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Abstract— We consider the non-coherent single-input multiple-
output (SIMO) multiple access channel with general signaling
under spatially correlated Rayleigh block fading. We propose a
novel soft-output multi-user detector that computes an approx-
imate marginal posterior of each transmitted signal using only
the knowledge about the channel distribution. Our detector is
based on expectation propagation (EP) approximate inference
and has polynomial complexity in the number of users, number
of receive antennas and channel coherence time. We also propose
two simplifications of this detector with reduced complexity.
With Grassmannian signaling, the proposed detectors outperform
a state-of-the-art non-coherent detector with projection-based
interference mitigation. With pilot-assisted signaling, the EP
detector outperforms, in terms of symbol error rate, some
conventional coherent pilot-based detectors, including a sphere
decoder and a joint channel estimation–data detection scheme.
Our EP-based detectors produce accurate approximates of the
true posterior leading to high achievable sum-rates. The gains
of these detectors are further observed in terms of the bit error
rate when using their soft outputs for a turbo channel decoder.

Index Terms— Non-coherent communications, multiple access,
detection, expectation propagation, Grassmannian constellations.

I. INTRODUCTION

IN WIRELESS communications, multi-antenna based
multiple-input multiple-output (MIMO) technology is capa-

ble of improving significantly both the system spectral effi-
ciency and reliability due to its multiplexing and diversity
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gains [2], [3]. MIMO is at the heart of current cellular systems,
and large-scale (massive) MIMO [4] is considered as one
of the fundamental technologies for the fifth-generation (5G)
wireless communications [5]. In practical MIMO systems,
the transmitted symbols are normally drawn from a finite
discrete constellation to reduce complexity. Due to propagation
effects, the symbols sent from different transmit antennas
interfere, and the receiver observes a linear superposition of
these symbols corrupted by noise. The task of the receiver is
to detect these symbols (or rather the underlying bits) based
on the received signal and the available knowledge about the
channel.

If the instantaneous value of the channel matrix is treated
as known, the detection is said to be coherent and has been
investigated extensively in the literature [6]. In this case,
the data symbols are normally taken from a scalar constel-
lation such as the quadrature amplitude modulation (QAM).
Since the optimal maximum-likelihood (ML) coherent detec-
tion problem is known to be non-deterministic polynomial-
time hard (NP-hard) [7], many sub-optimal coherent MIMO
detection algorithms have been proposed. These range from
linear schemes, such as the zero forcing (ZF) and minimum
mean square error (MMSE) detectors, to non-linear schemes
based on, for example, interference cancellation, tree search,
and lattice reduction [6].

If only statistical information about the channel is available,
the detection problem is said to be non-coherent. In the block
fading channel where the channel matrix remains constant for
each length-T coherence block and varies between blocks,
the receiver can estimate (normally imperfectly) the channel
based on the transmitted pilot symbols, then perform coherent
detection based on the channel estimate. Channel estimation
and data detection can also be done iteratively [8], [9],
or jointly based on tree search [10], [11]. These schemes
requires pilot transmission for an initial channel estimate or
to guarantee the identifiability of the data symbols. Another
approach not involving pilot transmission is unitary space time
modulation, in which the matrix of symbols in the space-time
domain is orthonormal and isotropically distributed [12].
There, information is carried by the signal matrix subspace
position, which is invariant to multiplication by the channel
matrix. Therefore, a constellation over matrix-valued symbols
can be designed as a collection of subspaces in C

T . Such
constellations belong to the Grassmann manifold G(CT ,K),
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which is the space of K-dimensional subspaces in CT , where
K is the number of transmit antennas. For the independent and
identically distributed (i.i.d.) Rayleigh block fading channel,
when the signal-to-noise-ratio (SNR) is large, Grassmannian
signaling was shown to achieve a rate within a vanishing gap
from the capacity if T ≥ N + min{K,N} [13], and within
a constant gap if 2K ≤ T ≤ N + K [14], where N is
the number of receive antennas. Like with coherent detec-
tion, the optimal ML non-coherent detection problem under
Grassmannian signaling is NP-hard. Thus, low-complexity
sub-optimal detectors have been proposed for constellations
with additional structure, e.g., [15]–[17].

In this paper, we focus on the non-coherent detection
problem in the Rayleigh flat and block fading single-input
multiple-output (SIMO) multiple-access channel (MAC) with
coherence time T . There, the communication signals are
independently transmitted from K single-antenna users.
If the users could cooperate, the high-SNR optimal joint
signaling scheme would be a Grassmannian signaling on
G(CT ,K) [13]. However, we assume uncoordinated users,
for which the optimal non-coherent transmission scheme is
not known, although some approximate optimality design
criteria have been proposed in [18]. In this work, we design
the detector without assuming any specific structure of the
signal transmitted over a coherence block. We consider the
case where the receiver is interested not only in the hard
detection of the symbols but also in their posterior marginal
probability mass functions (PMFs). This “soft” information
is needed, for example, when computing the bit-wise log-
likelihood ratios (LLRs) required for soft-input soft-output
channel decoding. Computing an exact marginal PMF would
require enumerating all possible combinations of other-user
signals, which is infeasible with many users, many antennas,
or large constellations. Thus, we seek sub-optimal schemes
with practical complexity.

In contrast to probabilistic coherent MIMO detection, for
which many schemes have been proposed (e.g., [19]–[21]),
the probabilistic non-coherent MIMO detection under general
signaling, and Grassmannian signaling in particular, has not
been well investigated. The detection scheme proposed in [22]
is sub-optimal and compatible only with the specific constella-
tion structure considered therein. The list-based soft demapper
in [23] reduces the number of terms considered in posterior
marginalization by including only those symbols at a certain
distance from a reference point. However, it was designed for
the single-user case only and has no obvious generalization to
the MAC. The semi-blind approaches [8]–[11] for the MIMO
point-to-point channel can be extended to the MAC. However,
these schemes are restricted to transmitted signals with pilots.

In this work, we propose message-passing algorithms
for posterior marginal inference of non-coherent multi-user
MIMO transmissions over spatially correlated Rayleigh block
fading channels. Our algorithms are based on expectation
propagation (EP) approximate inference [24], [25]. EP pro-
vides an iterative framework for approximating posterior
beliefs by parametric distributions in the exponential fam-
ily [26, Sec. 1.6]. Although there are many possible ways to
apply EP to our non-coherent multi-user detection problem,

we do so by choosing as variable nodes the indices of the
transmitted symbols and the noiseless received signal from
each user. The EP algorithm passes messages between the
corresponding variable nodes and factor nodes on a bipartite
factor graph. In doing so, the approximate posteriors of these
variables are iteratively refined. We also address numerical
implementation issues.

To measure the accuracy of the approximate posterior
generated by the soft detectors, we compute the mismatched
sum-rate of the system that uses the approximate posterior as
the decoding metric. This mismatched sum-rate approaches
the achievable rate of the system as the approximate posterior
gets close to the true posterior. We also evaluate the symbol
error rate when using the proposed schemes for hard detection,
and the bit error rate when using these schemes for turbo
equalization with a standard turbo code.

The contributions of this work are summarized as follows:
1) We propose soft and hard multi-user detectors for the

non-coherent SIMO MAC using EP approximate infer-
ence, and methods to stabilize the EP updates. The
proposed detectors work for general vector-valued trans-
mitted symbols within each channel coherence block,
i.e., it is general enough to include both the pilot-assisted
and pilot-free signaling cases.

2) We propose two simplifications of the EP detector with
reduced complexity. The first one, so-called EPAK,
is based on approximating the EP messages with Kro-
necker products. The second one can be interpreted
as soft MMSE estimation and successive interference
approximation (SIA).

3) We analyze the complexity and numerically evaluate the
convergence, running time, and performance of the pro-
posed EP, EPAK, and MMSE-SIA detectors, the optimal
ML detector, a genie-aided detector, the state-of-the-
art detector from [22], and some conventional coherent
pilot-based schemes. Our results suggest that the pro-
posed detectors offer significantly improved mismatched
sum-rate, symbol error rate, and coded bit error rate with
respect to (w.r.t.) some existing sub-optimal schemes,
while having lower complexity than the ML detector.

To the best of our knowledge, our proposed approach is
the first message-passing scheme for non-coherent multi-user
MIMO detection with general constellations.

The remainder of this paper is organized as follows. The
system model is presented in Section II. A brief review of EP is
presented in Section III, and the EP approach to non-coherent
detection is presented in Section IV. In Section V, two
simplifications (MMSE-SIA and EPAK) of the EP detector
are presented. Implementation aspects of EP, MMSE-SIA, and
EPAK are discussed in Section VI. Numerical results and
conclusions are presented in Section VII and Section VIII,
respectively. The mathematical preliminaries and proofs are
provided in the appendices.

Notations: Random quantities are denoted with non-italic
letters with sans-serif fonts, e.g., a scalar x, a vector vvv,
and a matrix MMM. Deterministic quantities are denoted with
italic letters, e.g., a scalar x, a vector vvv, and a matrix MMM .
The Euclidean norm is denoted by ‖vvv‖ and the Frobenius
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norm ‖MMM‖F . The conjugate, transpose, conjugate transpose,
trace, and vectorization of MMM are denoted by MMM∗, MMMT, MMMH,
tr{MMM}, and vec(MMM), respectively.

∏
denotes the conventional

or Cartesian product, depending on the factors. ⊗ denotes
the Kronecker product. �{A} denotes the indicator function
whose value is 1 if A is true and 0 otherwise. [n] :=
{1, 2, . . . , n}. ∝ means “proportional to”. The Grassmann
manifold G(CT ,K) is the space of K-dimensional subspaces
in CT . In particular, G(CT , 1) is the Grassmannian of lines.
The Kullback-Leibler divergence of a distribution p from
another distribution q of a random vector xxx with domain X
is defined by D(q‖p) :=

∫
X q(xxx) log q(xxx)

p(xxx) dxxx if X is contin-

uous and D(q‖p) :=
∑
xxx∈X q(xxx) log q(xxx)

p(xxx) if X is discrete.
N (μμμ,ΣΣΣ) denotes the complex Gaussian vector distribution
with mean μμμ, covariance matrix ΣΣΣ, and thus probability density
function (PDF)

N (xxx;μμμ,ΣΣΣ) :=
exp

(
− (xxx−μμμ)HΣΣΣ−1(xxx−μμμ)

)
πndet(ΣΣΣ)

, xxx ∈ C
n.

II. SYSTEM MODEL

A. Channel Model

We consider a SIMO MAC in which K single-antenna
users transmit to an N -antenna receiver. We assume that
the channel is flat and block fading with an equal-length
and synchronous (across the users) coherence interval of T
channel uses. That is, the channel vectors hhhk ∈ CN×1, which
contain the fading coefficients between the transmit antenna
of user k ∈ [K] and the N receive antennas, remain constant
within each coherence block of T channel uses and change
independently between blocks. Furthermore, the distribution of
hhhk is assumed to be known to the receiver, but its realizations
are unknown to both ends of the channel. Since the users
are not co-located, we assume that the hhhk are independent
across users. We consider Rayleigh fading with receiver-side
correlation, i.e., hhhk ∼ N (0,ΞΞΞk), where ΞΞΞk ∈ CN×N is the
spatial correlation matrix. We assume that 1

N tr {ΞΞΞk} =: ξk
where ξk is the large-scale average channel gain from one of
the receive antennas to user k. We assume that T > K and
N ≥ K .

Within a coherence block, each transmitter k sends a signal
vector sssk ∈ CT , and the receiver receives a realization YYY of
the random matrix

YYY =
K∑
k=1

ssskhhh
T

k + WWW = SSSHHHT + WWW, (1)

where SSS = [sss1 . . . sssK ] ∈ CT×K and HHH = [hhh1 . . . hhhK ] ∈
CN×K concatenate the transmitted signals and channel vec-
tors, respectively, WWW ∈ C

T×N is the Gaussian noise with
i.i.d. N (0, σ2) entries independent of HHH, and the block index
is omitted for simplicity.

We assume that the transmitted signals have average unit
norm, i.e., E

[
‖sssk‖2

]
= 1, k ∈ [K]. Under this normalization,

the signal-to-noise ratio (SNR) of the transmitted signal from
user k at each receive antenna is SNRk = ξk/(Tσ2). We
assume that the transmitted signals belong to disjoint finite

discrete individual constellations with vector-valued symbols.
That is, sssk ∈ Sk := {sss(1)k , . . . , sss

(|Sk|)
k }, k ∈ [K]. In particular,

Sk can be a Grassmannian constellation onG(CT , 1), i.e., each
constellation symbol sss(i)k is a unit-norm vector representative
of a point in G(CT , 1). Another example is when the con-
stellation symbols contain pilots and scalar data symbols.1

Each symbol in Sk is labeled with a binary sequence of length
Bk := log2 |Sk|.

B. Multi-User Detection Problem

Given SSS = SSS = [sss1, sss2, . . . , sssK ], the conditional
probability density pYYY|SSS, also known as likelihood function,
is derived similar to [27, Eq.(9)] as

pYYY|SSS(YYY |SSS)

=
exp

(
−vec(YYY T)H

(
σ2IIINT+

∑K
k=1 sssksss

H

k ⊗ΞΞΞk
)−1vec(YYY T)

)
πNTdet(σ2IIINT +

∑K
k=1 sssksss

H

k ⊗ΞΞΞk)
.

Given the received signal YYY = YYY , the joint multi-user ML
symbol decoder is then

ŜSS = arg min
SSS∈�K

k=1 Sk

(
vec(YYY T)H

(
σ2IIINT+

K∑
k=1

sssksss
H

k ⊗ΞΞΞk
)−1

× vec(YYY T) + log det
(
σ2IIINT+

K∑
k=1

sssksss
H

k ⊗ΞΞΞk
))
. (2)

Since the ML decoding metric depends on SSS only through∑K
k=1 sssksss

H

k ⊗ ΞΞΞk, for identifiability, it must hold that∑K
k=1 sssksss

H

k ⊗ΞΞΞk 	=
∑K
k=1 sss

′
ksss

′
k

H⊗ΞΞΞk for any pair of distinct
joint symbols SSS = [sss1, . . . , sssK ] and SSS′ = [sss′1, . . . , sss

′
K ] in∏K

k=1 Sk.
When a channel code is used, most channel decoders require

the LLRs of the bits. The LLR of the j-th bit of user k, denoted
by bk,j , given the observation YYY = YYY is defined as

LLRk,j(YYY ) := log
pYYY|bk,j

(YYY |1)
pYYY|bk,j

(YYY |0)

= log

∑
ααα∈S(1)

k,j

pYYY|sssk
(YYY |ααα)∑

βββ∈S(0)
k,j

pYYY|sssk
(YYY |βββ)

= log

∑
ααα∈S(1)

k,j

psssk|YYY(ααα|YYY )∑
βββ∈S(0)

k,j

psssk|YYY(βββ|YYY )
(3)

where S(b)
k,j denotes the set of all possible symbols in Sk with

the j-th bit being equal to b for j ∈ [Bk] and b ∈ {0, 1}.
To compute (3), the posteriors psssk|YYY, k ∈ [K], are marginalized
from

pSSS|YYY(SSS|YYY ) =
pYYY|SSS(YYY |SSS)pSSS(SSS)

pYYY(YYY )
∝ pYYY|SSS(YYY |SSS)pSSS(SSS).

Assuming that the transmitted signals are independent
and uniformly distributed over the respective constella-
tions, the prior pSSS factorizes as Pr(SSS = [sss1, . . . , sssK ]) =∏K
k=1

1
|Sk|�{sssk ∈ Sk}. On the other hand, the likelihood

1In this case, the constellations are disjoint thanks to the fact that pilot
sequences are user-specific.
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function pYYY|SSS(YYY |[sss1, . . . , sssK ]) involves all sss1, . . . , sssK in such
a manner that it does not straightforwardly factorize. Exact
marginalization of pSSS|YYY requires computing

psssk|YYY(sssk|YYY )=
∑

sssl∈Sl,∀l �=k
pSSS|YYY([sss1, . . . , sssK ]|YYY ), k∈ [K]. (4)

That is, it requires computing pYYY|SSS(YYY |SSS) (which requires the
inversion of an NT ×NT matrix) for all SSS ∈

∏K
k=1 Sk. Thus,

the total complexity of exact marginalization is O(K62KB).2

This is formidable for many users or large constellations. Thus,
we seek alternative approaches to estimate

pSSS|YYY([sss1, . . . , sssK ]|YYY ) ≈ p̂SSS|YYY([sss1, . . . , sssK ]|YYY )

=
K∏
k=1

p̂sssk|YYY(sssk|YYY ). (5)

C. Achievable Rate

According to [28, Sec. II], the highest sum-rate reliably
achievable with a given decoding metric p̂SSS|YYY, so-called the
mismatched sum-rate, is lower bounded by the generalized
mutual information (GMI) given by

RGMI

=
1
T

sup
s≥0

E

[
log2

p̂SSS|YYY(SSS|YYY)s∑
SSS′∈�K

k=1 Sk
Pr(SSS = SSS′)p̂SSS|YYY(SSS′|YYY)s

]

=
1
T

sup
s≥0

E

[ K∑
k=1

Bk − log2

∑
SSS′∈�K

k=1 Sk
p̂SSS|YYY(SSS′|YYY )s

p̂SSS|YYY(SSS|YYY)s

]
(6)

=
1
T

K∑
k=1

Bk−
1
T

inf
s≥0

E

[ K∑
k=1

log2

∑
sss′k∈Sk

p̂sssk|YYY(sss′k|YYY)s

p̂sssk|YYY(sssk|YYY)s

]
(7)

bits/channel use, where the expectation is over the joint
distribution of SSS and YYY, i.e., pYYY|SSSpSSS, (6) holds because the
transmitted symbols are independent and have uniform prior
distribution, and (7) follows from the factorization of p̂SSS|YYY
in (5). The generalized mutual information RGMI is upper
bounded by the sum-rate achieved with the optimal decoding
metric pSSS|YYY given by

R =
1
T
I(SSS;YYY)

=
1
T
h(SSS)− 1

T
h(SSS|YYY)

=
1
T

K∑
k=1

Bk −
1
T

E

[
log2

1
pSSS|YYY(SSS|YYY)

]

=
1
T

K∑
k=1

Bk −
1
T

E

[
log2

∑
SSS′∈�K

k=1 Sk
pYYY|SSS(YYY|SSS′)

pYYY|SSS(YYY|SSS)

]
(8)

bits/channel use, where (8) follows from the Bayes’ law and
the uniformity of the prior distribution. RGMI approaches R

2Throughout the paper, as far as the complexity analysis is concerned,
we assume for notational simplicity that T = O(K), N = O(K),
and |Sk| = O(2B), ∀k ∈ [K]. If the channels are uncorrelated
(ΞΞΞk = IIIN ), the likelihood function can be simplified as pYYY|SSS(YYY |SSS) =

exp
�
−tr

�
YYY H(σ2IIIT +SSSSSSH)−1YYY

��

πNT detN (σ2IIIT +SSSSSSH)
. Thus, the complexity of exact marginal-

ization is reduced to O(K32KB).

as p̂SSS|YYY gets close to pSSS|YYY. Note that if we fix s = 1 in place
of the infimum in (7), it holds that

R−RGMI(s = 1) =
1
T

E

[
log2

pSSS|YYY(SSS|YYY)
p̂SSS|YYY(SSS|YYY)

]

=
1
T

EYYY

[
D(pSSS|YYY‖p̂SSS|YYY)

]
,

which converges to zero when the KL divergence between p̂SSS|YYY
and pSSS|YYY vanishes.

The expectations in (7) and (8) cannot be derived in
closed form in general. Alternatively, we can evaluate R
and RGMI (and also EYYY[D(pSSS|YYY

∥∥p̂SSS|YYY)]) numerically with the
Monte Carlo method. Note that when K or Bk is large,
even a numerical evaluation of R and EYYY[D(pSSS|YYY

∥∥p̂SSS|YYY)] is
not possible. Therefore, we choose to use the mismatched
sum-rate lower boundRGMI as an information-theoretic metric
to evaluate how close p̂SSS|YYY is to pSSS|YYY.

In what follows, we design a posterior marginal estimation
scheme based on EP. We start by providing a brief review of
EP in the next section.

III. EXPECTATION PROPAGATION

The EP algorithm was first proposed in [24] and summa-
rized in, e.g., [25] for approximate inference in probabilistic
graphical models. EP is an iterative framework for approx-
imating posterior beliefs by parametric distributions in the
exponential family [26, Sec. 1.6]. Let us consider a set of
unknown variables represented by a random vector xxx with
posterior of the form

pxxx(xxx) ∝
∏
α

ψα(xxxα), (9)

where xxxα is the subset of variables involved in the factor ψα
corresponding to a partition {xxxα} of xxx. Furthermore, let us
partition the components of xxx into some sets {xxxβ}, where no
xxxβ is split across factors (i.e., ∀α, β either xxxβ ⊂ xxxα or xxxβ ∩
xxxα = ∅). The partition {xxxα} represents the local dependency of
the variables given by the intrinsic factorization (9), while the
partition {xxxβ} groups the variables that always occur together
in a factor. We are interested in the posterior marginals w.r.t.
the partition {xxxβ}. In the following, we omit xxx in the subscripts
since it is obvious.

EP approximates the true posterior p from (9) by a distri-
bution p̂ that can be expressed in two ways. First, it can be
expressed w.r.t. the “target” partition {xxxβ} as

p̂(xxx) =
∏
β

p̂β(xxxβ), (10)

where p̂β are constrained to be in the exponential family
[26, Sec. 1.6], such that (s.t.)

p̂β(xxxβ) = exp
(
γγγT

βφφφβ(xxxβ)−Aβ(γγγβ)
)
, (11)

for sufficient statistics φφφβ(xxxβ), parameters γγγβ , and

log-partition function Aβ(γγγ) := ln
∫
eγγγ

Tφφφβ(xxxβ) dxxxβ . Second,
p̂ can also be expressed w.r.t. the partition {xxxα} as

p̂(xxx) ∝
∏
α

mα(xxxα), (12)
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in accordance with (9). For (10) and (12) to be consistent,
the terms mα should also factorize over β, i.e., there exist
factors mα,β of the form mα,β(xxxβ) = exp

(
γγγT

α,βφφφβ(xxxβ)
)

s.t.

mα(xxxα) =
∏
β∈Nα

mα,β(xxxβ) = exp
( ∑
β∈Nα

γγγT

α,βφφφβ(xxxβ)
)
,

p̂β(xxxβ) ∝
∏
α∈Nβ

mα,β(xxxβ)=exp
( ∑
α∈Nβ

γγγT

α,βφφφβ(xxxβ)
)
, (13)

where Nα collects the indices β for which xxxβ ⊂ xxxα, and Nβ

collects the indices α for which xxxβ ⊂ xxxα. It turns out that
mα,β can be interpreted as a message from the factor node α
to the variable node β on a bipartite factor graph [29]. In this
case, p̂β(xxxβ) is proportional to the product of all messages
impinging on variable node β.

EP works by first initializing all mα(xxxα) and p̂β(xxxβ)
(typically by the respective priors, which are assumed to also
belong to the considered exponential family), then iteratively
updating each approximation factor mα in turn. Let us fix
a factor index α. According to [24], the “tilted” distribution
qα is constructed by swapping the true potential ψα for its
approximate mα in p̂(xxx) as qα(xxx) = p̂(xxx)ψα(xxxα)

mα(xxxα) , where it
is assumed that

∫
qα(xxx) dxxx < ∞. This tilted distribution is

projected back onto the exponential family by minimizing the
KL divergence:

p̂new
α (xxx) = argmin

p∈P
D

(
qα(xxx)

∥∥p(xxx)
)
, (14)

where P is the set of distributions of the form of p̂ in (10),
i.e., p(xxx) =

∏
β pβ(xxxβ) =

∏
β exp

(
γγγT

β
φφφβ(xxxβ)−Aβ(γγγβ)

)
for

some {γγγ
β
}. Following [24], the solution to (14) is as follows.

Proposition 1: The solution to (14) is given by p̂new
α (xxx) =∏

β p̂
new
α,β (xxxβ) with p̂new

α,β (xxxβ) = p̂β(xxxβ), ∀β /∈ Nα,
and p̂new

α,β (xxxβ) = exp
(
γT

β
φφφβ(xxxβ) − Aβ(γβ)

)
with γ

β
s.t.

Ep̂new
α,β

[φφφβ(xxxβ)] = Eqα [φφφβ(xxxβ)], ∀β ∈ Nα, whenever the
expectation Eqα [·] exists.

Proof: The proof is given in Appendix B.
The factor mα is then updated via

mnew
α (xxxα) =

p̂new
α (xxx)mα(xxxα)

p̂(xxx)
(15)

=
[ ∏
β∈Nα

mα,β(xxxβ)
]∏

β∈Nα
p̂new
α,β (xxxβ)∏

β∈Nα
p̂β(xxxβ)

∝
[ ∏
β∈Nα

mα,β(xxxβ)
]

×
∏
β∈Nα

p̂new
α,β (xxxβ)∏

β∈Nα

[
mα,β(xxxβ)

∏
α′∈Nβ\αmα′,β(xxxβ)

]
=

∏
β∈Nα

mnew
α,β (xxxβ), (16)

with

mnew
α,β (xxxβ) :=

p̂new
α,β (xxxβ)∏

α′∈Nβ\αmα′,β(xxxβ)
. (17)

Note that, on the right-hand side (RHS) of (15), all terms
dependent on {xxxβ}β/∈Nα

cancel, leaving the dependence only

on {xxxβ}β∈Nα . Thus, the update of mα only affects the
approximate posterior of nodes β in the neighborhood of node
α. After that, the process is repeated with the next α.

A message-passing view of Proposition 1 can be seen by
expanding qα(xxx) as

qα(xxx) =
ψα(xxxα)
mα(xxxα)

[ ∏
β∈Nα

∏
α′∈Nβ

mα′,β(xxxβ)
][ ∏

β/∈Nα

p̂β(xxxβ)
]

= ψα(xxxα)
[ ∏
β∈Nα

∏
α′∈Nβ\α

mα′,β(xxxβ)
][ ∏

β/∈Nα

p̂β(xxxβ)
]
,

then, using the natural logarithm for the KL divergence, it
follows that

D
(
qα(xxx)

∥∥p(xxx))
=

∫
qα(xxx) ln

qα(xxx)
p(xxx)

dxxx

=
∫
ψα(xxxα)

[ ∏
β∈Nα

∏
α′∈Nβ\α

mα′,β(xxxβ)
][ ∏

β/∈Nα

p̂β(xxxβ)
]

× ln
(
ψα(xxxα)

∏
β∈Nα

∏
α′∈Nβ\αmα′,β(xxxβ)∏

β∈Nα
p
β
(xxxβ)

×
∏
β/∈Nα

p̂β(xxxβ)∏
β/∈Nα

p
β
(xxxβ)

)
dxxx

=
∫
ψα(xxxα)

[ ∏
β∈Nα

∏
α′∈Nβ\α

mα′,β(xxxβ)
]

× ln
ψα(xxxα)

∏
β∈Nα

∏
α′∈Nβ\αmα′,β(xxxβ)∏

β∈Nα
p
β
(xxxβ)

dxxxα

+
∑
β/∈Nα

∫
p̂β(xxxβ) ln

p̂β(xxxβ)
p
β
(xxxβ)

dxxxβ

=
∑
β∈Nα

∫
qα,β(xxxβ) ln

qα,β(xxxβ)
p
β
(xxxβ)

dxxxβ+
∑
β/∈Nα

D
(
p̂β

∥∥p
β

)
+c0

=
∑
β∈Nα

D
(
qα,β

∥∥p
β

)
+

∑
β/∈Nα

D
(
p̂β

∥∥p
β

)
+ c0, (18)

where

qα,β(xxxβ) :=
∫
ψα(xxxα)

[ ∏
β∈Nα

∏
α′∈Nβ\α

mα′,β(xxxβ)
]

dxxxα\β

(19)

and c0 represents a constant w.r.t. the distribution p (which
we optimize) whose value is irrelevant and may change at
each occurrence. Equation (18) says that, for each β in the
neighborhood of node α, the optimal p

β
(i.e., p̂new

α,β ) is uniquely
identified as the moment match of qα,β in the exponential
family with sufficient statistics φφφβ(xxxβ), where qα,β is formed
by taking the product of the true factor ψα and all the messages
impinging on that factor, and then integrating out all variables
except xxxβ . Furthermore, (17) says that the new message mnew

α,β

passed from α to β ∈ Nα equals p̂new
α,β divided by the product

of messages {mα′,β}α′∈Nβ\α, i.e., previous messages to β
from all directions except α. An illustrative example is shown
in Fig. 1.
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Fig. 1. An example of the factor graph representation of EP for α ∈ {a, b, c}
and β ∈ {1, 2, 3, 4}. For α = b and β = 2, according to (19) and (17),
qb,2(xxx2) =

�
ψb(xxx2,xxx3,xxx4)ma,2(xxx2)mc,3(xxx3)mc,4(xxx4) dxxx3 dxxx4 and

mnew
b,2 (xxx2) =

p̂new
b,2 (xxx2)

ma,2(xxx2)
, respectively.

IV. APPLICATION OF EP TO NON-COHERENT DETECTION

In order to apply EP to the non-coherent detection problem
described in Section II, we express the transmitted signal as
sssk = sss

(ik)
k , where i1, . . . , iK are independent random indices.3

With the assumption that the constellation symbols are trans-
mitted with equal probability, ik are uniformly distributed over
[|Sk|], k ∈ [K]. We rewrite the received signal (1) in vector
form as

yyy =
K∑
k=1

zzzk + www, (20)

where yyy := vec(YYYT), zzzk := (sss(ik)
k ⊗ IIIN )hhhk, and www :=

vec(WWWT) ∼ N (0, σ2IIINT ). The problem of estimating psssk|YYY
is equivalent to estimating pik|YYY since they admit the same
PMF.

With zzz := [zzzT
1, . . . ,zzz

T

K ]T and iii := [i1, . . . , iK ]T, we can write

piii,zzz|yyy(iii, zzz|yyy)
∝ piii,zzz,yyy(iii, zzz,yyy)
= pyyy|zzz(yyy|zzz)pzzz|iii(zzz|iii)piii(iii)

= ψ0(zzz1, . . . , zzzK)
[ K∏
k=1

ψk1(zzzk, ik)
][ K∏

k=1

ψk2(ik)
]
,

corresponding to (9), where

ψ0(zzz1, . . . , zzzK) := pyyy|zzz(yyy|zzz) = N
(
yyy;

K∑
k=1

zzzk, σ
2IIINT

)
,

ψk1(zzzk, ik) := pzzzk|ik(zzzk)=N
(
zzzk;0, (sss

(ik)
k sss

(ik)H

k )⊗ΞΞΞk
)
,

ψk2(ik) := pik(ik) =
1
|Sk|

for ik ∈ [|Sk|]. (21)

In the following, we consider a realization yyy of yyy and use EP
to infer the posterior of the indices {ik} and, as a by-product,
the posterior of zzzk, k ∈ [K]. To do so, we choose the partition
xxx = {zzzk, ik}Kk=1 and illustrate the interaction between these
variables and the factors ψ0, ψk1, ψk2 on the bipartite factor
graph in Fig. 2. This graph is a tree with a root yyy and K leaves
{ψk2}Kk=1.

3The application of EP to non-coherent multi-user detection is non-trivial.
Many choices can be made to model and partition the unknowns, but may
not result in tractable derivation. Our choice is carefully made to enable
closed-form message updates.

Fig. 2. A factor graph representation of the non-coherent detection problem.
The messages are depicted with under-arrows showing their direction from a
factor node to a variable node.

We write the EP approximation according to (10) as

p̂xxx|yyy(xxx|yyy) = p̂iii,zzz|yyy(iii, zzz|yyy) =
K∏
k=1

p̂zzzk
(zzzk)p̂ik(ik), (22)

where p̂zzzk
(zzzk) and p̂ik(ik) are implicitly conditioned on yyy = yyy

and constrained to be a Gaussian vector distribution and
a discrete distribution with support [|S|] (both belong to
the exponential family), respectively. Specifically, they are
parameterized as

p̂zzzk
(zzzk) = N (zzzk; ẑzzk,ΣΣΣk) s.t. ΣΣΣk is positive definite, (23)

p̂ik(ik) = π̂
(ik)
k for ik ∈ [|Sk|] s.t.

|Sk|∑
i=1

π̂
(i)
k = 1. (24)

We also write the EP approximation according to (12) as

p̂xxx|yyy(xxx|yyy) = p̂iii,zzz|yyy(iii, zzz|yyy)

∝ m0(zzz1, . . . , zzzK)
[ K∏
k=1

mk1(zzzk, ik)
][ K∏

k=1

mk2(ik)
]
,

where we define

m0(zzz1, . . . , zzzK) ∝
K∏
k=1

N (zzzk;μμμk0,CCCk0),

mk1(zzzk, ik) ∝ N (zzzk;μμμk1,CCCk1)π
(ik)
k1 ,

mk2(ik) = π
(ik)
k2 for ik ∈ [|Sk|].

On the factor graph in Fig. 2, we can interpret (μμμk0,CCCk0)
as the message from factor node ψ0 to variable node zzzk,
(μμμk1,CCCk1) as the message from factor node ψk1 to variable
node zzzk,

{
π

(ik)
k1

}|Sk|
ik=1

as the message from factor node ψk1 to

variable node ik, and
{
π

(ik)
k2

}|Sk|
ik=1

as the message from factor
node ψk2 to variable node ik.

Remark 1: Our choice of Gaussian distribution (within the
exponential family) in (23) is motivated by the fact that when
the noise and channel are Gaussian, the symbol posterior takes
the form of a Gaussian mixture. It also allows a tractable
derivation (using the Gaussian PDF multiplication rule) and
closed-form update expressions, as will be shown in the
next subsection. If a general (possibly non-Gaussian) channel
model is considered, the factor ψk1(zzzk, ik) in (21) may be
different, but the factor graph in Fig. 2 remains unchanged.
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A. The EP Message Updates

In the following, we derive the message updates from
each of the factor nodes ψ0, ψk1, and ψk2, k ∈ [K],
to the corresponding variable nodes. To do so, for each
α ∈ {k1, k2, 0}, we compute the projected density p̂new

α =∏K
k=1 p̂

new
α,zzzk

(zzzk)p̂new
α,ik

(ik) according to (22) and Proposition 1,
and then update the factor mα according to (16).

1) Message
{
π

(ik)
k2

}|Sk|
ik=1

From Factor Node ψk2 to Variable
Node ik: First, we compute p̂new

k2,ik
and then the EP message{

π
(ik)
k2

}|Sk|
ik=1

from node ψk2 to node ik. From (18) and (24),
we know that p̂new

k2,ik
is the discrete distribution with PMF

{π̂(i)
k2 }

|Sk|
i=1 proportional to ψk2(ik)π

(ik)
k1 , and so

π̂
(ik)
k2 =

ψk2(ik)π
(ik)
k1∑|Sk|

i=1 ψk2(i)π
(i)
k1

=
π

(ik)
k1∑|Sk|

i=1 π
(i)
k1

for ik ∈ [|Sk|],

since ψk2(ik) is constant over these ik. With p̂new
k2,ik

computed,
(16) implies that the message from node ψk2 to node ik is the
PMF proportional to

p̂new
k2,ik

(ik)

π
(ik)
k1

=
π̂

(ik)
k2

π
(ik)
k1

=
1∑|Sk|

i=1 π
(i)
k1

= c0 for ik ∈ [|Sk|],

and thus π(ik)
k2 = 1

|Sk| for ik ∈ [|Sk|].
2) Messages From Factor Node ψk1 to Variable Nodes zzzk

and ik: Next, we compute p̂new
k1 =

∏K
k=1 p̂

new
k1,zzzk

(zzzk)p̂new
k1,ik

(ik)

and the messages
{
π

(ik)
k1

}|Sk|
ik=1

and (μμμk1,CCCk1) from node ψk1
to nodes ik and zzzk, respectively.

a) Message
{
π

(ik)
k1

}|Sk|
ik=1

from node ψk1 to node ik: We
first compute p̂new

k1,ik
(ik). From (18) and (24), we know that

p̂new
k1,ik

(ik) is the discrete distribution with support [|Sk|] and

PMF π̂
(ik)
k1 proportional to∫

ψk1(zzzk, ik)N (zzzk;μμμk0,CCCk0)π
(ik)
k2 dzzzk

=
1
|Sk|

∫
N

(
zzzk;0, (sss

(ik)
k sss

(ik)H

k )⊗ΞΞΞk
)
N (zzzk;μμμk0,CCCk0) dzzzk

=
1
|Sk|

∫
N

(
zzzk; ẑzzkik ,ΣΣΣkik

)

×N
(
0;μμμk0, (sss

(ik)
k sss

(ik)H

k )⊗ΞΞΞk +CCCk0
)

dzzzk

=
1
|Sk|
N

(
0;μμμk0, (sss

(ik)
k sss

(ik)H

k )⊗ΞΞΞk +CCCk0
)
,

where the second equality follows from the Gaussian PDF
multiplication rule in Lemma 1 with

ΣΣΣki =
(
[(sss(i)k sss

(i)H

k )⊗ΞΞΞk]−1 +CCC−1
k0

)−1

=
[
(sss(i)k sss

(i)H

k )⊗ΞΞΞk
](

(sss(i)k sss
(i)H

k )⊗ΞΞΞk +CCCk0
)−1

CCCk0,

(25)

ẑzzki = ΣΣΣkiCCC
−1
k0 μμμk0

=
[
(sss(i)k sss

(i)H

k )⊗ΞΞΞk
](

(sss(i)k sss
(i)H

k )⊗ΞΞΞk +CCCk0
)−1

μμμk0.

(26)

Thus

π̂
(ik)
k1 =

N
(
0;μμμk0, (sss

(ik)
k sss

(ik)H

k )⊗ΞΞΞk +CCCk0
)

∑|Sk|
i=1 N

(
0;μμμk0, (sss

(i)
k sss

(i)H

k )⊗ΞΞΞk +CCCk0
) ,

ik ∈ [|Sk|]. (27)

With p̂new
k1,ik

(ik) computed, (16) implies that the message

π
(ik)
k1 from node ψk1 to node ik is the PMF proportional to
p̂new

k1,ik
(ik)

π
(ik)
k2

= |Sk|π̂(ik)
k1 for ik ∈ [|Sk|], and thus

π
(ik)
k1 =

|Sk|π̂(ik)
k1∑|Sk|

i=1 |Sk|π̂
(i)
k1

= π̂
(ik)
k1 for ik ∈ [|Sk|]. (28)

b) Message (μμμk1,CCCk1) from node ψk1 to nodes zzzk:
We next compute p̂new

k1,zzzk
(zzzk). From (18) and (23), we know

that p̂new
k1,zzzk

(zzzk) is the Gaussian distribution with mean ẑzzk and
covariance ΣΣΣk matched to that of the PDF proportional to

|Sk|∑
ik=1

ψk1(zzzk, ik)N (zzzk;μμμk0,CCCk0)π
(ik)
k2

=
1
|Sk|

|Sk|∑
i=1

N
(
zzzk;0, (sss

(i)
k sss

(i)H

k )⊗ΞΞΞk
)
N (zzzk;μμμk0,CCCk0)

=
1
|Sk|

|Sk|∑
i=1

N
(
zzzk; ẑzzki,ΣΣΣki

)
N

(
0;μμμk0, (sss

(i)
k sss

(i)H

k )⊗ΞΞΞk+CCCk0
)

∝
|Sk|∑
i=1

N
(
zzzk; ẑzzki,ΣΣΣki

)
π̂

(i)
k1 , (29)

where the second equality follows from the Gaussian PDF
multiplication rule in Lemma 1 with ΣΣΣki and ẑzzki defined
in (25) and (26), respectively. Thus, from (28), we have

ẑzzk =
|Sk|∑
i=1

π
(i)
k1 ẑzzki, (30)

ΣΣΣk =
|Sk|∑
i=1

π
(i)
k1 (ẑzzkiẑzz

H

ki + ΣΣΣki)− ẑzzkẑzzH

k. (31)

With p̂new
k1,zzzk

(zzzk) computed, (16) implies that the message from
node ψk1 to node zzzk is proportional to

p̂new
k1,zzzk

(zzzk)
N (zzzk;μμμk0,CCCk0)

=
N (zzzk; ẑzzk,ΣΣΣk)
N (zzzk;μμμk0,CCCk0)

∝ N (zzzk;μμμk1,CCCk1),

(32)

with

CCCk1 =
(
ΣΣΣ−1
k −CCC

−1
k0

)−1
, (33)

μμμk1 = CCCk1
(
ΣΣΣ−1
k ẑzzk −CCC−1

k0 μμμk0
)
. (34)

Equations (33) and (34) can be verified usingN (zzzk; ẑzzk,ΣΣΣk) ∝
N (zzzk;μμμk1,CCCk1)N (zzzk;μμμk0,CCCk0), which follows from (13)
and the Gaussian PDF multiplication rule in Lemma 1.

3) Message (μμμk0,CCCk0) From Node ψ0 to Node zzzk: Finally,
we compute p̂new

0,zzzk
and the EP message (μμμk0,CCCk0) from node

ψ0 to node zzzk for each k ∈ [K]. From (18) and (23), we know
that p̂new

0,zzzk
is the Gaussian distribution with mean ẑzzk0 and
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covariance ΣΣΣk0 matched to that of the PDF proportional to

N (zzzk;μμμk1,CCCk1)
∫
ψ0(zzz1, . . . , zzzK)

[ ∏
j �=k
N (zzzj ;μμμj1,CCCj1) dzzzj

]

= N (zzzk;μμμk1,CCCk1)

×
∫
N

(
yyy;zzzk +

∑
j �=k

zzzj , σ
2IIINT

)[∏
j �=k
N (zzzj ;μμμj1,CCCj1) dzzzj

]

= N (zzzk;μμμk1,CCCk1)N
(
zzzk;yyy −

∑
j �=k

μμμj1, σ
2IIINT +

∑
j �=k

CCCj1

)
,

(35)

where (35) follows by applying repeatedly Lemma 1. Applying
the Gaussian PDF multiplication rule to (35), we obtain

ΣΣΣk0 =
(
CCC−1
k1 +

[
σ2IIINT +

∑
j �=k

CCCj1

]−1)−1

, (36)

ẑzzk0 = ΣΣΣk0

(
CCC−1
k1 μμμk1+

[
σ2IIINT+

∑
j �=k

CCCj1

]−1[
yyy −

∑
j �=k

μμμj1

])
.

(37)

Given p̂new
0,zzzk

(zzzk) = N (zzzk; ẑzzk0,ΣΣΣk0), (16) implies that the
message from node ψ0 to node zzzk is proportional to

p̂new
0,zzzk

(zzzk)
N (zzzk;μμμk1,CCCk1)

=
N (zzzk; ẑzzk0,ΣΣΣk0)
N (zzzk;μμμk1,CCCk1)

∝ N (zzzk;μμμk0,CCCk0),

with CCCk0 =
(
ΣΣΣ−1
k0 − CCC

−1
k1

)−1
and μμμk0 = CCCk0

(
ΣΣΣ−1
k0 zzzk0 −

CCC−1
k1 μμμk1

)
. This is verified using N (zzzk; ẑzzk0,ΣΣΣk0)

∝ N (zzzk;μμμk1,CCCk1)N (zzzk;μμμk0,CCCk0), which follows from (13),
and the Gaussian PDF multiplication rule in Lemma 1.
Plugging in the expressions for ΣΣΣ−1

k0 and ẑzzk0 from (36) and
(37) yields

CCCk0 = σ2IIINT +
∑
j �=k

CCCj1, (38)

μμμk0 = yyy −
∑
j �=k

μμμj1. (39)

This concludes the derivation of the EP message updates.

B. Initialization of the EP Messages

We initialize the EP messages as follows. First, we choose
the non-informative initialization CCC−1

k0 = 0 and μμμk0 = 0, so
that, from (27), the initial message from node ψk1 to node ik
coincides with the uniform prior π(ik)

k1 = π̂
(ik)
k1 = 1

|Sk| for ik ∈
[|Sk|], and, from (25) and (26), the initial parameters ΣΣΣki =
(sss(i)k sss

(i)H

k ) ⊗ ΞΞΞk and zzzki = 0, respectively, for k ∈ [K] and
i ∈ [|Sk|]. This leads to the initial parameters of p̂k(zzzk) from
(30) and (31) as ẑzzk = 0 and ΣΣΣk = 1

|Sk|
∑|Sk|

i=1 (sss(i)k sss
(i)H

k )⊗ΞΞΞk,
and the initial message from node ψk1 to node zzzk given
in (33) and (34) as CCCk1 = ΣΣΣk = 1

|Sk|
∑|Sk|

i=1 (sss(i)k sss
(i)H

k ) ⊗
ΞΞΞk, and μμμk1 = ẑzzk = 0. Finally, the initial messages from
node ψ0 to node zzzk follows from (38) and (39) as CCCk0 =
σ2IIINT +

∑
j �=k

1
|Sj |

∑|Sj |
i=1(sss(i)j sss

(i)H

j )⊗ΞΞΞk, and μμμk0 = yyy.

C. The Algorithm

We summarize the proposed EP scheme for probabilistic
non-coherent detection in Algorithm 1. In the end, according
to (13) and (24), the estimated PMF p̂sssk|YYY(sss(ik)

k |YYY ) is given by

p̂k(ik) = π̂
(ik)
k ∝ π(ik)

k1 π
(ik)
k2 , that is p̂k(ik) = π

(ik)
k1 since π(ik)

k2

is constant. The algorithm goes through the branches of the
tree graph in Fig. 2 in a round-robin manner. In each branch,
the factor nodes are visited from leaf to root. We note that
other message passing schedules can be implemented.

Algorithm 1: EP for Probabilistic Non-Coherent
Detection

Input: the observation YYY ; the constellations S1, . . . ,SK ;
1 set the maximal number of iterations tmax ;
2 initialize of the messages

{π(ik)
k1 }

|Sk|
ik=1,μμμk1,CCCk1,μμμk0,CCCk0, for k ∈ [K] ;

3 t←− 0 ;
4 repeat
5 t←− t+ 1 ;
6 for k ← 1 to K do

7 update
{
π

(ik)
k1

}|Sk|
ik=1

according to (28) and (27) ;

8 compute {ẑzzki}|Sk|
i=1 and {ΣΣΣki}|Sk|

i=1 according to (26)
and (25), respectively ;

9 compute ẑzzk and ΣΣΣk according to (30) and (31),
respectively ;

10 update μμμk1 and CCCk1 according to (34) and (33),
respectively ;

11 update
{
μμμj0

}
j �=k and

{
CCCj0

}
j �=k according to (39)

and (38), respectively ;
12 end
13 until convergence or t = tmax;

14 return The PMF
{
π

(ik)
k1

}|Sk|
ik=1

of p̂sssk|YYY(sss(ik)
k |YYY ) for

k ∈ [K]

In the EP algorithm, the dominant operation is the update
of π

(ik)
k1 , ΣΣΣki, and ẑzzki, which involves the inverse of the

NT ×NT matrix (sss(ik)
k sss

(ik)H

k )⊗ΞΞΞk +CCCk0 (with complexity
O(K6)) for all k ∈ [K] and ik ∈ [|Sk|]. The complexity of
computing ẑzzk, ΣΣΣk, μμμk1,CCCk1,

{
μμμj0

}
j �=k , and

{
CCCj0

}
j �=k are all

of lower order. Therefore, the complexity per iteration is given
by O(K72B). In order to reduce this complexity, we derive
two simplifications of the EP scheme in the next section.

V. SIMPLIFICATIONS OF THE EP DETECTOR

In this section, we attempt to simplify EP by avoiding the
inverse of NT ×NT matrices.

A. EP With Approximate Kronecker Products (EPAK)

We observe that if CCCk0 could be expressed as a Kronecker
product C̄CCk0 ⊗ΞΞΞk with C̄CCk0 ∈ CT×T , we could rewrite π(ik)

k1

in (27) as

π
(ik)
k1 =

N
(
0;μμμk0, (sss

(ik)
k sss

(ik)H

k + C̄CCk0)⊗ΞΞΞk
)

∑|Sk|
i=1 N

(
0;μμμk0, (sss

(i)
k sss

(i)H

k + C̄CCk0)⊗ΞΞΞk
) . (40)
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Let MMMk0 ∈ CT×N s.t. μμμk0 = vec
(
MMM T

k0

)
, (40) could be

computed efficiently using

N
(
0;μμμk0,

(
sss
(ik)
k sss

(ik)H

k + C̄CCk0
)
⊗ΞΞΞk

)

∝
(
1 + sss

(ik)H

k C̄CC
−1
k0 sss

(ik)
k

)−N

× exp
(

tr
{
C̄CC

−1
k0 sss

(ik)
k sss

(ik)H

k MMMk0(ΞΞΞ−1
k )TMMMH

k0

}
1 + sss

(ik)H

k C̄CC
−1
k0 sss

(ik)
k

)

since only the T × T matrix C̄CCk0 needs to be inverted (the
inverse of ΞΞΞk can be precomputed and stored). In general,
CCCk0 does not have a Kronecker structure. Thus we propose
to fit CCCk0 to the form of a Kronecker product by solving the
least squares problem

min
C̄CCk0∈CT×T

‖CCCk0 − C̄CCk0 ⊗ΞΞΞ‖2F

as formulated in [30, Sec. 4]. Let CCCk0{i, j} be the N × N
sub-matrix containing the elements in rows from (i−1)N+1
to iN and columns from (j− 1)N + 1 to jN of CCCk0. Let c̄ij
be the element in row i and column j of C̄CCk0. It follows that

‖CCCk0 − C̄CCk0 ⊗ΞΞΞk‖2F

=
T∑
i=1

T∑
j=1

‖CCCk0{i, j} − c̄ijΞΞΞk‖2F

=
T∑
i=1

T∑
j=1

‖CCCk0{i, j}‖2F − c̄ijtr {CCCk0{i, j}HΞΞΞk}

− c̄∗ijtr {ΞΞΞkCCCk0{i, j}}+ |c̄ij |2tr
{
ΞΞΞ2
k

}
.

Observe that ‖CCCk0 − C̄CCk0 ⊗ ΞΞΞk‖2F is the sum of
convex quadratic functions of c̄ij . Setting the partials
∂‖CCCk0−C̄CCk0⊗ΞΞΞk‖2

F

∂c̄ij
to zeros, the optimal C̄CCk0 is given by

c̄ij =
tr {CCCk0{i, j}ΞΞΞk}

tr {ΞΞΞ2
k}

.

With the approximationCCCk0 ≈ C̄CCk0⊗ΞΞΞk, we can approximate
π

(ik)
k1 by the RHS of (40). Also, it follows from (25) and (26)

that

ΣΣΣki ≈
[
(sss(ik)
k sss

(ik)H

k )
(
sss
(ik)
k sss

(ik)H

k + C̄CCk0
)−1

C̄CCk0
]
⊗ΞΞΞk, (41)

ẑzzki ≈ vec
([
sss
(ik)
k sss

(ik)H

k

(
sss
(ik)
k sss

(ik)H

k + C̄CCk0
)−1

MMMk0

]T)
. (42)

To compute CCCk1 and μμμk1 in (34) and (33), the inversion of
CCCk0 can be simplified as CCC−1

k0 ≈ C̄CC
−1
k0 ⊗ΞΞΞ−1

k , but the inverse
of NT ×NT matrices involving ΣΣΣk is still required.

To keep an accurate message update at early iterations,4 let
us fix a threshold t0 ∈ [tmax] and modify Algorithm 1 as
follows. At iteration t, if t ≤ t0, the messages are updated as
in lines 7-11; if t > t0, in line 7, (27) is replaced by (40) for
the update of π(ik)

k1 , and in line 8, (26) and (25) are replaced
by (42) and (41) for the update of ΣΣΣki and ẑzzki, respectively.
We refer to this scheme as EPAK (EP with Approximate

4In the uncorrelated fading case, i.e. ΞΞΞk = IIIN , the approximation of
CCCk0 with Kronecker products becomes more accurate when π̂k1 is closer
to a Kronecker-delta distribution, i.e., we have high confidence in one of the
symbols. This is likely the case at high SNR after some EP iterations. At early
iterations, however, the approximation CCCk0 ≈ C̄CCk0 ⊗ΞΞΞ can be inaccurate.

Kronecker). It coincides with EP if t0 = tmax. At iteration
t > t0, the dominant operations in EPAK are the inverse of
sss
(i)
k sss

(i)H

k + C̄CCk0 (with complexity O(K3)) in (41) and (42) for
each k ∈ [K] and i ∈ [|Sk|], and the inverse of NT × NT
matrices (with complexity O(K6)) to compute CCCk1 and μμμk1
for each k ∈ [K]. Thus the complexity at iteration t of EPAK
is O(K72B) if t ≤ t0 and O(K42B +K7) if t > t0.

B. Minimum Mean Square Error - Successive Interference
Approximation (MMSE-SIA)

Another method to simplify EP is as follows. In the EP
scheme, as in (29) and (32), the message N (zzzk;μμμk1,CCCk1)
from node ψk1 to node zzzk is derived by first pro-
jecting p̂new

k1,zzzk
(zzzk) ∝

∑|Sk|
i=1 π

(i)
k1N (zzzk; ẑzzki,ΣΣΣki) onto the

Gaussian family, then dividing the projected Gaussian by
N (zzzk;μμμk0,CCCk0). If we skip the projection of p̂new

k1 (zzzk) onto
the Gaussian family, i.e., we derive N (zzzk;μμμk1,CCCk1) by divid-
ing directly p̂new

k1,zzzk
(zzzk) to N (zzzk;μμμk0,CCCk0), then the mean μμμk1

and covariance matrix CCCk1 are matched to that of the PDF
proportional to

p̂new
k1,zzzk

(zzzk)
N (zzzk;μμμk0,CCCk0)

=
|Sk|∑
i=1

π
(i)
k1

N (zzzk; ẑzzki,ΣΣΣki)
N (zzzk;μμμk0,CCCk0)

∝
|Sk|∑
i=1

π
(i)
k1N

(
zzzk;0, (sss

(i)
k sss

(i)H

k )⊗ΞΞΞk
)

= N
(
zzzk;0,RRRk ⊗ΞΞΞk

)
. (43)

where RRRk :=
∑|Sk|
i=1 π

(i)
k1sss

(i)
k sss

(i)H

k . (43) can be verified using
N (zzzk; ẑzzki,ΣΣΣki) ∝ N

(
zzzk;0, (sss

(i)
k sss

(i)H

k )⊗ΞΞΞk
)
N (zzzk;μμμk0,CCCk0),

which follows from the Gaussian PDF multiplication rule with
ẑzzki and ΣΣΣki given in (26) and (25), respectively. It follows that
μμμk1 = 0 and CCCk1 = RRRk ⊗ΞΞΞk. As a consequence (see (39)
and (38)), μμμk0 = yyy and CCCk0 = σ2IIINT +

∑
l �=kRRRl ⊗ΞΞΞk.

This scheme can be alternatively interpreted as follows. We
expand yyy in (20) as

yyy = (sssk ⊗ IIIN )hhhk +
∑
l �=k

(sssl ⊗ IIIN )hhhl + www.

The second term tttk :=
∑

l �=k(sssl ⊗ IIIN )hhhl is the interference
from other users while decoding the signal of user k. Since the
signals sssl are independent of the channels hhhl and the channels
hhhl have zero mean, we have that E [tttk] = 0. The covariance
matrix of tttk is E [tttktttH

k] =
∑

l �=k E [ssslsssH

l ] ⊗ ΞΞΞk =
∑
l �=kRRRl ⊗

ΞΞΞk. If we treat the interference term tttk as a Gaussian
vector with the same mean and covariance matrix,5 then
tttk + www ∼ N

(
0,

∑
l �=kRRRl ⊗ΞΞΞk + σ2IIINT

)
. The single-user

likelihood under this approximation is p̂yyy|sssk
(yyy|sssk) =

N
(
yyy;0, sssksssH

k ⊗ΞΞΞk +
∑

l �=kRRRl ⊗ΞΞΞl + σ2IIINT
)
. With this and

Lemma 1, the update of the approximate posterior
p̂sssk|yyy(sssk|yyy) ∝ p̂yyy|sssk

(yyy|sssk) coincides with (27) for μμμk0 = yyy
and CCCk0 = σ2IIINT +

∑
l �=kRRRl ⊗ΞΞΞk. The matrix RRRk is

then recalculated with the updated value of p̂sssk|yyy(sss
(ik)
k |yyy),

5Another choice is to treat each sssl, l �= k, as a Gaussian. With this choice,
however, the interference term tttk is a product of Gaussians which makes the
approximate single-user likelihood difficult to evaluate.
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ik ∈ [|Sk|]. The matrices CCCl0 are updated accordingly, and
then used to update p̂sssl|yyy(sss

(il)
l |yyy), il ∈ [|Sl|], l 	= k.

In short, the derived simplification of the EP scheme above
iteratively MMSE-estimates the signal zzzk of one user at a time
while treating the interference as Gaussian. At each iteration,
the Gaussian approximation of the interference for each user
is successively improved using the estimates of the signals
of other users. We refer to this scheme as MMSE-SIA and
summarize it in Algorithm 2. In particular, as for the EP
scheme, we can start with the non-informative initialization
p̂sssk|YYY(sss|YYY ) = 1

|Sk|�{sss ∈ Sk}.

Algorithm 2: MMSE-SIA for Probabilistic Non-Coherent
Detection

Input: the observation YYY ; the constellations S1, . . . ,SK ;
1 set the maximal number of iterations tmax ;
2 initialize of the posteriors p̂sssk|YYY(sssk|YYY ) for sssk ∈ Sk, and
RRRk = Ep̂sssk|YYY [sssksssH

k] for k ∈ [K] ;
3 t←− 0 ;
4 repeat
5 t←− t+ 1 ;
6 for k ← 1 to K do
7 compute CCCk0 = σ2IIINT +

∑
l �=kRRRl ⊗ΞΞΞk ;

8 update p̂sssk|YYY(sssk|YYY ), sssk ∈ Sk, according to (27)
with μμμk0 = yyy and CCCk0 computed ;

9 update RRRk = Ep̂sssk|YYY [sssksssH

k] ;
10 end
11 until convergence or t = tmax;
12 return p̂sssk|YYY(sssk|YYY ) for sssk ∈ Sk , k ∈ [K]

The complexity order of Algorithm 2 is the same as EP
due to the NT × NT matrix inversion in (27). However,
MMSE-SIA still has complexity advantage over EP since no
other matrix inversion is required, and there is no need to
compute {ẑzzki}, {ΣΣΣki}, ẑzzk, ΣΣΣk, or update μμμk1. If the channel
is uncorrelated (ΞΞΞk = IIIN ), the complexity order of MMSE-
SIA can be reduced. In this case,CCCk0 is the Kronecker product
QQQk ⊗ IIIN with QQQk :=

∑K
l=1,l �=kRRRl + σ2IIIT , and thus in (27),

N
(
0;μμμk0, (sss

(ik)
k sss

(ik)H

k )⊗ΞΞΞk +CCCk0
)

= N
(
0;yyy,

(
sss
(ik)
k sss

(ik)H

k +QQQk
)
⊗ IIIN

)

∝
(
1+sss(ik)H

k QQQ−1
k sss

(ik)
k

)−N exp
( ∥∥YYYHQQQ−1

k sss
(ik)
k

∥∥2

1+sss(ik)H

k QQQ−1
k sss

(ik)
k

)
. (44)

Then, only the inverse of QQQk is computed, which requires
O(K3) operations. Given QQQ−1

k , the complexity of computing
the RHS of (44) is then O(K2) for each ik ∈ [|Sk|]. Therefore,
the complexity of computing p̂sssk|YYY(sssk|YYY ) is O(K3 +K22B)
for k ∈ [K]. Finally, the complexity per iteration of the
MMSE-SIA algorithm for uncorrelated fading is given by
O(K4 +K32B).

VI. IMPLEMENTATION ASPECTS

A. Complexity

We summarize the computational complexity of the consid-
ered schemes in Table I.

TABLE I

COMPLEXITY ORDER OF DIFFERENT NON-COHERENT DETECTORS WITH

T = O(K),N = O(K), AND |Sk| = O(2B), k ∈ [K]

B. Stabilization

We discuss some possible numerical problems in the EP
algorithm and our solutions.

1) Singularity of ΣΣΣk: First, in (31), since the NT × NT
matrix ΣΣΣk is the weighted sum of the terms of rank less
than NT , it can be close to singular if at a certain iteration,
only few of the weights π(i)

k1 are sufficiently larger than zero.
The singularity of ΣΣΣk can also arise from the constellation
structure. For example, the constellations proposed in [22] are
precoded versions of a constellation in G(CT−K+1, 1) and
the maximal rank of ΣΣΣk is N(T −K + 1) ≤ NT . To avoid
the inverse of ΣΣΣk, we express CCCk1 in (33) and μμμk1 in (34)
respectively as

CCCk1 = −CCCk0
(
ΣΣΣk −CCCk0

)−1ΣΣΣk,

μμμk1 = CCCk0
(
ΣΣΣk−CCCk0

)−1
(

ΣΣΣk−
|Sk|∑
i=1

π
(i)
k1ΣΣΣki

)
CCC−1
k0 μμμk0. (45)

2) “Negative Variance”: Another problem is that CCCk1 is
not guaranteed to be positive definite even if both CCCk0 and
ΣΣΣk are. When CCCk1 is not positive definite, from (38), CCCk0
can have negative eigenvalues, which, through (27), can make
π̂

(ik)
k1 become close to a Kronecker-delta distribution (even at

low SNR) where the position of the mode can be arbitrary,
and the algorithm may diverge. Note that this “negative
variance” problem is common in EP (see, e.g., [24, Sec. 3.2.1],
[31, Sec. 5.3]). There has been no generally accepted solution
and one normally resorts to various heuristics adapted to each
problem. In our problem, to control the eigenvalues of CCCk1,
we modify (45) by first computing the eigendecomposition
−CCCk0

(
ΣΣΣk − CCCk0

)−1ΣΣΣk = VVVΛΛΛVVV −1, then computing CCCk1 as
CCCk1 = VVV |ΛΛΛ|VVV −1, where |ΛΛΛ| is the element-wise absolute
value of ΛΛΛ. This manipulation of replacing the variance
parameters by their absolute values was also used in [32].

3) Overconfidence at Early Iterations: Finally, due to the
nature of the message passing between continuous and discrete
distribution, it can happen that all the mass of the PMF π̂

(ik)
k1

is concentrated on a small region of a potentially large constel-
lation Sk . For example, if π(ik)

k1 is close to a Kronecker-delta
distribution with a single mode at i0, then (26) and (25)
implies that ΣΣΣk is approximately ΣΣΣki0 , and then from (33),
CCCk1 ≈ (sss(i0)

k sss
(i0)H

k )⊗ΞΞΞk. In this case, almost absolute certainty
is placed on the symbol sss(i0)

k , and the algorithm will not be
able significantly update its belief in the subsequent iterations.
This can be problematic when the mode of π(ik)

k1 is placed on
the wrong symbol at early iterations. To smooth the updates,
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we apply damping on the update of the parameters of the con-
tinuous distributions N (zzzk;μμμk1,CCCk1) and N (zzzk;μμμk0,CCCk0).
That is, with a damping factor η ∈ [0; 1], at iteration t and for
each user k, we update

CCCk1(t) = ηVVV (t)|ΛΛΛ(t)|VVV −1(t) + (1− η)CCCk1(t− 1), (46)

μμμk1(t) = ηCCCk0(t− 1)
(
ΣΣΣk(t)−CCCk0(t− 1)

)−1

×
(

ΣΣΣk(t)−
|Sk|∑
i=1

π
(i)
k1 (t)ΣΣΣki(t)

)
CCC−1
k0 (t−1)μμμk0(t−1)

+ (1− η)μμμk1(t− 1), (47)

CCC l0(t) = η

(
σ2IIINT +

∑
j �=l

CCCj1(t)
)

+ (1− η)CCC l0(t− 1),

∀l 	= k, (48)

μμμl0(t) = η

(
yyy −

∑
j �=l

μμμj1(t)
)

+ (1 − η)μμμl0(t− 1), ∀l 	= k.

(49)

In short, we stabilize the EP message updates by replacing
(46), (47), (48), and (49) for (33), (34), (38), and (39),
respectively. This technique also applies to EPAK. For MMSE-
SIA, we damp the update of QQQk and RRRk in a similar manner
as QQQk(t) = η

( ∑
l �=kRRRl(t−1)+σ2IIIT

)
+(1−η)QQQk(t−1) and

RRRk(t) = η
∑|Sk|
ik=1 π

(ik)
k1 (t)sss(ik)

k sss
(ik)H

k +(1− η)RRRk(t− 1). Note
that damping does not change the complexity order of these
schemes. The approaches described in this subsection were
implemented for the numerical results in the next section.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed schemes for a given set of individual constellations.
We assume that B1 = . . . BK =: B. We consider the local
scattering model [4, Sec. 2.6] for the correlation matrices
ΞΞΞk. Specifically, the (l,m)-th element of ΞΞΞk is generated as
[ΞΞΞk]l,m = ξkEδk

[exp(2πdH(l − m) sin(ϕk + δk))], where
dH is the antenna spacing in the receiver array (measured
in number of wavelengths), ϕk is a deterministic nominal
angle, and δk is a random deviation. We consider dH = 1

2 , ϕk
generated uniformly in [−π, π], and δk uniformly distributed
in [−

√
3σϕ,

√
3σϕ] with angular standard deviation σϕ = 10◦.

We also consider ξk = 1, ∀k. We set a damping factor η = 0.9
for EP, EPAK, and MMSE-SIA.

A. Test Constellations, State-of-the-Art Detectors,
and Benchmarks

1) Precoding-Based Grassmannian Constellations: We
consider the constellation design in [22], which imposes a
geometric separation between the individual constellations
through a set of precoders UUUk, k ∈ [K]. Specifically, starting
with a Grassmannian constellation D =

{
ddd(1), . . . ,ddd(2B)} in

G(CT−K+1, 1), the individual constellation Sk is generated as

sss
(i)
k =

UUUkddd
(i)

‖UUUkddd(i)‖
, i ∈ [2B].

We consider the precoders UUUk defined in [22, Eq.(11)] and
two candidates for D:

• A numerically optimized constellation generated by solv-
ing the max-min distance criteria

max
ddd(i)∈G(CT−K+1,1),i=1,...,2B

min
1≤i<j≤2B

d(ddd(i),ddd(j)), (50)

where d(ddd(i),ddd(j)) :=
√

1− |ddd(i)Hddd(j)|2 is the chordal
distance between two Grassmannian points represented
by ddd(i) and ddd(j). A constellation with maximal minimum
pairwise distance leads to low symbol error rate in the
absence of the interference. In our simulation, we approx-
imate (50) by minD log

∑
1≤i<j≤2B exp

( |ddd(i)Hddd(j)|
�

)
with

a small 
 for smoothness, then solve it using gradient
descent on the Grassmann manifold using the Manopt
toolbox [33].

• The cube-split constellation proposed in [17], [34]. This
structured constellation has good distance properties and
allows for low-complexity single-user decoding and a
simple yet effective binary labeling scheme.

Exploiting the precoder structure, [22] introduced a detec-
tor [22, Sec. V-B-3] that iteratively mitigates interference by
projecting the received signal onto the subspace orthogonal to
the interference subspace. We refer to it as POCIS (Projection
onto the Orthogonal Complement of the Interference Sub-
space). For each user k, POCIS first estimates the row space of
the interference

∑
l �=k ssslhhh

T

l based on the precoders and projects
the received signal onto the orthogonal complement of this
space. It then performs single-user detections to obtain point
estimates of the transmitted symbols. From these estimates,
POCIS estimates the column space of the interference and
projects the received signal onto its orthogonal complement.
This process is repeated in the next iteration. The complexity
order of POCIS is equivalent to the MMSE-SIA scheme. Note
that only the indices of the estimated symbols are passed in
POCIS, as opposed to the soft information on the symbols as
in EP, MMSE-SIA, and EPAK.

2) Pilot-Based Constellations: We also consider the
pilot-based constellations in which the symbols are generated

as sss(i)k =
[√

K
T eee

T

k

√
T−K
TPavg

s̃ss
(i)T

k

]T

where eeek is the k-th column

of IIIK , s̃ss(i)k is a vector of data symbols taken from a scalar
constellation, such as QAM, and Pavg is the average symbol
power of the considered scalar constellation. Note that this cor-
responds to the scenario where the K users transmit mutually
orthogonal pilot sequences, followed by spatially multiplexed
parallel data transmission. Many MIMO detectors have been
proposed specifically for these constellations. We consider
some representatives as follows.

• The receiver MMSE-estimates the channel based on the
first K rows of YYY, then MMSE-equalizes the received
data symbols in the remaining T − K rows of YYY, and
performs a scalar demapper on the equalized symbols.

• The receiver MMSE-estimates the channel, then decodes
the data symbols using the Schnorr-Euchner sphere
decoder [35], referred to as SESD.

• The receiver performs the semi-blind joint ML channel
estimation and data detection scheme in [9] with repeated
weighted boosting search (RWBS) for channel estimation
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and the Schnorr-Euchner sphere decoder for data detec-
tion, referred to as RWBS-SESD.

We note that the sphere decoder has near optimal perfor-
mance given the channel knowledge, but its complexity is
non-deterministic and can be exponential in the channel
dimension if the channel matrix is ill-conditioned.

3) Benchmarks: We consider the optimal ML detector,
whenever it is feasible, as a benchmark. When the optimal
detector is computationally infeasible, we resort to another
benchmark consisting in giving the receiver, while it decodes
the signal sssk of user k, the knowledge of the signals sssl (but
not the channel hhhl) of all the interfering users l 	= k. With
this genie-aided information, optimal ML decoding (2) can be
performed by keeping sssl fixed for all l 	= k and searching for
the best sssk in Sk , thus reducing the total search space size from
2BK to K2B. The posterior marginals are computed separately
for each user accordingly. This genie-aided detector gives an
upper bound on the performance of EP, MMSE-SIA, EPAK,
and POCIS.

B. Convergence and Running Time
To assess the convergence of the algorithms, we evaluate the

total variation distance between the estimated marginal poste-
riors p̂sssk|YYY at each iteration and the exact marginal posteriors
psssk|YYY when exact marginalization (4) is possible. The total
variation distance between two probability measures P and
Q on X is defined as T V(P,Q) := 1

2

∑
x∈X |P (x) −Q(x)|.

At iteration t where the estimated posteriors are p̂(t)
sssk|YYY, k ∈

[K], we evaluate the average total variation distance as

Δt =
1
K

K∑
k=1

EYYY[T V(p̂(t)
sssk|YYY, psssk|YYY)].

We consider the precoding-based Grassmannian constella-
tions. Fig. 3 shows the empirical average total variation Δt for
T = 6, K = 3, N = 4, and B = 4 at SNR = 8 dB. As can be
seen, at convergence, EP provides the most accurate estimates
of the marginal posteriors although it is less stable than other
schemes. EP converges after 6 iterations while MMSE-SIA
converges after 5 iterations. For uncorrelated fading, EPAK
with t0 = 2 can be eventually better than MMSE-SIA,
but converges slower. For correlated fading, EPAK totally
fails because of the inaccuracy of the approximation with
Kronecker products. POCIS converges very quickly after
2 iterations but achieves a relatively low accuracy of the
posterior estimation.

Fig. 4 depicts the average running time (on a local server)
of exact marginalization compared with 6 iterations of EP,
EPAK, MMSE-SIA, and POCIS at SNR = 8 dB. These
schemes have significantly lower computation time than exact
marginalization. The running time saving of EPAK w.r.t. EP is
not significant, even with t0 = 0. For uncorrelated fading,
MMSE-SIA has much shorter running time than all other
schemes.

From these convergence behaviors, hereafter, we fix the
number of iterations of EP, MMSE-SIA, and EPAK as 6 and
of POCIS as 3. Furthermore, we consider EPAK only for
uncorrelated fading. For correlated fading, we generate the
correlation matrices once and fix them over the simulation.

Fig. 3. The empirical average total variation Δt over 1000 realizations
of the transmitted signal, channel, and noise versus iteration for different
non-coherent soft detection schemes for T = 6, K = 3, B = 4, and
N = 4 at SNR = 8 dB. The error bars show the standard error, which is the
standard deviation normalized by the square root of the number of samples.
For correlated fading, these figures are further averaged over 10 realizations
of the correlation matrices.

C. Achievable Rate

We first plot the achievable mismatched sum-rate RGMI of
the system calculated as in (7) for T = 6, K = 3, N = 4
and B ∈ {4, 8} in Fig. 5. We consider the precoding-based
Grassmannian constellations. For D, we use the numerically
optimized constellation if B = 4 and the cube-split constel-
lation if B = 8. For uncorrelated fading (Fig. 5(a), the rates
achieved with EP and MMSE-SIA detectors are very close to
the achievable rate of the system (with the optimal detector)
and not far from that of the genie-aided detector. EPAK (with
t0 = 2) achieves a very low rate, especially in the low SNR
regime where the Kronecker approximation is not accurate.
For correlated fading, (Fig. 5(b)), the rates achieved with
EP and MMSE-SIA are only marginally lower than that of
the optimal detector and genie-aided detector. In both cases,
the rate achieved with POCIS is lower than that of EP and
MMSE-SIA in the lower SNR regime and converges slowly
with SNR to the limit BK

T bits/channel use.

D. Symbol Error Rates of Hard Detection

Next, we use the outputs of EP, EPAK, MMSE-SIA and
POCIS for a maximum-a-posteriori (MAP) hard detection.
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Fig. 4. The average running time over 1000 realizations of the transmitted signal, channel, and noise of exact marginalization vs. 6 iterations of the considered
detection schemes for T = 6, K = 3, B = 4, and N = 4 at SNR = 8 dB. The error bars show the standard deviation. For correlated fading, the running
time is further averaged over 10 realizations of the correlation matrices.

Fig. 5. The mismatched rate of the system with EP, EPAK (with t0 = 2),
MMSE-SIA, and POCIS detectors in comparison with the optimal detector
and/or the genie-aided detector for T = 6, K = 3, N = 4, and B ∈ {4, 8}.

We evaluate the performance in terms of symbol error
rate (SER).

In Fig. 6, we consider the precoding-based constellations
with T = 6, K = 3, N ∈ {4, 8}, and B = 4, for

Fig. 6. The symbol error rate of the system with EP, EPAK (with t0 ∈
{0, 2}), MMSE-SIA, and POCIS detectors in comparison with the optimal
detector and the genie-aided detector for T = 6, K = 3, N ∈ {4, 8} and
B = 4.

which the optimal ML detector (2) is computationally feasible.
We observe that the SER of the EP and MMSE-SIA detec-
tors are not much higher than that of the optimal detector,
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Fig. 7. The symbol error rate of the system with EP, EPAK (t0 ∈ {0, 2}),
MMSE-SIA, POCIS vs. the genie-aided detector for T = 6, K = 3,
N = 8, and B = 9. For uncorrelated fading, these schemes are compared
with three pilot-based detectors using respectively MMSE equalizer, sphere
decoding [35], and joint channel estimation–data detection [9].

especially in the lower SNR regime. The SER of EPAK is
significantly higher than that of EP and MMSE-SIA for t0 = 0.
This is greatly improved by setting t0 = 2, i.e., keeping the
first two iterations of EP. The gain of EP w.r.t. EPAK and
MMSE-SIA is more pronounced when the SNR increases. For
correlated fading, EP performs almost as good as the optimal
detector, whose SER performance is closely approximated by
the genie-aided detector.

In Fig. 7, we consider T = 6, K = 3, N = 8, and
B = 9 and use the genie-aided detector as a benchmark.
In Fig. 7(a), we consider uncorrelated fading and use the
pilot-based constellations with 8-QAM data symbols. The
performance of EP is very close to that of the genie-aided
detector. The performance of MMSE-SIA is close to EP in
the low SNR regime (SNR ≤ 8 dB). We also depict the
SER of the three pilot-based detectors in Section VII-A.2,

Fig. 8. The bit error rate with turbo codes of EP, EPAK (with
t0 = 2), MMSE-SIA, POCIS, and the optimal/genie-aided detector for B = 8
bits/symbol and K = N .

namely, 1) MMSE channel estimation, MMSE equalizer, and
QAM demapper, 2) SESD, and 3) RWBS-SESD. These three
schemes are outperformed by the EP detectors. In Fig. 7(b),
we consider correlated fading and use the precoding-based
Grassmannian constellations with D numerically optimized.
We observe again that EP achieves almost the same SER
performance as the genie-aided detector.

E. Bit Error Rates With a Channel Code

In this subsection, we use the output of the soft detectors
for channel decoding. We consider the precoding-based Grass-
mannian constellations with the cube-split constellation for D
since it admits an effective and simple binary labeling [17]. We
take the binary labels of the symbols in D for the correspond-
ing symbols in Sk. We integrate a standard symmetric parallel
concatenated rate-1/3 turbo code [36]. The turbo encoder
accepts packets of 1008 bits; the turbo decoder computes the
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Fig. 9. The bit error rate with turbo codes of EP, EPAK (with t0 = 2),
MMSE-SIA, POCIS, and the optimal/genie-aided detector for T = 6, K = 3,
and N = 4.

bit-wise LLR from the soft outputs of the detection scheme
as in (3) and performs 10 decoding iterations for each packet.

In Fig. 8, we show the bit error rate (BER) with this
turbo code using B = 8 bits/symbol and different values
of T and K = N . EP achieves the closest performance to
the genie-aided detector and the optimal detector (4). The
BER of MMSE-SIA vanishes slower with the SNR than the
other schemes, and becomes better than POCIS as K and
N increase. The BER of EPAK with t0 = 2 is higher than
all other schemes. Under uncorrelated fading, for T = 7
and K = N = 4, the power gain of EP w.r.t. MMSE-
SIA, POCIS, and EPAK for the same BER of 10−3 is about
3 dB, 4 dB, and 8 dB, respectively. We also observe that the
genie-aided detector gives very optimistic BER performance
results compared to the optimal detector.

Finally, in Fig. 9, we consider T = 6, K = 3, N = 4,
and compare the BER with the same turbo code for different
B. For B = 5, both EP and MMSE-SIA have performance
close to the optimal detector. Under uncorrelated fading,

MMSE-SIA can be slightly better than EP. This is due to
the residual effect (after damping) of the phenomenon that
all the mass of π(ik)

k1 is concentrated on a possibly wrong
symbol at early iterations, and EP may not be able to refine
significantly the PMF in the subsequent iterations if the
constellation is sparse. This situation is not observed for
B = 8, i.e., larger constellations. Also, as compared to the
case T = 6,K = 3, B = 8 in Fig. 8, the performance of
MMSE-SIA is significantly improved as the number of receive
antennas increases from N = 3 to N = 4. As in the previous
case, EPAK does not perform well.

VIII. CONCLUSION

We proposed an expectation propagation (EP) based scheme
and two simplifications (EPAK and MMSE-SIA) of this
scheme for multi-user detection in non-coherent SIMO multi-
ple access channel with spatially correlated Rayleigh fading.
EP and MMSE-SIA are shown to achieve good performance
in terms of mismatched sum-rate, symbol error rate when
they are used for hard detection, and bit error rate when
they are used for soft-input soft-output channel decoding.
EPAK has acceptable performance with uncorrelated fading.
It performs well for hard symbol detection but inadequately
for soft-output detection. While MMSE-SIA and EPAK have
lower complexity than EP, the performance gain of EP with
respect to MMSE-SIA and EPAK is more significant when the
number of users and/or the constellation size increase. Possible
extensions of this work include considering more complicated
fading models and analyzing theoretically the performance of
EP for non-coherent reception.

APPENDIX A
PROPERTIES OF THE GAUSSIAN PDF

Lemma 1: Let xxx be an n-dimensional complex Gaussian
vector. It holds that

1) N (xxx;μμμ,ΣΣΣ) = N (xxx+ yyy;μμμ− yyy,ΣΣΣ) for yyy ∈ Cn;
2) Gaussian PDF multiplication rule:

N (xxx;μμμ1,ΣΣΣ1)N (xxx;μμμ2,ΣΣΣ2) = N (xxx;μμμnew,ΣΣΣnew)
× N (0;μμμ1−μμμ2,ΣΣΣ1+ΣΣΣ2),

where ΣΣΣnew :=
(
ΣΣΣ−1

1 +ΣΣΣ−1
2

)−1
and μμμnew :=ΣΣΣnew

(
ΣΣΣ−1

1 μμμ1

+ ΣΣΣ−1
2 μμμ2

)
.

Proof: The first part follows readily from the definition of
N (xxx;μμμ,ΣΣΣ). The complex Gaussian PDF multiplication rule is
a straightforward generalization of the real counterpart [37].

APPENDIX B
PROOF OF PROPOSITION 1

Using the natural logarithm for the KL divergence,
we derive

D
(
qα(xxx)

∥∥p(xxx)
)

=
∫
qα(xxx) ln

qα(xxx)∏
β pβ(xxxβ)

dxxx

=
∑
β

∫
qα(xxx) ln

1
p
β
(xxxβ)

dxxx+ c0

=
∑
β∈Nα

∫
qα(xxx) ln

1
p
β
(xxxβ)

dxxx+
∑
β/∈Nα

∫
qα(xxx) ln

1
p
β
(xxxβ)

dxxx
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+ c0

=
∑
β∈Nα

∫
qα(xxx) ln

1
p
β
(xxxβ)

dxxx

+
∑
β/∈Nα

∫
p̂β(xxxβ) ln

1
p
β
(xxxβ)

dxxxβ + c0 (51)

= −
∑
β∈Nα

∫
qα(xxx)

[
γγγT

β
φφφ(xxxβ)−Aβ(γγγβ)

]
dxxx+

∑
β/∈Nα

D
(
p̂β

∥∥p
β

)

+ c0 (52)

=
∑
β∈Nα

[
Aβ(γγγβ)− γγγ

T

β
Eqα

[
φφφ(xxxβ)

]]
+

∑
β/∈Nα

D
(
p̂β

∥∥p
β

)
+c0,

(53)

where (51) follows from qα(xxx) =
ψα(xxxα)
mα(xxxα)

[ ∏
β∈Nα

p̂β(xxxβ)
][ ∏

β/∈Nα
p̂β(xxxβ)

]
, and (52) follows

from (11). From (53), we can see that the optimization (14)
of p decouples over p

β
, and the optimal distribution can

be expressed as p̂new
α (xxx) =

∏
β p̂

new
α,β (xxxβ). For β /∈ Nα,

the minimum of D
(
p̂β

∥∥p
β

)
is simply 0 and achieved with

p̂new
α,β (xxxβ) = p̂β(xxxβ). For β ∈ Nα, since the log-partition

function Aβ(γγγ
β
) is convex in γγγ

β
(see, e.g., [38, Lemma 1]),

the minimum of Aβ(γγγβ) − γγγT

β
Eqα

[
φφφ(xxxβ)

]
is achieved

at the value of γγγ
β

where its gradient is zero. Using
the well-known property of the log-partition function,
∇γγγAβ(γγγ) = Ep̂β

[φφφβ(γγγ)], we get that the zero-gradient
equation is equivalent to the moment matching criterion
Ep̂new

α,β
[φφφβ(xxxβ) = Eqα [φφφβ(xxxβ)].
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