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The coexistence of many competing species in an ecological community is a long-standing theoretical
and empirical puzzle. Classic approaches in ecology assume that species fitness and interactions in a given
environment are mainly driven by a few essential species traits, and coexistence can be explained by trade-
offs between these traits. The apparent diversity of species is then summarized by their positions
(“ecological niches”) in a low-dimensional trait space. Yet, in a complex community, any particular set of
traits and trade-offs is unlikely to encompass the full organization of the community. A diametrically
opposite approach assumes that species interactions are disordered, i.e., essentially random, as might arise
when many species traits combine in complex ways. This approach is appealing theoretically, and can lead
to novel emergent phenomena, fundamentally different from the picture painted by low-dimensional
theories. Nonetheless, fully disordered interactions are incompatible with many-species coexistence, and
neither disorder nor its dynamical consequences have received direct empirical support so far. Here we ask
what happens when random species interactions are minimally constrained by coexistence. We show
theoretically that this leads to testable predictions. Species interactions remain highly disordered, yet with a
“diffuse” statistical structure: interaction strengths are biased so that successful competitors subtly favor
each other, and correlated so that competitors partition their impacts on other species. We provide strong
empirical evidence for this pattern, in data from grassland biodiversity experiments that match our
predictions quantitatively. This is a first-of-a-kind test of disorder on empirically measured interactions, and
unique evidence that species interactions and coexistence emerge from an underlying high-dimensional
space of ecological traits. Our findings provide a new null model for inferring interaction networks with
minimal prior information and a set of empirical fingerprints that support a statistical physics-inspired

approach of complex ecosystems.

DOI: 10.1103/PhysRevX.11.011009

I. INTRODUCTION

While species-rich ecosystems are often too complex for
an exhaustive description, we can strive to understand them
from two complementary approaches. The first is to
identify the role of particular species, traits, and environ-
mental factors. The second approach is to search for
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collective phenomena that cannot be ascribed to any
individual species, but emerge from their interplay.

The contrast between these approaches is clearly
manifest in the problem of coexistence. Coexistence is a
long-standing puzzle in ecology: various theories and
experiments have brought forward the principle of com-
petitive exclusion, whereby the best competitor should
displace all others [1,2]. Yet, strict dominance by one
species appears to be the exception rather than the rule in
the natural world, and many communities host a remark-
able diversity of competitors [3].

Following the first approach, this puzzle is tackled by
positing coexistence mechanisms that may allow species to
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coexist, through particular trade-offs between species traits,
such as exploitation [4], defense against predators [5], and
tolerance to environmental fluctuations [6,7]. Such coex-
istence mechanisms are low dimensional, in that mean-
ingful differences between species are reduced to their
positions along one or a handful of specific dimensions
(a few essential traits). Trade-offs translate to constraints on
species interactions, on their strength, and their arrange-
ment [8]. For instance, the competition-colonization trade-
off [9,10] posits a strict hierarchy in the competitive ability
of species, from weakest to strongest, precisely counter-
balanced by their growth ability. If we increase the number
of species that must coexist, these constraints become more
and more restrictive and select a smaller and smaller subset
of all interaction networks that might exist.

A radically different approach argues that if the ecosystem
is complex, with many interaction mechanisms at play, a
better starting point is to assume that many of the system’s
details can be replaced with some form of randomness [11];
see Fig. 1. This is a bold move, yet one that parallels major
successes in physics and other fields [12-15]. The large
body of theoretical work building on this assumption
predicts that high dimensionality will lead to collective,
emergent phenomena such as phase transitions, driven by
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FIG. 1. Dimensionality of interaction patterns. The network of
pairwise interactions between S species can be represented by a
§ x § matrix (square box) where each element f;; denotes the
effect of species j on 7;, the relative yield of species i defined in
Eq. (1). We assume that interactions f# are constant in time, and
entirely determined by underlying species traits and limiting
factors 6, for instance representing resources, pathogens, or
behaviors. In a low-dimensional trait space, each species is
characterized by a few traits; therefore the interaction matrix
can be ordered by trait values and displays a simple organization.
In a high-dimensional trait space, each interaction is a complex
combination of factors, potentially unique and independent of
other interactions. This can lead to a matrix without conspicuous
order, often modeled as a random matrix [11-14].

a small number of statistics of the interaction network
[11,16-23]. This is very different from the picture
arising from low-dimensional coexistence mechanisms.
Randomness is also often used, either explicitly or implic-
itly, to make up for the poverty of data, when compared with
possibly thousands of parameters required to fully recon-
struct the dynamical rules in large ecosystems.

Despite its rich promise, the latter approach has so far
received limited theoretical development and empirical
support, and it is not clear when and how the two
approaches apply. Collective phenomena that follow from
high dimensionality have yet to be empirically demon-
strated. Demonstrating high dimensionality via direct
examination of the interactions is also hard: Ideally, one
would directly measure the type and strength of each
interaction, and look for signs of high dimensionality
there. This is difficult, firstly since it is generally hard to
correctly infer interaction strength, and when possible,
prone to large measurement errors. It is then not clear what
one should test when looking for “randomness,” especially
when inferred interactions are noisy. Another challenge
comes from the constraints that coexistence imposes on the
possible set of species interactions, that must somehow be
incorporated into the theory, in a role analogous to low-
dimensional coexistence mechanisms.

Here we ask what happens when random pairwise
interactions are minimally constrained to allow species to
coexist. Even though very little is assumed, the theory makes
precise testable predictions that are far from obvious. While
these predictions follow from the assumption of randomlike
interactions, they involve self-averaging quantities that are
less sensitive to measurement errors, allowing to check them
against empirical data. We test these predictions and show
that they quantitatively hold in detail, in data from long-
running plant biodiversity experiments.

We predict that species coexistence can be achieved
without any conspicuous order in the ecological network.
Coexistence requires only a subtle statistical structure
(referred to below as a pattern), where “diffuse” changes
in means and correlations throughout the network bias
how the most successful competitors interact with other
species. We uncover this latent structure by an inferential
approach shown in Fig. 2. We ask, if one samples many
different interaction networks, and retains only those in
which all species survive, what do the remaining networks
have in common? Some may appear very structured,
others almost random. Yet, we find that most of these
networks exhibit the same statistical pattern, expressed in
equations below. We derive this pattern from a simple
probabilistic argument, explain in intuitive terms how it
allows coexistence, and validate this pattern quantitatively
in interaction networks inferred from biodiversity experi-
ments. We then discuss how this pattern may arise from
species selection and how it relates to dynamical proper-
ties of the ecosystem.
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FIG. 2. Three approaches to coexistence. (a) An equilibrium coexistence mechanism can be expressed as a specific pattern in the
network of species interactions. To allow coexistence, i.e., an equilibrium where all species have positive relative yields 7 as
defined in Eq. (1), the traits @ which determine species interactions () must follow particular relations or constraints. We show
here the classic low-dimensional example of a trade-off between two traits (competitive ability and colonization rate [9,10]; see
Supplemental Material [24]). (b) Our inferential approach reverses the direction of reasoning: given that we observe species
coexisting at equilibrium in nature, we can infer the most likely distribution of interactions that could have caused this equilibrium,
i.e., the posterior distribution P(f|ij) given a prior P(f) over all possible interaction networks. If we choose a high-dimensional
prior (independent interactions), communities drawn from the posterior distribution retain random-looking but correlated
interactions, with simple and predictable statistical features: a “diffuse clique” pattern described below. (c) Community assembly
(see Sec. III) involves a larger pool of Sy, > S species, here with independent interactions. Through ecological dynamics, some of
these species go extinct or cannot invade, leading to a smaller persistent group of S species whose interactions f have been
dynamically selected to allow coexistence. Dotted arrows: The assembled community in (c) precisely follows the statistical
properties of communities drawn from the posterior distribution in (b), if we assume independent interactions for both the inference
prior and pool distribution [25]. Low-dimensional structures, such as illustrated here in (a), can be seen as possible but very
improbable matrices in this distribution, and can exhibit different patterns from our diffuse clique prediction. We can interpret the
posterior distribution P(f]77) as a null model for coexistence in the presence of many biological mechanisms. The resulting diffuse
clique pattern represents a form of collective organization, where coexistence arises, not from particular species traits, but from
statistical biases distributed over all interactions.

II. RESULTS n; = Bi/K;, (1)

A. Theoretical setting

We must first specify what we mean by interactions and
how they are estimated in real communities. Measuring
species interactions is often difficult and prone to high
uncertainty [26-29], and most empirical settings only give
us access to averaged properties. In particular, the total
effect of interactions on one species i by all other species
can be inferred from its relative yield,

the ratio of its abundance B; in a community to its maximum
abundance K; (known as carrying capacity) without com-
petitors in the same environment [30]. In the following we
assume that the abundances reach and stabilize around some
fixed values (the system reaches equilibrium), as will be
relevant to the data analyzed below. We interpret species
with higher 7 as successful competitors, as they benefit more
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in total (or suffer less) from their interactions with others.
The simplest way to model these interactions is to assume a
linear dependence between species’ relative yields,

ni=1-Y Byn;. foralli, (2)
J#

where f3;; is the effect of species j on species i (which need
not be symmetrical; i.e., it can differ from the effect of i on j).
fij 1s positive if the relation is deleterious, and negative if
beneficial. We expect that in communities dominated by
competition most f;; values will be positive, but some
negative values are allowed. The relationship (2) has had
some predictive success on data [31,32]. It can also be
derived from the classic Lotka-Volterra competition model,
where it holds between coexisting species at equilibrium;
see Eq. (6). The neutral theory of biodiversity [33] assumes
Bij = 1, while the existence of a pairwise coexistence
mechanism for species i and j entails f;; < 1. Note that
here we focus on interactions between coexisting species,
while interactions with species outside the community might
be much stronger [19].

B. Probabilistic approach and predictions

For many f;; matrices the solution of Eq. (2) will result
in some negative 7;; in fact, the probability that all #; are
positive (a feasible solution [34,35]) is exponentially small
in species number S. Observing the coexistence of S species
thus conveys some information about their interactions, but
not enough to fully determine them: the equations (2)
impose S constraints, while there are S(S — 1) unknown
interaction coefficients f;;. Therefore, many different
interaction networks (here, coefficients f3;;) can generate
the same equilibrium abundances.

Even when individual interaction coefficients are noisy,
communitywide statistics, such as the expected strength of
competition /3, can reliably be deduced from the species’
relative yields [36] (see the Appendix D).

We therefore adopt a probabilistic approach (Fig. 2), and
ask what is the most likely community structure, i.e., the set
of features most widely shared among the many possible
solutions. We first define a prior distribution on the matrix
elements P(f) that can be adapted to our biological
knowledge of a given community. For the experiments
below, we simply assume that each coefficient f;; is drawn
independently from a normal distribution with mean 3. We
then compute how this prior is modified once restricted to
networks that admit the equilibrium #;.

To compute P(f|ij), we impose the S equilibrium
conditions (2); i.e., we condition the prior distribution
P(B) to be in the hyperplane where ) ; f;1; = 1 for all i.
This conditioning of a multivariate Gaussian distribution is
still Gaussian, but with different statistics. This posterior
distribution P(f|if) is a new normal distribution over
S(S — 1)-dimensional vectors f;;, entirely specified by

its vector of means E[f;;|ij] and the correlation matrix
corr(f;;, Buli): see Fig. 3. Computing a posterior distri-
bution given a prior and linear constraints (2) is a well-
established problem in probability theory [37,38]. The
derivation is given in Appendix A.

Two statistical patterns among coexisting species
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FIG. 3. The diffuse clique structure is characterized by two
statistical patterns in how successful species compete. Any
typical interaction network drawn from the posterior distribution
P(B77) (see Fig. 2) will have similar statistical features. (a) Trend
in the expectation E[f,;]ij] of competition strength Eq. (4). If all
species competed with equal strength 3, we would expect any
given species i to achieve the relative yield n; = n* [Eq. (3)].
Given how much #; differs from this baseline, we can infer how
interactions most likely deviate from /. We show this deviation
A(#;,1;) for simulated data, in matrix form: each element shows
the bias in the interaction effect of species j (column) on species i
(row). Left to right: An unsuccessful species (low 7;) competes
indiscriminately against others (white, A = (), whereas a suc-
cessful species (high 7;) is a biased competitor. Top to bottom:
Species with 7; < n* experience stronger competition from
successful species (red, A > 0), whereas species with 7; > 5*
experience weaker competition from them (blue, A < 0). To-
gether, these biases indicate the existence of a “clique” of species
that compete less against each other, and more against all others,
thus achieving higher relative yield than the baseline #*. (b) Cor-
relation structure (5) between columns of the interaction matrix:
the effects of two successful species are anticorrelated, less likely
to target the same species, whereas competition from unsuccess-
ful species is indiscriminate.
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We find that interactions f3;; should follow a statistical
pattern characterized by two conditions, one on expect-
ations and one on correlations, that both admit intuitive
interpretations (Fig. 3). First, competition must be biased to
explain which species are successful or not. Here, it is
instructive to measure success relative to a baseline,

1-p ini
= L P2in

= (3)
which is the relative yield that a species would achieve if all
interaction strengths were equal to the prior mean (i.e., if
hypothetically f;; = /). When ; > n*, we therefore expect
that species i suffers less competition than the prior mean,
and conversely if 7; < #*. In our calculation, this appears in
the conditional expectation of the effect of j on i knowing
their relative yields,

ElByjlnisni) = B+ (1= B)A(ni,nj), (4)
which deviates from the prior mean 8 by a competitive bias:

(i —n")n;
Amin) = ="
<rh ’ n]) Zm,(m;éi)rlgn
We see that this bias is not evenly distributed among
species. Competition coming from unsuccessful species
(low ;) can be random without compromising the equi-
librium. On the other hand, a species that is successful
(high ;) is likely to compete less on average against other

Predictions of fitted model (Wageningen experiment)
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successful species, and to experience weaker competition
from them [Fig. 3(a)].

The correlation coefficients also differ from the prior, in
that successful species j and k are less likely to compete
against the same target i [Fig. 3(b)]:

MMk
Corr(ﬂij’ﬁik|’7i’77jv'7k> = __Z (j ),72 : (5)
m,(m#i)'(m

While the first pattern (4) determines the expected success
of each species, the second pattern guarantees that each
relative yield is exactly set to n;. To show that, one can take
the mean and variance of the ths of Eq. (2), 1 — ) i Bifhjs
over the distribution P(f77). Using Egs. (4) and (5), this is
equal to i; with zero variance. This result is expected by the
definition of the conditioned P(f|1]), yet it reveals the role of
the negative correlations, Eq. (5). Without it, deviations
would likely drive some low-x species to extinction in a
more random community.

Equations (4) and (5) are valid for any number of species
S. For large S, the denominators _,, () fim & Y, 1 for
all pairs to within O(1/S), by adding the »? term. Then,
Egq. (4) is simply bilinear in #;, 17;, and Eq. (5) is bilinear in
n J° Mk-

So far, we have only used the fact that the community is
at a fixed point with certain abundances. In Sec. III we
touch on the stability of the state of the system, and how it
might have formed.

Interaction statistics only (across experiments)
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FIG. 4. Validation of the Lotka-Volterra model. The consistency of the equilibrium description (2) was validated through a series of
tests. For the Wageningen grassland experiment (with § = 8 species), we find accurate predictions for the full fitted Lotka-Volterra
model (dashed lines show a 1:1 relationship between prediction and measurement). (a) We compare the equilibrium values of 7; =
B;/K; in the full-diversity plot (S = 8) to the prediction ; =13, f;n;, where interactions f;; were inferred from all partial
compositions (plots with § < 8). (b) Carrying capacities K; inferred as the intercept of the multilinear regression from polyculture plots
(§ > 1) agree with direct measurements in monocultures (S = 1). (c),(d) Even when species are too numerous to allow a precise
inference of all pairwise interactions, we can predict statistics of #; using only the mean and variance of interactions f3;; in tested species
pairs, following the methodology in Ref. [23]. Across the Wageningen, Cedar Creek Big Bio (16 species), and Jena (60 species)
experiments, we find good agreement in predicted versus measured values for the mean in (c) and coefficient of variation in (d) of

relative yields in the full-diversity plots.
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C. Empirical validation (single-species plots) provides an estimate of the species’
carrying capacities K;.

Of these experiments, we focus in the main text on the
Wageningen grassland experiment [39] for which almost all
pairwise species combinations were realized, and which
allows for precise testing of the equilibrium model. The
experiment used S = 8 species, which grow naturally in
that region. They are planted in 102 plots including all
single-species plots, 24 out of 28 two-species plots, various
four-species combinations, and the mixture of all 8 species.
No treatment such as water or fertilization was applied,
except for weeding out species that should not grow in each
plot. Biomass was collected and measured annually over
12 years.

We first demonstrate the applicability of the equilibrium
Lotka-Volterra model in Fig. 4. In the Wageningen grassland
experiment especially, we observe a clear trend over time
toward an equilibrium, namely a state in which species’

We now present an empirical validation of these patterns
on experimental data in Figs. 5 and 6. We first searched for
data that provide the equilibrium abundances of a set of
coexisting species, as well as direct experimental measure-
ments of the strength of pairwise interactions between these
species. Our theory, parametrized only by species’ relative
yields in the full community, predicts statistical features of
their interaction network, which we can compare to
estimates of the same statistics in the measured interactions.

Grassland biodiversity experiments [39-41] provide an
ideal test bed for inferring species interactions and mech-
anisms of coexistence. Each experiment contains a large
number of plots delineated in a natural open environment,
in which plant species are assembled in varying numbers
and combinations, out of a pool of § = 8-16 species
depending on the experiment (see detailed description in
the Supplemental Material [24]). Biomass in monoculture

(a) Interaction coefficients (;; (c) One-to-one comparison (e) Per-species comparison
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FIG.5. Diffuse structure in the Wageningen grassland experiment. (a) Using many species combinations (56 sets of S < 8 species), we
can fit interaction coefficients ;; in Eq. (2) by multilinear regression and compute their mean E[f] = 0.4. (b) Using the relative yields ;
in the full community (S = 8 species), we predict the theoretical pattern of expectations (4) for each interaction [Fig. 3(a); here we see
only negative biases in blue, indicating that all interactions are less competitive than the prior mean j3]. Abbreviations for species names
are given in Sec. IV. (c)—(e) In our diffuse pattern, individual coefficients are expected to exhibit a large spread around their expectation
E[f;]n:,n;], and must be binned to compute empirical statistics. (c) We group coefficients f;; by their associated #;, 7; to compute the
running average A[f3;;|n;. n;] (gray curve, +1 standard deviation in shaded area). Its proximity to the dashed 1:1 line is one of multiple
metrics of theory-data agreement. (d) We show the empirical running average A[f;;]1;, 17,] in matrix form (median value for each species
pair i, j), to be compared with the theoretical prediction E[f;;|n;, ;] in (b). This is a particular way of smoothing the empirical matrix f;;
shown in (a); see Sec. IV. (e) In another test of the theory, we group coefficients by species, i.e., either by row or by column in the matrix
Bij- We then compute how coefficients in row i (column j) vary with 57; (17;). Each solid point is the linear regression slope within a row or
column. The empirical values and their spread around the trend are both in good agreement with our theoretical predictions (mean trend
in solid line, spread in dashed lines, =1 SD). The linear slope of the points matches quantitatively the theoretical trend in the mean,
which is approximately linear as expected for large S.
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abundances fluctuate around fixed values (see Fig. S2 in the
Supplemental Material [24]). The Wageningen grassland
experiment both displays the least noise in inferred coef-
ficients, with the most extensive set of pair competition
experiments (~85% of all possible pairs), and replicates of
the single-species and eight-species plots. The accuracy of
biomass estimates over the years and over replicate plots is
of comparable size, giving further confidence to the results.

The interactions were calculated using the multilinear fit
of interactions [28] from plots with 1-4 species; see more
details in Sec. IV.

Pairwise interactions almost all satisfy ;; < 1, meaning
that most species can coexist in pairs, with E[f] ~ 0.4 and
std(ff) ~ 0.2 showing a strong departure from the neutral
hypothesis (f;; = 1). Furthermore, these interactions f;,
inferred only from plots with 1-4 species, correctly predict
relative yields in the full eight-species community [Fig. 4(a)].
Thus, the biodiversity in this experiment is well explained by
a simple equilibrium condition with pairwise interactions,
without resorting to more complex explanations such as
nonequilibrium coexistence [6] or higher-order interactions
[42]. Following the method in Ref. [23], we show in Figs. 4(c)
and 4(d) that even in high-diversity experiments where all
pairwise interactions cannot be inferred precisely their
statistics alone correctly predict the mean and variance of
equilibrium relative yields.

Our theory then predicts statistical trends in species
interactions, given their relative yields in the full commu-
nity plots [43], with no adjustable parameters. We compare
the fitted empirical interaction matrix to theoretically
predicted expectations (4) and correlations (5).

We show in Fig. 5 the interaction matrix computed in the
Wageningen grassland experiment [39], which supports our
theory: individual coefficients f3;; display a random-looking
spread, as we expect for a high-dimensional structure; yet
we can group these coefficients in various ways to compute
statistics, all of which concur with our predictions.

As the predicted probability distribution of interaction
strengths resides in a high-dimensional space, various sta-
tistics can be formed to test its validity. We choose tests with
two aims in mind. First, as the theory is probabilistic, all
quantities are predicted to have a variation, so we choose
quantities that are narrowly distributed. This allows us to
compare predictions even when only one realization is given,
provided § is large enough (a self-averaging quantity). For
example, while the value of an individual matrix element is
not expected to be strongly constrained, averages or slopes
along rows or columns are more narrowly distributed.
Second, we look for statistical tests that relate to the intuitive
interpretation described above and summarized in Fig. 3.

As a first test, we bin interactions by their species’
relative yields. We can then compute the empirical running
average A[f;;|n;.n;], namely the average of f,;; for all
species pairs i, j whose relative yields »; and 7; give a
similar predicted mean for f3;;, Eq. (4). This average is close

to a one-to-one relationship with the theoretical expectation
E[p;j|n;»n;] [Fig. 5(c)].

In a second test, we group the coefficients by species: our
theory (Fig. 3) predicts how the competition exerted and
experienced by each species varies with the relative yields of
competitors. Figure 5(e) shows that empirical statistics agree
with both predictions, with a spread around the trend
comparable to what we expect theoretically for eight species.
These have a clear interpretation: for example, the slopes
along the columns, in the bottom panel of Fig. 5(e),

Counter- Similarity s
—
example

Data Theory

Score = sx D

Metric
Discrimination D
N & 3

‘L\O \OQ 0@ o

X2 > & o
< ‘Q} & & &

Q N & [

Tradeoff <% ey 9 R

BioCON 0.53 0.67 (i 8-10

Wageningen i n“ w0

| 0.54 0.75 0.86 9-13
o

Diffuse

FIG. 6. Cross-experiment validation of the diffuse clique
structure. Multiple quantitative tests are needed to confirm
agreement between data and theoretical predictions while ruling
out counterexamples. Therefore, we compute a series of metrics
(defined in the Supplemental Material [24]) of agreement for
conditional expectations E[f;;]n;, 1;], correlations corr(f;;. Bi|n;.
17;.Mx), and diffuseness (whether interactions appear random).
The first two metrics test the pattern shown in Fig. 3. We do not
show each metric directly, because its predicted range is specific
to each experiment. Instead, we assign a similarity score s = +1
if predicted and observed values differ by less than 2 standard
deviations, —1 if they differ by more. We also compute a
discrimination score D between 0 and 1 measuring how well
the metric differentiates between our theory and a counterexam-
ple (see Sec. IV). The product s x D is shown here. Other metrics
were also tested, and the last column reports the number (or range
across treatments or simulation runs) of positive results out of all
13 tests shown in the Supplemental Material [24]. The first and
last row display simulated communities that constitute either
counterexamples (low-dimensional trade-off patterns) or exam-
ples of our theory.
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correspond to the pattern presented in Fig. 3(a), according to
which more successful species (higher #) compete less
strongly with other successful species. As predicted, the
data show a trend toward greater bias (more negative slope)
as n grows. Moreover, the slope of these data points
quantitatively matches the theoretically predicted slope.
(The prediction is nearly a straight line at large S.)
Finally, we compare the spread in the points around the
slope of this line. This is done by generating matrices from
the theoretical distribution, Egs. (4) and (5), and measuring
the spread of points. We see that the spread of measured
points is consistent with the predicted one.

Turning to the correlations, Eq. (5) predicts that the effect of
different species on the same target species will be negatively
correlated [overlap avoidance, Fig. 3(b)]. We indeed find such
negative correlations in the data. The average negative
correlation is —0.086 =+ 0.020, significantly negative. This
is to be compared with the prediction, —0.093 £ 0.002.

This agreement between theory and data is precisely
quantified for multiple experiments in Fig. 6. Our tests are
designed to show that the empirical interactions appear too
random to arise from a low-dimensional structure, yet exhibit
the predicted pattern of means and correlations. We employ
multiple metrics, each focusing on a different feature of our
predictions, and we estimate how well each metric can
discriminate between a positive example (a matrix generated
according to our theory) and a negative one (here, a low-
dimensional competition-colonization trade-off structure
which does not follow our theory; see Fig. 2). Out of 13
tests detailed in the Supplemental Material [24], we show
three representative examples: two evaluate the predictions
in Fig. 3 and one quantifies the diffuse (random-looking)
character of the interactions. These tests taken together
indicate moderate to good agreement for the Big Bio,
BioCON, and Wageningen experiments. The Wageningen
grassland experiment displays both the least noise in inferred
coefficients and the most consistent and precise match to
theory.

II1. DISCUSSION

We have identified the most parsimonious way in which
a complex network of ecological interactions can be
organized so that all species coexist. We have shown that
this pattern indeed occurs in plant interactions measured in
several biodiversity experiments. This invites a new, more
collective outlook on how to explain and predict species
coexistence and biodiversity.

Our theory predicts that, when complex interactions arise
from many different factors, ecological communities will
most generally display a fuzzy “clique” of competitors that
are both successful and less likely to compete strongly with
each other, surrounded by unsuccessful species with
random-looking interactions. This picture differs in multi-
ple respects from classic explanations of coexistence. By
imposing only the weakest possible constraints upon the

many degrees of freedom in f;;, it allows individual
interactions to take almost arbitrary values. It does not
suppose a measurable segregation of species into distinct
niches. It also represents a form of collective organization,
where coexistence arises, not from particular species traits,
but from statistical biases distributed over all interactions.
Accordingly, this structure becomes increasingly likely to
occur (although increasingly diffuse and subtle) in more
diverse communities.

Our results provide a test of how typical an empirical or
synthetic interaction network is, given the observed abun-
dances, i.e., how similar or different it is to the majority of
networks admitting the same equilibrium 7. For instance,
specific mechanisms such as the colonization-competition
trade-off can give rise to communities that display different
and even opposite correlations to our predictions (Fig. 6).
Correspondingly, these interaction networks are quite
distinctive, and tend to have low likelihood from a random
prior. In empirical networks, finding such trends opposite to
diffuse partitioning could be interpreted as evidence for
some underlying biological processes imposing more
structure than the minimum necessary for coexistence.

The probability distribution defined by Egs. (4) and (5)
allows us to make deterministic (self-averaging) predictions
on the interaction network. This has advantages over direct
tests for randomness, which are both conceptually and
practically difficult, especially in the presence of noise due
to measurement errors.

We stress that our results constitute a very stringent test for
a theory of ecological coexistence. The fact that our simple
multilinear model (2) correctly predicts coexistence (and even
abundances) in various compositions is already a nontrivial
result [28,29,31,32,36]. It suggests that more complex
explanations, such as coexistence supported by dynamics
[6] or higher-order interactions [42], are not required to
explain the maintenance of biodiversity in these experiments.
We go significantly further by demonstrating that the fitted
interactions follow a theoretically predicted pattern, fully
determined by measurements without any adjustable param-
eter. We have shown that our test can tell this pattern apart
from a low-dimensional trade-off mechanism [44]. To reduce
inference biases, we use distinct abundance data to para-
metrize our theory and to infer the empirical interactions. We
rule out these relationships being artifacts of our method,
showing them to be violated in sparse and noisy data or
counterexamples to our theory; see Fig. 6. Consequently, we
believe that the experimental evidence is not merely sugges-
tive, but strongly supportive of our claim.

A. Why is the diffuse coexistence pattern likely?

We gave a probabilistic interpretation of diffuse parti-
tioning. Naively, one might assume that coexistence
requires all competitive interactions to be much weaker
than in random assemblages of noncoexisting species. But
finding a set of nothing but weak competitors is unlikely if
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migration allows others to enter the community, and to
account for that we impose some expected mean interaction
strength. Instead, the most likely and parsimonious out-
come is the differentiation of species into successful and
less successful species, where the former are both more
discriminate in their competition. Rather than have all
species deviate strongly from the global distribution, this
deviation is thus borne mostly by some species, in a way
that ensures their success. This concentrates the nonrandom
constraints into a fraction of important species, while
allowing maximal random variation around this structure.

B. Dynamical considerations: Assembly and stability

Interestingly, the pattern obtained here is precisely the
one obtained by an assembly process [25], where species
migrate from a pool of S, species, and a subset of them
forms a stably coexisting community. When the community
follows Lotka-Volterra dynamics,

di’][ - pool
E_rini(l_”i_ Zﬁzj 77i> to, (6)

J:(G#i)

where @ represents small but positive migration, a fixed
point of the dynamics will satisfy Eq. (2) for the S surviving
species (those with 7; > 0 even when @ — 01). When the
interactions between all species in the pool follow our prior
distribution, the means and variances of the interactions
between surviving species exactly follow the probability
distribution in Egs. (4) and (5). We interpret this to mean
that, while ecological assembly must create some structure
in the community, it deviates as little from the random prior
as necessary to allow coexistence. This minimal structure is
precisely the one that we would expect from our probabi-
listic argument above, applied to the S surviving species.
Therefore, it appears that ecological assembly does not
generate extraneous motifs (“spandrels” [45]) in the proc-
ess of selecting species that persist together.

The derivation we put forward in this work is more
phenomenological and less mechanical in nature. It
explains how the pattern might apply to an experiment
such as the Wageningen grassland experiment [39], where
no species have gone extinct in the eight-species culture,
but where other factors may have contributed to coexist-
ence, considering that the species grow naturally in the
same area which could entail prior assembly or coevolu-
tion, similarity in functional groups, etc.

Stability.—A fixed point of Eq. (6) must also be stable
under small perturbations to the surviving species. In
principle, the stability may differ for different matrices
sampled from the same probability distribution for f, yet
for large S typical matrices are either all stable or all
unstable when var(f,;;) scales as 1/S, with a sharp
transition in terms of the system parameters [11,16,20].
In the case of interactions generated by assembly, it has
been shown that the stability of the resulting network is not

affected by the pattern; namely, the matrices with the
pattern are stable if and only if a matrix sampled from the
fully random prior is stable [16,22,25].

If one allows any assignment of abundances 7 (not
restricted to the outcomes of assembly), the situation is
more complicated. There might not even exist a stable
matrix # that admits these abundances as a stable fixed
point. For example, for S =2 and 5, =1, < 1/2, the
unique solution is f;, = f,; = 1/n — 1, which is unstable.
Yet we prove in Appendix B that for large S with the same
asymptotic scaling var(f;;) ~ 1/S, and under additional
weak conditions on 7, the conclusion from assembly
scenario holds: the additional pattern does not affect
stability, with samples of the posterior and prior probability
distributions either both stable or both unstable.

In summary, we have introduced a novel way of thinking
about species coexistence: not focusing on individual
mechanisms, but predicting the universal statistical features
that arise from combining many different coexistence
mechanisms. We have quantitatively evidenced these fea-
tures in real ecological communities. They reveal how
generic an interaction network is: how statistically similar it
is to most possible networks admitting the same equilib-
rium (Fig. 2). These features are not a necessary conse-
quence of equilibrium coexistence: they can be violated in
some communities, and these departures can hint at other
biologically important low-dimensional mechanisms, such
as simple trade-offs between ecological traits [44]. Instead,
these features suggest the existence of a collective, intrinsi-
cally high-dimensional community organization. In such
ecosystems, coexistence cannot be understood by analyz-
ing particular species traits or environmental factors.

While our examples center on diffuse competition (dense
interactions between many competitors), the underlying
theoretical findings can be extended to any interaction net-
work, be it noncompetitive, sparse, or qualitative. The
formulas given above have been derived assuming that
interactions are close to being fully random, but the same
reasoning can be adapted to other priors on network structure.
This can allow future extensions to other ecological networks
such as food webs, and to generative processes such as
speciation, which introduce distinct nonrandom, yet nonfunc-
tional, patterns (spandrels) into interaction networks [45].

The classic alternative to niche theory has been the
neutral theory of biodiversity [33], a null model that posits
identical species without coexistence mechanisms. That
model is empirically invalid here, as we observe hetero-
geneous and moderate species interactions that often allow
pairwise coexistence. By contrast, our theory proposes a
null model for complex communities with a large variety of
coexistence mechanisms. Our results imply the existence of
a spectrum of possibilities between classic trait-based
theories and complex network approaches and provide a
conclusive empirical test of collective organization in
many-species coexistence.
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IV. MATERIALS AND METHODS

A. Experimental data and interactions

We employ data from four grassland biodiversity experi-
ments in Wageningen, Netherlands [39], Cedar Creek, MN,
(the Big Biodiversity [41] and BioCON [40] experiments),
and Jena [46]. Each experiment uses a pool of species seeded
or planted in various combinations, including some or all
possible monocultures (S = 1 species), some partial compo-
sitions, and all species planted together. We removed the first
two years for all experiments, as they showed clear evidence
of transient dynamics (Supplemental Material [24], Sec. C).
The species pool in the Wageningen biodiversity experiment
comprises four grass species (Agrostis capillaris L.,
Anthoxanthum odoratum L., Festuca rubra L., Holcus
lanatus L.) and four dicot species (Centaurea jacea L.,
Leucanthemum vulgare Lamk., Plantago lanceolata L.,
Rumex acetosa L.).

For each experiment, we first split monoculture (S = 1)
data in two distinct sets, to be used separately, and computed
the species’ carrying capacities K; within each set. The first
set of monocultures and all plots with I < § < S, (Where
Smax 18 the experiment’s maximal plot diversity) were used to
infer the interaction matrix f3;; using the hyperplane (multi-
linear) least-squares fit proposed by Xiao er al. [28] (see
Appendix C). The second set of monocultures and the
species abundance B; in plots with § = §,,,, were then used
to compute the relative yields #; = B;/K; in the full
community. All calculations were performed 250 times,
using different bootstrapped sample means as values for K;
and B;. Each calculation led to a different set of 77;, j3;;, and Vi
(see Appendixes C and D for calculation details). Error bars
were also estimated from the bootstrapping procedure.

The multilinear fit of interactions [28] provided robust
estimates of the effect of abundant species, but random
fluctuations of #; between plots could lead to very large
(and highly variable) inferred per-capita effects for rare
species with small ;. To avoid this issue, we first removed
all species that had a reported abundance of 0 more than 90%
of the time in plots where they had been planted, then removed
coefficients f;; whose variance between bootstrapped replicas
was larger than the variance between coefficients in the
matrix. This procedure retained all coefficients in the
Wageningen experiment, but only around 60% of coefficients
in the other experiments. Given that the Wageningen experi-
ment gave more robust interaction values, we used it to assess
our hypothesis that observed abundances are primarily
determined by fixed pairwise species interactions according
to Eq. (2). Figure 4 shows strong empirical support for the
hypothesis in this experiment. Interaction estimates from
other experiments were less robust and might be affected by
nonlinearity, transient dynamics, stochasticity, and errors
(Supplemental Material [24], Sec. D). The Jena experiment
has the largest pool of § = 60 species and therefore a very
small fraction of duocultures are represented. As a

consequence, we only use it for a simple check of statistical
predictions with the Lotka-Volterra model (Fig. 4).

B. Validation of theoretical predictions

We tested the two components of the diffuse clique
pattern. Starting with the pattern of means, Eq. (4), we must
compare the measured values of f3;; (hereafter y) to their
theoretical expectation E[f;;]n;, 1;] (hereafter x). To obtain
an empirical estimate of the expectation for a single
interaction coefficient, we performed a running average:
for each point (x,y), we replaced its y coordinate by the
average y within a window centered on x and spanning 10%
of the x axis; we also measure the 90% confidence interval
over bootstrapped values [Fig. 5(c)]. We then grouped all
values y associated with the same species pair (i, j), took
their median, and reconstructed an empirical matrix of
expectations B;; [shown in Fig. 5(d)]. We also grouped
coefficients by species i or j and performed regressions
against n; or n;, respectively [Fig. 5(e)], as well as the
bilinear regression of f3;; against 7;77; (the score computed
from this metric is shown in Fig. 6, first column).

We proceeded similarly to test the pattern of correlations,
Eq. (5). Defining d,; = p;; — E[p;;n;.n;] and the identity
matrix I, we computed for each species triplet (i, j, k) the
value y = I; — d;;d;;/mean(d?), where the denominator is
the sample mean over all pairs. We then did a regression of
y against the prediction x = —n;1;/ > 1£i ;712 (Fig. 6, second
column).

The diffuse nature of our pattern means that we expect
the interaction matrix f;; to appear almost random. True
randomness is notoriously difficult to demonstrate [47], so
we focused here on a more intuitive property: smoothness.
The low-dimensional trade-off that we use as a counter-
example creates a smoothly varying matrix f3;;, whereas our
diffuse pattern cannot. As a simple metric of smoothness,
we measured differences between adjacent coefficients and
computed the fraction of these differences that are smaller
than std /2 (Fig. 6, third column).

For each of these metrics, we computed the distribution
of values obtained from bootstrapped empirical matrices
and found its mean and variance peypis agxpt. We also
computed the distribution of values in matrices generated
according to our theory (Upeors Caeor)> and in matrices
generated with a competition-colonization trade-off (.,
62.), with the same equilibrium as the data (see Appendix B
for details). In Fig. 6, we define similarity as

{1
S =
-1

which states in a simple binary score whether observed
values fall within the confidence interval (2 standard
deviations) of predicted values. We define discrimination as

if |.“expt _/"theor| < 26theor

otherwise,

(7)
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D= |:1 + min<|ﬂexpt — Hiheor| ’ |Hee _lutheor|>_1:| —1’ ®
Oexpt + Otheor  Occ T Otheor

which quantifies how well a given metric can differentiate
between patterns (D goes to 0 when standard deviations are
significantly larger than the interval between means). The
product s x D gives the scores shown in Fig. 6.

This study brought together existing data that were
obtained upon request (Wageningen biodiversity experi-
ment data from Van Ruijven and Berendse [39]) and data
that are publicly available [48-50]. Data represented in
Figs. 5 and 6 are available in Ref. [S1].
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APPENDIX A: DERIVATION OF THE PATTERN

In this Appendix, Egs. (4) and (5) are derived. In the
prior probability distribution, the coefficients in the matrix
p for i # j are independent, identically distributed (i.i.d)
Gaussian random variables with mean j= (B;j) and
variance (f%). = (f;;).. It is conditioned on

Zﬁiﬂh +n, =1,

J.(#)

for every i. Consider ﬁi, the ith row without f3;; (ithas § — 1
elements). The probability distribution depends on #; and the
vector of abundances without #;, denoted ﬁ\i, and given by

P(B]if) o normal(f;; (°) 1. Ji = B ii)
X 5@1’ "7\1‘ — (1 =m)),

where i is the column vector i = (1, 1,...,1)7,8(...) is the
Dirac ¢ function, and we do not make explicit the normali-
zation factor as it does not depend on the f;; variables. We
would like to write this as a Gaussian probability distribution
without a & function. Instead, it will have a rank-deficient
correlation matrix C.

To proceed, consider an orthonormal change of basis:
)_é — Rﬁl

We choose the first row of R to be @ =17;/|#\;|, and the
rest of the rows are chosen orthogonal to it and normalized
(e.g., via a Gram-Schmidt process). Thus, Rijy; = |ij\;|W,
with w = (1,0, ...,0)”. In the rotated space,

-

pi-n_i = (Rﬂi) : (Rﬁ\i) = \77\i|37 W= |’7[)\i|x1‘
Therefore, the distribution of X is
P(X) = normal(¥; () .1, RB@)S(|if\i[x; = (1 =n;)).

We can readily rewrite this as a Gaussian distribution
without the o function, since it represents S independent
random variables with a constraint only on the first one.
The loss of variance in the first dimension means that the
correlation matrix becomes

Cx = <ﬂ2>cl - <ﬂ2>c 0

While in the means vector j,, we have
(1 =n;)/|7\;|. and the rest are unchanged,

(x1) =

1

Rpii4+w(l —n,)/ |-

Together,
P(X) = normal(X; C,, ii,).
Rotating back to f§; = R~!¥ = R7%, we find
P(Bilii_;) = normal(f;; C; . ji; ),

with
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- o

C; = RTC.R = (8. [1 —aad’] = (f). [I ~ 7|11,-11\l} |

77\i|2
1
0 (1-n
D= — 7]1)
u; =RT{ (T = Rpu+w-—
b 0 |’1\i|
i (1 =n
—[I—aaT]ﬂbH—a( - )
|’7\i|
> =T
ol = ’7—i77_i—> 1_’11 -
:[}{u— q‘zu]—i—( 4'2)17\1-.
|7]\t| |’7\t|

Written elementwise, they read

M
C; (k1) = (7). [% - ] ,
g )i
. Ryl 1—-n;
7y (k) = p—pligeett, Uow)
DT 2o
. l=n=p Zl,(l;éi) M
= ﬂ + B Mk
22 Gl
_ 1 L=B2 0 i

- =i+ 1,
i 2 i)l

which are precisely Eqgs. (4) and (5). The correlations can
be interpreted as a projector that prevents fluctuations in the
>_;Bijn; direction.

The derivation can be turned into an algorithm: the
matrix R can be generated and X can be easily sampled, as
implemented in R in the code that we provide in the link
[51] in the main text.

APPENDIX B: STABILITY

Here we look at the stability of dynamical Lotka-Volterra
equations, Eq. (6), for matrices f sampled from the
conditioned distribution defined by Eqs. (4) and (5),
compared with matrices sampled from the prior distribution
(i.i.d. variables). We show, under certain conditions at large
S, that # sampled with the pattern is stable if and only if a §
sampled from the prior would be. This means that the
pattern neither stabilizes nor destabilizes the dynamical
system. This same conclusion was reached for communities
assembled dynamically [16,20,22,25]; the difference being
that there 7 are also determined by the assembly process,
while here it is given as an input.

We look at the spectrum of #. The system is stable if
and only if for all eigenvalues A the real part is positive,
Re(4) > 0 [52]. To study stability at the large S limit we
need to define the scaling in that limit. Generally, the
stability is depends on std(f;;) through the rescaled

variable ¢ = /Sstd(f;;) [11,16,20]. A sharp transition is
therefore obtained for large S with the scaling
std(f;) = o/ V5.

Numerical tests show that the pattern of correlations,
Eq. (5), does not seem to affect the distribution of
eigenvalues. We therefore focus on the effect of the biases
of the means Eq. (4).

The argument below assumes that no #; is much larger
than the others, i.e., 77/ >, n? — 0 for large S. Secondly, it
requires that at large S, the biases in the means, Eq. (4), are
individually small compared to the self-regulation, 3; = 1.
This does not mean that the pattern is not required for
coexistence: without it many species would go extinct [20].
Nor does it need to be small compared to the off-diagonal
elements f3;;. For Eq. (4) to be small compared to one, it is
sufficient that B —->0as S — o, e.g, ﬁ ~ 8§79, To see this,
note that from Eq. (2), ; =1} _,.; f;n;, we find that
ni~1/(SP), so 1/(Sy;) = 0 as S — oo0. If B <0(1/5),
then 7, = O(1) from the “disordered” contribution with
std(f;;) = o/+/S. In both cases, Eq. (4) is O(S79).

We show that with these assumptions, the conditioning
of # with Eq. (4) does not change the stability of the system,
namely the sign of min; Re(4).

An unconditioned matrix f,.ona can be written as

ﬂuncond = (1 _B)I +BMTM + cA

where [ is the identity matrix, ¥ a column vector
u=(1,1,...), and A a random matrix with i.i.d random
variables with var(A;;) = 1/S and zero mean. According to
the circular law [53], the eigenvalues of A are uniformly
distributed in the circle |A| < 1. The term pu’u has a
single nonzero eigenvalue [_}S, and so acts as a low-rank
perturbation on A. This is known [54] to change the
spectrum by merely adding an eigenvalue at fS. Finally,
the scaled identity term (1 — )1 shifts the spectrum by
A= A+ 1—p. All together, the matrix fconq iS Stable
when /(1 —f) < 1.

For the conditioned matrix f.,q, Eq. (4) shifts the means
with

ﬂcond _ (1 _B)I +Gcond + O'A,

where the matrix G (already for large S)

-(1 —/_7’)’71' —/_521(’11(
Ek,(k;éi)’/l%

The second term [l —(1—p)n; —pl,/ Zk,(k;éi) ’7@77;'
should not appear on the diagonal. It is here that we use
the assumption above, and note that on the diagonal we get
1 4+ O(S7Y), so adding it also to the diagonal will have a
negligible effect on the spectrum (essentially, the shifting
that I creates will be corrected by small fluctuating).

-1
d _
G =+ ’
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FIG. 7. Spectrum of conditioned f. Crosses: eigenvalues of a
matrix f conditioned with the pattern defined by Egs. (4) and (5),
with § = 50. Dashed line: circle within which g™ should have
eigenvalues due to 6A. Small circles: predicted positions of addi-
tional two eigenvalues. Other parameters: 17; 19 = 3, 71150 are i.i.d
variables, uniformly sampled in [0, 1.5]; /_3 = 0.05; 0 = 0.5.

Secondly, we use the assumption that 77/ >, 77 — 0 to add
n? to the denominator. Thus, we obtain

_(1 —/})’11'—/_”1

I Mj

-
Gy = f+

where I; =Y, 7%, also for the diagonal.

By the lemma below, the matrix G g of rank 2, and its
nonzero eigenvalues satisfy 4,, > —(1 — f8). This means
that G is a low-rank perturbation of cA. If the

unconditioned system is stable ¢/(1 — ) < 1, then the
Re(1) > —(1 — f) for all eigenvalues of 6A, and therefore
also of G 4 gA. After the shift due to (1 —g)I, all
eigenvalues of ™ have positive real parts. Figure 7 shows
an example of a spectrum of a sampled matrix, compared
with this theory.

Lemma.—G* has rank 2, and the nonzero eigenvalues
satisfy A, > —(1 = ).

Proof—We look at the eigenvalues of G"d. Let
u=(1,1,1,...). For a vector 7,

- 1L=(1=pB)m;—pI
zj:Gijvj:ﬁ(u'U)_'_ ( 1/2)11 L

(7 - V).

Therefore any vector for which -7 =0=17-7 is an
eigenvector with zero eigenvalue. This is a subspace of
dimension S — 2. The remaining subspace is spanned by
i, 1. Indeed,

Gcond-> _ F”ﬁ‘FF]zI;,
G = Fy)ij + Fal,

with

~(1-p) !
—(1-p)k Bs+(-pr)k]

and A,, are the eigenvalues of F. To show that
A2 > —(1=p), we show that the matrix F+ (1 —pg)I
has two positive eigenvalues. This follows from

det[F + (1= B)1] :(l—ﬁ)§—1>0
2

and

_ _ I? I I _
Tr[F+ (1-p)1] —ﬂ(S——1—1> +1tr1>Lr1-p>0,
I, I, I,

where we used the fact that 13/I, = S[(S7' > :n7)/
(7' i) <8 .

APPENDIX C: FITTING AND TESTING THE
EQUILIBRIUM MODEL

This Appendix describes how the data are fitted to an
equilibrium model and the interactions f;; are deduced.

Given the biomasses N l(-l) in monocultures and N SW) in

other plots with composition w, we define the relative yield:
1

n =N N (c1)

We should use a single such value per composition, since

we will take it to represent the true equilibrium relative

yield of that species in that composition. The simplest way

to then deduce interactions is directly from the relative

yields in duocultures [compositions w with S(w) =2
species]:

1

Py =t (C2)
nj

In practice, using only duoculture relative yields leads to

rather noisy results, and it discards useful information
contained in more diverse plots.

Following Xiao et al. [28] we instead infer the inter-
action matrix f3;; as follows. Provided that species i is not
extinct, all equilibria containing that species are predicted
(under Lotka-Volterra assumptions) to verify

0=1- WEW) - Zﬁij"];w}'

J#i

(C3)

Under the prior assumption that all $;; are independent, we
can infer the vector f3;; for each species i independently. It is
then a simple case of multilinear regression, minimizing the
sum of squares over all compositions w:
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2
min| (107 = X ) | (o

ij W

In the case of the Wageningen grassland experiment, for
each species i, there are seven parameters f3;; and at most 30
plots in which the species is present with significant
abundance. For other experiments, there are fewer different
compositions per species, meaning that there is a larger risk
of overfitting some interactions; in some, there are pairs of
species that never occur in the same composition, hence
their interactions are left blank and ignored thereafter.

When we then test this model and our theoretical
predictions on the equilibrium state of the most diverse
plots, we use interactions f3;; fitted using all compositions
except the most diverse [S(w) < Spax]. To make sure that
the data used for fitting and for testing are entirely distinct,
we even split monocultures into those used for computing
relative yields ngw) in the most diverse plots and those used
to compute it in all the other plots.

The same process can be applied directly to species
biomasses,

0=K,- NEW) - ZﬁijN_E-w),
JFi

(C5)

so as to infer the carrying capacity K;, not from mono-
cultures only, but as the intercept of the multilinear
regression of N; against other biomasses N; (i.e., the
asymptotic value of N; in the absence of other species).

We perform two tests of the validity of the fitted linear
model (Fig. 4): we use fitted interactions to predict the
maximum-diversity equilibrium abundances, and we com-
pare estimates of K; from monocultures to those obtained
as intercepts of the above regression from all plots except
monocultures. These tests (and additional tests shown in
the Supplemental Material [24]) are especially successful
for the Wageningen experiment, which we therefore pro-
pose as a reference experiment for any further investigation
based on Lotka-Volterra competition models.

APPENDIX D: ESTIMATING THE PRIOR
PARAMETERS

There are two important steps in computing our new
theoretical predictions: measuring the relative yields in the
full community #; and inferring the parameter  which
enters into the pattern of means [Eq. (4)]. We now discuss
the second step. This parameter can be interpreted as the
mean of the prior distribution of interactions P(ff) before
we constrain it to ensure coexistence. It is therefore
different from E[f], the expected value of all interactions
measured among coexisting species (see Appendix D 1).
For instance, in a community assembly experiment where
some species go to extinction, § would be the average
interaction strength between all species in the preassembly

pool and E[f] the average interaction strength in the
observed community of surviving species, which would
typically be less competitive.

1. Getting pool parameters from interactions between
coexisting species

Given the average interaction strength E[f] between
coexisting species, our theory makes it possible to compute
the original interaction strength /3 in the pool of all possible
species (i.e., in the prior). Let us rewrite the pattern of
means [Eq. (4)] as

_ ;
E } Wil = P2 )
[/t/l']t 77}] ’B + Smean(nz) - ’712

x[1 = (1= ), — BSmean(n)],  (D1)
given the mean f§ of the prior distribution P(8). We will
compare this pattern to fits and use it to generate matrices
from the conditioned random ensemble. However, to do so,
we must know f.

By integrating over 7; and 7;, we see that the average in
the matrix of coexisting species is displaced from the prior
mean,

E[p;;] = B[1 + mean(y)Q, — S mean(n)> Q]

+ mean(n7)(Q; — Q,), (D2)
with
B 1
Q1 = mean [S mean(n?) — n?} ’
. i
©2 = mean [S mean(i*) — n?} ' ©3)

As a consequence, by inverting Eq. (D2), we can infer 3 the
mean in the prior distribution (or the preassembly pool of
species) if we know the empirical average E[f;;] among
coexisting species.

2. Mean field estimate

Getting a naive estimate of f# is immediate, following a
classic “mean field” approximation [36]: if all interactions
are exactly f;; = f [i.e., if our prior distribution P(§) has
zero variance], then all relative yields should be equal and
given by

o
LA Ty

(D4)
We can invert this formula to obtain S, but for hetero-
geneous relative yields, this parameter is strongly under-
estimated when compared to other methods (and also when
compared to its true value in simulations). For a better (but
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still rough) approximation, we use the observed average
relative yield meany; to estimate the realized interaction
strength:

e e e

From this, we can estimate ;. by inverting Eq. (D2) as
described in the previous section.

This estimate gives similar but slightly worse results than
those shown in the main text, because it often under-
estimates the average strength of competition in a hetero-
geneous community. Note that if all species survive, we can
also have a rough estimate of the variance of # [23]:

(D6)

Var(ﬂ )naive -

-z

s mean(n?) ]’

3. Estimating E[f;]

Results shown in the main text use the empirical mean
E[p;;] directly computed from the inferred interactions f;;.
This is the most direct option, but it requires knowledge of
the interaction matrix, which is not available outside of
special experimental setups such as those studied here. In
other systems, we could attempt other ways of estimating
the empirical mean. In particular, we can compute the fixed
point: the value such that E[§;;] = f, meaning that adding
the constraint of coexistence (or letting assembly run) will
not change the average interaction. If we have no other
information about the system, this is the most likely
interaction strength given that we see these species coexist
with observed relative yields #;:

mean(n)(Q; — 0»)

ELBU] =pep= mean(n)Q, — Smean(n)*Q;

(D7)

This is one of our methods for estimating $ (two more are
detailed in the Supplemental Material [24]) and it gives good
results in simulations and in the Wageningen experiment, but
predicts weaker competition than when computed directly
from the matrix f3;; in the other experiments, suggesting that
species in these experiments may already represent a pre-
selected subset of a larger, more competitive pool.

We also note that the correlation pattern,

niMk

S S—— Y
S mean(i7*) — (D%

cov(Bij, Bu) = 05 |5«

given the variance af, of the prior distribution indicates that

var(§) = a3[1 - mean(r) 0y, (D9)

which we can invert to obtain op from a realized matrix.
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