
Genomic basis of white pine blister rust quantitative disease
resistance and its relationship with qualitative resistance

Matthew Weiss1, Richard A. Sniezko2, Daniela Puiu3, Marc W. Crepeau4, Kristian Stevens4, Steven L. Salzberg3,5,

Charles H. Langley4, David B. Neale6, and Amanda R. De La Torre1*
1School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011,
2Dorena Genetic Resource Center, USDA Forest Service, Cottage-Grove, OR 97424,
3Department of Biomedical Engineering, Computer Science and Biostatistics and Center for Computational Biology, Johns

Hopkins University, 3100 Wyman Park Dr., Wyman Park Building Room S220, Baltimore, MD 21211,
4Department of Evolution and Ecology, University of California-Davis, One Shields Avenue, Davis, CA 95616,
5Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore, MD 21218, and
6Department of Plant Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA

Received 30 April 2020; revised 17 June 2020; accepted 1 July 2020.

*For correspondence (e-mail amanda.de-la-torre@nau.edu).

SUMMARY

The genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance

loci are not well understood in plant species and have been barely studied in long-generation trees. Quanti-

tative trait loci mapping and genome-wide association studies were combined to test a large single nucleo-

tide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust

resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus

linkage map was generated to obtain locations for associated SNPs. Newly discovered associations for

white pine blister rust quantitative disease resistance included 453 SNPs involved in wide biological func-

tions, including genes associated with disease resistance and others involved in morphological and develop-

mental processes. In addition, NBS-LRR pathogen recognition genes were found to be involved in

quantitative disease resistance, suggesting these newly reported genes are qualitative genes with partial

resistance, they are the result of defeated qualitative resistance due to avirulent races, or they have epistatic

effects on qualitative disease resistance genes. This study is a step forward in our understanding of the

complex genomic architecture of quantitative disease resistance in long-generation trees, and constitutes

the first step towards marker-assisted disease resistance breeding in white pine species.
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INTRODUCTION

Plants have evolved sophisticated molecular responses to

defend themselves from a variety of pathogens. Although

pathogens may employ a variety of infection strategies,

common molecular processes have been observed in

immune responses including pathogen recognition, signal

transduction, and defense responses (Corwin and Klieben-

stein, 2017). Recent genomic and molecular methods

employed in model and crop species have allowed a good

understanding of the genes, gene families, and pathways

involved in these processes (Nelson et al., 2018). Most of

this knowledge, however, comes from the study of large-

effect qualitative disease resistance loci involved in patho-

gen recognition, while our understanding of the molecular

mechanisms controlling variation in small-effect quantita-

tive disease resistance loci is still limited in plant species

and almost non-existent in long-generation trees (Poland

et al., 2009; Neale and Kremer, 2011; Kovalchuk et al.,

2013; Corwin and Kliebenstein, 2017; Elfstrand et al., 2020).

Greater attention to the study of disease responses is war-

ranted in long-generation tree species as theoretical work

suggests long-lived plants may (i) have higher levels of

polymorphism and rates of evolution of disease resistance

than short-lived plants (Bruns et al., 2015), (ii) be more reli-

ant on systemic-induced resistance to respond to patho-

gens (Bonello et al., 2006), and (iii) have experienced

expansions in important gene families related to defense

(Hamberger et al., 2011; Porth et al., 2011; Warren et al.,

2015; De La Torre et al., 2020).

Qualitative disease resistance is controlled by a single

major gene (often referred to as resistance gene [R-gene]),

which confers complete or near-complete resistance (often
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referred to as major gene resistance [MGR]), segregates as

simple Mendelian loci producing discrete classes of sus-

ceptible and resistant individuals, and typically encodes

proteins involved in pathogen recognition (Jones and

Dangl, 2006). These large-effect genes are easier to detect

in genome-wide association studies (GWAS) or quantita-

tive trait locus (QTL) mapping; therefore, a body of litera-

ture has accumulated in different, mainly commercial,

plant species (Nelson et al., 2018). In contrast, quantitative

disease resistance is controlled by multiple genes of small

effect which confer partial resistance and produce individu-

als with continuously varying (quantitative) resistance

(Young, 1996; Quesada et al., 2010). As for most complex

traits, dissecting the genomic basis of quantitative disease

resistance has proven to be challenging, and the molecular

mechanisms influencing phenotypic variation are not well

understood (Nelson et al., 2018). Despite these challenges,

a greater knowledge of this type of resistance is valuable

for breeding purposes due to its more stable and durable

nature (McDonald and Linde, 2002; Ayliffe et al., 2008).

Although qualitative and quantitative disease resistance

often have been studied as a dichotomy, some studies

suggested they should be considered as extremes in a con-

tinuum. R-genes with partial quantitative resistance have

been identified as QTLs in some species, suggesting over-

lap and interplay between MGR and quantitative resistance

(Dowkiw and Bastien, 2007; Poland et al., 2009).

Cronartium ribicola, an exotic fungal pathogen causing

white pine blister rust (WPBR), is currently a major threat

to North American five-needle pines (subgenus Strobus)

(Kinloch et al.,1970; Kinloch, 2003; Nesmith et al., 2019).

Individuals impacted by WPBR have shown levels of quali-

tative (MGR), and/or quantitative resistance to the patho-

gen (Sniezko et al., 2008; King et al., 2010; Schoettle et al.,

2014; Sniezko et al., 2014, 2020). MGR produces an hyper-

sensitive response triggering rapid cell death in tissues

surrounding the infection (Kinloch and Littlefield, 1977; St.

Clair, 2010). Four MGR genes have been identified: Cr1 in

sugar pine (Pinus lambertiana), Cr2 in western white pine

(Pinus monticola; Kinloch et al., 1999), Cr3 in southwestern

white pine (Pinus strobiformis; Kinloch and Dupper, 2002),

and Cr4 in limber pine (Pinus flexilis; Schoettle et al.,

2014). However, two avirulent strains of C. ribicola, capable

of overcoming MGR, have been documented in western

white pine and sugar pine (Kinloch et al., 2004). As a result,

breeding programs have focused on assessing quantitative

resistance after inoculating trees with avirulent strains

(Sniezko et al., 2014). Despite the importance of WPBR

quantitative resistance, the genetic basis is largely

unknown. A pathogenesis-related gene in western white

pine, PmCh4B, was found to be associated with quantita-

tive resistance to WPBR through candidate gene-based

association (Liu et al., 2011). However, large-scale genome-

wide analyses are necessary to account for all segregating

variation in quantitative traits and to reduce long breeding

cycles through marker-assisted selection (Neale and Kre-

mer, 2011).

Sugar pine is an economically and ecologically impor-

tant species that is naturally distributed from Baja Califor-

nia (Mexico) to Oregon, with a latitudinal range of

30–43 degrees N, a longitudinal range of 115–124 degrees

W, and an elevational range of 0–3.0 km. It is the only Stro-

bus pine with a published reference genome (Stevens

et al., 2016; Crepeau et al., 2017) and transcriptome (Gon-

zalez-Ibeas et al., 2016), and it also has multiple field site

resources such as progeny trials and a two-generations

full-sib cross designed for QTL mapping (Jermstad et al.,

2011; Vázquez-Lobo et al., 2017). This paper aims to iden-

tify loci associated with WPBR quantitative resistance

through the combination of genome-wide association

studies (GWAS) and QTL and linkage mapping. Our main

questions were the following. (i) What is the genomic

architecture (number of genes, effect sizes, and their geno-

mic locations) of WPBR quantitative resistance? (ii) Are

genes conferring WPBR quantitative resistance mainly

involved in defense or do they show wider biological func-

tions? (iii) Are genomic responses to quantitative and qual-

itative disease resistance extremes along a continuum or

do they represent a dichotomy?

RESULTS

Population structure

FastSTRUCTURE ancestry plots identified three distinctive

genetic clusters distributed along latitude and elevation

(Figure 1). Individuals from the Klamath Mountains and

Northern Sierra (northern California and southern Oregon)

clustered together in cluster 1, whereas individuals from

the central Sierra and Transverse ranges (southern Califor-

nia) were separated in clusters 2 and 3, respectively. Simi-

larly, the principal component analysis (PCA) based on the

single nucleotide polymorphism (SNP) data also showed

three potential clusters (Figure S1).

Genome-wide association study

The GWAS identified 30 SNPs that were significantly asso-

ciated with quantitative disease resistance (percentage of

progeny which had no symptoms or bark reactions after

FDR multiple testing correction P < 0.05; Table S1). Signifi-

cant SNPs were found on 22 different scaffolds with seven

SNPs co-located on the same scaffold number 60 229 (link-

age group 3 at 79.121 cM, valine-glutamine (VQ) gene

PILA_28470 in the sugar pine reference genome v1.5).

Minor allele frequencies for significant SNPs were between

0.051 and 0.493, with an average of 0.1109. Effect sizes for

significant SNPs were between 6.2% and 14.5%, with an

average of 9.3%, and no significant association was found

between effect size and minor allele frequencies
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(Figure S2). Nineteen genes showed evidence of additive

effects, and seven showed departures from additivity due

to dominance effects. Heritability was estimated for quanti-

tative resistance at 0.247. Traits not tested in the GWAS

had heritability estimated at 9.97×10−6 (bark reactions),

2.59×10−4 (no recorded symptoms), 1.00×10−6 (survival),

and 0.272 (normal cankers). Main functional categories

included stress and defense response (VQ motif gene

PILA_28470, no apical meristem [NAM] gene PILA_08207,

microsomal glutathione S-transferase gene PILA_26414,

and ubiquitin PPAR signaling pathway gene PILA_08019);

carbohydrate metabolism (glucan endo-1-3-beta-glucosi-

dase gene PILA_05171, UDP-glycosyltransferase gene

PILA_05211, and phosphoglycerate gene PILA_30234); sec-

ondary metabolism (protochlorophyllide reductase gene

PILA_29041 and serine carboxypeptidase-like gene

PILA_20641), and cell wall organization (pectin biosynthe-

sis ARAD1 exostosin gene PILA_09735).

A total of 27 SNPs (from 17 genes) were identified as

significantly associated with MGR status in parental trees

(Table S2). Of these SNPs, three pairs of SNPs were co-lo-

cated on the same scaffolds. Minor allele frequencies for

these SNPs ranged between 0.051 and 0.284, with an aver-

age of 0.117. Effect sizes for significant SNPs ranged

between 8.3% and 21.4%, with an average of 11.7%. There

was evidence of additive effects for 13 of these SNPs, and

dominance effects for four of them. Main functional cate-

gories of significant SNPs included biotic and abiotic stress

in genes such as PILA_21059, leucine-rich repeat (LRR)

genes PILA_07835 and PILA_16685; cytochrome P450 gene

PILA_01359; glutathione peroxidase gene PILA_31072;

MORC family CW-type zinc finger gene PILA_02308; WRKY

transcription factor gene PILA_30972; and E3 ubiquitin-pro-

tein ligase gene PILA_18319. QQ-plots for both GWAS and

boxplots for individual SNPs for quantitative resistance

were generated (Figure 2).

Linkage map

A consensus map containing 12 linkage groups (LGs) was

generated through anchoring the SNPs of our two linkage

maps (Figure 3, Table S3). The first of these maps con-

tained 3949 SNPs that were co-located in 2012 unique loca-

tions, whereas the second map contained 4755 SNPs co-

located in 2318 unique locations. We found 8159 SNPs that

were heterozygous in both parents and retained 2075 after

filtering for anchoring our linkage maps. The root mean

squared error between maps had a maximum of 5.75 (LG

5) and a minimum of 1.16 (LG 1), with an average RMSE of

3.93 across all linkage groups. The consensus map con-

tained 8702 SNPs in 5527 unique loci. SNPs were grouped

into 12 linkage groups, with an average of 460.6 SNPs per

linkage group, covering an average distance of 161.9 cM

per linkage group. The total map length was 1943.1 cM

(Table 1).

QTL mapping

QTLs associated with quantitative disease resistance (bark

reactions or symptom-free) were found in five regions of

four linkage groups (Figure 3, Table S4). Our first pseu-

dobackcross identified two QTLs on LG 5 and a single QTL

each on LGs 7 and 12. An additional QTL on LG 4 was

identified by our second pseudobackcross. These regions

of significant LOD contained 423 SNPs which lie within the

identified QTL. Of these, 175 SNPs were located in coding

Figure 1. Population structure based on fastSTRUCTURE results. (a) Geo-

graphic map showing genetic clusters in natural populations of sugar pine.

(b) Genetic clusters along elevational gradients. (c) Barplot of ancestry

levels per individual, as obtained by fastSTRUCTURE. Colors represent

genetic clusters.

Figure 2. Boxplots for selected SNPs identified as associated with quantita-

tive resistance in our GWAS. (a) AX-175424575 is associated with a gene

involved in the stress response and protein binding. (b) AX-175396436 is

associated with a gene with annotations relating to glycotransferase. (c)

AX-175742896 is associated with a gene with peptidase activity. (d,e) QQ-

plots for (d) parental major gene presence and (e) quantitative resistance.

© 2020 Society for Experimental Biology and John Wiley & Sons Ltd,
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regions of the sugar pine genome. Gene ontology analysis

indicated biological processes involved in defense

responses such as the response to oxidative stress, as well

as cellular components involved in the cell wall. Ontolo-

gies also indicated processes which are not directly

involved in defense, such as metabolic processes, signal

transduction, and developmental processes. Defense

response-related gene families identified in this analysis

were zf-C3HC4 (PILA_08798), guanine nucleotide-binding

protein (PILA_15748), mitogen-activated protein kinase

(PILA_16422), and FA desaturase 2, which was also identi-

fied to be involved in the oxidative stress response

(PILA_14905). Other gene families identified related to

oxidative stress were the thioredoxin family (PILA_16337),

the zf_PARP family (PILA_16990), and the SMART (COIL)

family (PILA_26986). Gene families involved in cellular

components of the cell wall were also observed.

QTL mapping analysis identified 12 SNPs from genes

involved in NBS-LRR disease resistance distributed across

three regions of the sugar pine genome. The first region

contained two SNPs (PILA_30024 gene, super scaffold

5997) at position 59.81 cM of LG 7. Five SNPs (PILA_09968

gene, scaffold 47917) and one SNP (PILA_06586 gene,

super scaffold 3789) were found on LG 12 at 66.08 and

68.89 cM, respectively. A group of three NBS-LRR-related

genes (PILA_25059 scaffold 62717; PILA_23861 scaffold

100032; and PILA 28990 scaffold 60793) was found on LG 5

between 40.60 and 43.75 cM. In addition, PILA_24437 scaf-

fold 420245 was found at 89.18 cM and PILA_04003 scaf-

fold 72706 was found at 94.01 cM in LG 4 (Figure 3).

Gene enrichment analysis

The Biological Networks Gene Ontology (BiNGO) gene

enrichment analysis of WPBR-associated sugar pine genes

did not yield any significantly enriched ontologies after P-

value correction for multiple testing.

Correlations between phenotype and environment

No significant correlation was observed between the pres-

ence/absence of MGR in parental trees and environmental

variables. Significant correlations were found between par-

ental tree mortality and latitude, longitude, mean annual

precipitation, mean summer precipitation, annual heat

moisture index, mean annual radiation, and extreme maxi-

mum temperature (Figure S3). The percentage of progeny

with bark reactions and the percentage of progeny with no

symptoms or bark reactions were both correlated to the

mean annual radiation in the environment of parental trees

(Figure S3). No significant correlation between latitude and

quantitative disease resistance was found in the dataset

(Figure S4).

DISCUSSION

Genomic architecture of WPBR quantitative disease

resistance

This study found a largely polygenic basis of quantitative

disease resistance, with hundreds of genes of mostly addi-

tive gene action and small effect sizes, conferring resis-

tance to WPBR. This is coincident (i) with previous studies

in other plant–fungus pathosystems in maize (Zea mays),

soybean (Glycine max), and Arabidopsis (Arabidopsis thali-

ana) (reviewed in Corwin and Kliebenstein, 2017) and (ii)

with expectations for highly polygenic complex traits in

conifers (Neale and Wheeler, 2019). Both QTL mapping

and GWAS analyses suggested a widespread genomic dis-

tribution of significant SNPs, with QTLs located in 9 of the

12 linkage groups. In the absence of a chromosome-scale

Figure 3. Consensus linkage map for sugar pine showing 12 linkage groups

and results of the QTL analysis. (a,b) LOD scores (black lines) for (a) back-

cross 1 and (b) backcross 2. The horizontal red line represents a 95% signifi-

cance threshold for each test generated by randomly shuffling trait values

relative to genetic information for 1000 permutations. The threshold is

determined by the most extreme 5% of LOD scores generated by these per-

mutations.

Table 1 Summary of the consensus linkage map showing the
length in centimorgans (cM), number of SNP markers, and root
mean squared error (RMSE) for each of the 12 linkage groups
(LGs) in sugar pine

LG

Consensus map

Length SNPs RMSE

1 155.315 513 1.16
2 136.744 535 1.46
3 173.587 508 6.93
4 154.586 360 2.45
5 195.015 590 5.75
6 155.936 415 3.46
7 180.841 377 4.79
8 163.972 514 2.25
9 164.901 383 5.27
10 158.648 470 5.34
11 147.580 393 4.11
12 155.991 469 4.26
Total 1943.116 5527
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reference genome for sugar pine, this is the best represen-

tation of the WPBR genomic architecture available to date.

Clusters of significant SNPs were found in the QTL analysis

but not in the GWAS analysis, as expected for highly

outcrossing, long-generation species with large population

sizes in which linkage disequilibrium decays rapidly in nat-

ural populations but slowly in mapping (controlled cross)

populations. Recent genome-wide studies in long-genera-

tion trees have found that rare alleles play an important

role in explaining phenotypic variance in complex traits

(De La Torre et al., 2019; Piot et al., 2020). In our study, we

also found evidence of a significant but low correlation

between minor allele frequencies and effect sizes (Fig-

ure S2).

Quantitative disease resistance relies on a variety of

mechanisms and gene families

Our study identified several gene families; some of them

were MGR-related gene families previously identified in

other white pines (such as LRRs), some were implicated in

other forms of disease resistance, and others were not

directly implicated in disease or defense responses. Collec-

tively, these gene families indicated a breadth of mecha-

nisms for the quantitative response of sugar pine to

WPBR. These mechanisms include stress and defense

responses such as pathogen detection, necrosis of infected

cells, ubiquitin-dependent protein catalysis, the response

to oxidative stress, and immune effector processes. Other

related mechanisms involved cell wall and cell membrane

processes; developmental processes involved in reproduc-

tion and regionalization; carbohydrate, lipid, phosphorus,

DNA, and secondary metabolism; and signal transduction

and regulation of translation (Tables S1 and S4).

Other significantly associated genes were not primarily

involved in plant defense. NAM genes PILA_08207 and

PILA_30970 were identified in both the QTL mapping and

the GWAS. NAM genes are involved in floral development

and are overexpressed in the boundaries between plant

organs (Aida and Tasaka, 2006; Cheng et al., 2012), but

have also been shown to be involved in biotic and abiotic

stress responses (Tweneboah and Oh, 2017). This dual

function may underlie previous findings indicating strong

correlations between plant flowering time and disease

resistance (Collins et al., 1999). Furthermore, expression

data from Norway spruce (Picea abies), showed

MA_10002g002 (a PILA_30970 ortholog) was overexpressed

in both tissues related to apical growth (vegetative shoots

and early season buds) as well as tissues responding to

pests or pathogens (adelgid-infected needles) (Conge-

nie.org; Nystedt et al., 2013). Genes regulating morphologi-

cal and developmental traits have been hypothesized to

confer quantitative disease resistance in species such as

maize (Thompson and Bergquist, 1984; Bian et al., 2014),

clover (Trifolium) (Bradley et al., 2003), and rice (Oryza

sativa) (Albar et al., 1998). These findings further support

this hypothesis and demonstrate the diverse mechanisms

underlying quantitative resistance in sugar pine.

A large group of genes not directly involved in defense

were identified as being involved in abiotic stress, with 15

of these genes identified by the QTL mapping and one iden-

tified in the GWAS. These genes were from a diverse group

of families, including the PARP, NBS-LRR, thioredoxin, and

heat shock protein (HSP)70 families. HSPs function by chap-

eroning other proteins to maintain their proper configura-

tion (Lee et al., 2012). HSPs have been identified as

important chaperones for NBS-LRR gene family members

directly involved in disease resistance (Elmore et al., 2011),

and an HSP70 family member in tobacco (Nicotiana taba-

cum) has been identified as necessary for the hypersensi-

tive response (Kanzaki et al., 2003). Additionally, members

of gene families which are primarily known for their involve-

ment in disease resistance such as the NBS-LRR gene family

and WRKY can also be involved in abiotic resistance. WRKY

genes in Arabidopsis have been proposed as flexible tran-

scription factors that play a role in both plant defense and

abiotic stress. In rice, a single WRKY gene decreases resis-

tance to rice blast while increasing cold tolerance when

overexpressed. In addition to their functions in disease

resistance, some NBS-LRR genes have been proposed to

act as anti-freeze proteins, which confer additional cold tol-

erance (Muthukumaran et al., 2011). Overall, the numerous

genes involved in both quantitative defense and abiotic

stress indicate a potential for cross-talk in WPBR, although

more research studies are needed to draw a conclusion.

Are genomic responses to quantitative and qualitative

disease resistance extremes along a continuum or do they

represent a dichotomy?

Although qualitative and quantitative disease resistance

have mostly been studied as separate mechanisms, some

studies suggested they might only be two ends of a contin-

uum that vary from complete to partial resistance con-

ferred by R-genes (Poland et al., 2009; Nelson et al., 2018).

The reasoning behind this is that allelic variants of R-genes

have been associated with quantitative resistance and have

been found to be co-located with R-genes in species such

as rice (Wang et al., 1994), maize (Xiao et al., 2007), and

potato (Solanum tuberosum) (Gebhardt and Valkonen,

2001). In our study, we found a number of genes that

belong to the same LRR gene family and are in close prox-

imity (and likely in linkage disequilibrium) with previously

discovered Cr1 alleles for MGR, but show partial quantita-

tive resistance to WPBR. Potential explanations for this are

the following: The newly reported genes are R-genes with

partial resistance; they are the result of defeated MGR due

to avirulent races; or they have epistatic effects on MGR.

The NBS-LRR gene family is widely implicated in qualita-

tive disease response across a broad taxonomic scope for

© 2020 Society for Experimental Biology and John Wiley & Sons Ltd,
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both hosts and pathogens, with evidence for conferring

resistance to viral pathogens in potato (Boris et al., 2012),

bacteria in both rice and Arabidopsis (Xu et al., 2018), and

fungus in white pine species (Liu and Ekramoddoullah,

2007; Sniezko et al., 2014; Liu et al., 2017). The action of

these genes is part of the first step of a plant immune sys-

tem response that is triggered when a host perceives dam-

age-associated molecular patterns as a consequence of a

recent pathogen infection (Flor, 1971; Corwin and Klieben-

stein, 2017).

This study identified 14 SNPs in genes involved in NBS-

LRR quantitative disease resistance distributed across four

regions of the sugar pine genome, including LGs 4, 5, 7,

and 12 (Table 2). Although we could not map our LRR

MGR-associated SNPs, our results suggest that previously

identified scaffolds genetically or physically linked to Cr1

(Stevens et al., 2016) map to two of the same LGs 5 and 7

(Table S5). All of the associated LRR SNPs have low effect

sizes, which is consistent with quantitative resistance but

may also suggest partial MGR resistance.

An alternative explanation is that the involvement of LRR

genes in quantitative resistance is a result of defeated MGR

due to avirulent races. Although R-genes are believed to be

maintained by strong selection, pathogen evolution may

reduce the strength and effectiveness of R-genes, converting

them in quantitative resistance genes (Poland et al., 2009).

This pattern of ‘defeated’ MGR has been observed in poplar

(Populus) (Dowkiw and Bastien, 2007), rice (Li et al., 1999),

and wheat (Triticum) (Nass et al., 1981; Brodny, 1986). In our

study, our samples came from populations exposed to a vcr1

strain of C. ribicola which had overcome MGR in sugar pine;

therefore, this hypothesis of ‘defeated’ MGR as a cause for

LRR quantitative resistance cannot be excluded.

Finally, LRR quantitative resistance genes may have

epistatic effects on the MGR response to WPBR. This is

supported by previous mapping studies in other plant

species in which major-effect qualitative disease resis-

tance genes were found to be associated with small-

effect quantitative resistance genes that epistatically

affected the major-effect locus (Debener et al., 1991; Mar-

tin et al., 1993; Moscou et al., 2011). In the barley-stem

rust pathosystem, quantitative disease resistance loci

modulate the transcriptome to shape the pathogen

recognition response of qualitative disease resistance loci

(Druka et al., 2008; Moscou et al., 2011). Epistatic effects

from other gene families are also expected on MGR

since the strength of MGR in plants has previously been

shown to be affected by other loci (Hu et al., 1997;

Poland et al., 2009), and genes involved in molecular

processes which are upstream and downstream of hyper-

sensitive responses may modify disease resistance (Bel-

khadir et al., 2004).

Our study found other non-LRR genes with potential epi-

static effects on the MGR response to WPBR in sugar pine.

Associations with MGR were identified in loci scattered

across 6 out of 12 linkage groups. They include a member

of the MORC gene family located on LG 9. MORC genes

are known to be involved in multiple mechanisms of plant

defense, ranging from pathogen recognition to pro-

grammed cell death, in other plants (Lu et al., 2017). Both

cell death and pathogen recognition are known to be

important characteristics of the hypersensitive response

induced by the Cr1 gene in sugar pine (Kinloch and Little-

field, 1977; Kinloch et al., 1999). Additionally, a MORC gene

identified in Arabidopsis (AtMORC1) is a component of the

hypersensitive response associated with LRR genes in the

species. Another gene in this linkage group, encoding an

E3 ubiquitin (PILA_18319), is also shown to be required for

hypersensitive responses in Arabidopsis and rice (Zeng

et al., 2004; Yang et al., 2006). Also of interest is a

Table 2 GWAS and QTL mapping results showing LRR genes involved in both quantitative resistance and MGR responses in sugar pine

Analysis Resistance Marker Scaffold Gene LG PFAM domain

GWAS MGR AX-175441014 scaffold589011 PILA_07835 NA NB-ARC, LRR_1, RPW8, NACHT
GWAS MGR AX-175545318 super2806 PILA_16685 NA LRR_1, Pkinase_Tyr, Pkinase, LRRNT_2
QTL mapping Quantitative AX-175540379 scaffold420245 PILA_24437 4 LRR_2
QTL mapping Quantitative AX-175585823 scaffold72706 PILA_04003 4 NB-ARC, TIR, LRR_1, NACHT, Arch_ATPase, LRR_3
QTL mapping Quantitative seq-rs55884-SP scaffold60793 PILA_28990 5 F-box, LRR_1
QTL mapping Quantitative seq-rs56868-SP scaffold62717 PILA_25059 5 LRR_1, Pkinase_Tyr, Pkinase, LRRNT_2
QTL mapping Quantitative AX-175449157 scaffold100032 PILA_23861 5 LRR_1, NB-ARC, TIR, LRR_3, NACHT
QTL mapping Quantitative AX-175681833 super5997 PILA_30024 7 TIR, NB-ARC, LRR_1, DUF1863
QTL mapping Quantitative AX-175719692 super5997 PILA_30024 7 TIR, NB-ARC, LRR_1, DUF1863
QTL mapping Quantitative AX-175472959 super3789 PILA_06586 12 LRR_1, Pkinase_Tyr, LRRNT_2, Pkinase
QTL mapping Quantitative AX-175611159 scaffold47917 PILA_09968 12 NB-ARC, TIR, LRR_1, NACHT, Arch_ATPase, LRR_3
QTL mapping Quantitative AX-175668639 scaffold47917 PILA_09968 12 NB-ARC, TIR, LRR_1, NACHT, Arch_ATPase, LRR_3
QTL mapping Quantitative AX-175925756 scaffold47917 PILA_09968 12 NB-ARC, TIR, LRR_1, NACHT, Arch_ATPase, LRR_3
QTL mapping Quantitative AX-175948941 scaffold47917 PILA_09968 12 NB-ARC, TIR, LRR_1, NACHT, Arch_ATPase, LRR_3
QTL mapping Quantitative seq-rs37720-SP scaffold47917 PILA_09968 12 NB-ARC, TIR, LRR_1, NACHT, Arch_ATPase, LRR_3
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glutathione peroxidase gene (PILA_21059) identified in LG

6. These genes are mainly involved in reducing oxidative

stress (Mittler et al., 2004). Hypersensitive responses in

plants involve reactive oxidative bursts which signal the

production of cellular protectants such as glutathione per-

oxidase in nearby cells (Tenhaken et al., 1995). Perhaps the

most relevant gene detected by this analysis (PILA_30972)

encodes a WRKY transcription factor. Chimeric proteins

containing both NBS-LRR and WRKY domains have been

shown to act as dual resistance genes in Arabidopsis, pro-

viding defense from multiple pathogens (Narusaka et al.,

2009). Some NBS-LRR genes hypothesized to be involved

in direct pathogen detection contain their own WRKY

domains (DeYoung and Innes, 2006), further supporting

this family’s role in regulating defense response of resis-

tance genes.

Combining disease symptoms for GWAS leads to a higher

heritability of quantitative resistance traits

Quantitative disease resistance is believed to involve mul-

tiple different mechanisms which may exhibit different

symptoms as they respond to the disease (Kolpak et al.,

2013). Furthermore, despite the continuous nature of

inheritance of quantitative resistance, variation in quanti-

tative resistance occurs in the presence or absence of vari-

ous stem, bark, and needle symptoms (Liu et al., 2013).

To account for this, past studies have used a 0–9 severity

index based on combinations of these symptoms when

measuring infection to WPBR. When measured using this

severity index, trees from our common garden were

highly bimodal. To address this bimodal distribution and

ensure that symptoms were biologically related to resis-

tance, we previously created a new scoring system in

which trees with symptoms that were associated with

higher survival (symptom-free and bark reactions) were

classified as resistant, and trees with any other symptoms

were classified as susceptible. Trees in this study were

considered resistant if they had bark reactions or were

entirely free of symptoms. Bark reactions have previously

been associated with higher survival in Strobus pines

exposed to C. ribicola in Pinus monticola and Pinus lam-

bertiana (Sniezko et al., 2014). An unknown quantity of

symptom-free trees may have escaped exposure. As such,

their resistance would not be effectively determined by

our measurements. Numerous trees recorded as clean in

our 2016 QTL field trial were recorded as having disease

symptoms in 2009, demonstrating that trees recorded as

symptom-free may have simply recovered completely

from previous symptoms. Combining these two traits was

further supported by the higher heritability estimates for

bark reactions and being symptom-free when measured

together (0.247) than for either being symptom-free

(2.59×10−4) or having bark reactions (9.97×10−6) when

measured independently.

This study is a step forward in our understanding of the

complex genomic architecture of quantitative disease

resistance in the WPBR pathosystem. The new discovery

of hundreds of genes of small effects involved in defense

and other functions is a significant contribution towards

marker-assisted breeding for disease resistance in sugar

pine and other white pine species.

EXPERIMENTAL PROCEDURES

Sample collection and DNA extraction for whole-genome

re-sequencing

Seeds from ten individuals spanning sugar pine’s natural distribu-
tion with the exception of Baja California were collected for geno-
mic analysis. Prior to extraction, seeds were soaked in water at
room temperature for 4 days, and haploid megagametophytes
were dissected from each seed. DNA was extracted with a Qiagen
DNeasy mini-prep Plant kit (Qiagen, Hilden, Germany) and DNA
quality and concentration were evaluated using picogreen on a
Qubit Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).
Illumina’s TruSeq Nano DNA Library Prep Kit (Illumina Inc, San
Diego, CA, USA) was used to construct libraries for sequencing.
Steps prior to amplification included DNA fragmentation (200 ng
starting material and 550 bp target insert size), followed by end
repair and size selection of fragments, adenylation of 30 ends, and
ligation of adapters. PCR enrichment was performed in eight
cycles. Barcoded libraries were combined into normalized pools
and sequenced to greater than 10-fold coverage on an Illumina
HiSeq 3000 using 150 bp paired-end reads at the University of Cal-
ifornia Davis Genome Center.

SNP calling

Raw reads from whole-genome re-sequencing data of 10 sugar
pine individuals were aligned to the 34 GB sugar pine reference
genome version 1.0 (Stevens et al., 2016) using Bowtie2 v2.2.9
(Langmead and Salzberg, 2012). SNP calling was done using
SAMtools v1.3.1, followed by BEDtools v2.25.0 and BCFtools
v1.3.1 (Li et al., 2009; Li and Barrett, 2011) using default parame-
ters. A total of 715.9 million SNPs were called. Filtering criteria
included the removal of SNPs with a quality <20, depth of cover-
age <8, mapping quality = 0, and indels. All SNPs were given a
score based on the sum of 16mer frequency sums of the 30 bp for-
ward or reverse adjacent to the SNP. When the score was higher
than 300, SNPs were discarded. Only SNPs present in scaffolds of
1 kb or larger were called. Selected SNPs were later re-mapped to
reference genome version 1.5 (Crepeau et al., 2017; https://tree
genesdb.org/FTP/Genomes/Pila/v1.5).

Sample collection and DNA extraction for genotyping

Seeds from populations spanning the species’ natural geographic
range were collected from the Placerville gene bank in California.
In addition, needles were collected from a previously established
two-generation full-sib cross in Happy Camp, northern California.
Prior to extraction, seeds were soaked in water and 30% hydrogen
peroxide (3%) overnight. Eight to ten megagametophyte haploid
tissues for each family were pooled together to infer the maternal
genotype. DNA was extracted from needles and megagameto-
phytes using the Qiagen DNeasy mini-prep Plant kit and an
Eppendorf automated pipetting workstation. The extraction proto-
col included 1 day of tissue lysis and incubation at 96°C, followed
by several steps of precipitation and filtering. DNA quality and
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concentration were assessed using nanopore and picogreen on a
Qubit Fluorometer, respectively.

SNP genotyping and filtering

Samples were genotyped using two SNP arrays, a 600 k Affyme-
trix (Thermo Fisher Scientific) SNP array and a custom-based mul-
ti-species Illumina Infinium SNP array comprising 80 k SNP
markers from which 20 k were designed for Douglas fir and 60 k
for sugar pine. Genome Studio 2.0.4 (Illumina, 2015) was used to
call genotypes, filter, and generate genotyping statistics for all
samples and SNPs from the Illumina SNP array. Genotype calling
and SNP filtering for the Affymetrix SNP array was done with
Axiom Analysis Suite (Version3.1.51.0 Applied Biosystems,
Thermo Fisher Scientific). Individuals were discarded from the
Affymetrix analysis which had Dish QC < 0.82 and QC call rate <
86.2. Individuals from the Illumina array were discarded if they
had a GenCall threshold < 0.15 and a call rate < 0.7 for the GWAS
analysis or < 0.8 for the QTL mapping. SNPs from the Affymetrix
analysis that were of conversion types other than NoMinorHom
(genotyping data above thresholds and only two clusters
observed) and PolyHighRes (genotyping data above thresholds
with polymorphic SNPs) were discarded. These SNPs were further
filtered with call rates ≤ 0.01 removed from further analysis. Illu-
mina data were filtered to discard SNPs with Cluster Separation ≤
0.1 and call frequency ≤ 0.8 for the GWAS analysis or ≤ 0.7 for the
QTL mapping. The combined SNP arrays from both platforms
resulted in 1015 individuals with 125 236 SNPs for the GWAS anal-
ysis, and 616 individuals (614 progeny and two parents) with
88 200 SNPs for QTL mapping and linkage map construction. The
distribution of minor allele frequencies for all SNPs can be found
in Figure S5.

Population structure

Population structure was determined using PCA with the Ade-
genet R package (Jombart, 2008). Individuals in the PCA were
clustered using a k-means clustering algorithm in the R package
factoextra (1–10 clusters with 100 bootstraps). The optimal num-
ber of clusters was selected using the silhouette algorithm in the
same R package. A Bayesian cluster analysis using fastSTRUC-
TURE (Raj et al., 2014) was also conducted using 10 independent
runs of K = 2–10. Each run used 80–90 iterations, with an average
of 88 iterations per run. The optimal value of K, representing the
number of genetic lineages, was selected using the program
chooseK.py (Raj et al., 2014). Ten replicates of each cluster analy-
sis were aligned and visualized using CLUMPP (Jakobsson and
Rosenberg, 2007). Input files for both Adegenet and fastSTRUC-
TURE were created using Plink v 1.07 (Purcell et al., 2007).

Phenotypic data from common gardens

Phenotypic data were obtained from two previously established
common gardens maintained by the US Forest Service, and
located at the Happy Camp Outplant Site, northern California. In
both common gardens the secondary host for the pathogen, Ribes
spp., was grown between rows to ensure inoculation of study
trees. Since all trees in the study were exposed to a virulent strain
of C. ribicola (vcr1) which overcomes MGR, any WPBR resistance
seen in the trial can be assumed to be quantitative. Trees grown
in the common gardens were assessed for disease phenotypes
based on the presence of the following symptoms: normal active
cankers, normal active blights, normal bark reaction, blights, bark
reactions, no disease symptoms (clean). Survival and cause of
death was also assessed, and were used to create a combined cat-
egory for progeny that had died from rust.

In the first common garden, full-sib progeny from putatively
resistant parent trees from throughout the species’ natural range
were screened for the presence of MGR and later grown and eval-
uated for qualitative resistance, vigor, and survival. These progeny
trees were planted in a randomized complete block design
between years 1986 and 2003 with measurements taken between
years 1994 and 2010. In the second common garden, a two-gener-
ation full-sib controlled cross between two individuals
(5038 × 5500) whose offspring had previously exhibited a high
level of quantitative resistance was established in June 2000
(Jermstad et al., 2011). Phenotypes and genotypes were obtained
for 614 individuals in this common garden as well as genotype
information for both parents. The maternal parent (5038) was the
same individual used to generate the sugar pine reference gen-
ome (Stevens et al., 2016; Crepeau et al., 2017). Due to the Men-
delian inheritance of Cr1, progeny testing gave accurate
information about the genotype of the parent trees growing in
natural populations. We used 955 of these parent trees’ genotypes
(RR, Rr, rr) for association mapping (see below).

Genome-wide association study

In this study, two different GWAS were performed. In the first
one, parental trees that had more than 10 progeny alive at the
time of measurement or had progeny older than 5 years were
selected for analyses resulting in a total of 280 trees with com-
bined phenotypic and genotypic data. Parental trees were
assessed for disease resistance based on the symptoms observed
in their progeny grown in a common garden. Progeny trees that
were symptom-free or had bark reactions were classified as resis-
tant. Bark reactions, unlike other WPBR symptoms, are associated
with increased survival in white pines. Principal components with
highest eigenvalues (Figure S1) were used to account for popula-
tion structure. A kinship matrix was used to account for related-
ness. Both principal components and kinship were incorporated
as co-variates in the following mixed linear model:

y2 ¼XβþZuþe

where genotype data, kinship, and population structure are fixed
effects represented by β, random additive effects are represented
by u, and residuals are represented by e.

In the second GWAS, parental trees’ presence/absence of MGR
were treated as a binary trait. Homozygous or heterozygous indi-
viduals having MGR were recorded as resistant, and those that
lacked any MGR alleles were recorded as susceptible. This
included 955 trees with both MGR and genotypic information. Her-
itability was estimated for each trait using genetic and residual
variance calculated in TASSEL. Additive effects, dominant effects,
and effect sizes (proportion of phenotypic variance explained by
the SNP marker) were also calculated in TASSEL.

Linkage map construction

Linkage maps were developed from SNPs sequenced in individu-
als from a two-generations controlled cross (see above). Before
mapping, two pseudobackcrosses were generated by selecting
SNPs segregating as homozygous for one parent and heterozy-
gous for the other. SNPs were examined for phase changes and
filtered in ASMap v.0.4 (Taylor and Butler, 2017) and R/qtl (Bro-
man et al., 2003) R packages. Initial maps were constructed with
ASMap (Taylor and Butler, 2017) using the MSTmap function with
the Kosambi distance function and a P-value threshold of 1×10−6.
Pairwise estimations of logarithm of the odds (LOD), obtained
from a test of linkage disequilibrium, and pairwise recombination
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(r) were obtained for each SNP pair. Co-located SNPs (r = 0) were
placed in the same bins with ASMap.

A consensusmap (in this case, the same as the sex-averagedmap)
was created by merging the maps from the two parental backcrosses
described above. Co-located SNPs from backcrosses were placed
into bins containing 3047 and 3353 loci, respectively, in order to
reduce loci for mapping to those representing unique locations.
Additional SNPs segregating as heterozygous for both parents were
filtered to exclude SNPs that deviated significantly from Hardy–Wein-
berg equilibrium (P < 0.05) or had more than 3%missing data. These
SNPs were mapped together with SNPs from ASMap in Joinmap V.5
(Van Ooijen, 2018) to serve as anchors for an averaged sex map.
Before mapping with Joinmap, SNPs were filtered to exclude SNPs
with LOD scores higher than 1 and SNPs with a locus genotyping fre-
quency > 0.01. The two maps for each of 12 linkage groups were
merged to create averaged sexmaps in LPmerge (Endelman and Plo-
mion, 2014). The package was used to generate 10 consensus maps
for each of the 12 linkage groups, each with a different maximum
interval ranging from 1 to 10. Consensus maps for each linkage
group were selected by choosing the maximum interval which
resulted in the lowest average root mean squared error. The final
consensus map was plotted with Circos v0.69-5 (Krzywinski et al.,
2009). Linkage groups for SNPs which were found to be significant in
the GWAS but which did not segregate in the linkage map were
determined by matching scaffold information between GWAS SNPs
and SNPs used in the consensus map.

QTL mapping

WPBR quantitative resistance was also evaluated using QTL
mapping. As in the GWAS analysis, individuals that were symp-
tom-free or only had bark reactions were classified as resistant.
Resistance status was then used as a binary trait for interval map-
ping in R/qtl (Broman et al., 2003). The expectation-maximization
algorithm was used for mapping. A permutation test (n = 1000)
was run for each model to determine a 5% significance level for
LOD scores. Functional annotations for each gene associated with
a significant SNP were obtained from the PILA.1_5.functionalanno-
tations.tsv file at the TreeGenes database (treegenesdb.org) (Baker
et al., 2018; Falk et al., 2018; Wegrzyn et al., 2019). Annotations for
SNPs represented by coding sequences were taken from the refer-
ence sugar pine genome V1.5, file CDS.FA from the TreeGenes
database (Baker et al., 2018; Falk et al., 2018; Wegrzyn et al., 2019).

Gene enrichment analysis

A gene enrichment analysis was performed using a hypergeomet-
ric test in BiNGO v.3.0.3 (Maere et al., 2005). This analysis was
performed separately for a set of genes identified by the GWAS
for parental MGR status, and for a combined set of all genes iden-
tified from both the GWAS and QTL for quantitative disease resis-
tance. Gene ontology terms were considered enriched if P-values
were lower 0.05 after FDR correction.

Phenotype by environment correlations

Correlations between the natural environment of parental trees
(included in the GWAS study) and disease traits for parents and
offspring were examined. Latitude, longitude, and 22 environmen-
tal variables obtained from ClimateWNA (Wang et al., 2016) were
examined for correlations with parental tree mortality, presence/
absence of MGR in parental trees, the percentage of progeny that
had bark reactions, and the percentage of progeny with bark reac-
tions or no symptoms. Correlations between these variables and
heatmaps were done in R (version 3.6.1).
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Figure S1. Population structure based on PCA results. (a) PCA of
SNP data with PC1 and PC2 represented by the X and Y axes.
Clusters are differentiated by color. (b) Geographic location of
genetic clusters across the species’ distribution range. (c) The
number of clusters was selected using the silhouette algorithm in
the R package factoextra testing 1–10 clusters with 100 bootstraps.
The silhouette algorithm suggested three distinct clusters for our
PCA. (d) The first five principal components explain most of the
variation in the dataset.

Figure S2. Minor allele frequency versus effect size for all SNPs in
this study.

Figure S3. Heatmap of correlations between phenotypes and envi-
ronment. Color legend specifies whether correlation was positive
or positive. Rows marked with “X” denote non-significant
(P < 0.05) correlations.

Figure S4. Correlation between WPBR quantitative resistance and
genetic clusters identified in Figure 1. Ancestry correlates with lati-
tude and elevation; therefore no significant correlation with quan-
titative resistance was found for any of these variables (F(1,
273) = 1.5, P = 0.7).

Figure S5. Minor allele frequency distribution for all SNPs in this
study.

Table S1. Results from the GWAS for WPBR quantitative disease
resistance showing significant SNPs (FDR-corrected P < 0.05). Col-
umns indicate the SNP marker, the scaffold position for each SNP,
linkage group positions, and the linkage group ID for each SNP.
Also included are additive and dominance effects (add_effect,
dom_effect) for each SNP, F values from the F-test for additive
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and dominance effects (add_F, dom_F) and P-values for the F-test
for additive and dominance effects (add_P, dom_P), minor allele
frequencies (MAFs), structural and functional annotations based
on version 1.5 of the sugar pine reference genome, and gene
ontologies.

Table S2. Results from the GWAS for WPBR qualitative disease
resistance (parental MGR) showing significant SNPs (FDR-corrected
P < 0.05). Columns indicate the SNP marker, scaffold position for
each SNP, and linkage group positions for each SNP. Also included
are additive and dominance effects (add_effect, dom_effect) for each
SNP, F values from the F-test for additive and dominance effects
(add_F, dom_F) and P-values for the F-test for additive and domi-
nance effects (add_P, dom_P), minor allele frequencies (MAFs),
structural and functional annotations based on version 1.5 of the
sugar pine reference genome, and gene ontologies.

Table S3. Consensus linkage map for 8703 SNPs distributed in 12
linkage groups in sugar pine. Variables include SNP marker, posi-
tion (pos, in cM), linkage group (LG), and scaffold position in the
sugar pine reference genome.

Table S4. Results of the QTL mapping for WPBR quantitative dis-
ease resistance showing SNPs from regions determined to be
associated with QTLs. Variables include consensus linkage group
(LG), position (pos, in cM), logarithm of the odds (LOD), SNP mar-
ker, scaffold ID, structural and functional annotations from version
1.5 of the sugar pine reference genome, and gene ontologies.

Table S5. Scaffolds associated with the major resistance gene Cr1
in sugar pine that contained SNPs mapped in our linkage map.
Variables include scaffold ID, SNP ID, location of the SNP in the
linkage group (cM), and linkage group number (LG).
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