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Summary

� Dissecting the genetic and genomic architecture of complex traits is essential to understand

the forces maintaining the variation in phenotypic traits of ecological and economical

importance.
� Whole-genome resequencing data were used to generate high-resolution polymorphic sin-

gle nucleotide polymorphism (SNP) markers and genotype individuals from common gardens

across the loblolly pine (Pinus taeda) natural range. Genome-wide associations were tested

with a large phenotypic dataset comprising 409 variables including morphological traits

(height, diameter, carbon isotope discrimination, pitch canker resistance), and molecular traits

such as metabolites and expression of xylem development genes.
� Our study identified 2335 new SNP 9 trait associations for the species, with many SNPs

located in physical clusters in the genome of the species; and the genomic location of hotspots

for metabolic 9 genotype associations.
� We found a highly polygenic basis of quantitative inheritance, with significant differences in

number, effects size, genomic location and frequency of alleles contributing to variation in

phenotypes in the different traits. While mutation-selection balance might be shaping the

genetic variation in metabolic traits, balancing selection is more likely to shape the variation in

expression of xylem development genes. Our work contributes to the study of complex traits

in nonmodel plant species by identifying associations at a whole-genome level.

Introduction

Significant progress has been made towards understanding the
evolutionary forces that shape neutral genetic variation among
and within natural populations of plant species. Although of
widespread interest, the understanding of how genomic variation
is maintained for complex traits is still very limited (Mitchell-
Olds et al., 2007; Josephs et al., 2017). If the underlying
polymorphisms are largely deleterious, a balance between their
creation by mutation and their elimination by natural selection,
will maintain the variation in complex traits (Lande, 1975; Bar-
ton & Keightley, 2002). Alternatively, natural selection will
maintain the variation in individuals by balancing selection or
throughout the entire species by local adaptation (Turelli & Bar-
ton, 2004; Charlesworth, 2006). Larger phenotypic and geno-
typic datasets combined with powerful analysis such as GWAS,
QTL mapping and high-density linkage mapping may allow us
to evaluate the forces shaping the genetic and genomic architec-
ture of complex traits.

In plants, GWAS studies have largely been used in model or
crop species and its use in natural populations of nonmodel

species is relatively new. Due to the strong effects of artificial
selection and domestication in most crop species studied to
date, the amount and structure of the genomic variation under-
lying complex trait variation can be qualitatively different from
that in outcrossing undomesticated plant species (such as
loblolly pine). Conifer tree species differ from many studied
plant species by other important features that are likely to shape
variation in complex traits, including their mating system
(outcrossing vs selfing), ploidy (diploid vs polyploid), popula-
tion sizes (large vs small), generation-time (long-lived vs short-
lived) and mutation rates (low vs high; De La Torre et al.,
2014, 2017).

The dissection of complex traits in conifer trees began more
than 20 years ago with QTL mapping of traits of economic
importance (Groover et al., 1994). With the advent of the
genomic era, association mapping became a promising tool due
to the undomesticated status of conifer trees, outcrossing mating
system and rapid decay of linkage disequilibrium (Neale & Kre-
mer, 2011). This made it possible to detect larger numbers of
polymorphisms in close proximity to QTL or even QTL them-
selves, although effect sizes are reported to be smaller than those
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detected by QTL mapping (Neale & Savolainen, 2004; Neale &
Kremer, 2011; Hall et al., 2016; Plomion et al., 2016). With the
absence of reference genomes, these studies focused only on can-
didate genes or specific regions (although see Fuentes-Utrilla
et al., 2017; Lu et al., 2017). As a result, most of the associations
explained a very small proportion of the genetic variation in com-
plex traits (Plomion et al., 2016). The recent sequencing of refer-
ence genomes of a few commercially important conifers brings an
opportunity to fill this gap. However, the dissection of the
genetic architecture of complex traits is still challenging due to
the fragmented nature of the reference genomes, incomplete gene
annotation, and the absence of physical and high-density linkage
maps (De La Torre et al., 2014; Neale et al., 2017). Also, due to
the highly polygenic basis of complex traits and rapid decay of
linkage disequilibrium, large mapping population sizes are
needed to capture a large proportion of the genetic variation,
especially when using GWAS instead of QTL mapping (Hall
et al., 2016).

Due to its high economic importance in the southern
United States, loblolly pine (Pinus taeda) has been the focus
of several studies aimed at describing the phenotypic variation
of complex traits and their association with genotypes (Gon-
zalez-Martinez et al., 2007, 2008; Eckert et al., 2010a,b,
2012; Quesada et al., 2010; Cumbie et al., 2011; Palle et al.,
2011, 2013; Lu et al., 2017). All of these studies have sug-
gested a polygenic basis for complex traits, with a large num-
ber of genes of small effect sizes, additive effects, and the
contributions of both coding and noncoding portions of
genes (Eckert et al., 2012). Although these results are largely
consistent with the theoretical predictions for complex traits,
knowledge of the evolutionary forces that maintain genome-
wide variation for complex traits is nonexistent for conifer
trees.

In this study, we use genome-wide single nucleotide poly-
morphisms (SNPs) derived from whole-genome resequencing of

widely distributed individuals of the species to run a GWAS in
combination with a newly generated 26k SNP high-density
linkage map (A. R. De La Torre & D. B. Neale, unpublished).
With these, we aim to dissect the genetic and genomic architec-
ture of a large number of 409 morphological and molecular
traits, and to understand the evolutionary forces that shape the
genetic variation for complex traits in the species. Our work
contributes to the study of adaptive traits in forest trees by iden-
tifying significant genome-wide associations in a nonmodel
plant species.

Materials and Methods

Sample collection and DNA isolation for whole-genome
resequencing

Seeds from 10 loblolly pine individuals spanning all the species’
natural distribution were collected for genomic analysis (Fig. 1a).
Before DNA extraction, seeds were soaked in water at room tem-
perature for 4 d, then haploid megagametophytes were dissected
from each seed. DNA was extracted from megagametophytes
with the Qiagen DNeasy Mini-prep Plant kit and quantified
using picogreen on a Qubit fluorometer.

Whole-genome resequencing

Libraries were constructed using the Illumina’s TruSeq Nano
DNA Library Prep Kit, according to the Illumina’s Sample Prepa-
ration Guide (Illumina Part #15041110 Rev. B). Preamplification
steps included DNA fragmentation (200 ng starting material and
a 550-bp target insert size), followed by end repair and size selec-
tion of fragments, adenylation of 30 ends, and ligation of adapters.
Eight cycles of polymerase chain reaction (PCR) enrichment were
performed. Barcoded libraries were combined into normalized
pools and sequenced to > 109 coverage on an Illumina HiSeq

(a) (b)

Fig. 1 Geographical distribution of loblolly pine individuals and populations sampled in this study. (a) Map of whole-genome resequenced individuals;
(b) map of individuals clustered in three populations based on the results of the principal component analysis (PCA) with 87k single nucleotide
polymorphism (SNP) markers.
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3000 (Illumina Inc., San Diego, CA, USA) instrument using 150-
bp paired-end reads. Sequencing took place at the Genome Center
of the University of California, Davis, California.

SNP calling

Raw reads from whole-genome resequencing data from 10
loblolly pine individuals were aligned to the loblolly pine refer-
ence genome Lp.v.2.0 (GenBank accession GCA_000404065.3;
Zimin et al., 2017) using BOWTIE2 v.2.2.9 (Langmead &
Salzberg, 2012). SNP calling was done using SAMTOOLS v.1.3.1,
followed by BEDTOOLS v.2.25.0 and BFCTOOLS v.1.3.1 (Li et al.,
2009; Li, 2011). Default parameters were used in SAMTOOLS and
BEDTOOLS. Filtering criteria included the removal of SNPs with a
quality < 20, depth of coverage < 8, mapping quality = 0 or less,
and indels. More details on the SNP calling and SNP filtering
criteria and selection can be found in Supporting Information
Methods S1.

Sample collection, DNA extraction and SNP genotyping

Needles from 377 outcrossing, unrelated individuals from the
ADEPT2 common garden located in Mississippi, southeast
United States were collected (Fig. 1b; Eckert et al., 2012). DNA
was extracted from needle tissue with a lab protocol that included
1 d of tissue lysis and incubation at 96°C, followed by several
steps of precipitation and filtering using the Qiagen DNeasy
Mini-prep Plant kit with an Eppendorf automated pipetting
workstation. DNA was quantified using picogreen on a Qubit
Fluorometer. From the 5.2M SNPs obtained from the SNP call-
ing of the resequencing data, 635k SNP markers were selected
for genotyping. Affymetrix used in silico design scores to maxi-
mize the number of markers for genotyping that will provide
high conversion rates. Samples were genotyped using an
Affymetrix Axiom myDesign species-specific and customized
SNP array comprising 635k SNP markers. The AXIOM Analysis
Suite v.3.1 (Thermo Fisher Scientific Inc., Waltham, MA, USA,
2017) was used to obtained genotyping statistics for all samples
and SNPs. Samples with a dish QC (dQC) value greater than or
equal to 0.82, and QC call rate of 97% obtained from the analy-
ses, were kept for further analyses. SNPs were kept when the clus-
ter call rate (CR) was equal or higher than 97%.

Population structure

Population structure in the dataset was evaluated with a principal
component analysis (PCA) in ADEGENET v.2.0.1 R package (Jom-
bart, 2008; Jombart & Ahmed, 2011). Input files for Adegenet
were obtained using the -recode function in PLINK 1.9 (Chang
et al., 2015). In addition, the PYTHON2.X FASTSTRUCTURE algo-
rithm based on a variational framework was used for posterior
inference of K clusters (Raj et al., 2014) using input files in bed,
bim, and fam format obtained using the -make-bed function in
PLINK v.1.07 (Purcell et al., 2007). Models in FASTSTRUCTURE
were replicated 10 times with K from 1 to 10 using the default
prior; seeds for random number generators were changed for each

run. The chooseK.py python script in FASTSTRUCTURE was used
to estimate the model complexity that maximizes marginal likeli-
hood and the model components were used to explain structure
in the data.

Genotype 9 phenotype genome-wide association study

We used a large phenotypic data set comprising 409 morphologi-
cal and molecular phenotypes (Table S1). Morphological traits
included height at age 3, diameter at breast height (dbh) at age 3,
drought resistance (carbon isotope discrimination measured from
foliage after the end of the second growing season), and disease
resistance (pitch canker resistance measured as lesion length at 4,
8 and 12 wk after inoculation). Molecular traits included 292
metabolites (extracted from xylem tissue using gas chromatogra-
phy and mass spectrometry), and gene expression of 111 xylem
development genes. All phenotypic values with the exception of
height and dbh were previously reported (Quesada et al., 2010;
Cumbie et al., 2011; Palle et al., 2011; Eckert et al., 2012). Esti-
mates of clonal phenotypic values for pitch canker resistance and
carbon isotope discrimination were obtained using best linear
unbiased predictions (BLUP) implemented in LME4 R package
v.1.1-14. Clonal least-square means were also adjusted using
mixed linear models for the metabolome data.

To identify significant genes explaining phenotypic variation,
a GWAS analysis was carried on for each of the 409 phenotypes
with 87 825 SNPs with compressed mixed linear model (Zhang
et al., 2010) implemented in the GAPIT R package (Lipka et al.,
2012). Principal components were used as co-variants to account
for population structure. Locations of SNPs in the genome of the
species were obtained from our newly constructed 26k high-
density linkage map for loblolly pine (A. R. De La Torre & B. B.
Neale, unpublished). Manhattan plots were built with the QQMAN

R package (Turner, 2014). SNP functional annotations were
obtained from the annotated genome of loblolly pine v.2.01 in
TREEGENES (http://treegenesdb.org/FTP/Genomes/Pita/v2.01/an
notation/), from aligning against the full NCBI Nucleotide col-
lection database using BLASTN 2.8.0, and from aligning against
the nonredundant protein sequences database using BLASTX 2.8.0
(e value < 1e�10; Zheng et al., 2000). We tested the presence of
false positives in our results, by assessing the enrichment of likely
functional variants (nonsynonymous) versus neutral variants
(synonymous) in all SNPs in genes and exons. Nucleotide
sequences with alternative alleles were translated and then aligned
to the corresponding proteins using BLASTX (-num_alignments 1,
-num_threads 24, -outfmt 6); differences in protein sequences
were accounted as nonsynonymous SNP variants. We also esti-
mated allelic effects (increase in phenotype when favorable allele
is in homozygous state) for each SNP in each of the phenotypes.
A positive allelic effect sign indicates that the favorable allele is
the second in alphabetic order.

Phenotype 9 environment associations

In total, 282 monthly, seasonal, and annual variables were
obtained from climate normal data from 1961 to 1990 from
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CLIMATENA v.5.41 (Wang et al., 2016). Potential correlations
among all variables in the Phenotypic and Environmental data
sets were evaluated using the rcorr function in the R package
HMISC v.4.1-1 (http://biostat.mc.vanderbilt.edu/Hmisc). Geo-
graphical variables (latitude, longitude and elevation) were also
analyzed. In total, 234 955 correlations were evaluated and cor-
rected for multiple testing using the Bonferroni�Holmes correc-
tion (P < 0.05).

Data availability

All Illumina whole-genome resequencing data (10 libraries, 460
files) are available at the NCBI Sequence Read Archive (SRA)
under bioproject PRJNA174450 (https://trace.ncbi.nlm.nih.gov/
Traces/study/?acc=PRJNA174450&go=go).

Results

SNP calling and SNP genotyping

In total, 455M SNPs were identified that occurred in any of the
whole-genome resequenced individuals (Fig. 1a). From these,
5.2 M SNPs containing a combination of transcript-aligned and
not transcript-aligned hitting one or more resequenced individu-
als were selected. In total, 635 453 best-scoring SNPs were
included in the SNP array for genotyping. The SNPs in this array
were distributed in 132 093 scaffolds that represent c. 9%
(1.94Gb) of the total genome size of loblolly pine v.2.0 (Neale
et al., 2014; Zimin et al., 2017).

After SNP array genotyping and initial filtering, 569 542
(95.3%) SNPs and 359 (95.25%) samples passed the quality con-
trol criteria. In total, 324 915 SNPs were found to be in
Hardy�Weinberg equilibrium (P < 0.05) when estimated using
the AXIOM Analysis Suite v.3.1 (Thermo Fisher Scientific Inc.,
2017). From all SNPs, 6.7% were monomorphic with high-
resolution, and 22.5% were polymorphic markers with cluster
properties above the threshold. From the polymorphic markers,
we kept 84 744 SNPs for further analysis. In addition, we added
3081 gene-based SNPs previously reported in Eckert et al.,
2010a,b, resulting in 87 825 SNPs.

Population structure

The results of the PCA analysis suggest the presence of three
major genetic clusters in the dataset that extend longitudinally
across the species’ natural range. The eastern cluster is composed
by populations in Virginia, North Carolina, South Carolina,
Georgia and Florida; the center cluster contains populations in
Alabama and Mississippi; and the western cluster contains popu-
lations in Texas, Arkansas and Louisiana (Fig. 1b). Posterior
inference of clusters based on variational Bayesian framework
implemented in FASTSTRUCTURE suggested K = 2 better explains
the genetic structure of the species. When K = 2, the center and
eastern populations are differentiated from the western popula-
tions, suggesting that the Mississippi river is the major barrier for
gene flow. This population structure is coincident with previous

smaller-scale studies in the species using SNPs and simple
sequence repeats (SSRs) (Eckert et al., 2010a,b) and also with
more recent ones (Lu et al., 2017), suggesting a dual Pleistocene
refugia model might have shaped the genetic structure of loblolly
pine.

Genotype 9 phenotype genome-wide association study

In total, 2335 significant associations (FDR-Adjusted P-value
< 0.05) were found among 1726 SNPs and 111 phenotypes,
including carbon isotope discrimination, pitch canker disease
resistance at 8 and 12 wk, 97 metabolites and 12 expression of
xylem development genes (Tables S2–S5). From these SNPs, 801
came from coding sequences, and either match transcripts, exons
or genes in the loblolly pine reference genome Lpv.2.0, or in the
loblolly pine reference transcriptome (August 2016 version). In
total, 680 SNPs were physically located in linkage groups, and
from these, 175 were located in our newly built 26k loblolly pine
linkage map (A. R. De La Torre & D. B. Neale, unpublished
data).

Coincident with previous GWAS and QTL mapping studies
in conifer species, we found a largely polygenic genomic basis of
inheritance of complex traits in loblolly pine. Individual traits
were associated with a variable number of SNPs ranging from 1
to 448 SNPs per trait, suggesting that very few of the traits in this
study have single-gene inheritance. Single SNPs associated with
several traits were observed especially among metabolites, sug-
gesting the pleiotropic nature of these SNPs. Most of the SNPs
were found to be associated to two or three traits, however we
found two SNPs associated with seven different metabolites
(AX-173181025 from linkage group 7, and AX-173182344 from
linkage group 8). For example, 221 individual SNPs were found
to be associated with either two or three of the metabolites
met_296133, met_216839, and met_338849. SNPs associated
with these metabolic traits were found to be co-located or in close
proximity in linkage groups 3, 4, 5 and 8. Among the SNPs asso-
ciated with three metabolites were SNP 2-7725-01-553, a
b-galactosidase 8 gene located in linkage group 6, AX-
172848823 (nicalin 1-like, linkage group 3), AX-172878034
(linkage group 12), and AX-172896656 (linkage group 10).
Among the individual SNPs associated with both met_296133
and met_216839 were SNP 2-5139-01-378 (calmodulin gene),
SNP 2-6413-01-182 (WD-repeat protein), AX-172779046
(linkage group 4, PITA_00552 gene), AX-172796879 (linkage
group 5), and AX-172802581 (linkage group 9). Similarly, 39
individual SNPs were associated with both metabolites threonine
and phenylalanine, including SNP AX-166030910 (linkage
group 1, unknown mRNA), AX-172783974 (PITA_00901 gene,
Pt1m2 early response to drought erd3) and AX-172814594
(linkage group 9). Only one SNP was found to be associated to
both metabolites and gene expression traits. This was the case for
SNP AX-173395058 associated with metabolites met_296133
and met_216839, and the expression of the enzyme b-ketoacyl-
ACP-synthetase I-2 (BKACPS; Table S4).

The distribution of associated SNPs across the genome of
loblolly pine varied according to the type of trait studied. For
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example, SNPs associated with metabolic traits seem to be
widely distributed across the genome, showing their presence in
each of 12 linkage groups (Fig. 2). Most metabolic traits showed
several candidate mQTLs located in different linkage groups.
Although of widespread distribution, clusters of mQTL (67
associations between 34 SNPs and 25 metabolic traits) were
observed in 6 of the 12 linkage groups. Clusters were located in
linkage group 2 position 189.47–193.4 cM; linkage group 3
position 100.08–103.44 cM; linkage group 4 position
83.65 cM; linkage group 5 position 48.76–49.24 cM; linkage
group 8 position 153.15 cM; and linkage group 10 positions
133.22–136.03 cM (Fig. 3; Table S3). Functional annotation of
SNPs suggests that SNPs clustered in linkage group 4 matched
transcripts coding for E3 ubiquitin ligases. As we lacked func-
tional annotation of several other clustered SNPs, we could not
tell if there were any other functional connections among SNPs
in any of the other clusters.

SNPs associated with any of the expression of xylem develop-
ment traits were found to occur in the same linkage group and
are thought to be clustered (within proximate location), although
we were unable to estimate the precise location (cM) within link-
age groups of several of these SNPs. For example, SNPs associ-
ated with the expression of UDP-glucose pyrophosphorylase
(Pyro) co-occur in linkage group 7. Xyloglucan endotransglyco-
sylase-3 associated SNPs co-occur in linkage group 8, calose syn-
thase 3 in linkage group 11, cellulose synthase 2 in linkage group
6, and horseradish peroxidase C2 in linkage group 4 (Fig. 4).
The exceptions are the SNPs associated with the expression of
a-tubulin 1, which do not seem to be clustered but instead are
distributed in four different linkage groups (4, 2, 9 and 8;
Table S5).

In addition, the majority (8 out of the 13) of SNPs with
known linkage group and associations with pitch canker disease
resistance at 8 and 12 wk were located in the same scaffold
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(scaffold 109981) and linkage group 3 (Fig. 5; Table S2). Identi-
fied as variants in genes in the ABC transporter family, these
SNPs had strong allelic effects in heterozygote genotypes, pro-
ducing large increments in lesion lengths after inoculation of
pitch canker disease (Fig. 5d). Recessive homozygotes were not
found for these SNPs, suggesting either these susceptible individ-
uals might not have been able to survive into adulthood or their
presence is extremely rare in nature. Similar allelic effects were
found in other significant SNPs with unknown linkage group
position or missing annotations (Table S6). Allelic effects for
metabolic and expression traits were much lower than for pitch
canker disease resistance (Tables S7, S8).

Minor allele frequencies (maf) of significant SNPs varied
from 0.005 to 0.49. When adjusting for minor allele fre-
quency to higher than 0.03, the number of significant associa-
tions is reduced to 862. When comparing the minor allele
frequencies between morphological and molecular traits, we
found different patterns in the number of SNPs associated,
effect sizes and their minor allele frequencies. Significant mor-
phological traits, carbon isotope discrimination and pitch
canker resistance at 8 and 12 wk were associated with a small
group of SNPs (2 per carbon isotope and 18 per pitch
canker), a median maf equal to 0.021, and small effect sizes
from 0.09 to 0.15 (mean = 0.10, SD = 0.015). Significant
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molecular traits such as metabolites were associated with a
much variable and larger number of SNPs (1 to 448 SNPs
per trait) with a median maf equal to 0.023, and small to
large effect sizes from 0.09 to 0.56 (mean = 0.16, SD = 0.06).
By contrast, molecular traits such as expression of xylem
development genes were associated with also a small group of
SNPs (1 to 17 SNPs per trait), a larger median maf equal to
0.2156, and small to moderate effect sizes from 0.09 to 0.389
(mean = 0.15, SD = 0.04).

We tested for a correlation between effect size (proportion of
the variance explained) and SNP minor allele frequency in all
111 traits showing significant associations with at least 10 SNPs.

Our results show that effect size is inversely correlated (P-value
< 0.01) with maf in metabolites met_216839, met_217866,
met_338849, met_299831, met_243603, met_318115, thre-
onine, met_281189, glyceric acid, met_299833, phenylalanine,
met_299711, met_238943, met_235011, isoleucine, and six
other metabolites with P-values between 0.02 and 0.0469
(Fig. 2b,d; Table S9). No significant associations were found
between effect size and maf in any other trait besides metabolites.
However, it is clear that SNPs with intermediate maf have the
higher effect sizes in SNPs correlated with expression of xylem
development genes (Fig. S1; Table S5). In the case of SNPs asso-
ciated with pitch canker, most of the GWAS significant alleles
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had maf < 0.05, suggesting rare alleles play an important role
(Fig. 5; Table S2).

From the significant SNPs located in genes and exons, we
found that 73% were nonsynonymous. From the ones that were
synonymous � potentially false positives � 68% had minor allele
frequencies lower than 0.03. However, there was not significant
association between synonymous/nonsynonymous variants and
mean allele frequencies for all significant SNPs in genes and
exons.

Phenotype 9 environment associations

After correcting for multiple testing using Bonferroni�Holmes
correction (P < 0.05), we found 41 significant correlations among
phenotypic traits and environmental traits, or among phenotypic
traits. All significant associations came from expression of xylem
development genes. For example, the expression of the enzyme
myo-inositol-1-phosphate synthase was negatively correlated with
precipitation in August (R 2 =�0.322, P < 0.001), and positively
correlated with Hargreaves climatic moisture deficit (CMD08) in
August (R 2 = 0.33, P < 0.001) and summer (R 2 = 0.32,
P < 0.001); as well as positively correlated with 13 other expres-
sion traits (Table S10). Expression of secretory protein (SPL) was
negatively correlated with radiation during the summer (Rad_sm;
R 2 =�0.32, P < 0.001) and August (Rad08; R 2 =�0.35,
P < 0.001); and positively correlated with the expression of the
enzyme xyloglucan xylosyl transferase 5. Expression of arabino-
galactan 5D was negatively correlated with precipitation in June
(R 2 =�0.32, P < 0.001). Expression of enzyme xyloglucan endo-
transglycosylase 2 (XET-2) was negatively correlated with precip-
itation in August (R 2 =�0.34, P < 0.001) and summer
(R 2 =�0.329, P < 0.001), and radiation in May (R 2 = 0.33,
P < 0.001) and spring (R 2 = 0.326, P < 0.001); and positively
correlated with Hargreaves climatic moisture deficit during the
summer (R 2 = 0.32, P < 0.001) and nine other expression traits
(Table S10). Finally, expression of MADS box protein AGL2
was positively correlated with Hargreaves climatic moisture
deficit in May (R 2 = 0.33, P < 0.001), Radiation in March
(R 2 = 0.32, P < 0.001), May (R 2 = 0.33, P < 0.001) and spring
(R 2 = 0.326, P < 0.001), and expression of lignin biosynthesis
enzyme laccase 6 (R 2 = 0.315, P < 0.001); and negatively corre-
lated with precipitation in November (R 2 =�0.339, P < 0.001).

Discussion

What maintains the variation in complex traits in loblolly
pine?

Dissecting the genetic and genomic architecture of complex traits
is essential to understand the forces maintaining the variation in
phenotypic traits of ecological and economical importance. In
this study, we used newly generated genomic resources to gain
insights into the genomic architecture of a large number of com-
plex traits in a nonmodel plant species. Our results suggest a
polygenic basis of quantitative inheritance, with significant differ-
ences in the number, effect size, genomic location and frequency

of alleles contributing to variation in phenotypes in the different
traits studied. Our results also suggest that while mutation-
selection balance might be shaping the genetic variation in
metabolic traits, balancing selection is more likely to shape the
variation in expression of xylem development genes.

Rare alleles contributing to metabolic trait variation

Perhaps most of the discussion regarding the evolutionary forces
maintaining genetic variation in complex traits can also be under-
stood as the relative roles of rare alleles (maintained by mutation)
and common alleles (maintained by selection) in phenotypic vari-
ation. Detection of low-frequency alleles showing associations
with complex traits is challenging because it requires large and
genetically diverse populations. In GWAS studies, SNPs with
low minor allele frequencies are usually discarded due to their
potential confounding effects with genotyping errors (false-
positive associations). However, recent studies have shown that
rare alleles may play an important role in the genetic regulation
of complex traits in plant species, and may even help explaining
the ‘missing heritability’ in forest trees species (Fahrenkrog et al.,
2017). QTLs showing associations with rare alleles have also been
previously found in loblolly pine (Eckert et al., 2012; Lu et al.,
2017).

In our study, we found that rare alleles associated with
metabolic QTLs, with maf equal or less than 0.02 have large
effect sizes of up to 56%. Effect sizes and minor allele frequencies
were negatively associated for the majority of metabolic traits
studied, following a L-shaped distribution of effect sizes (Bost
et al., 1999). While most of the associated SNPs have small to
moderate effect sizes, only a small number of low-frequency alle-
les had the higher effect sizes. This pattern is consistent with the
one described by the mutation-selection balance theory, in which
low-frequency alleles (mainly deleterious) will have the higher
effects in the variation of complex traits. In this sense, mutations
that affect a trait may be under selection mainly because they
have pleiotropic effects on fitness. As a result, mutations with
large effect will be kept at low frequency due to their deleterious
effects (Eyre-Walker, 2010). In fact, it is being suggested that
larger effect sizes might be correlated with low maf as a result of
purifying selection across metabolite networks (Keightley, 1989).
Evidence for an inverse correlation between maf and effect sizes
in complex traits has also been suggested in maize (Wallace et al.,
2014), Medicago truncatula (Stanton-Geddes et al., 2013) and
Capsella sp. (Josephs et al., 2015).

Mutation�selection balance assumes either a high mutation
rate or if mutation rate at each locus is small, then a large number
of loci is required per trait (Barton & Keightley, 2002). Our
study shows that large numbers of loci contribute to metabolic
trait variation in loblolly pine, reducing the need for high muta-
tion rates, which are unlikely to occur in conifer species (De La
Torre et al., 2017). Plant metabolites, which are extremely diverse
(> 200 000) have been subject to purifying and positive selection
in species such as Arabidopsis and Picea (Benderoth et al., 2006;
Keeling et al., 2010; Luo, 2015). In Arabidopsis thaliana, gene
duplication, and neo-functionalization have driven the large
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number of secondary metabolites present in the species (Ben-
deroth et al., 2006). Increased rates of gene duplication may also
have contributed to the large diversity of secondary metabolites
involved in chemical defense systems in Picea glauca and Picea
sitchensis (Keeling et al., 2010; Warren et al., 2015).

Clustered distribution of QTLs

Several studies have found evidence that alleles contributing to
adaptive trait variation are sometimes physically clustered
together. Due to the decrease in fitness with increasing recombi-
nation rates, clusters of alleles tend to be located in genomic
regions with low recombination (Yeaman, 2013). In our study,
we found that, although SNPs associated with metabolic traits
are widely dispersed in the genome of loblolly pine, there are dis-
tinctive clusters (metabolic hotspots) of associated SNPs in link-
age groups 1, 3, 7, 9 and 12. All of the SNPs clustered in
metabolic hotspots are within close proximity (< 4 cM apart), or
sometimes are even co-located (zero recombination events) in the
same linkage group. In Arabidopsis thaliana, metabolic hotspots
were located in genomic regions previously identified as being
subject to strong positive selection (selective sweeps; Chang et al.,
2010). Metabolic hotspots have also been suggested in rice (Chen
et al., 2014), but found to be absent in maize (Riedelsheimer
et al., 2012). To our knowledge, our study is the first to suggest
hotspots for metabolite�genotypic associations in a nonmodel
plant species.

We also find clusters in alleles associated with the expression of
xylem development genes. For example, five SNPs associated
with the expression of xyloglucan endotransglycosylase 3 (XET-
3) are co-located in linkage group 12, suggesting strong linkage
and zero recombination events among these alleles. Physical
information shows that SNPs associated with trait XET-3 are
located in three different scaffolds (scaffold 3992, 2046 and
1709), which, according to our results, are located in the same
linkage group. In addition, five SNPs associated with horseradish
peroxidase C2 (prxC-2) have been found in linkage group 1, and
three SNPs associated with callose synthase 3 (Cas-3) have been
found to be co-located in linkage group 5 and in the same scaf-
fold. Finally, our study has been able to locate, for the first time
for the species, a cluster of eight SNPs associated with pitch
canker disease in linkage group 7.

Common alleles and environmental variation contribute to
expression trait variation

In contrast with metabolic traits, in which low-frequency alleles
have the higher effect sizes, the majority of SNPs associated with
expression of xylem development genes showed, on average,
higher minor allele frequencies associated with higher effect sizes.

In fact, the median for maf equals 0.2156, almost 10 times
higher than the median maf for metabolic traits. A smaller num-
ber of associated SNPs per trait was also observed. The pattern
observed, in which common alleles with intermediate frequencies
are associated with heritable trait variation is consistent with a
model of balancing selection (Barton & Keightley, 2002; Turelli

& Barton, 2004). Under this model, natural selection might act
directly or indirectly on the trait, maintaining variation at loci
that have pleiotropic effects on the trait under study (Barton &
Keightley, 2002). Common alleles occurring across the species’
natural range also showed strong allelic effects and patterns of
allele-specific expression variation in our study in loblolly pine.
For enzymes xyloglucan endotransglycosylase 3 and horseradish
peroxidase C2, genotypes showed variation in expression that is
neither affected by population of origin nor by environmental
differences (Fig. 4b,d). Evidence of within-population balancing
selection or between-populations local adaptation, have come
from GWAS studies conducted on rangewide samples of plant
species. For example, a GWAS study in A. thaliana suggested
that strong divergent selection maintains the variation in
glucosinate composition across European populations (Brachi
et al., 2015).

A small group of expression traits was found to be associated
with environmental variables such as precipitation, radiation
and climate moisture deficit, suggesting some of the variation
in expression traits occurs due to spatial and environmental
heterogeneity in loblolly pine (Table S10). Most expression
traits showing significant associations, which were mostly
enzymes, were negatively correlated with precipitation during
the summer and positively correlated with Hargreaves climatic
moisture deficit. Water availability is the highest abiotic deter-
minant of the survival and growth of loblolly pine (Eckert
et al., 2010a,b), therefore precipitation, radiation and moisture
deficit are key environmental variables. For example, higher
expression levels of MADS box protein, a transcription factor
putatively acting as a heat shock protein binding were found
with increased levels of climatic moisture deficit in May, and
increased radiation in spring. Also, higher expression levels of
xyloglucan endotransglycosylase 2 (XET-2), an enzyme involved
in xylem development, were found with increased radiation
during the spring and decreased precipitation and moisture
deficit during the summer. This enzyme is also correlated with
another eight expression traits including enzymes involved in
lignin biosynthesis (laccase 3, laccase 7 and phenylalanine
ammonia lyase-1), cell expansion (COBRA and KORRIGAN),
as well as CTL1, importin and APL transcription factor. Unfor-
tunately, from all the expression traits that correlated with envi-
ronmental variables, we could only find one trait that was
significantly associated with any of the SNPs under study. The
expression of the enzyme myo-inositol-1-phosphate synthase
was associated with SNP AX-172858860 located in linkage
group 9, negatively associated with precipitation during August,
and positively associated with moisture deficit during the sum-
mer. Whether the environment plays a role in heritable trait
variation or just phenotype plasticity of expression of xylem
development genes remains to be addressed in future studies of
the species.

Polygenic basis for complex traits

Our study suggests a largely polygenic basis for quantitative trait
variation and the presence of pleiotropic effects in loblolly pine.
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This is coincident with previous studies in conifers, in which a
very small number of traits with simple inheritance (generally dis-
ease resistance traits such white pine blister rust and fusiform
rust) has been reported (Kinloch et al., 1970; Wilcox et al.,
1996). In contrast with crop and model plant species’ GWAS in
which few large effect QTLs have been found, our study suggests
the presence of a moderate to large numbers of QTLs with a
majority of small to medium effects. Most crop species studied to
date are self-pollinated, with slow LD decay and strong popula-
tion structure. Our results are coincident with GWAS studies in
humans, maize (most studied outcrossing plant) and other forest
trees (Buckler et al., 2009; Visscher et al., 2012; Fahrenkrog et al.,
2017). In all of these, LD decays rapidly and population structure
is weak to moderate.

When comparing the different types of traits studied, we
found significant differences in the number of significant SNPs.
For example, pitch canker resistance, carbon isotope and expres-
sion of xylem development genes were associated with 1–17
SNPs per trait; whereas metabolic traits were found to be associ-
ated with up to 448 SNPs. In the case of pitch canker disease
resistance, our study reports 18 associated SNPs, twice or more
the amount of previously reported associations for the same trait
(Quesada et al., 2010; Moraga-Suazo et al., 2014; Lu et al.,
2017). In relation to carbon isotope discrimination, our study
found only two associated SNPs, less than found in previous
studies using the same phenotypic dataset (four SNPs in Lu et al.,
2017; and 14 SNPs in Cumbie et al., 2011). Our study also
reports a lower number of associations in expression of xylem
development genes (54 associations, 54 SNPs and 13 traits) than
previously reported in Cumbie et al. (2011) (88 associations, 80
SNPs and 32 traits). All of these associations, however are new
for the species. Finally, in relation to metabolic traits, our study
reveals a much larger number of single-locus associations (2254
SNPs) that those reported in Eckert et al. (2012) (28 SNPs),
probably because of the much larger genomic coverage of our
study.

The study of complex traits in long-generation tree species
require genome-wide assessments in widely distributed natural
populations. By using whole-genome resequencing data with the
purpose of generating SNPs for GWAS analysis, our study pro-
vides the most complete assessment of genomic variation (coding
and noncoding regions) in a conifer species to date, and generates
a better understanding of the segregating SNP variation responsi-
ble for phenotypic variation. This GWAS study, as well as other
recent genome-wide studies in the species (Lu et al., 2017) have
resulted in a wealth of genomic resources now available to prac-
tice genomic selection and marker-assisted breeding in loblolly
pine.
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