study (PSME_23694, PSME_30851 and PSME_40791).

Plant secondary metabolites play an important role in adaptation to changes in the
environment [77]. In our study, we found four SNPs involved in terpenoid biosynthesis
(3 of them matching the same gene PSME_39361). One of those SNPs, seq-rs11849-DF
(1-deoxy-D-xylulose 5-phosphate reductoisomerase) produces a non-synonymous change
and was found to be significantly associated in all five GEA and GWAS analyses. The
homozygote form containing the minor allele (CC) is present at eastern longitudes and
higher elevations (usually > 900 masl) and is associated with slower growth and earlier bud
set (Table 2, Figure 3). Other important genes involved in terpene biosynthesis (specifically
diterpenes) are members of the Cytochrome P450 super gene family [78]. We found
Cytochrome P450 gene PSME_03065, from which the homozygote form containing the
minor allele (GG) is present at higher elevations (usually > 1000 masl) and is associated
with lower values of trait 2 (later bud burst and lower partitioning to diameter vs. height)
and precipitation as snow higher than 400 mm.

Plants employ complex signaling pathways to regulate the expression of defense
and stress genes and other mechanisms that allow resistance to environmental stress [79].
The ubiquitin-proteasome system controls the degradation of most proteins in the cells.
It provides a rapid strategy to control many cellular processes by degrading specific
proteins, playing a critical role in the regulation of many biological processes such as
hormonal signaling, growth, embryogenesis, senescence and environmental stress [80,81].
The initiation of ubiquitination (protein degradation) requires an E1 enzyme joining a
Ubiquitin protein and follows with a three-step conjugation cascade (E1 > E2 > E3) that
detects specific ubiquination signals [81]. Our study identified a strong candidate for that
first ubiquitin protein in the ubiquitination process in Douglas-fir (SNP seq-rs6421-DF,
Gene PSME_00292 ubiquitin-40S ribosomal protein S27a). All univariate and multivariate
methods in this study identified this SNP as significantly associated with several traits
and environments. The homozygote form containing the minor allele (AA) is present at
eastern longitudes and higher elevations (usually > 900 masl) and is associated with earlier
bud set and slower growth (Table 2, Figure 3). Cold stress induces the degradation of
transcription factor ICE1, process that is mediated by a RING-type E3 ligase. In Arabidopsis,
overexpression of HOS1 (RING-type E3 ligase) and AtCHIP (U-box type E3 ligase) led to
reduced cold hardiness [81]. In our study, we have found two U-box genes (PSME_03290
and PSME_37900) and one RING-type E3 gene (PSME_02072) associated with several
growth traits and continentality (TD) in Douglas-fir.

Members of the thaumatin family (“antifreeze proteins”) are upregulated during
cold stress and are potentially regulated by photoperiod in P. sitchensis [11]. In our study,
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we found thaumatin gene PSME_47504, which is associated with several growth traits,
degree-days below 0c and continentality. Peroxidases (such as genes PSME_37207 and
PSME_46413) are upregulated during cold stress to protect against oxidative damage
caused by an increase in reactive oxygen species [11,82]. Members of the ABC super
gene family were found to be key players in defense mechanisms against different herbi-
vores [83,84] and pathogens [61], growth and drought [84] in several forest tree species [85].
In our study, we found that the homozygous of the minor allele (CC) for ABC gene
PSME_40921 was associated with increased root to shoot ratio-RTSH (slower growth); and
usually occurs at mountainous regions (elevation > 1000 masl) with more than 30 chilling
degree-days in autumn.

5. Conclusions and Predictions in the Face of Climate Change

Due to the rapid nature of climate change and the slow nature of plant migrations,
proactive strategies should be employed by forest managers to mitigate potential damages
resulting from the increased frequency of extreme cold and drought events [86]. As
global climate warms at unprecedented rates, species’ distributions are expected to change
exposing populations to new environmental conditions [87]. Climate prediction models
suggest current climate change could reduce the resilience of coastal Douglas-fir on the
warmer margins of its range [21], which will translate in a reduction in fitness and therefore
lower wood productivity. Populations in colder areas might also suffer from an abrupt
growth decline as a consequence of late spring frosts (more common under warming
climates), as previously observed in Canadian populations of Picea mariana [88]. Moreover,
populations of Douglas-fir that are isolated on mountains, especially southern populations
of the intermountain variety, should be of particular interest due to their higher risk of
losing genetic diversity [89]. Our study indicated that these mountainous regions harbor
low-frequency alleles that have very important roles in cold adaptation in coastal Douglas-
fir. As predictions of future climate variation improve, so should our understanding of the
role of phenotypic variation in the potential for adaptation to changing environments.
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Appendix A

Table A1. Key to phenotypic traits. Variables included are: Biological process (Bio Process), Trait abbreviation (Trait ID), full
trait name (Trait description), and units of measurement (Unit).

Bio Process Trait ID Trait Description Unit

Several Trait1 First canonical variate for traits –

Several Trait2 Second canonical variate for traits –

Phenology BB2 Budburst in year 2 days since Jan 1

Phenology BS1 Budset in year 1 days since Jan 1

Phenology BS2 Budset in year 2 days since Jan 1

Growth DIAM Diameter after year 2 mm

Emergence EMEAN Rate of emergence probits/day

Emergence EMSTD Standard deviation of emergence rate probits/day

Emergence FLUSH Propensity to second flush proportion

Emergence FLUSHLG Length of second flush cm

Growth HT1 Height after year 1 cm

Growth HT2 Height after year 2 cm

Growth HTINC Height increment between years 1 & 2 cm

Growth RTLG Root length cm

Growth RTSH Root:shoot ratio g/g

Growth RTWT Root weight g

Growth SHWT Shoot weight g

Growth SDWT Weight of 100 seeds g

Growth TAPER Taper mm/cm

Growth TOTWT Total weight g

Cold hardiness budcold Cold damage of buds %/10

Cold hardiness ndlcold Cold damage of needles %/10

Cold hardiness stmcold Cold damage of stems %/10

Table A2. Key to environmental traits. Variables included are: Variable name abbreviation (Variable ID), full variable name
(Variable name), units of measurements (Unit), and a description of the variable (Variable Description).

Variable ID Variable Name Unit Variable Description

Latitude Latitude degrees From GIS after mapping parents.

Longitude Longitude degrees From GIS after mapping parents.

Elevation Elevation m From DEM after mapping parents.

MAT Mean annual temperature degrees C Mean annual temperature

MWMT Mean warmest month temperature degrees C Mean warmest month temperature

MCMT Mean coldest month temperature degrees C Mean coldest month temperature

TD Temperature difference between MWMT
and MCMT, or continentality degrees C Temperature difference between MWMT and

MCMT, or continentality

MAP Mean annual precipitation mm Mean annual precipitation

MSP May to September precipitation mm May to September precipitation
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Table A2. Cont.

Variable ID Variable Name Unit Variable Description

AHM Annual heat-moisture index (MAT+1-)/(MAP/1000)

SHM Summer heat-moisture index (MWMT)/(MSP/1000)

DD_0 Degree-days below zero days chilling degree-days

DD_0_sp Degree-days below zero in spring days chilling degree-days in spring

DD_0_at Degree-days below zero in autumn days chilling degree-days in autumn

DD5 Degree-days above 5 ◦C degrees C growing degree-days

DD5_sp Degree-days above 5 ◦C in spring degrees C growing degree-days in spring

DD5_at Degree-days above 5 ◦C in autumn degrees C growing degree-days in autumn

NFFD Number of frost-free days days Number of frost-free days

FFP Frost-free period days Frost-free period

bFFP The day of the year FFP begins day of year The day of the year FFP begins

eFFP The day of the year on which FFP ends day of year The day of the year on which FFP ends

PAS Precipitation as snow mm Precipitation as snow

EMT Extreme minimum temperature degrees C Lowest temperature over 30 years

EXT Extreme maximum temperature degrees C Highest temperature over 30 years

Eref Hargreaves reference evaporation mm Hargreaves reference evaporation

CMD Hargreaves climatic moisture deficit mm Hargreaves climatic moisture deficit

PC1 Principal component 1 First principal component of climate variables

PC2 Principal component 2 Second principal component of climate
variables

PC3 Principal component 3 Third principal component of climate variables
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purple (negative correlation coefficient) and teal (positive correlation coefficient) with white representing a correlation
coefficient of zero. No significant correlations are denoted by an “×” in each box. Phenotypes’ IDs can be found in Table A1,
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Figure A5. Results of the Mantel tests. IBD refers to Isolation by distance, and “physical distance” refers to geographic
distance among populations.
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consistent between the two graphs. 

Figure A6. Combined results of all GEA and GWAS analyses. GWAS analyses (“T”) are Mixed Linear
Model (MLM) in purple, and Bayesian Sparse Linear Mixed Model (BSLMM) in blue. GEA analyses
(“E”) are Bayenv in yellow; RDA in dark green and MLM in light green. In the graph on top, BSLMM
PIP threshold for significant SNPs was 0.01, in the graph at the bottom, PIP threshold was 0.05. The
number and identity of shared SNPs among all methods (dark blue) is almost consistent between the
two graphs.
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primarily represents elevation.
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