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A Simple Derivation of AMP and its State
Evolution via First-Order Cancellation
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Abstract—We consider the linear regression problem, where the
goal is to recover the vector x ∈ R

n from measurements y =
Ax + w ∈ R

m under known matrix A and unknown noise w.
For large i.i.d. sub-Gaussian A, the approximate message passing
(AMP) algorithm is precisely analyzable through a state-evolution
(SE) formalism, which furthermore shows that AMP is Bayes opti-
mal in certain regimes. The rigorous SE proof, however, is long and
complicated. And, although the AMP algorithm can be derived as
an approximation of loop belief propagation (LBP), this viewpoint
provides little insight into why large i.i.d.Amatrices are important
for AMP, and why AMP has a state evolution. In this work, we
provide a heuristic derivation of AMP and its state evolution, based
on the idea of “first-order cancellation,” that provides insights
missing from the LBP derivation while being much shorter than
the rigorous SE proof.

Index Terms—Belief propagation, compressive sensing,
inference algorithms, message passing, random matrices.

I. INTRODUCTION

W E CONSIDER the standard linear regression problem,
where the goal is to recover the vector x ∈ R

n from
measurements

y = Ax+w ∈ R
m, (1)

where A is a known matrix and w is an unknown disturbance.
With high-dimensional random A, the approximate message
passing (AMP) algorithm [1] remains one of the most cele-
brated and best understood iterative algorithms. In particular,
when the entries of A are drawn i.i.d. from a sub-Gaussian
distribution andm,n → ∞withm/n → δ ∈ (0,∞), ensemble
behaviors of AMP, such as the per-iteration mean-squared error
(MSE), can be perfectly predicted using a state evolution (SE)
formalism [2].1 Furthermore, the SE formalism shows that, in
certain regimes, AMP’s MSE converges to the minimum MSE
as predicted by the replica method [2], [3], which has been
shown to coincide with the minimum MSE for linear regression
under i.i.d. Gaussian A [4], [5] as m,n → ∞ with m/n → δ ∈
(0,∞). More recently, it has been proven that the state-evolution
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accurately characterizes AMP’s behavior for large but finite
m,n [6].

The rigorous SE proofs in [2], [3], [6], however, are long and
complicated, and thus remain out of reach for many readers.
And, although the AMP algorithm can be heuristically derived
from an approximation of loop belief propagation (LBP) [7],
[8], as outlined in [9], [3, App.A], and [10], and expectation
propagation (EP) [11], [12], as outlined in [13], the LBP/EP
perspective is lacking in several respects. First, LBP and EP
are heuristic, making it surprising that further approximations
of these approaches can be optimal. Second, the LBP and EP
derivations provide little insight into why large i.i.d. A ma-
trices are important for AMP. For the LBP/EP derivations, it
suffices that the entries of A have “roughly the same magnitude
O(1/

√
m)” [10], [13], suggesting that structured matrices (e.g.,

DCT, Hadamard, Fourier) should work as well as i.i.d. random
ones. But, in practice, AMP often diverges with such structured
matrices, and the reasons why are not evident from the LBP/EP
viewpoint. Third, the LBP and EP derivations do not explain
why AMP obeys a scalar state evolution when A is large and
i.i.d. sub-Gaussian, nor do they describe how the estimation error
variance can be predicted at each iteration.

In this work, we propose a heuristic derivation of AMP and
its MSE state evolution that uses the simple idea of “first-order
cancellation.” This derivation provides insights missing from
the LBP and EP derivations, while being much more accessible
than the rigorous SE proofs.

II. PROBLEM SETUP

In our treatment of the linear regression problem (1), y =
[y1, . . . , ym]�, x = [x1, . . . , xn]

�, and w = [w1, . . . , wm]� are
deterministic vectors and A ∈ R

m×n is a deterministic matrix.
Importantly, however, we assume that the components {aij} of
A are realizations of i.i.d. Bernoulli2 random variables Aij ∈
± 1√

m
that are drawn independently of x and w. Our model for

A is a special case of that considered in [2].
Throughout, we will focus on the following large-system

limit.
Definition 1: The “large system limit” is defined as m,n →

∞ with m/n → δ for some fixed sampling ratio δ ∈ (0,∞).
We will assume that the components of x, w, and y scale as

O(1) in the large-system limit.

2With additional work, our derivation can be extended to i.i.d. Gaussian Aij ,
but doing so lengthens the derivation and provides little additional insight.
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We consider a family of algorithms that, starting with x(0) =
0, iterates the following over iteration index t = 0, 1, 2, . . . :

v(t) = y −Ax(t) + µ(t) (2a)

x(t+1) = η(t)(x(t) +A�v(t)︸ ︷︷ ︸
� r(t)

), (2b)

where µ(t) is a correction term and η(t)(·) is a component-wise
separable function. That is, [η(t)(r)]j = η(t)(rj) ∀j, where, with
some abuse of notation, we use the same notation for the function
η(t) : Rn → R

n and its component maps η(t) : R → R. The
quantity x(t) is iteration-t estimate of the unknown vector x.
We refer to η(t)(·) as a “denoiser” for reasons that will become
clear in the sequel. For technical reasons, we will assume that
η(t)(·) is a polynomial function of bounded degree, similar to
the assumption in [2].

The classical iterative shrinkage/thresholding (IST) algo-
rithm [14] uses no correction, i.e.,

µ(t) = 0, (3)

for all iterations t, whereas the AMP algorithm [1] uses the
“Onsager” correction

µ(t) =
1

m
v(t−1)

n∑
j=1

η(t−1)′(r(t−1)

j ), (4)

initialized with µ(0) = 0. In (4), η(t)′ refers to the derivative of
η(t). Our goal is to analyze the effect of µ(t) on the behavior
of algorithm (2) in the large-system limit, and in particular to
understand how and why the Onsager correction (4) is a good
choice. To do this, we will analyze the errors on r(t) and x(t) in
(2) and drop terms that vanish in the large-system limit.

It has been shown [3], [10] that IST has an predictable and
desirable behavior in the case that A is a large i.i.d. Gaussian
matrix that is re-drawn at each iteration t (with a corresponding
update ofy). But this desirable behavior vanishes in the practical
case that A is fixed over the iterations. In some sense, the goal
of the Onsager correction (4) is to restore this desirable behavior
when A is fixed over the iterations.

III. AMP DERIVATION

We will now analyze the error e(t) on the input to the denoiser
r(t), i.e.,

e(t) � r(t) − x. (5)

From (2) and (5) we have that

e(t) = x(t) +A�(y −Ax(t) + µ(t))− x (6)

= (I −A�A)x(t) +A�(Ax+w + µ(t))− x (7)

= (I −A�A)x(t) − (I −A�A)x+A�(w + µ(t)).
(8)

Let us examine the jth component of e(t) when t ≥ 1. We have
that

[(I −A�A)x(t)]j

= x(t)

j −
∑
i

aij
∑
l

ailx
(t)

l (9)

=

(
1−

m∑
i=1

a2ij

)
x(t)

j −
∑
i

aij
∑
l 
=j

ailx
(t)

l (10)

= −
∑
i

aij
∑
l 
=j

ailx
(t)

l (11)

since a2ij = 1/m∀ij. Continuing,

[(I −A�A)x(t)]j

= −
∑
i

aij
∑
l 
=j

ailη
(t−1)(r(t−1)

l ) (12)

= −
∑
i

aij
∑
l 
=j

ailη
(t−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
x(t−1)

l +
∑
k 
=i

aklv
(t−1)

k︸ ︷︷ ︸
� r(t−1)

il

+ailv
(t−1)

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)

where r(t−1)

il omits the direct contribution of ail from r(t−1)

l and
thus is only weakly dependent on {aij}nj=1. We formalize this
weak dependence through Assumption 1, which is admittedly an
approximation. In fact, the approximate nature of Assumption 1
is the main reason that our derivation is heuristic.

Assumption 1: The matrix entry aij is a realization of an
equiprobable Bernoulli random variable Aij ∈ ± 1√

m
, where

{Aij} are mutually independent and, Aij is independent of
{r(t−1)

il }nl=1, {xl}nl=1, and {wk}mk=1.
We now say a few words about Assumption 1. The assumption

that {Aij} are i.i.d. and independent of x and w is rather
common in the compressive sensing literature. For example,
these assumptions are used in the rigorous AMP analyses [2],
[3], [6]. The assumption of Bernoulli Aij is a bit stronger, but it
is not critical, in that our analysis could be extended to handle
other sub-Gaussian distributions on Aij with additional steps.
Doing so, however, would complicate the derivation without
providing much additional insight, and so we have elected not
to take this path. The assumption that Aij is independent of
{r(t−1)

il }nl=1 is far stronger. In reality, there is a weak dependence
between these quantities, but properly accounting for it seems
to require completely different analysis methods, such as those
in [2], [3], [6].

Assumption 1 will be used often when analyzing summations,
as in the following lemma.

Lemma 1: Consider the quantity zi =
∑n

j=1 aijuj , where
aij are realizations of i.i.d. random variablesAij with zero mean
and E[A2

ij ] = 1/m. If {Aij} are drawn independently of {uj},
and {uj} scale as O(1) in the large-system limit, then zi also
scales as O(1).

Proof: First, note that zi is a realization of the
random variable Zi �

∑n
j=1 Aijuj . Furthermore, E[Z2

i ] =

E[(
∑n

j=1 Aijuj)
2] =

∑n
j=1

∑n
l=1 E[AijAil]ujul =

1
m

∑n
j=1

u2
j = n

m
1
n

∑n
j=1 u

2
j , since E[AijAil] = 1/m if j = l and

E[AijAil] = E[Aij ]E[Ail] = 0 if j 
= l. Clearly m/n and
1
n

∑n
j=1 u

2
j are both O(1) in the large-system limit. Thus we

conclude that E[Z2
i ] is O(1). Finally, since zi is a realization
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of a random variable Zi whose second moment is O(1), we
conclude that zi scales as O(1) in the large-system limit. �

We now emphasize the importance of the independence
properties on {Aij} used in Assumption 1 and Lemma 1. For
example, consider the case where Aij = sgn(uj)/

√
m, so that

E[A2
ij ] = 1/m (as in Lemma 1) but whereAij depends on {uj}.

In this case, zi =
∑n

j=1 aijuj =
1√
m

∑n
j=1 |uj |, which scales

as O(
√
m) in the large-system limit, and thus is fundamentally

different from the O(1) scaling observed in Lemma 1.
The distinction between {aij} being independent of other

quantities, versus {aij} simply being the right size, is one of
the major differences between our derivation and other simple
derivations based on LBP and EP. For example, both [10]
and [13] require only that “{aij} are roughly the same magnitude
O(1/

√
m),” which suggests that properly normalized structured

matrices (e.g, Hadamard, Fourier, Discrete Cosine Transform,
Radon Transform) should work well with AMP. But when used
to recover natural images/signals with these matrices, AMP
often diverges. And the LBP/EP viewpoint does not explain why.

In the sequel, we will make use of the following lemma, whose
proof is postponed because it is a bit long and does not provide
much insight.

Lemma 2: Under Assumption 1 and the Onsager choice of
µ(t) from (4), the elements of v(t), r(t), x(t), and µ(t) scale as
O(1) in the large-system limit for all iterations t.

Proof: See the appendix. �
We now perform a Taylor series expansion of the η(t−1) term

in (13) about r(t−1)

il :

η(t−1)(r(t−1)

il + ailv
(t−1)

i )

= η(t−1)(r(t−1)

il ) + ailv
(t−1)

i η(t−1)′(r(t−1)

il )

+
1

2
a2il(v

(t−1)

i )2η(t−1)′′(r(t−1)

il ) + H.O.T.︸ ︷︷ ︸
O(1/m)

, (14)

where the O(1/m) scaling follows from the fact that a2il =
1/m∀il, that both v(t−1)

i and r(t−1)

il scale as O(1) via Lemma 1,
and η(t−1)(·) is polynomial of bounded degree, which implies
that η(t−1)′′(r(t−1)

il ) also scales as O(1). For similar reasons, the
second term in (14) scales as O(1/

√
m). We will ignore the

O(1/m) term in (14) since it vanishes relative to the O(1/
√
m)

component in the large-system limit. Thus we have

[(I −A�A)x(t)]j

≈ −
∑
i

aij
∑
l 
=j

ail
[
η(t−1)(r(t−1)

il ) + ailv
(t−1)

i η(t−1)′(r(t−1)

il )
]

(15)

= −
∑
i

aij
∑
l 
=j

ailη
(t−1)(r(t−1)

il )

− 1

m

∑
i

aijv
(t−1)

i

∑
l 
=j

η(t−1)′(r(t−1)

il ) (16)

using a2il = 1/m∀il.

Similar to (11), we have

[(I −A�A)x]j = −
∑
i

aij
∑
l 
=j

ailxl, (17)

which, combined with (8) and (16), yields

e(t)

j ≈
∑
i

aij
∑
l 
=j

ail
[
xl − η(t−1)(r(t−1)

il )
]

− 1

m

∑
i

aijv
(t−1)

i

∑
l 
=j

η(t−1)′(r(t−1)

il ) +
∑
i

aij(wi + μ(t)

i )

(18)

=
∑
i

aij
∑
l 
=j

ail
[
xl − η(t−1)(r(t−1)

il )
]

+
∑
i

aijwi+
∑
i

aij

⎡
⎣μ(t)

i −v(t−1)

i

1

m

∑
l 
=j

η(t−1)′(r(t−1)

il )

⎤
⎦.
(19)

We are now in a position to observe the principal mechanism
of AMP. As we argue below (using the central limit theorem),
the first and second terms in (19) behave like realizations of
zero-mean Gaussians in the large-system limit, because {ail}
are realizations of i.i.d. zero-mean random variables {Ail} that
are independent of xl, wi, and {r(t−1)

il } under Assumption 1.
But the same cannot be said in general about the third term in
(19), because v(t−1)

i is strongly coupled to aij . Consequently,
the denoiser input-error e(t)

j is difficult to characterize for
general μ(t)

i .
With AMP’s choice of μ(t)

i , however, the 3 rd term in (19)
vanishes in the large-system limit. In particular, with the Onsager
choice (4), the 3rd term in (19) takes the form

∑
i

aij

⎡
⎣v(t−1)

i

m

∑
l

η(t−1)′(r(t−1)

l )− v(t−1)

i

m

∑
l 
=j

η(t−1)′(r(t−1)

il )

⎤
⎦

=
1

m

∑
i

aijv
(t−1)

i

⎡
⎣η(t−1)′(r(t−1)

j )

+
∑
l 
=j

(
η(t−1)′(r(t−1)

l )− η(t−1)′(r(t−1)

il )
)⎤⎦ (20)

≈ 1

m

∑
i

aijv
(t−1)

i

⎡
⎣η(t−1)′(r(t−1)

j )

+
∑
l 
=j

ailv
(t−1)

i η(t−1)′′(r(t−1)

il )

⎤
⎦ , (21)

where for the last step we used the Taylor-series expansion

η(t−1)′(r(t−1)

l )

= η(t−1)′(r(t−1)

il + ailv
(t−1)

i ) (22)

= η(t−1)′(r(t−1)

il ) + ailv
(t−1)

i η(t−1)′′(r(t−1)

il ) +O(1/m) (23)
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and dropped theO(1/m) term, since it will vanish relative to the
ailv

(t−1)

i η(t−1)′′(r(t−1)

il ) term in the large-system limit. Looking at
(21), the first term is

1

m

m∑
i=1

aijv
(t−1)

i η(t−1)′(r(t−1)

j )︸ ︷︷ ︸
O(1/

√
m)

= O(1/
√
m) (24)

since aij ∈ ±1/
√
m and v(t−1)

i η(t−1)′(r(t−1)

j ) is O(1) due to
Lemma 1. Thus the first term in (21) will vanish in the large-
system limit. The second term in (21) is

1

m

m∑
i=1

aij(v
(t−1)

i )2
∑
l 
=j

ailη
(t−1)′′(r(t−1)

il )

︸ ︷︷ ︸
O(1)︸ ︷︷ ︸

O(1/
√
m)

= O(1/
√
m), (25)

which will also vanish in the large-system limit. The O(1)
scaling in (25) follows from Lemma 1 under Assumption 1, and
the O(1/

√
m) scaling follows from the fact that ail ∈ ±1/

√
m

and (v(t−1)

i )2 = O(1).
Thus, for large m and the AMP choice of μ(t)

i , equation (19)
becomes

e(t)

j ≈
∑
i

aij
∑
l 
=j

ail[xl − η(t−1)(r(t−1)

il )︸ ︷︷ ︸
� ε(t)il

] +
∑
i

aijwi. (26)

Recall that, under Assumption 1, aij is a realization of equiprob-
able Aij ∈ ± 1√

m
that is independent of {Ail}l 
=j , {xl}nl=1,

and {r(t−1)

il }nl=1. This implies that Aij is also independent of
ε(t)il = xl − η(t−1)(r(t−1)

il ) for any l. Thus we can apply the central
limit theorem to say that, for any fixed {ε(t)il }, the first term
converges to a Gaussian with mean and variance

E

⎡
⎣∑

i

Aij

∑
l 
=j

Ailε
(t)

il

⎤
⎦ =

∑
i

E[Aij ]
∑
l 
=j

E[Ail]ε
(t)

il

(27)

= 0 (28)

E

⎡
⎣
⎛
⎝∑

i

Aij

∑
l 
=j

Ailε
(t)

il

⎞
⎠2⎤⎦ =

∑
i

E[A2
ij ]
∑
l 
=j

E[A2
il](ε

(t)

il )
2

(29)

=
1

m2

∑
i

∑
l 
=j

(ε(t)il )
2. (30)

From the Taylor expansion (14), we have

ε(t)il = xl − η(t−1)(r(t−1)

il ) (31)

= xl − η(t−1)(r(t−1)

l )︸ ︷︷ ︸
� ε(t)l

+ ailv
(t−1)

i η(t−1)′(r(t−1)

il ) +O(1/m)︸ ︷︷ ︸
O(1/

√
m)

,

(32)

where the O(1/
√
m) scaling follows from the facts that ail ∈

±1/
√
m and v(t−1)

i η(t−1)′(r(t−1)

il ) is O(1). Notice that ε(t)l is the
denoiser output error. Because both xl and r(t−1)

l are O(1), it

follows that ε(t)l is also O(1). Because the O(1/
√
m) term in

(32) vanishes in the large-system limit, we see that (30) becomes

1

m2

∑
i

∑
l 
=j

(ε(t)il )
2 ≈ 1

m2

m∑
i=1

∑
l 
=j

(ε(t)l )2 =
1

m

∑
l 
=j

(ε(t)l )2 (33)

=
n

m

1

n

n∑
l=1

(ε(t)l )2

︸ ︷︷ ︸
O(1)

− 1

m
(ε(t)j )2︸ ︷︷ ︸

O(1/m)

≈ δ−1E (t),

(34)

where

E (t) � lim
n→∞

1

n

n∑
l=1

(ε(t)l )2 (35)

is the average squared error on the denoiser output x(t). We
have thus deduced that, in the large-system limit, the first term
in (26) behaves like a zero-mean Gaussian with variance δ−1E (t).
For the second term in (26), we can again use the central
limit theorem to say that, for any fixed {wi}, the second term
converges to a Gaussian with mean and variance

E

[∑
i

Aijwi

]
=
∑
i

E[Aij ]wi = 0 (36)

E

⎡
⎣(∑

i

Aijwi

)2
⎤
⎦ =

∑
i

E[A2
ij ]w

2
i =

1

m

m∑
i=1

w2
i ≈ τw,

(37)

where τw denotes the empirical second moment of the noise:

τw � lim
m→∞

1

m

m∑
i=1

w2
i . (38)

To summarize, with AMP’s choice of µ(t) from (4), the jth
component of the denoiser input-error behaves like

e(t)

j ∼ N (0, δ−1E (t) + τw︸ ︷︷ ︸
� τ (t)

r

) (39)

in the large-system limit, where N (μ, σ2) denotes a Gaussian
random variable with mean μ and variance σ2. With other
choices of µ(t) (e.g., IST’s choice of µ(t) = 0 ∀t), it is difficult
to characterize the denoiser input-error e(t) and in general it will
not be Gaussian.

IV. AMP STATE EVOLUTION

In Section III, we used Assumption 1 to argue that the AMP
algorithm yields a denoiser input-error e(t) whose components
are N (0, τ (t)

r ) in the large system limit. Here, τ (t)
r = δ−1E (t) +

τw where E (t) is the average squared-error at the denoiser output
in the large-system limit.

Recalling the definition of E (t) from (35), we can write

1

n

n∑
l=1

(ε(t)l )2 ≈ 1

n

n∑
l=1

[η(t−1)(xl +N (0, τ (t−1)

r ))− xl]
2 (40)

= E [η(t−1)(X +N (0, τ (t−1)

r ))−X]
2 (41)
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where X is a scalar random variable defined from the empirical
distribution

X ∼ p(x) =
1

n

n∑
l=1

δ(x− xl), (42)

with δ(·) denoting the Dirac delta function. Thus we can argue
that, in the large-system limit,

E (t) = E [η(t−1) (X +N (0, τ (t−1)

r ))−X]
2
, (43)

where X now is distributed according to the n → ∞ limit of the
empirical distribution. Combining (43) with the update equation
for τ (t)

r gives the following recursion for t = 0, 1, 2, . . . :

τ (t)

r = δ−1E (t) + τw (44a)

E (t+1) = E [η(t) (X +N (0, τ (t)

r ))−X]
2
, (44b)

initialized with E (0) = E[X2]. The recursion (44) is known as
AMP’s “state evolution” for the mean-squared error [1]–[3].

The reason that we call η(t)(·) a “denoiser” should now be
clear. To minimize the mean-squared error E (t+1), the function
η(t)(·) should remove as much of the noise from its input as
possible. The smaller that E (t+1) is, the smaller the input-noise
variance τ (t+1)

r will be during the next iteration.

V. AMP VARIANCE ESTIMATION

For best performance, the iteration-t denoiser η(t)(·) should be
designed in accordance with the iteration-t input noise variance
τ (t)
r . With the AMP algorithm, there is an easy way to estimate

the value of τ (t)
r at each iteration t from the v(t) vector, i.e.,

τ (t)
r ≈ ‖v(t)‖2/m [10]. Below, we explain this approach using

arguments similar to those used above.
Equation (62) shows that

v(t)

i = yi −
n∑

l=1

ailη
(t−1)(r(t−1)

il )

− v(t−1)

i

1

m

n∑
l=1

η(t−1)′(r(t−1)

il ) + μ(t)

i +O(1/m). (45)

Ignoring the O(1/m) term and plugging in AMP’s choice of
μ(t)

i from (4) yields

v(t)

i ≈ yi −
n∑

l=1

ailη
(t−1)(r(t−1)

il )

+ v(t−1)

i

1

m

n∑
l=1

[
η(t−1)′(r(t−1)

l )− η(t−1)′(r(t−1)

il )
]

(46)

= yi −
n∑

l=1

ailη
(t−1)(r(t−1)

il )

+ v(t−1)

i

n

m

1

n

n∑
l=1

[
ailv

(t−1)

i η(t−1)′′(r(t−1)

il ) +O(1/m)
]︸ ︷︷ ︸

O(1/
√
m)

,

(47)

where we used the Taylor series (23) in the second step and
ail ∈ ±1/

√
m to justify the O(1/

√
m) scaling. Since the last

term in (47) is the scaled average ofO(1/
√
m) terms, withO(1)

scaling, the entire term isO(1/
√
m). We can thus drop it since it

will vanish relative to the others in the large-system limit. Doing
this and plugging in y = Ax+w yields

v(t)

i ≈ wi +

n∑
l=1

ail[xl − η(t−1)(r(t−1)

il )︸ ︷︷ ︸
= ε(t)il

], (48)

recalling the definition of ε(t)il from (26). Squaring the result and
averaging over i yields

1

m

m∑
i=1

(v(t)

i )2 ≈ 1

m

m∑
i=1

w2
i +

1

m

m∑
i=1

( n∑
l=1

ailε
(t)

il

)2

+
2

m

m∑
i=1

(
wi

n∑
l=1

ail
[
xl − η(t−1)(r(t−1)

il )
])

.

(49)

We now examine the components of (49) in the large-system
limit. By definition, the first term in (49) converges to τw. By
the law of large numbers, the second term converges to

lim
n→∞E

[( n∑
l=1

Ailε
(t)

il

)2]
= lim

n→∞

n∑
l=1

n∑
j=1

E[AilAij ]ε
(t)

il ε
(t)

ij

(50)

= lim
n→∞

1

m

n∑
l=1

(ε(t)il )
2, (51)

since E[AilAij ] = 1/m when l = j and E[AilAij ] = 0 when
l 
= j. Using the relationship between ε(t)il and ε(t)l from (32), it
can be seen that

lim
n→∞

1

m

n∑
l=1

(ε(t)il )
2 = lim

n→∞
n

m

1

n

n∑
l=1

(ε(t)l )2 = δ−1E (t) (52)

where m is implicitly a function of n because m/n = O(1). In
summary,

lim
m→∞

1

m

m∑
i=1

(v(t)

i )2 = τw + δ−1E (t) = τ (t)

r , (53)

which shows that τ (t)
r is well estimated by ‖v(t)‖2/m in the

large-system limit.

VI. NUMERICAL EXPERIMENTS

We now present numerical experiments that demonstrate
the AMP behaviors discussed above. In all experiments, we
used a sampling ratio of δ = 0.5, {Aij} drawn i.i.d. zero-
mean Gaussian with variance 1/m, {xj} drawn i.i.d. from
the Bernoulli-Gaussian distribution with sparsity rate β = 0.1
(i.e., pX(xj) = (1− β)δ(xj) + βN (xj ; 0, 1) ∀j, where δ(·)
denotes the Dirac delta distribution), and {wi} drawn i.i.d.
zero-mean Gaussian with varianceβ10−SNRdB/10 and SNRdB =
20, so that E[‖Ax‖2]/E[‖w‖2] ≈ 20 dB. We experimented
with two denoisers: the MMSE denoiser η(t)(rj) = E[X | rj =
X +N (0, τ (t)

r )] and the soft-thresholding denoiser η(t)(rj) =

sgn(rj)max{0, |rj | − α
√

τ (t)
r } with α = 1.14, which is the
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Fig. 1. Denoiser output error E(t)
n and denoiser input-error variance τ

(t)
r,n

versus iteration for AMP and its state evolution with MMSE denoising and
n = 300. Dashed lines show the empirical average over 10000 random draws
of A and error bars show the empirical standard deviation.

minimax choice, i.e., the value ofα that minimizes the maximum
MSE over all 0.1-sparse signals (see [10] for more details). With
the soft-thresholding denoiser, AMP solves the LASSO prob-
lem “argminx{ 1

2‖y −Ax‖2 + λ‖x‖1}” for some value of λ
[1], [10].

Figs. 1–6 plot finite-dimensional versions of the denoiser
output MSEE (t) and the denoiser input-error variance τ (t)

r versus
iteration t for both the AMP algorithm (2) and the AMP state
evolution (44). For the AMP algorithm, the iteration-t denoiser
output MSE was computed as E (t)

n = 1
n

∑n
j=1(xj − x(t)

j )2 and
the denoiser input-error variance was computed as τ (t)

r,n =
‖v(t)‖2/m, where the subscript n indicates the dimensional
dependence of these quantities. For the AMP state evolution,
the denoiser output MSE was computed as

E (t)

n =

{
E
[
η(t−1)(X +N (0, τ (t−1)

r,n ))−X
]2

t > 0

E
[
X2

]
t = 0,

(54)

with the expectation evaluated using the n-term empirical dis-
tribution for X , and the iteration-t denoiser input-error variance
was computed as τ (t)

r,n = δ−1E (t)
n + τw,n using the empirical

noise variance τw,n = 1
m

∑m
i=1 w

2
i . Each figure plots the empir-

ical mean and standard deviation over T ∈ {100, 1000, 10000}
random draws of A for a single fixed draw of x and w.

Fig. 1 shows the results for the MMSE denoiser at dimension
n = 300. The figure shows a good, but not great, agreement
between the state evolution and average AMP quantities, where
the average was computed over T = 10000 realizations of A.
Furthermore, the error bars in Fig. 1, which show the empir-
ical standard deviation over the T realizations, indicate that
there was considerable dependence of the trajectories {E (t)

n }30t=1

and {τ (t)
r,n}30t=1 on the realization of A when n = 300. Figs. 2

and 3 plot the same quantities for dimensions n = 3000 and
n = 30000, respectively. These figures show that, as the dimen-
sion n increases, the agreement between the state-evolution and
average AMP trajectories improves and the standard deviation

Fig. 2. Denoiser output MSE E(t)
n and denoiser input-error variance τ

(t)
r,n

versus iteration for AMP and its state evolution with MMSE denoising and
n = 3000. Dashed lines show the empirical average over 1000 random draws
of A and error bars show the empirical standard deviation.

Fig. 3. Denoiser output MSE E(t)
n and denoiser input-error variance τ

(t)
r,n

versus iteration for AMP and its state evolution with MMSE denoising and
n = 30000. Dashed lines show the empirical average over 100 random draws
of A and error bars show the empirical standard deviation.

of the AMP trajectories decreases. Table I suggests that the
standard deviation decreases proportional to 1/

√
n. Fig. 3 shows

that, when n = 30000, the trajectories {E (t)
n }30t=1 and {τ (t)

r,n}30t=1

are nearly invariant to changes in A.
Figs. 4–6 are similar to Figs. 1–3, except that they show the

results for the soft-thresholding denoiser. As expected, the use
of the soft-thresholding denoiser results in larger MSEs than
the MMSE denoiser. But, otherwise, the trends are the same:
the agreement between the state-evolution and average AMP
trajectories increases with the dimension n, and the standard
deviation of the AMP trajectories decreases proportional to
1/
√
n.
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TABLE I
NUMERICAL EVIDENCE THAT STD(E(t)

n )
√
n AND STD(τ

(t)
r,n)

√
n ARE

APPROXIMATELY CONSTANT WITH n, IMPLYING THAT STD(E(t)
n ) AND

STD(τ
(t)
r,n) SCALE AS APPROXIMATELY 1/

√
n

Fig. 4. Denoiser output MSE E(t)
n and denoiser input-error variance τ

(t)
r,n

versus iteration for AMP and its state evolution with soft-threshold denoising
and n = 300. Dashed lines show the empirical average over 10000 random
draws of A and error bars show the empirical standard deviation.

Fig. 5. Denoiser output MSE E(t)
n and denoiser input-error variance τ

(t)
r,n

versus iteration for AMP and its state evolution with soft-threshold denoising
and n = 3000. Dashed lines show the empirical average over 1000 random
draws of A and error bars show the empirical standard deviation.

Note that, because the state evolution was computed using the
empirical distributions of {xj}nj=1 and {wi}mi=1, which change
from one figure to the next (e.g., as n and m change), the state
evolution trajectories vary across Figs. 1–6.

Fig. 6. Denoiser output MSE E(t)
n and denoiser input-error variance τ

(t)
r,n

versus iteration for AMP and its state evolution with soft-threshold denoising
and n = 30000. Dashed lines show the empirical average over 100 random
draws of A and error bars show the empirical standard deviation.

Fig. 7. Quantiles of standard normal versus quantiles of AMP denoiser input-
error {e(t)j } at iteration t = 5 with MMSE denoising and n = 3000.

Fig. 8. Quantiles of standard normal versus quantiles of AMP denoiser input-
error {e(t)j } at iteration t = 5 with soft-threshold denoising and n = 3000.
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Finally, to give evidence that the denoiser input error {e(t)

j } is
approximately Gaussian, we show quantile-quantile (QQ) plots
in Figs. 7 and 8 at iteration t = 5 and dimension n = 3000 for
the MMSE and soft-thresholding denoisers, respectively. The
figures show that the quantiles of {e(t)

j } are very close to those
of a zero-mean Gaussian random variable. Although not shown
here, QQ plots at other iterations t look similar, and the QQ
plots become more linear (i.e., {e(t)

j } looks more Gaussian) as
n grows larger.

VII. CONCLUSION

For the linear regression problem, we presented a simple
derivation of AMP and its MSE state-evolution based on the
idea of “first-order cancellation.” In particular, our derivation
writes the linear transform of the denoiser output, Ax(t), as the
sum of a term that is weakly dependent on the previous iteration
and another term that is strongly dependent but canceled by
AMP’s Onsager correction term in the large-system limit. Our
derivation provides insights that are missing from the usual loopy
belief-propagation derivation of AMP, while being much more
accessible than Bayati et al.’s rigorous analysis of AMP.

APPENDIX

Here we establish Lemma 2, which says that the elements of
v(t), r(t),x(t), and µ(t) scale as O(1) in the large-system limit
under Assumption 1. We do this by induction.

From the initialization x(0) = 0 = µ(0), we have that v(0) =
y, whose elements are O(1), and we have r(0) = A�y =
A�Ax+A�w. Examining the jth entry, we see that

r(0)

j =
∑
i

aij
∑
l

ailxl +
∑
i

aijwi (55)

= xj

m∑
i=1

a2ij︸ ︷︷ ︸
= 1

+
∑
i

aij
∑
l 
=j

ailxl

︸ ︷︷ ︸
O(1)︸ ︷︷ ︸

O(1)

+
∑
i

aijwi︸ ︷︷ ︸
O(1)

(56)

since a2ij = 1/m∀ij and where the O(1) scalings follow from
Lemma 1 under Assumption 1. Thus the elements of r(0) are
O(1). Because x(1)

j = η(0)(r(0)

j ), the elements of x(1) are also
O(1). And from (4),

μ(1)

i =
n

m
v(0)

i

1

n

n∑
j=1

η(0)′(r(0)

j ), (57)

where n
m , v(0)

i , and 1
n

∑n
j=1 η

(0)′(r(0)

j ) are all O(1), implying
that the elements of µ(1) are O(1).

Now, suppose that the elements of r(t−1),v(t−1),x(t),µ(t) are
all O(1), which we know occurs when t = 1. Then from (2) we
have that

v(t)

i = yi −
n∑

l=1

ailx
(t)

l + μ(t)

i (58)

= yi −
n∑

l=1

ailη
(t−1)(r(t−1)

l ) + μ(t)

i (59)

= yi −
n∑

l=1

ailη
(t−1)

⎛
⎜⎜⎜⎜⎜⎜⎝x(t−1)

l +
∑
k 
=i

aklv
(t−1)

k︸ ︷︷ ︸
= r(t−1)

il

+ailv
(t−1)

i

⎞
⎟⎟⎟⎟⎟⎟⎠

+ μ(t)

i , (60)

where r(t−1)

il is only weakly dependent on {aij}nj=1, leading us
to invoke Assumption 1. The Taylor expansion (14) (which is
admissible since, under the induction hypothesis, the elements
of v(t−1) and r(t−1) scale as O(1)) then yields

v(t)

i = yi −
n∑

l=1

ail
[
η(t−1)(r(t−1)

il ) + ailv
(t−1)

i η(t−1)′(r(t−1)

il )

+O(1/m)] + μ(t)

i (61)

= yi −
n∑

l=1

ailη
(t−1)(r(t−1)

il )

︸ ︷︷ ︸
O(1)

−v(t−1)

i

1

m

n∑
l=1

η(t−1)′(r(t−1)

il )

︸ ︷︷ ︸
O(1)

+O(1/m)

n∑
l=1

ail︸ ︷︷ ︸
O(1)

+μ(t)

i , (62)

where we used the fact that a2il = 1/m∀il. In (62), the O(1)
scaling of the first and last sums follows from Lemma 1 under
Assumption 1. Thus the elements of v(t) are O(1).

Next, we establish that the elements of r(t) are O(1) when the
elements of v(t−1),x(t) and µ(t) are. From (5)–(8) we have

r(t) = (I −A�A)x(t) − (I −A�A)x

+A�(w + µ(t)) + x (63)

= (I −A�A)x(t) +A�µ(t) +A�Ax+A�w︸ ︷︷ ︸
= r(0)

, (64)

where we previously established that the elements in r(0) are
O(1). As for the remaining term in (64), we have from (13) and
(4) that[
(I −A�A)x(t) +A�µ(t)

]
j

= −
∑
i

aij
∑
l 
=j

ailη
(t−1)

(
r(t−1)

il + ailv
(t−1)

i

)
+
∑
i

aij
1

m
v(t−1)

i

∑
l

η(t−1)′ (r(t−1)

l

)
(65)

=
∑
i

aij

[
1

m
v(t−1)

i

∑
l

η(t−1)′ (r(t−1)

l

)

−
∑
l 
=j

ailη
(t−1)

(
r(t−1)

il + ailv
(t−1)

i

)⎤⎦ (66)
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=
∑
i

aij

[
1

m
v(t−1)

i

∑
l

η(t−1)′ (r(t−1)

l

)−∑
l 
=j

ailη
(t−1)

(
r(t−1)

il

)

−
∑
l 
=j

a2ilv
(t−1)

i η(t−1)′ (r(t−1)

il

)
+O(1/m)

∑
l 
=j

ail

︸ ︷︷ ︸
O(1/

√
m)

]
, (67)

where, for the last step, we applied the Taylor expansion (14).
Applying a2il = 1/m∀il and rearranging, we get[
(I −A�A)x(t) +A�µ(t)

]
j

=
∑
i

aij

⎡
⎣v(t−1)

i

m

∑
l

η(t−1)′ (r(t−1)

l

)− v(t−1)

i

m

∑
l 
=j

η(t−1)′ (r(t−1)

il

)

−
∑
l 
=j

ailη
(t−1)

(
r(t−1)

il

)
+O(1/

√
m)

⎤
⎦ (68)

=
1

m

∑
i

aijv
(t−1)

i

⎡
⎣∑

l

η(t−1)′ (r(t−1)

l

)−∑
l 
=j

η(t−1)′ (r(t−1)

il

)⎤⎦
−
∑
i

aij
∑
l 
=j

ailη
(t−1)

(
r(t−1)

il

)
+O(1) (69)

=
1

m

∑
i

aijv
(t−1)

i

[
η(t−1)′ (r(t−1)

j

)

+
∑
l 
=j

(
η(t−1)′ (r(t−1)

l

)− η(t−1)′ (r(t−1)

il

)) ]

−
∑
i

aij
∑
l 
=j

ailη
(t−1)

(
r(t−1)

il

)
+O(1), (70)

where the O(1) term follows from the fact that aij ∈ ±1/
√
m.

For the 2nd-to-last term in (70), we have∑
i

aij
∑
l 
=j

ailη
(t−1)

(
r(t−1)

il

)
︸ ︷︷ ︸

O(1)

= O(1), (71)

which follows from Lemma 1 under Assumption 1. For the
remaining term in (70), we apply the Taylor expansion (23) and
rearrange terms as follows:

1

m

∑
i

aijv
(t−1)
i

[
η(t−1)′

(
r
(t−1)
j

)

+
∑
l 
=j

(
η(t−1)

′ (
r(t−1)

l

)− η(t−1)
′ (
r(t−1)

il

))]

=
1

m

∑
i

aijv
(t−1)

i

[
η(t−1)′ (r(t−1)

j

)

+
∑
l 
=j

(
ailv

(t−1)

i η(t−1)′′(r(t−1)

il ) +O(1/m)
) ]

(72)

=
1

m

m∑
i=1

aijv
(t−1)

i η(t−1)′ (r(t−1)

j

)

+
1

m

m∑
i=1

aij(v
(t−1)

i )2
∑
l 
=j

ailη
(t−1)′′(r(t−1)

il )

︸ ︷︷ ︸
O(1)

+
1

m

m∑
i=1

aij(v
(t−1)

i )2
∑
l 
=j

O(1/m) (73)

= O(1/
√
m) (74)

where the O(1) scaling of the sum follows from Lemma 1 under
Assumption 1. The final O(1/

√
m) scaling in (74) follows since

each of the three terms in (73) is the average ofO(1/
√
m) terms,

due to aij ∈ ±1/
√
m. In conclusion, we have established that

the elements of r(t) are O(1) when the elements of v(t−1),x(t)

and µ(t) are.
To complete the induction proof, we need to establish that the

elements of x(t+1) and µ(t+1) are O(1) when those of v(t) and
r(t) are. But this follows straightforwardly from (2) and (4), i.e.,

x(t+1)

j = η(t)(r(t)

j ) (75)

μ(t+1)

i =
n

m
v(t)

i

1

n

n∑
j=1

η(t)′(r(t)

j ), (76)

since n/m is O(1) in the large-system limit.
In summary, we have established Lemma 2, which says the

elements of v(t), r(t),x(t), and µ(t) scale as O(1) in the large-
system limit under Assumption 1.

ACKNOWLEDGMENT

The author thanks Galen Reeves for inspiring discussions and
feedback on early drafts of this manuscript.

REFERENCES

[1] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms
for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, pp. 18914–18919,
Nov. 2009.

[2] M. Bayati, M. Lelarge, and A. Montanari, “Universality in polytope
phase transitions and message passing algorithms,” Ann. Appl. Probability,
vol. 25, no. 2, pp. 753–822, 2015.

[3] M. Bayati and A. Montanari, “The dynamics of message passing on dense
graphs, with applications to compressed sensing,” IEEE Trans. Inf. Theory,
vol. 57, no. 2, pp. 764–785, Feb. 2011.

[4] G. Reeves and H. D. Pfister, “The replica-symmetric prediction for com-
pressed sensing with Gaussian matrices is exact,” in Proc. IEEE Int. Symp.
Inf. Theory, 2016, pp. 665–669.

[5] J. Barbier, M. Dia, N. Macris, and F. Krzakala, “The mutual information
in random linear estimation,” in Proc. Allerton Conf. Commun., Control,
Comput., 2016, pp. 625–632.

[6] C. Rush and R. Venkataramanan, “Finite-sample analysis of approximate
message passing algorithms,” IEEE Trans. Inf. Theory, vol. 64, no. 11,
pp. 7264–7286, Nov. 2018.

[7] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Trans. Inf. Theory, vol. 51, no. 7, pp. 2282–2312, Jul. 2005.

[8] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential
families, and variational inference,” Found. Trends Mach. Learn., vol. 1,
pp. 1–305, May 2008.

Authorized licensed use limited to: The Ohio State University. Downloaded on December 02,2021 at 18:21:46 UTC from IEEE Xplore.  Restrictions apply. 



4292 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

[9] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms
for compressed sensing: I. Motivation and construction,” in Proc. Inf.
Theory Workshop, Jan. 2010, pp. 1–5.

[10] A. Montanari, “Graphical models concepts in compressed sensing,” in
Compressed Sensing: Theory and Applications, Y. C. Eldar and G.
Kutyniok, eds., Cambridge, U.K.: Cambridge Univ. Press, 2012.

[11] T. Minka, A Family of Approx Algorithms for Bayesian Inference. Ph.D.
thesis, Dept. Comp. Sci. Eng., MIT, Cambridge, MA, Jan. 2001.

[12] T. Heskes, M. Opper, W. Wiegerinck, O. Winther, and O. Zoeter,
“Approximate inference techniques with expectation constraints,” J. Sta-
tistical Mech.: Theory Experiment, vol. P11015, 2005.

[13] X. Meng, S. Wu, L. Kuang, and J. Lu, “An expectation propagation
perspective on approximate message passing,” IEEE Signal Process. Lett.,
vol. 22, no. 8, pp. 1194–1197, Aug. 2015.

[14] A. Chambolle, R. A. DeVore, N. Lee, and B. J. Lucier, “Nonlinear wavelet
image processing: Variational problems, compression, and noise removal
through wavelet shrinkage,” IEEE Trans. Image Process., vol. 7, no. 3,
pp. 319–335, Mar. 1998.

Philip Schniter (Fellow, IEEE) received the B.S. and M.S. degrees in electrical
engineering from the University of Illinois at Urbana-Champaign, USA, in 1992
and 1993, respectively, and the Ph.D. degree in electrical engineering from
Cornell University, Ithaca, NY, USA, in 2000. He is currently a Professor in
the Department of Electrical and Computer Engineering at The Ohio State
University, Columbus, OH, USA. He received the IEEE Signal Processing
Society Best Paper Award in 2016, and has served on several IEEE Technical
Committees: Signal Processing for Communications and Networking, Sensor
Array and Multichannel, and Computational Imaging.

Authorized licensed use limited to: The Ohio State University. Downloaded on December 02,2021 at 18:21:46 UTC from IEEE Xplore.  Restrictions apply. 


