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Abstract— We consider the non-coherent single-input multiple-
output (SIMO) multiple access channel with general signaling
under spatially correlated Rayleigh block fading. We propose a
novel soft-output multi-user detector that computes an approx-
imate marginal posterior of each transmitted signal using only
the knowledge about the channel distribution. Our detector is
based on expectation propagation (EP) approximate inference
and has polynomial complexity in the number of users, number
of receive antennas and channel coherence time. We also propose
two simplifications of this detector with reduced complexity.
With Grassmannian signaling, the proposed detectors outperform
a state-of-the-art non-coherent detector with projection-based
interference mitigation. With pilot-assisted signaling, the EP
detector outperforms, in terms of symbol error rate, some
conventional coherent pilot-based detectors, including a sphere
decoder and a joint channel estimation—-data detection scheme.
Our EP-based detectors produce accurate approximates of the
true posterior leading to high achievable sum-rates. The gains
of these detectors are further observed in terms of the bit error
rate when using their soft outputs for a turbo channel decoder.

Index Terms— Non-coherent communications, multiple access,
detection, expectation propagation, Grassmannian constellations.

I. INTRODUCTION
N WIRELESS communications, multi-antenna based
multiple-input multiple-output (MIMO) technology is capa-
ble of improving significantly both the system spectral effi-
ciency and reliability due to its multiplexing and diversity
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gains [2], [3]. MIMO is at the heart of current cellular systems,
and large-scale (massive) MIMO [4] is considered as one
of the fundamental technologies for the fifth-generation (5G)
wireless communications [5]. In practical MIMO systems,
the transmitted symbols are normally drawn from a finite
discrete constellation to reduce complexity. Due to propagation
effects, the symbols sent from different transmit antennas
interfere, and the receiver observes a linear superposition of
these symbols corrupted by noise. The task of the receiver is
to detect these symbols (or rather the underlying bits) based
on the received signal and the available knowledge about the
channel.

If the instantaneous value of the channel matrix is treated
as known, the detection is said to be coherent and has been
investigated extensively in the literature [6]. In this case,
the data symbols are normally taken from a scalar constel-
lation such as the quadrature amplitude modulation (QAM).
Since the optimal maximum-likelihood (ML) coherent detec-
tion problem is known to be non-deterministic polynomial-
time hard (NP-hard) [7], many sub-optimal coherent MIMO
detection algorithms have been proposed. These range from
linear schemes, such as the zero forcing (ZF) and minimum
mean square error (MMSE) detectors, to non-linear schemes
based on, for example, interference cancellation, tree search,
and lattice reduction [6].

If only statistical information about the channel is available,
the detection problem is said to be non-coherent. In the block
fading channel where the channel matrix remains constant for
each length-T" coherence block and varies between blocks,
the receiver can estimate (normally imperfectly) the channel
based on the transmitted pilot symbols, then perform coherent
detection based on the channel estimate. Channel estimation
and data detection can also be done iteratively [8], [9],
or jointly based on tree search [10], [11]. These schemes
requires pilot transmission for an initial channel estimate or
to guarantee the identifiability of the data symbols. Another
approach not involving pilot transmission is unitary space time
modulation, in which the matrix of symbols in the space-time
domain is orthonormal and isotropically distributed [12].
There, information is carried by the signal matrix subspace
position, which is invariant to multiplication by the channel
matrix. Therefore, a constellation over matrix-valued symbols
can be designed as a collection of subspaces in C”. Such
constellations belong to the Grassmann manifold G(C”, K),
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which is the space of K-dimensional subspaces in CT', where
K is the number of transmit antennas. For the independent and
identically distributed (i.i.d.) Rayleigh block fading channel,
when the signal-to-noise-ratio (SNR) is large, Grassmannian
signaling was shown to achieve a rate within a vanishing gap
from the capacity if T > N + min{K, N} [13], and within
a constant gap if 2K < T < N 4 K [14], where N is
the number of receive antennas. Like with coherent detec-
tion, the optimal ML non-coherent detection problem under
Grassmannian signaling is NP-hard. Thus, low-complexity
sub-optimal detectors have been proposed for constellations
with additional structure, e.g., [15]-[17].

In this paper, we focus on the non-coherent detection
problem in the Rayleigh flat and block fading single-input
multiple-output (SIMO) multiple-access channel (MAC) with
coherence time 7. There, the communication signals are
independently transmitted from K single-antenna users.
If the users could cooperate, the high-SNR optimal joint
signaling scheme would be a Grassmannian signaling on
G((CT,K ) [13]. However, we assume uncoordinated users,
for which the optimal non-coherent transmission scheme is
not known, although some approximate optimality design
criteria have been proposed in [18]. In this work, we design
the detector without assuming any specific structure of the
signal transmitted over a coherence block. We consider the
case where the receiver is interested not only in the hard
detection of the symbols but also in their posterior marginal
probability mass functions (PMFs). This “soft” information
is needed, for example, when computing the bit-wise log-
likelihood ratios (LLRs) required for soft-input soft-output
channel decoding. Computing an exact marginal PMF would
require enumerating all possible combinations of other-user
signals, which is infeasible with many users, many antennas,
or large constellations. Thus, we seek sub-optimal schemes
with practical complexity.

In contrast to probabilistic coherent MIMO detection, for
which many schemes have been proposed (e.g., [19]-[21]),
the probabilistic non-coherent MIMO detection under general
signaling, and Grassmannian signaling in particular, has not
been well investigated. The detection scheme proposed in [22]
is sub-optimal and compatible only with the specific constella-
tion structure considered therein. The list-based soft demapper
in [23] reduces the number of terms considered in posterior
marginalization by including only those symbols at a certain
distance from a reference point. However, it was designed for
the single-user case only and has no obvious generalization to
the MAC. The semi-blind approaches [8]-[11] for the MIMO
point-to-point channel can be extended to the MAC. However,
these schemes are restricted to transmitted signals with pilots.

In this work, we propose message-passing algorithms
for posterior marginal inference of non-coherent multi-user
MIMO transmissions over spatially correlated Rayleigh block
fading channels. Our algorithms are based on expectation
propagation (EP) approximate inference [24], [25]. EP pro-
vides an iterative framework for approximating posterior
beliefs by parametric distributions in the exponential fam-
ily [26, Sec. 1.6]. Although there are many possible ways to
apply EP to our non-coherent multi-user detection problem,
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we do so by choosing as variable nodes the indices of the
transmitted symbols and the noiseless received signal from
each user. The EP algorithm passes messages between the
corresponding variable nodes and factor nodes on a bipartite
factor graph. In doing so, the approximate posteriors of these
variables are iteratively refined. We also address numerical
implementation issues.

To measure the accuracy of the approximate posterior
generated by the soft detectors, we compute the mismatched
sum-rate of the system that uses the approximate posterior as
the decoding metric. This mismatched sum-rate approaches
the achievable rate of the system as the approximate posterior
gets close to the true posterior. We also evaluate the symbol
error rate when using the proposed schemes for hard detection,
and the bit error rate when using these schemes for turbo
equalization with a standard turbo code.

The contributions of this work are summarized as follows:

1) We propose soft and hard multi-user detectors for the
non-coherent SIMO MAC using EP approximate infer-
ence, and methods to stabilize the EP updates. The
proposed detectors work for general vector-valued trans-
mitted symbols within each channel coherence block,
i.e., it is general enough to include both the pilot-assisted
and pilot-free signaling cases.

2) We propose two simplifications of the EP detector with
reduced complexity. The first one, so-called EPAK,
is based on approximating the EP messages with Kro-
necker products. The second one can be interpreted
as soft MMSE estimation and successive interference
approximation (SIA).

3) We analyze the complexity and numerically evaluate the
convergence, running time, and performance of the pro-
posed EP, EPAK, and MMSE-SIA detectors, the optimal
ML detector, a genie-aided detector, the state-of-the-
art detector from [22], and some conventional coherent
pilot-based schemes. Our results suggest that the pro-
posed detectors offer significantly improved mismatched
sum-rate, symbol error rate, and coded bit error rate with
respect to (w.r.t.) some existing sub-optimal schemes,
while having lower complexity than the ML detector.

To the best of our knowledge, our proposed approach is
the first message-passing scheme for non-coherent multi-user
MIMO detection with general constellations.

The remainder of this paper is organized as follows. The
system model is presented in Section II. A brief review of EP is
presented in Section III, and the EP approach to non-coherent
detection is presented in Section IV. In Section V, two
simplifications (MMSE-SIA and EPAK) of the EP detector
are presented. Implementation aspects of EP, MMSE-SIA, and
EPAK are discussed in Section VI. Numerical results and
conclusions are presented in Section VII and Section VIII,
respectively. The mathematical preliminaries and proofs are
provided in the appendices.

Notations: Random quantities are denoted with non-italic
letters with sans-serif fonts, e.g., a scalar x, a vector v,
and a matrix M. Deterministic quantities are denoted with
italic letters, e.g., a scalar z, a vector v, and a matrix M.
The Euclidean norm is denoted by |[v|| and the Frobenius
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norm ||M | r. The conjugate, transpose, conjugate transpose,
trace, and vectorization of M are denoted by M*, M", M",
tr{M}, and vec(M), respectively. [ | denotes the conventional
or Cartesian product, depending on the factors. ® denotes
the Kronecker product. 1{A} denotes the indicator function
whose value is 1 if A is true and O otherwise. [n] :=
{1,2,...,n}. o means “proportional to”. The Grassmann
manifold G(CT, K) is the space of K-dimensional subspaces
in CT. In particular, G(CT, 1) is the Grassmannian of lines.
The Kullback-Leibler divergence of a distribution p from
another distribution ¢ of a random vector x with domain X
is defined by D(q|lp) := [, a(x 1og ‘I(x) dz if X is contin-

wous and D(q|lp) = >, crq(x)log qgg
N(p,X) denotes the complex Gaussian vector distribution
with mean pu, covariance matrix 3, and thus probability density
function (PDF)

if X is discrete.

(x—p)'S" ! (z—p))
7 det(X) ’

eXp(—

N(z;p,X) := zeC"

II. SYSTEM MODEL
A. Channel Model

We consider a SIMO MAC in which K single-antenna
users transmit to an N-antenna receiver. We assume that
the channel is flat and block fading with an equal-length
and synchronous (across the users) coherence interval of T’
channel uses. That is, the channel vectors h, € CN*1, which
contain the fading coefficients between the transmit antenna
of user k € [K] and the N receive antennas, remain constant
within each coherence block of 7' channel uses and change
independently between blocks. Furthermore, the distribution of
h;. is assumed to be known to the receiver, but its realizations
are unknown to both ends of the channel. Since the users
are not co-located, we assume that the hy are independent
across users. We consider Rayleigh fading with receiver-side
correlation, i.e., hy ~ N(0,Z;), where Z; € CV*V s the
spatial correlation matrix. We assume that +tr {2} =: &
where &, is the large-scale average channel gain from one of
the receive antennas to user k. We assume that 7" > K and
N> K.

Within a coherence block, each transmitter k& sends a signal
vector s, € CT, and the receiver receives a realization Y of
the random matrix

K
Y => sthy +W=SH"+ W,

(1)
where S = [s; ... sx] € CT*X and H = [h; ... hg] €
CN*K concatenate the transmitted signals and channel vec-

tors, respectively, W € CT*¥ is the Gaussian noise with

ii.d. N(0,0?) entries independent of H, and the block index
is omitted for simplicity.

We assume that the transmitted signals have average unit
norm, i.e., E [||sx]|?] = 1,k € [K]. Under this normalization,
the signal-to-noise ratio (SNR) of the transmitted signal from
user k at each receive antenna is SNRy = & /(To?). We
assume that the transmitted signals belong to disjoint finite
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discrete individual constellations with vector-valued symbols.
That is, s, € Sy, := {s(l) . ,sgs’“l)}, k € [K]. In particular,
S}, can be a Grassmannian constellation on G((CT, 1),1i.e., each
constellation symbol s,(;) is a unit-norm vector representative
of a point in G(C?,1). Another example is when the con-
stellation symbols contain pilots and scalar data symbols.!
Each symbol in Sy, is labeled with a binary sequence of length
By, :=log, |Sk|.

B. Multi-User Detection Problem

Given S = S = |[s1, S2, ..., Sk, the conditional
probability density py|s, also known as likelihood function,
is derived similar to [27, Eq.(9)] as

pyis(Y[S)
_ exp(—vec(Y )" (O’QINT-i-Zi{:l spsh @ Ey) 71V€C(YT))

B NTdet(o2I yr + Yor, 818t © Ey)

Given the received signal Y =Y, the joint multi-user ML
symbol decoder is then

K
—1
(vec(YT)” (UQINT+Z SESh ® Ek)
k=1

K
x vec(Y") + logdet (aQINT—FZ SESh ® Ek)) 2)

S =arg min
Sellie, S

Since the ML decoding metric depends on S only through
ZK:1 spsi ® Ej, for identifiability, it must hold that
Doke1 SKSE @B # Zkl,{:l 8,8, " @y fo/r any pair of distinct
joint symbols S = [s1,...,8k] and S* = [s},...,8%] in
Hkl’{:l S

When a channel code is used, most channel decoders require
the LLRs of the bits. The LLR of the j-th bit of user k, denoted
by by ;. given the observation Y =Y is defined as

pY\bk,] (Y|]‘)

LLRy ;(Y) := log ————
k,]( ) ng‘ka(Y'O)

3)

where S,gbj) denotes the set of all possible symbols in S with
the j-th bit being equal to b for j € [B] and b € {0,1}.
To compute (3), the posteriors ps, |y, k& € [K], are marginalized
from

pyis(Y1S)ps(S)
Assuming that the transmitted signals are independent
and uniformly distributed over the respective constella-
tions, the prior ps factorizes as Pr(S = [s1,...,s8k]) =
H§=1 ‘S—hl{sk € Sk}. On the other hand, the likelihood

x pyis(Y[S)ps(S).

'In this case, the constellations are disjoint thanks to the fact that pilot
sequences are user-specific.
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function py|s(Y'[[s1,...,8Kk]) involves all s,...,sk in such
a manner that it does not straightforwardly factorize. Exact
marginalization of psjy requires computing

D

8,€S8,,Vi#k

Ds, vy (81|Y) = psiy([s1,...,8k]lY), ke[K]. 4
That is, it requires computing py|s(Y'|S) (which requires the
inversion of an NT x NT matrix) for all S € Hszl Si.. Thus,
the total complexity of exact marginalization is O(K%255) 2
This is formidable for many users or large constellations. Thus,

we seek alternative approaches to estimate

sk]lY) %ﬁsw([sh---,

H Py (s[Y). )

pS\Y([317"'7 ]|Y)

C. Achievable Rate

According to [28, Sec. II], the highest sum-rate reliably
achievable with a given decoding metric psjy, so-called the
mismatched sum-rate, is lower bounded by the generalized
mutual information (GMI) given by

Raw

R Y I Dy (S[Y)?

TT R Pr(S = 8 )psy (SY)°
s>0 ZS’ 15, Sk I'( )pS|Y( | )

Ssrerts, s Psiv (S 1Y)
Psiv(SIY)”
D es, Doy (85,1Y)°
Py v (sk[Y)®

s>0

1 1.
f;Bk—ﬂg%E[;%

bits/channel use, where the expectation is over the joint
distribution of S and Y, i.e., pyjsps, (6) holds because the
transmitted symbols are independent and have uniform prior
distribution, and (7) follows from the factorization of psjy
in (5). The generalized mutual information Rga is upper
bounded by the sum-rate achieved with the optimal decoding
metric psyy given by

1
—?supIE{z:Bk—log2 ] (6)

} )

R= iI(S-Y)
= ? h(S) — —h(5|Y)
K
- % z_: {logQ pS|Y(15|Y)}
= in—— {10g2 Zs’engills‘?ﬁg)smy)} ®)

bits/channel use, where (8) follows from the Bayes’ law and
the uniformity of the prior distribution. Rgyp approaches R

2Throughout the paper, as far as the complexity analysis is concerned,
we assume for notational simplicity that 77 = O(K), N = O(K),
and |Sy| = O(2B), Vk € [K]. If the channels are uncorrelated
(Exr = In), the likelihood function can be simplified as pys(Y|S) =
H(p2 Hy—1
exp(wzilget(; (;2T I-;iss.s)‘H) Y}) . Thus, the complexity of exact marginal-
ization is reduced to O(K3255),
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as psjy gets close to psjy. Note that if we fix s =1 in place
of the infimum in (7), it holds that

1
R — RGMI(S = 1) = —E [log

ps|y (SIY)]
T

2 Psiy(S[Y)

1
= By [D(psyvlps)v)],

which converges to zero when the KL divergence between psjy
and psjy vanishes.

The expectations in (7) and (8) cannot be derived in
closed form in general. Alternatively, we can evaluate R
and Rawr (and also Ey [D(psw”ﬁs‘y)]) numerically with the
Monte Carlo method. Note that when K or Bj is large,
even a numerical evaluation of R and Ey[D(psyy||psy)] is
not possible. Therefore, we choose to use the mismatched
sum-rate lower bound Rcyr as an information-theoretic metric
to evaluate how close ps)y is to ps)y.

In what follows, we design a posterior marginal estimation
scheme based on EP. We start by providing a brief review of
EP in the next section.

III. EXPECTATION PROPAGATION

The EP algorithm was first proposed in [24] and summa-
rized in, e.g., [25] for approximate inference in probabilistic
graphical models. EP is an iterative framework for approx-
imating posterior beliefs by parametric distributions in the
exponential family [26, Sec. 1.6]. Let us consider a set of
unknown variables represented by a random vector x with
posterior of the form

z) o [ val@a), )

where x, is the subset of variables involved in the factor ¢,
corresponding to a partition {X,} of x. Furthermore, let us
partition the components of x into some sets {x3}, where no
xg is split across factors (i.e., Vo, 3 either x3 C X, or xg N
X, = 0). The partition {x,, } represents the local dependency of
the variables given by the intrinsic factorization (9), while the
partition {x3} groups the variables that always occur together
in a factor. We are interested in the posterior marginals w.r.t.
the partition {xg}. In the following, we omit x in the subscripts
since it is obvious.

EP approximates the true posterior p from (9) by a distri-
bution p that can be expressed in two ways. First, it can be
expressed w.r.t. the “target” partition {xg} as

z) = [ [ ho(xs),
8

where pg are constrained to be in the exponential family
[26, Sec. 1.6], such that (s.t.)

(10)

pa(@s) = exp (Vybs(@s) — As(v5)), (11)
¢5(x5), parameters 7y, and

log-partition function Ag(y) := In [ V' 95(@a) dz. Second,
P can also be expressed w.r.t. the partition {x,} as

x) o Hma(xa),

for sufficient statistics

(12)
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in accordance with (9). For (10) and (12) to be consistent,
the terms m, should also factorize over (3, i.e., there exist
factors m., g of the form ma 5(x5) = exp (Y], 305(xs)) s.t

Me(Ts) = H Ma,g(Xg) = exp < Z Y595 .’l)g))
BEN, BEN,

ps(@s) <[] masl@s)=exp ( > ’Yl,g%(m)), (13)
acMNg aeNg

where 91, collects the indices 3 for which xg C X, and 913
collects the indices o for which xg C X,. It turns out that
Mg, can be interpreted as a message from the factor node «
to the variable node 3 on a bipartite factor graph [29]. In this
case, pg(xg) is proportional to the product of all messages
impinging on variable node [3.

EP works by first initializing all m.(z,) and pg(xs)
(typically by the respective priors, which are assumed to also
belong to the considered exponential family), then iteratively
updating each approximation factor m, in turn. Let us fix
a factor index a. According to [24], the “tilted” distribution
Go. 1s constructed by swapping the true potential 1, for its
approximate m,, in ﬁ( ) as go(x) = %, where it
is assumed that [ g,(z) dz < oco. This tilted distribution is
projected back onto the exponentlal family by minimizing the
KL divergence:

~NEew

P (x )—arglgggD(qa(z)HQ(x))v

(14)

where P is the set of distributions of the form of p in (10),
ie, pl@) =[lsp,@s) = gexp (’1;45;3(“’6) - Aﬁ('lg)) for
some {y ﬁ} Following [24], the solution to (14) is as follows.
Proposition 1: The solution to (14) is given by p2V (x) =
[958 (®s) with ppcf(zs) = pslEs), VB8 ¢ No,
and Pl (zs) = exp (1 ds(xs) — Aﬁ(lg)) with Yy St
PT;‘E [¢5(1:[3)] = E,, [¢3(1:[3)] V3 € N, whenever the
expectation B, [] exists.
Proof: The proof is given in Appendix B. O
The factor m,, is then updated via

P (@)ma(Ta)

new &) = ~ 15
me™(Ta) = @) (15)
_ [sem, 55 (®5)

N Lga ma’ﬁ(mﬁ)} [sem, Ps(@p)

x [ 11 ma,ﬁ(zﬁ)}
gen,

Hﬁefn pa,,@ 5 (zs)
ngm [Ma5(@p) [Taremy\a Mo 6(T6)]
I macs @s), (16)
with
new - Dok (Ts)
mas (Tg) == a7

Ha’e‘ﬁ/j\a Mar 5(1:5) .

Note that, on the right-hand side (RHS) of (15), all terms
dependent on {3} 3¢m,, cancel, leaving the dependence only
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on {zg}gem,. Thus, the update of m, only affects the
approximate posterior of nodes (3 in the neighborhood of node
«. After that, the process is repeated with the next a.

A message-passing view of Proposition 1 can be seen by
expanding ¢, (:1:) as

Ga(T) = [

b

then, using the natural logarithm for the KL divergence, it
follows that

D(qa()||p(x))
= x nqa(x) x
_/ o(@)1 p(x) d

/wama[ H maﬁmﬁHHpﬁmﬁ]

BENL o’ €M\ BENa
< In <wa($a) seo. Ha/emﬁ\a mar,5(Ts)
H,Bema Bﬁ(xﬁ)

ps(x
y [sgm., Dl ,@)) e
/waxa[H H m(yﬁxﬂ]
BENH o’ ENp\c
N Va(Ta) ngma H(y’emﬁ\a e 7))

II II mwﬂﬂ”

BEN, o’ ENp

Hpﬁxﬁ]

BENa

I I masten]| IT oaten)].

BEMN o’ €M\ BENA

dz
Hﬁem p[g(mﬁ) “
pp(xs)
- Z/
ﬁgmu mﬁ)
= 5 [anatonn e dst 3 Dloaly,) 4o
BEN BENa
= > D(dasllp,) + Z D( ﬁﬁ”]_’[; + o, (18)
BEN, BEN.
where

a3 xﬁ /% Ty |:

and co represents a constant w.r.t. the distribution p (which
we optimize) whose value is irrelevant and may change at
each occurrence. Equation (18) says that, for each (§ in the
neighborhood of node v, the optimal p , (i.e., p,,°5) is uniquely
identified as the moment match of ¢, g in the exponential
family with sufficient statistics ¢ (), where g, s is formed
by taking the product of the true factor v, and all the messages
impinging on that factor, and then integrating out all variables
except &g. Furthermore, (17) says that the new message m;°y
passed from « to 3 € N, equals p,,°F divided by the product
of messages {Mma’ g}aremy\ar 1-€., previous messages to [3
from all directions except . An illustrative example is shown
in Fig. 1.

H H Mma’,3 iIIg :| dxa\g

BENa o’ ENp\v
(19)
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Fig. 1. An example of the factor graph representation of EP for a € {a, b, ¢}
and 3 € {1 ,3,4}. For @ = b and 8 = 2, according to (19) and (17),
qb,2(x2) ‘[w?(x)z,xs,m)ma 2(x2)me 3(X3)Me 4(x4) dx3 dxg and
P2 (X2
iy te) = B2

respectively.

IV. APPLICATION OF EP TO NON-COHERENT DETECTION

In order to apply EP to the non-coherent detection problem
described in Section II, we express the transmitted signal as
S = sgk) where i1, ...,ix are independent random indices.?
With the assumption that the constellation symbols are trans-
mitted with equal probability, i, are uniformly distributed over
[|Sk|], k € [K]. We rewrite the received signal (1) in vector

form as

(20)

K
y= Z z, + w,

k=1
where y = vec(Y'"), z; = (sgk) @ In)hy, and w =
vec(W') ~ N(0,0Iy7). The problem of estimating ps, |y
is equivalent to estimating p;, |y since they admit the same

PMF.

With z := [2],...,2}]" and i := [i1,...,ix]", we can write
pi,z\y(iaz|y)
X pi,z,y(i7zay)

= py\z(ylz)pzli (z|i)pi (7’)

= vo(21,...,2K) [i{lwm(zk,iw] [i{lwm(iw],

corresponding to (9), where

K
1o 2k) = ) = (553 20T )
k=1
VYr1(zr, ix) = pzk\ik(zk):N(sz 0, (s{"s\"™" @ Ek),

wkg(ik) p|k(2k) m for i € [|Sk|] 21)

In the following, we consider a realization y of y and use EP
to infer the posterior of the indices {ix} and, as a by-product,
the posterior of z, k € [K]. To do so, we choose the partition
x = {zj,ix}_, and illustrate the interaction between these
variables and the factors g, ¥x1, ¥r2 on the bipartite factor
graph in Fig. 2. This graph is a tree with a rooty and K leaves

{Ur2}ie,.

3The application of EP to non-coherent multi-user detection is non-trivial.
Many choices can be made to model and partition the unknowns, but may
not result in tractable derivation. Our choice is carefully made to enable
closed-form message updates.
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I‘l]lsCll {”(l)}\SH { (l)}|SA|
D )

s, Cn . 1l : {ryIsu :

sx,Cr {0 }\su {015 :
79 @ VK2

Fig. 2. A factor graph representation of the non-coherent detection problem.
The messages are depicted with under-arrows showing their direction from a
factor node to a variable node.

We write the EP approximation according to (10) as

K
) = [ bz (20)5 (i)

k=1

ﬁxly(x|y) = ﬁi,z\y(ivz|y (22)
where p,, (21) and p;, (i) are implicitly conditioned ony =y
and constrained to be a Gaussian vector distribution and
a discrete distribution with support [|S|] (both belong to
the exponential family), respectively. Specifically, they are
parameterized as

Dz, (21) = N(2k; 2k, B) s.t. Xy is positive definite, (23)
|Skl
P (i) = 7% for iy, € [|Sk]] Zw,j) 1. (24

We also write the EP approximation according to (12) as

px\y(m|y) = ﬁi,z\y (7:7 z|y)

o mo(21,- .., 2K) Lﬁ mi1 (2k, zk)] Lf[l mkz(ik)] ,

where we define

mo(zl,...,z

K
) o HN(Zk;MkOaCko),

k=1

mkl(zk,lk) X N(zk7“klackl)7rk1k)a

mia(ix) = 7 for iy, € [|Sk]].

On the factor graph in Fig. 2, we can interpret (g, Cro)
as the message from factor node 1y to variable node zj,
(1,1,Cr1) as the message from factor node 5 to variable
node zj, {77("‘)} Sk as the message from factor node v, to

variable node iz, and { ("“)}l |

node i to variable node iy.

Remark 1: Our choice of Gaussian distribution (within the
exponential family) in (23) is motivated by the fact that when
the noise and channel are Gaussian, the symbol posterior takes
the form of a Gaussian mixture. It also allows a tractable
derivation (using the Gaussian PDF multiplication rule) and
closed-form update expressions, as will be shown in the
next subsection. If a general (possibly non-Gaussian) channel
model is considered, the factor V1 (2, i) in (21) may be
different, but the factor graph in Fig. 2 remains unchanged.

as the message from factor
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A. The EP Message Updates

In the following, we derive the message updates from
each of the factor nodes o, ¥x1, and Yre, k € [K],
to the corresponding variable nodes. To do so, for each
a 6 {k1,k2,0}, we compute the projected density pie¥ =
Hk 1 Daay (21)Dact (ik) according to (22) and Proposition 1,
and then update the factor m,, according to (16).

1) Message {W(Z’“)}‘Skl From Factor Node x> to Variable
Node ij,: First, we compute Pk, and then the EP message

{m (““)}‘S"l from node 1.2 to node ij. From (18) and (24),

we know that Proy, 1s the discrete dlstrlbutlon with PMF
(i

{7 (z)}‘ il proportional to 1/)k2(lk)7Tk1 , and so

Aln) _ Yr2 (ik)ﬂ'l(ci) 71'l(czlk)

k2 - S S,
Zl k\wm( )7‘—1(:1) Zl k| (1)

since W2 (ix) is constant over these 7. Wlth ng":’ computed,
(16) implies that the message from node i to node i k 1s the
PMF proportional to

P ) &%) 1

ORI S TE
(ix) _

and thus 7, = ‘S ; for iy, € [|Sk]].
2) Messages From Factor Node vy to Variable Nodes zj,

and i,: Next, we compute pis™ = HkK 1 DSy, ()RS, (i)
(%)}\Skl

and the messages {m and (py,1,C1) from node vy
to nodes i; and zj, respectlvely

a) Message {W(lk)}l from node 1 to node ip: We
first compute ppi% (i (). From (18) and (24), we know that
priv, (ix) is the discrete distribution with support [|Sy|] and

for ix € [|Sk]],

=cy for iy € [|Sk]],

PMF 77,(611’“) proportional to

/wkl(zk’ik)N(zk;#kOaCko)W]igk) dz;

A //\/ 21,30, (54" (zk)H)®Ek)N(zk§l‘k’Oack’O) dzy

= |Sk|/N zk7zk1k72klk)

(i) (K )H

< N (0 pro, (81,"'8,") ® Ei + Cro) da

(k) o(ir)H

1
:|S| N (0 o, (5 8;") @ Bi + Cho),

where the second equality follows from the Gaussian PDF
multiplication rule in Lemma 1 with

7 _ _ —1
S = (6" 9 47! + Cig)

= [(6s") @B ((5"5)") © Bk + Cho) " Cho.
(25)
Zpi = EszIZolﬂko
= [(s(z)sg)H) = ]((s(’)sg)H) ® L+ C’ko)flyko.
(26)
Thus
20k _ N (0; o (34 sl @ By +Chro)
Mgy = )
Zﬁkil N (0 ey, (31(;)5;;) ) ®Ek + Cho)
ir € [ISkl]. 27)
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With pp¢Y (i) computed, (16) implies that the message

7%) from node i1 to node i is the PMF proportional to

p“é?k(:k) Sk |7\ for iy, € [|Sk]], and thus
Tha
~ (ik)
o) _ Skl (i) .
) = oy gaam = forin € 1) @9

b) Message (pr,,Cr1) from node i1 to nodes zj:
We next compute pp(%y (2). From (18) and (23), we know
that pzﬁ"; (2) is the Gaussian distribution with mean 2y, and
covariance ¥, matched to that of the PDF proportional to

|Skl
Z U1 (2, k) (zk;“k*OaCk’O)ﬂ'](;;)
1 =1
RS (@) ()
2)H —
- |Sk| ZN zk’ (sk Sk )®‘:k)N(Zk;)u'k0aCk0)
1 |5k\
= [Su] & ZN Zk,zm,Ekz)N(O;,uko,(s,(;)si) )®Zx+Cho)
|Sk|
x ZN zkﬂzklﬂzkﬂ)ﬂ—k17 (29)
i=1

where the second equality follows from the Gaussian PDF
multiplication rule in Lemma 1 with ¥Xj; and 2j; defined
in (25) and (26), respectively. Thus, from (28), we have

|Sk|

Zk - Z?Tklzk“ (30)
|Sk| ‘

Xy = Zﬂl(cll) (2ri2y; + Bri) — 212y (31)
i=1

With i1, (2x) computed, (16) implies that the message from
node 11 to node z; is proportional to

Piig, (2k)
N (zk; Big: Cro)

_ N(Zk;ik,zk)
N(zk§ll'k070k0)

O(N(zk;ll‘klvckl)v

(32)

with
Cii= (' =Cid) ', (33)
B = Cr (21;15"/&’ - Cl;oll“k*o)' (34)

Equations (33) and (34) can be verified using NV (2; 25, X)) o
N (25 pg1 s Cre1 )N (2k; pig, Cro). which follows from (13)
and the Gaussian PDF multiplication rule in Lemma 1.

3) Message (py,9, Cro) From Node 1y to Node z,: Finally,
we compute pg57 and the EP message (g0, Cro) from node
1o to node zj, for each k € [K]. From (18) and (23), we know
that pnew is the Gaussian distribution with mean 2y and
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covariance X0 matched to that of the PDF proportional to

N(Zk;#kpc'm)/wo(zh oy 2K) { HN(Zj;ll'jlale) dzj]
j#k
= N(zk; pi1,Cr1)

/N(yvzk +sz;0 INT)|:HN‘Z]”I‘]17CJ1) dzj:|

J#k J#k

= N(zk§l"k170k1)N(zk§y - Z“jlaUQINT + chl);
J7#k J7#k
(35)

where (35) follows by applying repeatedly Lemma 1. Applying
the Gaussian PDF multiplication rule to (35), we obtain

Yo = (C,;ll + [O’QINT + chl} _1)_1, (36)
J#k
Zr0 = 2ko <Ck11pk,1+ {O—QINT-FZ le} o {y — Z[%J).
Jj#k Jj#k
(37

Given pyyY(z1) = N (25 210, Xko), (16) implies that the
message from node )y to node z; is proportional to
Doz, (2k)

N(zkall‘klvckl)

_ N (215 Zr0, Bro)
N(Zk;#klackl)

OCN(zkéllko;Cko),

with Cro = (Z4y — C’,;ll)_1 and puo = Cro(Zigzk0 —
C,;llpkl). This is verified wusing N (zx;2k0, Xk0)
o< N (zk; 1, Ck1 )N (25 o Cro), which follows from (13),
and the Gaussian PDF multiplication rule in Lemma 1.
Plugging in the expressions for 2,;01 and 2o from (36) and
(37) yields

Chro :UQINT+ZCj17 (38)
itk
Pro =Y — Zﬂﬂ- (39)

i#k

This concludes the derivation of the EP message updates.

B. Initialization of the EP Messages

We initialize the EP messages as follows. First, we choose
the non-informative initialization Cyy = 0 and g, = 0, s0
that, from (27), the initial message from node wkl to node iy
coincides with the uniform prior W,E,zl’“) = fr,?l’“) ] s 7 for iy, €
[|Sk|], and, from (25) and (26), the initial parameters X5; =
(s,(;)sg)'*) ® Z) and zy; = 0, respectively, for k € [K] and
i € [|Sk|]. This leads to the initial parameters of pi(2zx) from
(30) and (31) as 2z, = 0 and ¥}, = \s | E\Sk (s' (4) (1)H)®‘_‘k7
and the initial message from node wm to node zk glven
in (33) and (34) as Cp1 = %y = = L1557 @
Zk, and g,y = z; = 0. Finally, the initial messages from
node 1y to node zk follows from (38) and (39) as Cpy =

S; i —_
QINTJFZH% 1551 Zl l(s 3( ") © Bk, and Hio =Y.
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C. The Algorithm

We summarize the proposed EP scheme for probabilistic
non-coherent detection in Algorithm 1. In the end, according

to (13) and (24), the estimated PMF psk‘y(s 5 |Y) is given by

Pr(in) = 7% o 7 7 that is py(ix) = 7 since 7%

is constant. The algorithm goes through the branches of the
tree graph in Fig. 2 in a round-robin manner. In each branch,
the factor nodes are visited from leaf to root. We note that
other message passing schedules can be implemented.

Algorithm 1: EP for Probabilistic Non-Coherent

Detection

Input: the observation Y'; the constellations Sy, ..., Sk;
1 set the maximal number of iterations .5 ;
2 initialize of the messages
(it Vs i, Cra o, Chvo, for k € [K]
3t«—0;
4 repeat
5 t—1t+1;
6 | for k — 1 to K do
7 update {W(zk)}l &l according to (28) and (27) ;
8 compute {2 }° "ll and {2 }1%/ according to (26)
and (25), respectively ;
9 compute 2 and ¥ according to (30) and (31),
respectively ;
10 update g, and C}; according to (34) and (33),
respectively ;
1 update {l‘jo}#k and {C’jo}#k according to (39)
and (38), respectively ;
12 | end

o

3 until convergence or t = tax;

4 return The PMF {7 (“‘)}l K of Dsy v (s s{MY) for
k€ [K]

—

In the EP algorithm, the dominant operation is the update
of 77,(Cl ), Yk, and Zp;, which involves the inverse of the
NT x NT matrix (s ,(C ) (Zk) ) ® Ej, + Co (with complexity

O(K®)) for all k € [K ] and ir, € [|Sk|]. The complexity of
computing 2y, Xy, 1, Cr1, {,u,JO} 4k and {CJO} itk are all
of lower order. Therefore, the compI]exny per iteration is given
by O(K72P). In order to reduce this complexity, we derive

two simplifications of the EP scheme in the next section.

V. SIMPLIFICATIONS OF THE EP DETECTOR

In this section, we attempt to simplify EP by avoiding the
inverse of NT' x NT' matrices.

A. EP With Approximate Kronecker Products (EPAK)

We observe that if C'o could be expressed as a Kronecker
product Cro ® Zj, with Cjo € CT*T | we could rewrite 7r( i)
in (27) as

(in) _
k1 S
SIS A (03 g, (5850

N(Oél‘km( (i ) (Zk)H—l—CkO)(?E ) (40)

—
=
—
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Let My € CTN st pyy = vec(Mp,), (40) could be
computed efficiently using

N(O;va( z(jk)sk "+ Cro) @ k’)
(1+8(1k)HCk01 Sk))*
e (tr{ckols](czk) ( )Mk (':71 TM:O})
1+ (lk)HCkl (ix)

since only the 7" x T' matrix C).o needs to be inverted (the
inverse of Zj can be precomputed and stored). In general,
Co does not have a Kronecker structure. Thus we propose
to fit Co to the form of a Kronecker product by solving the
least squares problem

|Cro — Cro ® Bl

~ min
Ckoe(cTXT

as formulated in [30, Sec. 4]. Let Cio{i,j} be the N x N
sub-matrix containing the elements in rows from (i —1)N +1
to 4N and columns from (j — 1)N +1 to jIN of Cyg. Let ¢;;
be the element in row ¢ and column j of C)o. It follows that

[Cro — Cro ® B %

T T

Zlecko{l J} = ciZll%
im1

T
Z |Ck0{z7]}”%‘ - éijtr {CkO{iaj}HEk}

- mr {ExCrofi,j}} + ey Ptr {EF

Observe that |[Cro — Cro @ Zk||% is the sum of
convex quadratlc functions of ¢&;;. Setting the partials

Il
i MH

ACro-CrosBelle ¢, zeros, the optimal Cg is given by

0¢ij
tr {Cko{l ]}-—-k}
tr {23

With the approximation Cro =~ Cro®Ey, we can approximate
7{*) by the RHS of (40). Also, it follows from (25) and (26)
that

T ~ [(s ;(C +Ck0) 16%0} ® E,
B A vec([s,(;k)s,(c )H (sgC ) (Zk +Chro) 1Mk0]T).

Cij =

(41)
(42)

k) (lk)H)( (lk)

To compute C1 and p; in (34) and (33) the inversion of
C)o can be simplified as C}y ~ C kO ®Z, ', but the inverse
of NT x NT matrices involving ¥ is still required.

To keep an accurate message update at early iterations,* let
us fix a threshold ¢y € [timax] and modify Algorithm 1 as
follows. At iteration ¢, if ¢ < t(, the messages are updated as
in lines 7-11; if ¢ > ¢, in line 7, (27) is replaced by (40) for
the update of 7T1(;1k) , and in line 8, (26) and (25) are replaced
by (42) and (41) for the update of Xy; and zj;, respectively.
We refer to this scheme as EPAK (EP with Approximate

“In the uncorrelated fading case, i.e. 2y = I, the approximation of
C'o with Kronecker products becomes more accurate when 77 is closer
to a Kronecker-delta distribution, i.e., we have high confidence in one of the
symbols. This is likely the case at high SNR after some EP iterations. At early
iterations, however, the approximation C'o = Cro ® E can be inaccurate.
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Kronecker). It coincides with EP if ¢y = t,ax. At iteration
t > to, the dominant operations in EPAK are the inverse of
s,(;)skz)H + Cho (with complexity O(K?)) in (41) and (42) for
each k € [K]| and i € [|Sk|], and the inverse of NT x NT
matrices (with complexity O(K®)) to compute Cy; and p,,
for each k € [K]. Thus the complexity at iteration ¢ of EPAK
is O(K"2B) if t <ty and O(K*2B + K7) if t > t,.

B. Minimum Mean Square Error - Successive Interference
Approximation (MMSE-SIA)

Another method to simplify EP is as follows. In the EP
scheme, as in (29) and (32), the message N (zg;py1,Cri)
from node 1 to node zk 1s derived by first pro-
jecting pg‘f";k(zk) ZLS’} 7rk1 N(zk; 25, Bki) onto the
Gaussian family, then dividing the projected Gaussian by
N (2k; prg, Cro). If we skip the projection of pR™(zy) onto
the Gaussian family, i.e., we derive N (zy; .1, Cr1) by divid-
ing directly pp1%, (2x) t0 N'(2k; pyo, Cro), then the mean py,
and covariance matrix C; are matched to that of the PDF

proportional to

Anew S
pkl,zk(zk’) lzk:l (2) N(zkvzkzvzkz)
N (23 s Cro) =1 T N (zk; 05 Cro)
|Skl

uZw(z)N (zk;0 (sff)sff)'*) ®Eg)

= N(Zk,O,Rk ®Ek)

where Ry, := Elsl 771;1)31(@ sk (43) can be verified using
N (2k; Zis Bii) < N (2150 (8;(;)8,(@) )REk)N (2k; o> Cro)s
which follows from the Gauss1an PDF multiplication rule with
2y; and Xy, given in (26) and (25), respectively. It follows that
iy = 0 and Cix; = R ® E. As a consequence (see (39)
and (38)), po =y and Cro = 0*Iny + > xR @ B

This scheme can be alternatively interpreted as follows. We
expand y in (20) as

(43)

y= (s @ In)hi + Y (50 @ In)h +w.
1#£k

The second term t; := ), 76k(sl ® In)h; is the interference
from other users while decoding the signal of user k. Since the
signals s; are independent of the channels h; and the channels
h; have zero mean, we have that E [t;] = 0. The covariance
matrix of ty, is E[tyty] = >0, Elsis] ®Ep = >, R ®
Zr. If we treat the interference term t; as a Gaussian
vector with the same mean and covariance matrix,” then
t, +w ~ N(0, S R ® B + o*I 7). The single-user
likelihood under this approximation is pyis, (¥|Sk) =
N (y; 0,588 @B, + Y R @E + oI y7). With this and
Lemma 1, the wupdate of the approximate posterior
Ds,.ly(8k|y) o< Dyjs, (Y|sk) coincides with (27) for pyq = y
and Cro = o’InT + E#le ® Zj. The matrix Ry is

then recalculated with the updated value of ps, |, (sg") ly),
5 Another choice is to treat each s;, | # k, as a Gaussian. With this choice,

however, the interference term tj, is a product of Gaussians which makes the
approximate single-user likelihood difficult to evaluate.
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i € [|Sk|]. The matrices Cjo are updated accordingly, and
then used to update ﬁsl‘y(sl(”)|y), i € [|Si]], 1 # k.

In short, the derived simplification of the EP scheme above
iteratively MMSE-estimates the signal z;, of one user at a time
while treating the interference as Gaussian. At each iteration,
the Gaussian approximation of the interference for each user
is successively improved using the estimates of the signals
of other users. We refer to this scheme as MMSE-SIA and
summarize it in Algorithm 2. In particular, as for the EP
scheme, we can start with the non-informative initialization

ﬁsle(s Y) = |S—1k‘]1{8 (S Sk}

Algorithm 2: MMSE-SIA for Probabilistic Non-Coherent
Detection
Input: the observation Y'; the constellations Sy, . ..
1 set the maximal number of iterations .5 ;
2 initialize of the posteriors ps, |y (sx|Y) for s; € Sy, and
R, = Eﬁskw [SkSZ] for k € [K] )
t«—0;
repeat
t—1t+1;
for £k — 1 to K do
compute Cro = o?InT + Dz RI®Ek
update ps, |y (sx|Y), 8 € Sk, according to (27)
with p, o =y and C}o computed ;
9 update Ry, = Ep,  [sks}] ;
10 | end '
11 until convergence or ¢ = t;,x;
2 return ps, |y (s1|Y') for s € Sy, k € [K]

aSK;

®w N e W

—

The complexity order of Algorithm 2 is the same as EP
due to the NT x NT matrix inversion in (27). However,
MMSE-SIA still has complexity advantage over EP since no
other matrix inversion is required, and there is no need to
compute {Zx;}, {Eki}, 2k, Xk, or update p,,. If the channel
is uncorrelated (£; = Iy), the complexity order of MMSE-
SIA can be reduced. In this case, C'xq is the Kronecker product
Q) @Iy with Q== >/, R/ +0*Ir, and thus in (27),

N(0: g (55" ") @ B + Cio)

ars -,
1+s"Q; sl

Then, only the inverse of @, is computed, which requires
O(K?®) operations. Given @}, ', the complexity of computing
the RHS of (44) is then O(K?) for each iy, € [|Sk|]. Therefore,
the complexity of computing ps, v (sx[Y) is O(K? + K?25)
for k € [K]. Finally, the complexity per iteration of the

MMSE-SIA algorithm for uncorrelated fading is given by
O(K* + K32B).

S (1+8§:k)HQI;18§:k)) - exp (

VI. IMPLEMENTATION ASPECTS
A. Complexity

We summarize the computational complexity of the consid-
ered schemes in Table I.
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TABLE I
COMPLEXITY ORDER OF DIFFERENT NON-COHERENT DETECTORS WITH
T =O(K),N = O(K), AND |Si| = O(28), k € [K]
Complexity order
Correlated fading ‘ Uncorrelated fading By =1 n,Vk

O(KﬁzBK) O(KSZBK)

Detector

Optimal (exact
marginalization)
EP O (K728 tnan)

EPAK O(K"2B 1y + (K*28 + K7) (tmax — 10))
MMSE-SIA O (K28 tynax) { O (K *tmax + K328 t000)

tmax denotes the number of iterations. fo € [fmax |-

B. Stabilization

We discuss some possible numerical problems in the EP
algorithm and our solutions.

1) Singularity of ¥y First, in (31), since the NT x NT
matrix ¥ is the weighted sum of the terms of rank less
than NT, it can be close to singular if at a certain iteration,
only few of the weights 77,(;1) are sufficiently larger than zero.
The singularity of ¥ can also arise from the constellation
structure. For example, the constellations proposed in [22] are
precoded versions of a constellation in G(CT-%+11) and
the maximal rank of ¥ is N(T'— K + 1) < NT. To avoid
the inverse of Xy, we express C; in (33) and p;; in (34)
respectively as

Cr1 = —Chro(Zk —Cko)_lzk,
ISkl

#a = CroEk—Cro) ™ (Zk > Wl(fl)zki) Crobio- (45
i=1

2) “Negative Variance”: Another problem is that Cpy is
not guaranteed to be positive definite even if both C'xo and
Y, are. When C} is not positive definite, from (38), Co
can have negative eigenvalues, which, through (27), can make
7?,(;’1") become close to a Kronecker-delta distribution (even at
low SNR) where the position of the mode can be arbitrary,
and the algorithm may diverge. Note that this “negative
variance” problem is common in EP (see, e.g., [24, Sec. 3.2.1],
[31, Sec. 5.3]). There has been no generally accepted solution
and one normally resorts to various heuristics adapted to each
problem. In our problem, to control the eigenvalues of Cl1,
we modify (45) by first computing the eigendecomposition
—Cho(Zk — Cko)_liik = VAV ™!, then computing C},; as
Cii = VIA[V™!, where |A| is the element-wise absolute
value of A. This manipulation of replacing the variance
parameters by their absolute values was also used in [32].

3) Overconfidence at Early Iterations: Finally, due to the
nature of the message passing between continuous and discrete
distribution, it can happen that all the mass of the PMF 7?,(;1’“)
is concentrated on a small region of a potentially large constel-
lation Sy. For example, if w,illk) is close to a Kronecker-delta
distribution with a single mode at ip, then (26) and (25)
implies that Ek is approximately Xy;,, and then from (33),
CiLi~ (3210)527'0)”)@51@. In this case, almost absolute certainty
is placed on the symbol 35;'0), and the algorithm will not be
able significantly update its belief in the subsequent iterations.
This can be problematic when the mode of W,E,zl’“) is placed on
the wrong symbol at early iterations. To smooth the updates,
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we apply damping on the update of the parameters of the con-
tinuous distributions N (zx; 1.1, Cr1) and N (2x; 0, Cro)-
That is, with a damping factor 7 € [0; 1], at iteration ¢ and for
each user k, we update

Cr(t) = IV OIA@RV T ) + (1 - n)Cra(t — 1), (46)
pxa (1) = 1Chro(t — 1) (Zi(t) — Cro(t = 1))
[Sk|
( Zﬂm ()i (¢ )Ckol (t—=Dpyo(t—1)
+(1 - )ﬂ'kl(t - 1), (47)
Cu(t) = n(*Tvr + £-Cn(0) + (1= n)Cinlt = 1)
J#l
Vi #k, (48)
Bt < Z#ﬂ ) =t —1), VI#k.
J#l
(49)

In short, we stabilize the EP message updates by replacing
(46), (47), (48), and (49) for (33), (34), (38), and (39),
respectively. This technique also applies to EPAK. For MMSE-
SIA, we damp the update of @, and Ry, in a similar manner
as Qu(t) = (X Rult—1)+02I7) +(1-)Qy(t—1) and

Ri(t) = 3050t mi) (055" + (1~ n)Ri(t — 1). Note
that damping does not change the complexity order of these
schemes. The approaches described in this subsection were
implemented for the numerical results in the next section.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed schemes for a given set of individual constellations.
We assume that By = ... Bk =: B. We consider the local
scattering model [4, Sec. 2.6] for the correlation matrices
Zk. Specifically, the (I, m)-th element of Zj is generated as
Erlim = &Es, lexp(2ndg(l — m)sin(er + 0x))], where
dg is the antenna spacing in the receiver array (measured
in number of wavelengths), ¢ is a deterministic nominal
angle, and dj, is a random deviation. We consider dy = %, Ok
generated uniformly in [—m, 7], and 5 uniformly distributed
n [—v/30,,v/30,] with angular standard deviation o, = 10°.
We also consider &, = 1, Vk. We set a damping factor n = 0.9
for EP, EPAK, and MMSE-SIA.

A. Test Constellations, State-of-the-Art Detectors,
and Benchmarks

1) Precoding-Based Grassmannian Constellations: We
consider the constellation design in [22], which imposes a
geometric separation between the individual constellations
through a set of precoders Uy, k € [K]. Specifically, starting
with a Grassmannian constellation D = {d(l), e ,d(gB)} in
G(CT—E+1 1), the individual constellation Sy, is generated as

o _ Usd”
= T
U xd™ ||

We consider the precoders Uy, defined in [22, Eq.(11)] and
two candidates for D:

i€ 28]
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o A numerically optimized constellation generated by solv-
ing the max-min distance criteria
min d(d(i),d(j)),

2B 1<i<j<2PB ©0)

) max
dDeG(CT-K+11),6=1,...,

where d(d?,dY)) = /1 — |[dV"d|2 is the chordal

distance between two Grassmannian points represented
by d"" and d. A constellation with maximal minimum
pairwise distance leads to low symbol error rate in the
absence of the interference. In our simulation, we approx-
imate (50) by minp log =, <, ;<on exp (4221 with
a small e for smoothness, then solve it using gradient
descent on the Grassmann manifold using the Manopt
toolbox [33].

o The cube-split constellation proposed in [17], [34]. This
structured constellation has good distance properties and
allows for low-complexity single-user decoding and a
simple yet effective binary labeling scheme.

Exploiting the precoder structure, [22] introduced a detec-
tor [22, Sec. V-B-3] that iteratively mitigates interference by
projecting the received signal onto the subspace orthogonal to
the interference subspace. We refer to it as POCIS (Projection
onto the Orthogonal Complement of the Interference Sub-
space). For each user k, POCIS first estimates the row space of
the interference ), 2k sih] based on the precoders and projects
the received signal onto the orthogonal complement of this
space. It then performs single-user detections to obtain point
estimates of the transmitted symbols. From these estimates,
POCIS estimates the column space of the interference and
projects the received signal onto its orthogonal complement.
This process is repeated in the next iteration. The complexity
order of POCIS is equivalent to the MMSE-SIA scheme. Note
that only the indices of the estimated symbols are passed in
POCIS, as opposed to the soft information on the symbols as
in EP, MMSE-SIA, and EPAK.

2) Pilot-Based Constellations: We also consider the
pilot-based constellations in whigh the symbols are generated
as s\ = {\/geg TTPK s,(;)T} where ey, is the k-th column
of I, é,(;) is a vector of data symbols taken from a scalar
constellation, such as QAM, and P, is the average symbol
power of the considered scalar constellation. Note that this cor-
responds to the scenario where the K users transmit mutually
orthogonal pilot sequences, followed by spatially multiplexed
parallel data transmission. Many MIMO detectors have been
proposed specifically for these constellations. We consider
some representatives as follows.

o The receiver MMSE-estimates the channel based on the
first K rows of Y, then MMSE-equalizes the received
data symbols in the remaining 7' — K rows of Y, and
performs a scalar demapper on the equalized symbols.

o The receiver MMSE-estimates the channel, then decodes
the data symbols using the Schnorr-Euchner sphere
decoder [35], referred to as SESD.

o The receiver performs the semi-blind joint ML channel
estimation and data detection scheme in [9] with repeated
weighted boosting search (RWBS) for channel estimation
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and the Schnorr-Euchner sphere decoder for data detec-
tion, referred to as RWBS-SESD.
We note that the sphere decoder has near optimal perfor-
mance given the channel knowledge, but its complexity is
non-deterministic and can be exponential in the channel
dimension if the channel matrix is ill-conditioned.

3) Benchmarks: We consider the optimal ML detector,
whenever it is feasible, as a benchmark. When the optimal
detector is computationally infeasible, we resort to another
benchmark consisting in giving the receiver, while it decodes
the signal s; of user k, the knowledge of the signals s; (but
not the channel h;) of all the interfering users | # k. With
this genie-aided information, optimal ML decoding (2) can be
performed by keeping s; fixed for all [ # k£ and searching for
the best sy, in Sk, thus reducing the total search space size from
2BK to K28, The posterior marginals are computed separately
for each user accordingly. This genie-aided detector gives an
upper bound on the performance of EP, MMSE-SIA, EPAK,
and POCIS.

B. Convergence and Running Time

To assess the convergence of the algorithms, we evaluate the
total variation distance between the estimated marginal poste-
riors Ps, |y at each iteration and the exact marginal posteriors
Ds, |y When exact marginalization (4) is possible. The total
variation distance between two probability measures P and
Q on X is defined as TV(P,Q) := 3> .+ |P(z) — Q(x)].
At iteration ¢ where the estimated posteriors are ﬁiz)\Y’ k e
[K], we evaluate the average total variation distance as

K
1 (¢
Ar= 22 Y BTV pay).
k=1

We consider the precoding-based Grassmannian constella-
tions. Fig. 3 shows the empirical average total variation A; for
T=6,K=3,N=4,and B =4 at SNR = 8 dB. As can be
seen, at convergence, EP provides the most accurate estimates
of the marginal posteriors although it is less stable than other
schemes. EP converges after 6 iterations while MMSE-SIA
converges after 5 iterations. For uncorrelated fading, EPAK
with tp = 2 can be eventually better than MMSE-SIA,
but converges slower. For correlated fading, EPAK totally
fails because of the inaccuracy of the approximation with
Kronecker products. POCIS converges very quickly after
2 iterations but achieves a relatively low accuracy of the
posterior estimation.

Fig. 4 depicts the average running time (on a local server)
of exact marginalization compared with 6 iterations of EP,
EPAK, MMSE-SIA, and POCIS at SNR = 8 dB. These
schemes have significantly lower computation time than exact
marginalization. The running time saving of EPAK w.r.t. EP is
not significant, even with ¢y = 0. For uncorrelated fading,
MMSE-SIA has much shorter running time than all other
schemes.

From these convergence behaviors, hereafter, we fix the
number of iterations of EP, MMSE-SIA, and EPAK as 6 and
of POCIS as 3. Furthermore, we consider EPAK only for
uncorrelated fading. For correlated fading, we generate the
correlation matrices once and fix them over the simulation.
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Fig. 3.  The empirical average total variation A; over 1000 realizations
of the transmitted signal, channel, and noise versus iteration for different
non-coherent soft detection schemes for T = 6, K = 3, B = 4, and
N = 4 at SNR = 8 dB. The error bars show the standard error, which is the
standard deviation normalized by the square root of the number of samples.
For correlated fading, these figures are further averaged over 10 realizations
of the correlation matrices.

C. Achievable Rate

We first plot the achievable mismatched sum-rate Rgyr of
the system calculated as in (7) for T =6, K = 3, N =4
and B € {4,8} in Fig. 5. We consider the precoding-based
Grassmannian constellations. For D, we use the numerically
optimized constellation if B = 4 and the cube-split constel-
lation if B = 8. For uncorrelated fading (Fig. 5(a), the rates
achieved with EP and MMSE-SIA detectors are very close to
the achievable rate of the system (with the optimal detector)
and not far from that of the genie-aided detector. EPAK (with
to = 2) achieves a very low rate, especially in the low SNR
regime where the Kronecker approximation is not accurate.
For correlated fading, (Fig. 5(b)), the rates achieved with
EP and MMSE-SIA are only marginally lower than that of
the optimal detector and genie-aided detector. In both cases,
the rate achieved with POCIS is lower than that of EP and
MMSE-SIA in the lower SNR regime and converges slowly
with SNR to the limit % bits/channel use.

D. Symbol Error Rates of Hard Detection

Next, we use the outputs of EP, EPAK, MMSE-SIA and
POCIS for a maximum-a-posteriori (MAP) hard detection.
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Fig. 4. The average running time over 1000 realizations of the transmitted signal, channel, and noise of exact marginalization vs. 6 iterations of the considered
detection schemes for 7' =6, K = 3, B =4, and N = 4 at SNR = 8 dB. The error bars show the standard deviation. For correlated fading, the running

time is further averaged over 10 realizations of the correlation matrices.
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Fig. 5. The mismatched rate of the system with EP, EPAK (with tg = 2),
MMSE-SIA, and POCIS detectors in comparison with the optimal detector
and/or the genie-aided detector for T'=6, K =3, N = 4, and B € {4, 8}.

We evaluate the performance in terms of symbol error
rate (SER).

In Fig. 6, we consider the precoding-based constellations
with T 6, K 3, N € {4,8}, and B 4, for

Symbol Error Rate

Symbol Error Rate

Fig. 6.
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The symbol error rate of the system with EP, EPAK (with to €
{0,2}), MMSE-SIA, and POCIS detectors in comparison with the optimal
detector and the genie-aided detector for T = 6, K = 3, N € {4,8} and

which the optimal ML detector (2) is computationally feasible.
We observe that the SER of the EP and MMSE-SIA detec-
tors are not much higher than that of the optimal detector,
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Fig. 7. The symbol error rate of the system with EP, EPAK (¢9 € {0, 2}),

MMSE-SIA, POCIS vs. the genie-aided detector for 7' = 6, K = 3,
N = 8, and B = 9. For uncorrelated fading, these schemes are compared
with three pilot-based detectors using respectively MMSE equalizer, sphere
decoding [35], and joint channel estimation—data detection [9].

especially in the lower SNR regime. The SER of EPAK is
significantly higher than that of EP and MMSE-SIA for £y = 0.
This is greatly improved by setting to = 2, i.e., keeping the
first two iterations of EP. The gain of EP w.r.t. EPAK and
MMSE-SIA is more pronounced when the SNR increases. For
correlated fading, EP performs almost as good as the optimal
detector, whose SER performance is closely approximated by
the genie-aided detector.

In Fig. 7, we consider T' = 6, K 3, N = 8, and
B = 9 and use the genie-aided detector as a benchmark.
In Fig. 7(a), we consider uncorrelated fading and use the
pilot-based constellations with 8-QAM data symbols. The
performance of EP is very close to that of the genie-aided
detector. The performance of MMSE-SIA is close to EP in
the low SNR regime (SNR < 8 dB). We also depict the
SER of the three pilot-based detectors in Section VII-A.2,
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Fig. 8. The bit error rate with turbo codes of EP, EPAK (with

to = 2), MMSE-SIA, POCIS, and the optimal/genie-aided detector for B = 8
bits/symbol and K = N.

namely, 1) MMSE channel estimation, MMSE equalizer, and
QAM demapper, 2) SESD, and 3) RWBS-SESD. These three
schemes are outperformed by the EP detectors. In Fig. 7(b),
we consider correlated fading and use the precoding-based
Grassmannian constellations with D numerically optimized.
We observe again that EP achieves almost the same SER
performance as the genie-aided detector.

E. Bit Error Rates With a Channel Code

In this subsection, we use the output of the soft detectors
for channel decoding. We consider the precoding-based Grass-
mannian constellations with the cube-split constellation for D
since it admits an effective and simple binary labeling [17]. We
take the binary labels of the symbols in D for the correspond-
ing symbols in Sy. We integrate a standard symmetric parallel
concatenated rate-1/3 turbo code [36]. The turbo encoder
accepts packets of 1008 bits; the turbo decoder computes the
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Fig. 9. The bit error rate with turbo codes of EP, EPAK (with tg = 2),

MMSE-SIA, POCIS, and the optimal/genie-aided detector for 7' = 6, K = 3,
and N = 4.

bit-wise LLR from the soft outputs of the detection scheme
as in (3) and performs 10 decoding iterations for each packet.

In Fig. 8, we show the bit error rate (BER) with this
turbo code using B = 8 bits/symbol and different values
of T"and K = N. EP achieves the closest performance to
the genie-aided detector and the optimal detector (4). The
BER of MMSE-SIA vanishes slower with the SNR than the
other schemes, and becomes better than POCIS as K and
N increase. The BER of EPAK with ¢y = 2 is higher than
all other schemes. Under uncorrelated fading, for 7" = 7
and K = N = 4, the power gain of EP w.r.t. MMSE-
SIA, POCIS, and EPAK for the same BER of 103 is about
3 dB, 4 dB, and 8 dB, respectively. We also observe that the
genie-aided detector gives very optimistic BER performance
results compared to the optimal detector.

Finally, in Fig. 9, we consider T' = 6, K = 3, N =4,
and compare the BER with the same turbo code for different
B. For B = 5, both EP and MMSE-SIA have performance
close to the optimal detector. Under uncorrelated fading,
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MMSE-SIA can be slightly better than EP. This is due to
the residual effect (after damping) of the phenomenon that
all the mass of 7r,(:1’“ is concentrated on a possibly wrong
symbol at early iterations, and EP may not be able to refine
significantly the PMF in the subsequent iterations if the
constellation is sparse. This situation is not observed for
B = 8§, i.e., larger constellations. Also, as compared to the
case T = 6,K = 3,B = 8 in Fig. 8, the performance of
MMSE-SIA is significantly improved as the number of receive
antennas increases from N = 3 to N = 4. As in the previous
case, EPAK does not perform well.

VIII. CONCLUSION

We proposed an expectation propagation (EP) based scheme
and two simplifications (EPAK and MMSE-SIA) of this
scheme for multi-user detection in non-coherent SIMO multi-
ple access channel with spatially correlated Rayleigh fading.
EP and MMSE-SIA are shown to achieve good performance
in terms of mismatched sum-rate, symbol error rate when
they are used for hard detection, and bit error rate when
they are used for soft-input soft-output channel decoding.
EPAK has acceptable performance with uncorrelated fading.
It performs well for hard symbol detection but inadequately
for soft-output detection. While MMSE-SIA and EPAK have
lower complexity than EP, the performance gain of EP with
respect to MMSE-SIA and EPAK is more significant when the
number of users and/or the constellation size increase. Possible
extensions of this work include considering more complicated
fading models and analyzing theoretically the performance of
EP for non-coherent reception.

APPENDIX A
PROPERTIES OF THE GAUSSIAN PDF
Lemma 1: Let x be an n-dimensional complex Gaussian
vector. It holds that

1) N(z;p,X) =N(x+y;p—y,X) fory e C";
2) Gaussian PDF multiplication rule:

N (z; 1, Z1)N (x5 12, B2) = N (T; Pyerys Lnew)

X N(07 Ky — Ko, 21 +22)7

where Syew = (27 '+251) “land p,y = Snew (=
+Xy 1!"2)-

Proof: The first part follows readily from the definition of

N (z;u,X). The complex Gaussian PDF multiplication rule is

a straightforward generalization of the real counterpart [37].

L

APPENDIX B
PROOF OF PROPOSITION 1
Using the natural logarithm for the KL divergence,
we derive
go(T)
D(4a(a) (=) = [ (o) n

_ Z/qa(x)ln—l dz + e

8 Bﬁ(‘r,@)

1 1
— Z /qa(:l:) lnﬂ—ﬁ(xﬁ) dx+ Z /a(m) mﬂﬁ(xﬁ) dz

BENa
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+co
1
= Z da(x)In dz
i / Pys)
+ Z /ﬁg(ﬁg)ln ( ) dxg—l-(:o 51
BEN
BEN BEN
+co (52)
= > [4s0r,) B [B@a)] |+ D D(bsllp,) +eo,
BEN BEN
(53)
where (51) follows from do () =

Y(za) Lnﬁem pﬁ(xﬁ)] [Hﬁm pﬁ(mﬁ)}, and (52) follows
from (11). From (53), we can see that the optimization (14)
of p decouples over p,, and the optimal distribution can

be expressed as pocV(z) = [[5P575 (xp). For B ¢ Ng,
the minimum of D(pg”}_a [3) is simply O and achieved with
pa’s (@s) = pp(xp). For B € N,, since the log-partition
function Ag(y [3) is convex in Y5 (see, e.g., [38, Lemma 1]),

the minimum of Ag(y 'yﬁEqa [¢(a:5)] is achieved
at the value of 7 5 wﬁere its gradient is zero. Using
the well-known property of the log-partition function,
VaAs(y) = Ep,lps(v)], we get that the zero-gradient
equation is equivalent to the moment matching criterion

Epnew [@5(25) = Eq, [9s(zp)].
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